Search Results

Search found 4289 results on 172 pages for 'focus stealing'.

Page 159/172 | < Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >

  • Getting your bearings and defining the project objective

    - by johndoucette
    I wrote this two years ago and thought it was worth posting… Some may think this is a daunting task and some may even say “what a waste of time” and want to open MS Project and start typing out tasks because someone asked for an estimate and a task list. Hell, maybe you even use Excel and pump out a spreadsheet with some real scientific formula for guessing how long it will take to code a bunch of classes. However, this short exercise will provide the basis for the entire project, whether small or large and be a great friend when communicating to anyone on your team or even your client. I call this the Project Brief. If you find yourself going beyond a single page, then you must decompose the sections and summarize your findings so there is a complete and clear picture of the project you are working on in a relatively short statement. Here is a great quote from the PMBOK (Project Management Body of Knowledge) relative to what a project is;   A project is a temporary endeavor undertaken to create a unique product, service or result. With this in mind, the project brief should encompass the entirety (objective) of the endeavor in its explanation and what it will take (goals) to create the product, service or result (deliverables). Normally the process of identifying the project objective is done during the first stage of a project called the Project Kickoff, but you can perform this very important step anytime to help you get a bearing. There are many more parts to helping a project stay on course, but this is usually the foundation where it can be grounded on. Through a series of 3 exercises, you should be able to come up with the objective, goals and deliverables on your project. Follow these steps, and in no time (about &frac12; hour), you will have the foundation of your project plan. (See examples below) Exercise 1 – Objectives Begin with the end in mind. Think about your project in business terms with a couple things to help you understand the objective; Reference the business benefit in terms of cost, speed and / or quality, Provide a higher level of what the outcome will look like (future sense) It should be non-measurable, that’s what the goals are all about The output should be a single paragraph with three sentences and take 10 minutes to write. *Typically, agreement must be reached on the objectives of the project before you would proceed to the next steps of the project. Exercise 2 – Goals A project goal is a statement that answers questions about who, what, why, where and when. A good project goal statement; Answers the five “W” questions for the project Is measurable in each of its parts Is published and agreed on by all the owners This helps the Project Manager receive confirmation on defining the project target. Using the established project objective done in the first exercise, think about the things it will take to get the job done. Think about tangible activities which are the top level tasks in a typical Work Breakdown Structure (WBS). The overall goal statement plus all the deliverables (next exercise) can be seen as the project team’s contract with the project owners. Write 3 - 5 goals in about 10 minutes. You should not write the words “Who, what, why, where and when, but merely be able to answer the questions when you read a goal. Exercise 3 – Deliverables Every project creates some type of output and these outputs are called deliverables. There are two classes of deliverables; Internal – produced for project team members to meet their goals External – produced for project owners to meet their expectations The list you enter here provides a checklist for the team’s delivery and/or is a statement of all the expectations of the project owners. Here are some typical project deliverables; Product and product documentation End product/system Requirements/feature documents Installation guides Demo/prototype System design documents User guides/help files Plans Project plan Training plan Conversion/installation/delivery plan Test plans Documentation plan Communication plan Reports and general documentation Progress reports System acceptance tests Outstanding bug list Procedures Risk and issue logs Project history Deliverables should go with each of the goals. Have 3-5 deliverables for each goal. When you are done, you will have established a great foundation for the clarity of your project. This exercise can take some time, but with practice, you should be able to whip this one out in 10 minutes as well, especially if you are intimate with an ongoing project. Samples  Objective [Client] is implementing a series of MOSS sites to support external public (Internet), internal employee (Intranet) and an external secure (password protected Internet) applications. This project will focus on the public-facing web site and will provide [Client] with architectural recommendations based on the current design being done by their design partner [Partner] and the internal Content Team. In addition, it will provide [Client] with a development plan and confidence they need to deploy a world class public Internet website. Goals 1.  [Consultant] will provide technical guidance and set project team expectations for the implementation of the MOSS Internet site based on provided features/functions within three weeks. 2.  [Consultant] will understand phase 2 secure password-protected Internet site design and provide recommendations.   Deliverables 1.1  Public Internet (unsecure) Architectural Recommendation Plan 1.2  Physical Site construction Work Breakdown Structure and plan (Time, cost and resources needed) 2.1  Two Factor authentication recommendation document   Objective [Client] is currently using an application developed by [Consultant] many years ago called "XXX". This application, although functional, does not meet their new updated business requirements and contains a few defects which [Client] has developed work-around processes. [Client] would like to have a "new and improved" system to support their membership management needs by expanding membership and subscription capabilities, provide accounting integration with internal (GL) and external (VeriSign) systems, and implement hooks to the current CRM solution. This effort will take place through a series of phases, beginning with envisioning. Goals 1. Through discussions with users, [Consultant] will discover current issues/bugs which need to be resolved which must meet the current functionality requirements within three weeks. 2. [Consultant] will gather requirements from the users about what is "needed" vs. "what they have" for enhancements and provide a high level document supporting their needs. 3. [Consultant] will meet with the team members through a series of meetings and help define the overall project plan to deliver a new and improved solution. Deliverables 1.1 Prioritized list of Current application issues/bugs that need to be resolved 1.2 Provide a resolution plan on the issues/bugs identified in the current application 1.3 Risk Assessment Document 2.1 Deliver a Requirements Document showing high-level [Client] needs for the new XXX application. · New feature functionality not in the application today · Existing functionality that will remain in the new functionality 2.2 Reporting Requirements Document 3.1 A Project Plan showing the deliverables and cost for the next (second) phase of this project. 3.2 A Statement of Work for the next (second) phase of this project. 3.3 An Estimate of any work that would need to follow the second phase.

    Read the article

  • The Birth of a Method - Where did OUM come from?

    - by user702549
    It seemed fitting to start this blog entry with the OUM vision statement. The vision for the Oracle® Unified Method (OUM) is to support the entire Enterprise IT lifecycle, including support for the successful implementation of every Oracle product.  Well, it’s that time of year again; we just finished testing and packaging OUM 5.6.  It will be released for general availability to qualifying customers and partners this month.  Because of this, I’ve been reflecting back on how the birth of Oracle’s Unified method - OUM came about. As the Release Director of OUM, I’ve been honored to package every method release.  No, maybe you’d say it’s not so special.  Of course, anyone can use packaging software to create an .exe file.  But to me, it is pretty special, because so many people work together to make each release come about.  The rich content that results is what makes OUM’s history worth talking about.   To me, professionally speaking, working on OUM, well it’s been “a labor of love”.  My youngest child was just 8 years old when OUM was born, and she’s now in High School!  Watching her grow and change has been fascinating, if you ask her, she’s grown up hearing about OUM.  My son would often walk into my home office and ask “How is OUM today, Mom?”  I am one of many people that take care of OUM, and have watched the method “mature” over these last 6 years.  Maybe that makes me a "Method Mom" (someone in one of my classes last year actually said this outloud) but there are so many others who collaborate and care about OUM Development. I’ve thought about writing this blog entry for a long time just to reflect on how far the Method has come. Each release, as I prepare the OUM Contributors list, I see how many people’s experience and ideas it has taken to create this wealth of knowledge, process and task guidance as well as templates and examples.  If you’re wondering how many people, just go into OUM select the resources button on the top of most pages of the method, and on that resources page click the ABOUT link. So now back to my nostalgic moment as I finished release 5.6 packaging.  I reflected back, on all the things that happened that cause OUM to become not just a dream but to actually come to fruition.  Here are some key conditions that make it possible for each release of the method: A vision to have one method instead of many methods, thereby focusing on deeper, richer content People within Oracle’s consulting Organization  willing to contribute to OUM providing Subject Matter Experts who are willing to write down and share what they know. Oracle’s continued acquisition of software companies, the need to assimilate high quality existing materials from these companies The need to bring together people from very different backgrounds and provide a common language to support Oracle Product implementations that often involve multiple product families What came first, and then what was the strategy? Initially OUM 4.0 was based on Oracle’s J2EE Custom Development Method (JCDM), it was a good “backbone”  (work breakdown structure) it was Unified Process based, and had good content around UML as well as custom software development.  But it needed to be extended in order to achieve the OUM Vision. What happened after that was to take in the “best of the best”, the legacy and acquired methods were scheduled for assimilation into OUM, one release after another.  We incrementally built OUM.  We didn’t want to lose any of the expertise that was reflected in AIM (Oracle’s legacy Application Implementation Method), Compass (People Soft’s Application implementation method) and so many more. When was OUM born? OUM 4.1 published April 30, 2006.  This release allowed Oracles Advanced Technology groups to begin the very first implementations of Fusion Middleware.  In the early days of the Method we would prepare several releases a year.  Our iterative release development cycle began and continues to be refined with each Method release.  Now we typically see one major release each year. The OUM release development cycle is not unlike many Oracle Implementation projects in that we need to gather requirements, prioritize, prepare the content, test package and then go production.  Typically we develop an OUM release MoSCoW (must have, should have, could have, and won’t have) right after the prior release goes out.   These are the high level requirements.  We break the timeframe into increments, frequent checkpoints that help us assess the content and progress is measured through frequent checkpoints.  We work as a team to prioritize what should be done in each increment. Yes, the team provides the estimates for what can be done within a particular increment.  We sometimes have Method Development workshops (physically or virtually) to accelerate content development on a particular subject area, that is where the best content results. As the written content nears the final stages, it goes through edit and evaluation through peer reviews, and then moves into the release staging environment.  Then content freeze and testing of the method pack take place.  This iterative cycle is run using the OUM artifacts that make sense “fit for purpose”, project plans, MoSCoW lists, Test plans are just a few of the OUM work products we use on a Method Release project. In 2007 OUM 4.3, 4.4 and 4.5 were published.  With the release of 4.5 our Custom BI Method (Data Warehouse Method FastTrack) was assimilated into OUM.  These early releases helped us align Oracle’s Unified method with other industry standards Then in 2008 we made significant changes to the OUM “Backbone” to support Applications Implementation projects with that went to the OUM 5.0 release.  Now things started to get really interesting.  Next we had some major developments in the Envision focus area in the area of Enterprise Architecture.  We acquired some really great content from the former BEA, Liquid Enterprise Method (LEM) along with some SMEs who were willing to work at bringing this content into OUM.  The Service Oriented Architecture content in OUM is extensive and can help support the successful implementation of Fusion Middleware, as well as Fusion Applications. Of course we’ve developed a wealth of OUM training materials that work also helps to improve the method content.  It is one thing to write “how to”, and quite another to be able to teach people how to use the materials to improve the success of their projects.  I’ve learned so much by teaching people how to use OUM. What's next? So here toward the end of 2012, what’s in store in OUM 5.6, well, I’m sure you won’t be surprised the answer is Cloud Computing.   More details to come in the next couple of weeks!  The best part of being involved in the development of OUM is to see how many people have “adopted” OUM over these six years, Clients, Partners, and Oracle Consultants.  The content just gets better with each release.   I’d love to hear your comments on how OUM has evolved, and ideas for new content you’d like to see in the upcoming releases.

    Read the article

  • Fraud Detection with the SQL Server Suite Part 2

    - by Dejan Sarka
    This is the second part of the fraud detection whitepaper. You can find the first part in my previous blog post about this topic. My Approach to Data Mining Projects It is impossible to evaluate the time and money needed for a complete fraud detection infrastructure in advance. Personally, I do not know the customer’s data in advance. I don’t know whether there is already an existing infrastructure, like a data warehouse, in place, or whether we would need to build one from scratch. Therefore, I always suggest to start with a proof-of-concept (POC) project. A POC takes something between 5 and 10 working days, and involves personnel from the customer’s site – either employees or outsourced consultants. The team should include a subject matter expert (SME) and at least one information technology (IT) expert. The SME must be familiar with both the domain in question as well as the meaning of data at hand, while the IT expert should be familiar with the structure of data, how to access it, and have some programming (preferably Transact-SQL) knowledge. With more than one IT expert the most time consuming work, namely data preparation and overview, can be completed sooner. I assume that the relevant data is already extracted and available at the very beginning of the POC project. If a customer wants to have their people involved in the project directly and requests the transfer of knowledge, the project begins with training. I strongly advise this approach as it offers the establishment of a common background for all people involved, the understanding of how the algorithms work and the understanding of how the results should be interpreted, a way of becoming familiar with the SQL Server suite, and more. Once the data has been extracted, the customer’s SME (i.e. the analyst), and the IT expert assigned to the project will learn how to prepare the data in an efficient manner. Together with me, knowledge and expertise allow us to focus immediately on the most interesting attributes and identify any additional, calculated, ones soon after. By employing our programming knowledge, we can, for example, prepare tens of derived variables, detect outliers, identify the relationships between pairs of input variables, and more, in only two or three days, depending on the quantity and the quality of input data. I favor the customer’s decision of assigning additional personnel to the project. For example, I actually prefer to work with two teams simultaneously. I demonstrate and explain the subject matter by applying techniques directly on the data managed by each team, and then both teams continue to work on the data overview and data preparation under our supervision. I explain to the teams what kind of results we expect, the reasons why they are needed, and how to achieve them. Afterwards we review and explain the results, and continue with new instructions, until we resolve all known problems. Simultaneously with the data preparation the data overview is performed. The logic behind this task is the same – again I show to the teams involved the expected results, how to achieve them and what they mean. This is also done in multiple cycles as is the case with data preparation, because, quite frankly, both tasks are completely interleaved. A specific objective of the data overview is of principal importance – it is represented by a simple star schema and a simple OLAP cube that will first of all simplify data discovery and interpretation of the results, and will also prove useful in the following tasks. The presence of the customer’s SME is the key to resolving possible issues with the actual meaning of the data. We can always replace the IT part of the team with another database developer; however, we cannot conduct this kind of a project without the customer’s SME. After the data preparation and when the data overview is available, we begin the scientific part of the project. I assist the team in developing a variety of models, and in interpreting the results. The results are presented graphically, in an intuitive way. While it is possible to interpret the results on the fly, a much more appropriate alternative is possible if the initial training was also performed, because it allows the customer’s personnel to interpret the results by themselves, with only some guidance from me. The models are evaluated immediately by using several different techniques. One of the techniques includes evaluation over time, where we use an OLAP cube. After evaluating the models, we select the most appropriate model to be deployed for a production test; this allows the team to understand the deployment process. There are many possibilities of deploying data mining models into production; at the POC stage, we select the one that can be completed quickly. Typically, this means that we add the mining model as an additional dimension to an existing DW or OLAP cube, or to the OLAP cube developed during the data overview phase. Finally, we spend some time presenting the results of the POC project to the stakeholders and managers. Even from a POC, the customer will receive lots of benefits, all at the sole risk of spending money and time for a single 5 to 10 day project: The customer learns the basic patterns of frauds and fraud detection The customer learns how to do the entire cycle with their own people, only relying on me for the most complex problems The customer’s analysts learn how to perform much more in-depth analyses than they ever thought possible The customer’s IT experts learn how to perform data extraction and preparation much more efficiently than they did before All of the attendees of this training learn how to use their own creativity to implement further improvements of the process and procedures, even after the solution has been deployed to production The POC output for a smaller company or for a subsidiary of a larger company can actually be considered a finished, production-ready solution It is possible to utilize the results of the POC project at subsidiary level, as a finished POC project for the entire enterprise Typically, the project results in several important “side effects” Improved data quality Improved employee job satisfaction, as they are able to proactively contribute to the central knowledge about fraud patterns in the organization Because eventually more minds get to be involved in the enterprise, the company should expect more and better fraud detection patterns After the POC project is completed as described above, the actual project would not need months of engagement from my side. This is possible due to our preference to transfer the knowledge onto the customer’s employees: typically, the customer will use the results of the POC project for some time, and only engage me again to complete the project, or to ask for additional expertise if the complexity of the problem increases significantly. I usually expect to perform the following tasks: Establish the final infrastructure to measure the efficiency of the deployed models Deploy the models in additional scenarios Through reports By including Data Mining Extensions (DMX) queries in OLTP applications to support real-time early warnings Include data mining models as dimensions in OLAP cubes, if this was not done already during the POC project Create smart ETL applications that divert suspicious data for immediate or later inspection I would also offer to investigate how the outcome could be transferred automatically to the central system; for instance, if the POC project was performed in a subsidiary whereas a central system is available as well Of course, for the actual project, I would repeat the data and model preparation as needed It is virtually impossible to tell in advance how much time the deployment would take, before we decide together with customer what exactly the deployment process should cover. Without considering the deployment part, and with the POC project conducted as suggested above (including the transfer of knowledge), the actual project should still only take additional 5 to 10 days. The approximate timeline for the POC project is, as follows: 1-2 days of training 2-3 days for data preparation and data overview 2 days for creating and evaluating the models 1 day for initial preparation of the continuous learning infrastructure 1 day for presentation of the results and discussion of further actions Quite frequently I receive the following question: are we going to find the best possible model during the POC project, or during the actual project? My answer is always quite simple: I do not know. Maybe, if we would spend just one hour more for data preparation, or create just one more model, we could get better patterns and predictions. However, we simply must stop somewhere, and the best possible way to do this, according to my experience, is to restrict the time spent on the project in advance, after an agreement with the customer. You must also never forget that, because we build the complete learning infrastructure and transfer the knowledge, the customer will be capable of doing further investigations independently and improve the models and predictions over time without the need for a constant engagement with me.

    Read the article

  • Building dynamic OLAP data marts on-the-fly

    - by DrJohn
    At the forthcoming SQLBits conference, I will be presenting a session on how to dynamically build an OLAP data mart on-the-fly. This blog entry is intended to clarify exactly what I mean by an OLAP data mart, why you may need to build them on-the-fly and finally outline the steps needed to build them dynamically. In subsequent blog entries, I will present exactly how to implement some of the techniques involved. What is an OLAP data mart? In data warehousing parlance, a data mart is a subset of the overall corporate data provided to business users to meet specific business needs. Of course, the term does not specify the technology involved, so I coined the term "OLAP data mart" to identify a subset of data which is delivered in the form of an OLAP cube which may be accompanied by the relational database upon which it was built. To clarify, the relational database is specifically create and loaded with the subset of data and then the OLAP cube is built and processed to make the data available to the end-users via standard OLAP client tools. Why build OLAP data marts? Market research companies sell data to their clients to make money. To gain competitive advantage, market research providers like to "add value" to their data by providing systems that enhance analytics, thereby allowing clients to make best use of the data. As such, OLAP cubes have become a standard way of delivering added value to clients. They can be built on-the-fly to hold specific data sets and meet particular needs and then hosted on a secure intranet site for remote access, or shipped to clients' own infrastructure for hosting. Even better, they support a wide range of different tools for analytical purposes, including the ever popular Microsoft Excel. Extension Attributes: The Challenge One of the key challenges in building multiple OLAP data marts based on the same 'template' is handling extension attributes. These are attributes that meet the client's specific reporting needs, but do not form part of the standard template. Now clearly, these extension attributes have to come into the system via additional files and ultimately be added to relational tables so they can end up in the OLAP cube. However, processing these files and filling dynamically altered tables with SSIS is a challenge as SSIS packages tend to break as soon as the database schema changes. There are two approaches to this: (1) dynamically build an SSIS package in memory to match the new database schema using C#, or (2) have the extension attributes provided as name/value pairs so the file's schema does not change and can easily be loaded using SSIS. The problem with the first approach is the complexity of writing an awful lot of complex C# code. The problem of the second approach is that name/value pairs are useless to an OLAP cube; so they have to be pivoted back into a proper relational table somewhere in the data load process WITHOUT breaking SSIS. How this can be done will be part of future blog entry. What is involved in building an OLAP data mart? There are a great many steps involved in building OLAP data marts on-the-fly. The key point is that all the steps must be automated to allow for the production of multiple OLAP data marts per day (i.e. many thousands, each with its own specific data set and attributes). Now most of these steps have a great deal in common with standard data warehouse practices. The key difference is that the databases are all built to order. The only permanent database is the metadata database (shown in orange) which holds all the metadata needed to build everything else (i.e. client orders, configuration information, connection strings, client specific requirements and attributes etc.). The staging database (shown in red) has a short life: it is built, populated and then ripped down as soon as the OLAP Data Mart has been populated. In the diagram below, the OLAP data mart comprises the two blue components: the Data Mart which is a relational database and the OLAP Cube which is an OLAP database implemented using Microsoft Analysis Services (SSAS). The client may receive just the OLAP cube or both components together depending on their reporting requirements.  So, in broad terms the steps required to fulfil a client order are as follows: Step 1: Prepare metadata Create a set of database names unique to the client's order Modify all package connection strings to be used by SSIS to point to new databases and file locations. Step 2: Create relational databases Create the staging and data mart relational databases using dynamic SQL and set the database recovery mode to SIMPLE as we do not need the overhead of logging anything Execute SQL scripts to build all database objects (tables, views, functions and stored procedures) in the two databases Step 3: Load staging database Use SSIS to load all data files into the staging database in a parallel operation Load extension files containing name/value pairs. These will provide client-specific attributes in the OLAP cube. Step 4: Load data mart relational database Load the data from staging into the data mart relational database, again in parallel where possible Allocate surrogate keys and use SSIS to perform surrogate key lookup during the load of fact tables Step 5: Load extension tables & attributes Pivot the extension attributes from their native name/value pairs into proper relational tables Add the extension attributes to the views used by OLAP cube Step 6: Deploy & Process OLAP cube Deploy the OLAP database directly to the server using a C# script task in SSIS Modify the connection string used by the OLAP cube to point to the data mart relational database Modify the cube structure to add the extension attributes to both the data source view and the relevant dimensions Remove any standard attributes that not required Process the OLAP cube Step 7: Backup and drop databases Drop staging database as it is no longer required Backup data mart relational and OLAP database and ship these to the client's infrastructure Drop data mart relational and OLAP database from the build server Mark order complete Start processing the next order, ad infinitum. So my future blog posts and my forthcoming session at the SQLBits conference will all focus on some of the more interesting aspects of building OLAP data marts on-the-fly such as handling the load of extension attributes and how to dynamically alter the structure of an OLAP cube using C#.

    Read the article

  • How accurate is "Business logic should be in a service, not in a model"?

    - by Jeroen Vannevel
    Situation Earlier this evening I gave an answer to a question on StackOverflow. The question: Editing of an existing object should be done in repository layer or in service? For example if I have a User that has debt. I want to change his debt. Should I do it in UserRepository or in service for example BuyingService by getting an object, editing it and saving it ? My answer: You should leave the responsibility of mutating an object to that same object and use the repository to retrieve this object. Example situation: class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } A comment I received: Business logic should really be in a service. Not in a model. What does the internet say? So, this got me searching since I've never really (consciously) used a service layer. I started reading up on the Service Layer pattern and the Unit Of Work pattern but so far I can't say I'm convinced a service layer has to be used. Take for example this article by Martin Fowler on the anti-pattern of an Anemic Domain Model: There are objects, many named after the nouns in the domain space, and these objects are connected with the rich relationships and structure that true domain models have. The catch comes when you look at the behavior, and you realize that there is hardly any behavior on these objects, making them little more than bags of getters and setters. Indeed often these models come with design rules that say that you are not to put any domain logic in the the domain objects. Instead there are a set of service objects which capture all the domain logic. These services live on top of the domain model and use the domain model for data. (...) The logic that should be in a domain object is domain logic - validations, calculations, business rules - whatever you like to call it. To me, this seemed exactly what the situation was about: I advocated the manipulation of an object's data by introducing methods inside that class that do just that. However I realize that this should be a given either way, and it probably has more to do with how these methods are invoked (using a repository). I also had the feeling that in that article (see below), a Service Layer is more considered as a façade that delegates work to the underlying model, than an actual work-intensive layer. Application Layer [his name for Service Layer]: Defines the jobs the software is supposed to do and directs the expressive domain objects to work out problems. The tasks this layer is responsible for are meaningful to the business or necessary for interaction with the application layers of other systems. This layer is kept thin. It does not contain business rules or knowledge, but only coordinates tasks and delegates work to collaborations of domain objects in the next layer down. It does not have state reflecting the business situation, but it can have state that reflects the progress of a task for the user or the program. Which is reinforced here: Service interfaces. Services expose a service interface to which all inbound messages are sent. You can think of a service interface as a façade that exposes the business logic implemented in the application (typically, logic in the business layer) to potential consumers. And here: The service layer should be devoid of any application or business logic and should focus primarily on a few concerns. It should wrap Business Layer calls, translate your Domain in a common language that your clients can understand, and handle the communication medium between server and requesting client. This is a serious contrast to other resources that talk about the Service Layer: The service layer should consist of classes with methods that are units of work with actions that belong in the same transaction. Or the second answer to a question I've already linked: At some point, your application will want some business logic. Also, you might want to validate the input to make sure that there isn't something evil or nonperforming being requested. This logic belongs in your service layer. "Solution"? Following the guidelines in this answer, I came up with the following approach that uses a Service Layer: class UserController : Controller { private UserService _userService; public UserController(UserService userService){ _userService = userService; } public ActionResult MakeHimPay(string username, int amount) { _userService.MakeHimPay(username, amount); return RedirectToAction("ShowUserOverview"); } public ActionResult ShowUserOverview() { return View(); } } class UserService { private IUserRepository _userRepository; public UserService(IUserRepository userRepository) { _userRepository = userRepository; } public void MakeHimPay(username, amount) { _userRepository.GetUserByName(username).makePayment(amount); } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } Conclusion All together not much has changed here: code from the controller has moved to the service layer (which is a good thing, so there is an upside to this approach). However this doesn't look like it had anything to do with my original answer. I realize design patterns are guidelines, not rules set in stone to be implemented whenever possible. Yet I have not found a definitive explanation of the service layer and how it should be regarded. Is it a means to simply extract logic from the controller and put it inside a service instead? Is it supposed to form a contract between the controller and the domain? Should there be a layer between the domain and the service layer? And, last but not least: following the original comment Business logic should really be in a service. Not in a model. Is this correct? How would I introduce my business logic in a service instead of the model?

    Read the article

  • Is Financial Inclusion an Obligation or an Opportunity for Banks?

    - by tushar.chitra
    Why should banks care about financial inclusion? First, the statistics, I think this will set the tone for this blog post. There are close to 2.5 billion people who are excluded from the banking stream and out of this, 2.2 billion people are from the continents of Africa, Latin America and Asia (McKinsey on Society: Global Financial Inclusion). However, this is not just a third-world phenomenon. According to Federal Deposit Insurance Corp (FDIC), in the US, post 2008 financial crisis, one family out of five has either opted out of the banking system or has been moved out (American Banker). Moving this huge unbanked population into mainstream banking is both an opportunity and a challenge for banks. An obvious opportunity is the significant untapped customer base that banks can target, so is the positive brand equity a bank can build by fulfilling its social responsibilities. Also, as banks target the cost-conscious unbanked customer, they will be forced to look at ways to offer cost-effective products and services, necessitating technology upgrades and innovations. However, cost is not the only hurdle in increasing the adoption of banking services. The potential users need to be convinced of the benefits of banking and banks will also face stiff competition from unorganized players. Finally, the banks will have to believe in the viability of this business opportunity, and not treat financial inclusion as an obligation. In what ways can banks target the unbanked For financial inclusion to be a success, banks should adopt innovative business models to develop products that address the stated and unstated needs of the unbanked population and also design delivery channels that are cost effective and viable in the long run. Through business correspondents and facilitators In rural and remote areas, one of the major hurdles in increasing banking penetration is connectivity and accessibility to banking services, which makes last mile inclusion a daunting challenge. To address this, banks can avail the services of business correspondents or facilitators. This model allows banks to establish greater connectivity through a trusted and reliable intermediary. In India, for instance, banks can leverage the local Kirana stores (the mom & pop stores) to service rural and remote areas. With a supportive nudge from the central bank, the commercial banks can enlist these shop owners as business correspondents to increase their reach. Since these neighborhood stores are acquainted with the local population, they can help banks manage the KYC norms, besides serving as a conduit for remittance. Banks also have an opportunity over a period of time to cross-sell other financial products such as micro insurance, mutual funds and pension products through these correspondents. To exercise greater operational control over the business correspondents, banks can also adopt a combination of branch and business correspondent models to deliver financial inclusion. Through mobile devices According to a 2012 world bank report on financial inclusion, out of a world population of 7 billion, over 5 billion or 70% have mobile phones and only 2 billion or 30% have a bank account. What this means for banks is that there is scope for them to leverage this phenomenal growth in mobile usage to serve the unbanked population. Banks can use mobile technology to service the basic banking requirements of their customers with no frills accounts, effectively bringing down the cost per transaction. As I had discussed in my earlier post on mobile payments, though non-traditional players have taken the lead in P2P mobile payments, banks still hold an edge in terms of infrastructure and reliability. Through crowd-funding According to the Crowdfunding Industry Report by Massolution, the global crowdfunding industry raised $2.7 billion in 2012, and is projected to grow to $5.1 billion in 2013. With credit policies becoming tighter and banks becoming more circumspect in terms of loan disbursals, crowdfunding has emerged as an alternative channel for lending. Typically, these initiatives target the unbanked population by offering small loans that are unviable for larger banks. Though a significant proportion of crowdfunding initiatives globally are run by non-banking institutions, banks are also venturing into this space. The next step towards inclusive finance Banks by themselves cannot make financial inclusion a success. There is a need for a whole ecosystem that is supportive of this mission. The policy makers, that include the regulators and government bodies, must be in sync, the IT solution providers must put on their thinking caps to come out with innovative products and solutions, communication channels such as internet and mobile need to expand their reach, and the media and the public need to play an active part. The other challenge for financial inclusion is from the banks themselves. While it is true that financial inclusion will unleash a hitherto hugely untapped market, the normal banking model may be found wanting because of issues such as flexibility, convenience and reliability. The business will be viable only when there is a focus on increasing the usage of existing infrastructure and that is possible when the banks can offer the entire range of products and services to the large number of users of essential banking services. Apart from these challenges, banks will also have to quickly master and replicate the business model to extend their reach to the remotest regions in their respective geographies. They will need to ensure that the transactions deliver a viable business benefit to the bank. For tapping cross-sell opportunities, banks will have to quickly roll-out customized and segment-specific products. The bank staff should be brought in sync with the business plan by convincing them of the viability of the business model and the need for a business correspondent delivery model. Banks, in collaboration with the government and NGOs, will have to run an extensive financial literacy program to educate the unbanked about the benefits of banking. Finally, with the growing importance of retail banking and with many unconventional players eyeing the opportunity in payments and other lucrative areas of banking, banks need to understand the importance of micro and small branches. These micro and small branches can help banks increase their presence without a huge cost burden, provide bankers an opportunity to cross sell micro products and offer a window of opportunity for the large non-banked population to transact without any interference from intermediaries. These branches can also help diminish the role of the unorganized financial sector, such as local moneylenders and unregistered credit societies. This will also help banks build a brand awareness and loyalty among the users, which by itself has a cascading effect on the business operations, especially among the rural and un-banked centers. In conclusion, with the increasingly competitive banking sector facing frequent slowdowns and downturns, the unbanked population presents a huge opportunity for banks to enhance their customer base and fulfill their social responsibility.

    Read the article

  • People, Process & Engagement: WebCenter Partner Keste

    - by Michael Snow
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Within the WebCenter group here at Oracle, discussions about people, process and engagement cross over many vertical industries and products. Amidst our growing partner ecosystem, the community provides us insight into great customer use cases every day. Such is the case with our partner, Keste, who provides us a guest post on our blog today with an overview of their innovative solution for a customer in the transportation industry. Keste is an Oracle software solutions and development company headquartered in Dallas, Texas. As a Platinum member of the Oracle® PartnerNetwork, Keste designs, develops and deploys custom solutions that automate complex business processes. Seamless Customer Self-Service Experience in the Trucking Industry with Oracle WebCenter Portal  Keste, Oracle Platinum Partner Customer Overview Omnitracs, Inc., a Qualcomm company provides mobility solutions for trucking fleets to companies in the transportation industry. Omnitracs’ mobility services include basic communications such as text as well as advanced monitoring services such as GPS tracking, temperature tracking of perishable goods, load tracking and weighting distribution, and many others. Customer Business Needs Already the leading provider of mobility solutions for large trucking fleets, they chose to target smaller trucking fleets as new customers. However their existing high-touch customer support method would not be a cost effective or scalable method to manage and service these smaller customers. Omnitracs needed to provide several self-service features to make customer support more scalable while keeping customer satisfaction levels high and the costs manageable. The solution also had to be very intuitive and easy to use. The systems that Omnitracs sells to these trucking customers require professional installation and smaller customers need to track and schedule the installation. Information captured in Oracle eBusiness Suite needed to be readily available for new customers to track these purchases and delivery details. Omnitracs wanted a high impact User Interface to significantly improve customer experience with the ability to integrate with EBS, provisioning systems as well as CRM systems that were already implemented. Omnitracs also wanted to build an architecture platform that could potentially be extended to other Portals. Omnitracs’ stated goal was to deliver an “eBay-like” or “Amazon-like” experience for all of their customers so that they could reach a much broader market beyond their large company customer base. Solution Overview In order to manage the increased complexity, the growing support needs of global customers and improve overall product time-to-market in a cost-effective manner, IT began to deliver a self-service model. This self service model not only transformed numerous business processes but is also allowing the business to keep up with the growing demands of the (internal and external) customers. This solution was a customer service Portal that provided self service capabilities for large and small customers alike for Activation of mobility products, managing add-on applications for the devices (much like the Apple App Store), transferring services when trucks are sold to other companies as well as deactivation all without the involvement of a call service agent or sending multiple emails to different Omnitracs contacts. This is a conceptual view of the Customer Portal showing the details of the components that make up the solution. 12.00 The portal application for transactions was entirely built using ADF 11g R2. Omnitracs’ business had a pressing requirement to have a portal available 24/7 for its customers. Since there were interactions with EBS in the back-end, the downtimes on the EBS would negate this availability. Omnitracs devised a decoupling strategy at the database side for the EBS data. The decoupling of the database was done using Oracle Data Guard and completely insulated the solution from any eBusiness Suite down time. The customer has no knowledge whether eBS is running or not. Here are two sample screenshots of the portal application built in Oracle ADF. Customer Benefits The Customer Portal not only provided the scalability to grow the business but also provided the seamless integration with other disparate applications. Some of the key benefits are: Improved Customer Experience: With a modern look and feel and a Portal that has the aspects of an App Store, the customer experience was significantly improved. Page response times went from several seconds to sub-second for all of the pages. Enabled new product launches: After successfully dominating the large fleet market, Omnitracs now has a scalable solution to sell and manage smaller fleet customers giving them a huge advantage over their nearest competitors. Dozens of new customers have been acquired via this portal through an onboarding process that now takes minutes Seamless Integrations Improves Customer Support: ADF 11gR2 allowed Omnitracs to bring a diverse list of applications into one integrated solution. This provided a seamless experience for customers to route them from Marketing focused application to a customer-oriented portal. Internally, it also allowed Sales Representatives to have an integrated flow for taking a prospect through the various steps to onboard them as a customer. Key integrations included: Unity Core Salesforce.com Merchant e-Solution for credit card Custom Omnitracs Applications like CUPS and AUTO Security utilizing OID and OVD Back end integration with EBS (Data Guard) and iQ Database Business Impact Significant business impacts were realized through the launch of customer portal. It not only allows the business to push through in underserved segments, but also reduces the time it needs to spend on customer support—allowing the business to focus more on sales and identifying the market for new products. Some of the Immediate Benefits are The entire onboarding process is now completely automated and now completes in minutes. This represents an 85% productivity improvement over their previous processes. And it was 160 times faster! With the success of this self-service solution, the business is now targeting about 3X customer growth in the next five years. This represents a tripling of their overall customer base and significant downstream revenue for the ongoing services. 90%+ improvement of customer onboarding and management process by utilizing, single sign on integration using OID/OAM solution, performance improvements and new self-service functionality Unified login for all Customers, Partners and Internal Users enables login to a common portal and seamless access to all other integrated applications targeted at the respective audience Significantly improved customer experience with a better look and feel with a more user experience focused Portal screens. Helped sales of the new product by having an easy way of ordering and activating the product. Data Guard helped increase availability of the Portal to 99%+ and make it independent of EBS downtime. This gave customers the feel of high availability of the portal application. Some of the anticipated longer term Benefits are: Platform that can be leveraged to launch any new product introduction and enable all product teams to reach new customers and new markets Easy integration with content management to allow business owners more control of the product catalog Overall reduced TCO with standardization of the Oracle platform Managed IT support cost savings through optimization of technology skills needed to support and modify this solution ------------------------------------------------------------ 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 -"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif";}

    Read the article

  • Big Visible Charts

    - by Robert May
    An important part of Agile is the concept of transparency and visibility. In proper functioning teams, stakeholders can look at any team at any time in the iteration or release and see how that team is doing by simply looking at what we call Big Visible Charts. If you’ve done Scrum, you’ve seen these charts. However, interpreting these charts can often be an art form. There are several different charts that can be useful. In this newsletter, I’ll focus on the Iteration Burndown and Cumulative Flow charts. I’ve included a copy of the spreadsheet that I used to create the charts, and if you don’t have a tool that creates them for you, you can use this spreadsheet to do so. Our preferred tool for managing Scrum projects is Rally. Rally creates all of these charts for you, saving you quite a bit of time. The Iteration Burndown and Cumulative Flow Charts This is the main chart that teams use. Although less useful to stakeholders, this chart is critical to the team and provides quite a bit of information to the team about how their iteration is going. Most charts are a combination of the charts below, so you may need to combine aspects of each section to understand what is happening in your iterations. Ideal Ah, isn’t that a pretty picture? Unfortunately, it’s also very unrealistic. I’ve seen iterations that come close to ideal, but never that match perfectly. If your iteration matches perfectly, chances are, someone is playing with the numbers. Reality is just too difficult to have a burndown chart that matches this exactly. Late Planning Iteration started, but the team didn’t. You can tell this by the fact that the real number of estimated hours didn’t appear until day two. In the cumulative flow, you can also see that nothing was defined in Day one and two. You want to avoid situations like this. You’ll note that the team had to burn faster than is ideal to meet the iteration because of the late planning. This often results in long weeks and days. Testing Starved Determining whether or not testing is starved is difficult without the cumulative flow. The pattern in the burndown could be nothing more that developers not completing stories early enough or could be caused by stories being too big. With the cumulative flow, however, you see that only small bites are in progress and stories were completed early, but testing didn’t start testing until the end of the iteration, and didn’t complete testing all stories in the iteration. When this happens, question whether or not your testing resources are sufficient for your team and whether or not acceptance is adequately defined. No Testing With this one, both graphs show the same thing; the team needs testers and testing! Without testing, what was completed cannot be verified to make sure that it is acceptable to the business. If you find yourself in this situation, review your testing practices and acceptance testing process and make changes today. Late Development With this situation, both graphs tell a story. In the top graph, you can see that the hours failed to burn down as quickly as the team expected. This could be caused by the team not correctly estimating their hours or the team could have had illness or some other issue that affected them. Often, when teams are tackling something that is more unknown, they’ll run into technical barriers that cause the burn down to happen slower than expected. In the cumulative flow graph, you can see that not much was completed in the first few days. This could be because of illness or technical barriers or simply poor estimation. Testing was able to keep up with everything that was completed, however. No Tool Updating When you see graphs that look like this, you can be assured that it’s because the team is not updating the tool that generates the graphs. Review your policy for when they are to update. On the teams that I run, I require that each team member updates the tool at least once daily. You should also check to see how well the team is breaking down stories into tasks. If they’re creating few large tasks, graphs can look similar to this. As a general rule, I never allow tasks, other than Unit Testing and Uncertainty, to be greater than eight hours in duration. Scope Increase I always encourage team members to enter in however much time they think they have left on a task, even if that means increasing the total amount of time left to do. You get a much better and more realistic picture this way. Increasing time remaining could explain the burndown graph, but by looking at the cumulative flow graph, we can see that stories were added to the iteration and scope was increased. Since planning should consume all of the hours in the iteration, this is almost always a bad thing. If the scope change happened late in the iteration and the hours remaining were well below the ideal burn, then increasing scope is probably o.k., but estimation needs to get better. However, with the charts above, that’s clearly not what happened and the team was required to do extra work to make the iteration. If you find this happening, your product owner and ScrumMasters need training. The team also needs to learn to say no. Scope Decrease Scope decreases are just as bad as scope increases. Usually, graphs above show that the team did a poor job of estimating their stories and part way through had to reduce scope to change the iteration. This will happen once in a while, but if you find it’s a pattern on your team, you need to re-evaluate planning. Some teams are hopelessly optimistic. In those cases, I’ll introduce a task I call “Uncertainty.” With Uncertainty, the team estimates how many hours they might need if things don’t go well with the tasks they’ve defined. They try to estimate things that could go poorly and increase the time appropriately. Having an Uncertainty task allows them to have a low and high estimate. Uncertainty should not just be an arbitrary buffer. It must correlate to real uncertainty in the tasks that have been defined. Stories are too Big Often, we see graphs like the ones above. Note that the burndown looks fairly good, other than the chunky acceptance of stories. However, when you look at cumulative flow, you can see that at one point, everything is in progress. This is a bad thing. When you see graphs like this, you’re in one of two states. You may just have a very small team and can only handle one or two stories in your iteration. If you have more than one or two people, then the most likely problem is that your stories are far too big. To combat this, break large high hour stories into smaller pieces that can be completed independently and accepted independently. If you don’t, you’ll likely be requiring your testers to do heroic things to complete testing on the last day of the iteration and you’re much more likely to have the entire iteration fail, because of the limited amount of things that can be completed. Summary There are other charts that can be useful when doing scrum. If you don’t have any big visible charts, you really need to evaluate your process and change. These charts can provide the team a wealth of information and help you write better software. If you have any questions about charts that you’re seeing on your team, contact me with a screen capture of the charts and I’ll tell you what I’m seeing in those charts. I always want this information to be useful, so please let me know if you have other questions. Technorati Tags: Agile

    Read the article

  • The SPARC SuperCluster

    - by Karoly Vegh
    Oracle has been providing a lead in the Engineered Systems business for quite a while now, in accordance with the motto "Hardware and Software Engineered to Work Together." Indeed it is hard to find a better definition of these systems.  Allow me to summarize the idea. It is:  Build a compute platform optimized to run your technologies Develop application aware, intelligently caching storage components Take an impressively fast network technology interconnecting it with the compute nodes Tune the application to scale with the nodes to yet unseen performance Reduce the amount of data moving via compression Provide this all in a pre-integrated single product with a single-pane management interface All these ideas have been around in IT for quite some time now. The real Oracle advantage is adding the last one to put these all together. Oracle has built quite a portfolio of Engineered Systems, to run its technologies - and run those like they never ran before. In this post I'll focus on one of them that serves as a consolidation demigod, a multi-purpose engineered system.  As you probably have guessed, I am talking about the SPARC SuperCluster. It has many great features inherited from its predecessors, and it adds several new ones. Allow me to pick out and elaborate about some of the most interesting ones from a technological point of view.  I. It is the SPARC SuperCluster T4-4. That is, as compute nodes, it includes SPARC T4-4 servers that we learned to appreciate and respect for their features: The SPARC T4 CPUs: Each CPU has 8 cores, each core runs 8 threads. The SPARC T4-4 servers have 4 sockets. That is, a single compute node can in parallel, simultaneously  execute 256 threads. Now, a full-rack SPARC SuperCluster has 4 of these servers on board. Remember the keyword demigod.  While retaining the forerunner SPARC T3's exceptional throughput, the SPARC T4 CPUs raise the bar with single performance too - a humble 5x better one than their ancestors.  actually, the SPARC T4 CPU cores run in both single-threaded and multi-threaded mode, and switch between these two on-the-fly, fulfilling not only single-threaded OR multi-threaded applications' needs, but even mixed requirements (like in database workloads!). Data security, anyone? Every SPARC T4 CPU core has a built-in encryption engine, that is, encryption algorithms cast into silicon.  A PCI controller right on the chip for customers who need I/O performance.  Built-in, no-cost Virtualization:  Oracle VM for SPARC (the former LDoms or Logical Domains) is not a server-emulation virtualization technology but rather a serverpartitioning one, the hypervisor runs in the server firmware, and all the VMs' HW resources (I/O, CPU, memory) are accessed natively, without performance overhead.  This enables customers to run a number of Solaris 10 and Solaris 11 VMs separated, independent of each other within a physical server II. For Database performance, it includes Exadata Storage Cells - one of the main reasons why the Exadata Database Machine performs at diabolic speed. What makes them important? They provide DB backend storage for your Oracle Databases to run on the SPARC SuperCluster, that is what they are built and tuned for DB performance.  These storage cells are SQL-aware.  That is, if a SPARC T4 database compute node executes a query, it doesn't simply request tons of raw datablocks from the storage, filters the received data, and throws away most of it where the statement doesn't apply, but provides the SQL query to the storage node too. The storage cell software speaks SQL, that is, it is able to prefilter and through that transfer only the relevant data. With this, the traffic between database nodes and storage cells is reduced immensely. Less I/O is a good thing - as they say, all the CPUs of the world do one thing just as fast as any other - and that is waiting for I/O.  They don't only pre-filter, but also provide data preprocessing features - e.g. if a DB-node requests an aggregate of data, they can calculate it, and handover only the results, not the whole set. Again, less data to transfer.  They support the magical HCC, (Hybrid Columnar Compression). That is, data can be stored in a precompressed form on the storage. Less data to transfer.  Of course one can't simply rely on disks for performance, there is Flash Storage included there for caching.  III. The low latency, high-speed backbone network: InfiniBand, that interconnects all the members with: Real High Speed: 40 Gbit/s. Full Duplex, of course. Oh, and a really low latency.  RDMA. Remote Direct Memory Access. This technology allows the DB nodes to do exactly that. Remotely, directly placing SQL commands into the Memory of the storage cells. Dodging all the network-stack bottlenecks, avoiding overhead, placing requests directly into the process queue.  You can also run IP over InfiniBand if you please - that's the way the compute nodes can communicate with each other.  IV. Including a general-purpose storage too: the ZFSSA, which is a unified storage, providing NAS and SAN access too, with the following features:  NFS over RDMA over InfiniBand. Nothing is faster network-filesystem-wise.  All the ZFS features onboard, hybrid storage pools, compression, deduplication, snapshot, replication, NFS and CIFS shares Storageheads in a HA-Cluster configuration providing availability of the data  DTrace Live Analytics in a web-based Administration UI Being a general purpose application data storage for your non-database applications running on the SPARC SuperCluster over whichever protocol they prefer, easily replicating, snapshotting, cloning data for them.  There's a lot of great technology included in Oracle's SPARC SuperCluster, we have talked its interior through. As for external scalability: you can start with a half- of full- rack SPARC SuperCluster, and scale out to several racks - that is, stacking not separate full-rack SPARC SuperClusters, but extending always one large instance of the size of several full-racks. Yes, over InfiniBand network. Add racks as you grow.  What technologies shall run on it? SPARC SuperCluster is a general purpose scaleout consolidation/cloud environment. You can run Oracle Databases with RAC scaling, or Oracle Weblogic (end enjoy the SPARC T4's advantages to run Java). Remember, Oracle technologies have been integrated with the Oracle Engineered Systems - this is the Oracle on Oracle advantage. But you can run other software environments such as SAP if you please too. Run any application that runs on Oracle Solaris 10 or Solaris 11. Separate them in Virtual Machines, or even Oracle Solaris Zones, monitor and manage those from a central UI. Here the key takeaways once again: The SPARC SuperCluster: Is a pre-integrated Engineered System Contains SPARC T4-4 servers with built-in virtualization, cryptography, dynamic threading Contains the Exadata storage cells that intelligently offload the burden of the DB-nodes  Contains a highly available ZFS Storage Appliance, that provides SAN/NAS storage in a unified way Combines all these elements over a high-speed, low-latency backbone network implemented with InfiniBand Can grow from a single half-rack to several full-rack size Supports the consolidation of hundreds of applications To summarize: All these technologies are great by themselves, but the real value is like in every other Oracle Engineered System: Integration. All these technologies are tuned to perform together. Together they are way more than the sum of all - and a careful and actually very time consuming integration process is necessary to orchestrate all these for performance. The SPARC SuperCluster's goal is to enable infrastructure operations and offer a pre-integrated solution that can be architected and delivered in hours instead of months of evaluations and tests. The tedious and most importantly time and resource consuming part of the work - testing and evaluating - has been done.  Now go, provide services.   -- charlie  

    Read the article

  • Rebuilding CoasterBuzz, Part III: The architecture using the "Web stack of love"

    - by Jeff
    This is the third post in a series about rebuilding one of my Web sites, which has been around for 12 years. I hope to relaunch in the next month or two. More: Part I: Evolution, and death to WCF Part II: Hot data objects I finally hit a point in the re-do of CoasterBuzz where I feel like the major pieces are in place... rewritten, ported and what not, so that I can focus now on front-end design and more interesting creative problems. I've been asked on more than one occasion (OK, just twice) what's going on under the covers, so I figure this might be a good time to explain the overall architecture. As it turns out, I'm using a whole lof of the "Web stack of love," as Scott Hanselman likes to refer to it. Oh that Hanselman. First off, at the center of it all, is BizTalk. Just kidding. That's "enterprise architecture" humor, where every discussion starts with how they'll use BizTalk. Here are the bigger moving parts: It's fairly straight forward. A common library lives in a number of Web apps, all of which are (or will be) powered by ASP.NET MVC 4. They all talk to the same database. There is the main Web site, which also has the endpoint for the Silverlight-based Feed app. The cstr.bz site handles redirects, which are generated when news items are published and sent to Twitter. Facebook publishing is handled via the RSS Graffiti Facebook app. The API site handles requests from the Windows Phone app. The main site depends very heavily on POP Forums, the open source, MVC-based forum I maintain. It serves a number of functions, primarily handling users. These user objects serve in non-forum roles to handle things like news and database contributions, maintaining track records (coaster nerd for "list of rides I've been on") and, perhaps most importantly, paid club memberships. Before I get into more specifics, note that the "glue" for everything is Ninject, the dependency injection framework. I actually prefer StructureMap these days, but I started with Ninject in POP Forums a long time ago. POP Forums has a static class, PopForumsActivation, that new's up an instance of the container, and you can call it from where ever. The downside is that the forums require Ninject in your MVC app as the default dependency resolver. At some point, I'll decouple it, but for now it's not in the way. In the general sense, the entire set of apps follow a repository-service-controller-view pattern. Repos just do data access, service classes do business logic, controllers compose and route, views view. The forum also provides Scoring Game functionality. The Scoring Game is a reasonably abstract framework to award users points based on certain actions, and then award achievements when a certain number of point events happen. For example, the forum already awards a point when someone plus-one's a post you made. You can set up an achievement that says, "Give the user an award when they've had 100 posts plus'd." It also does zero-point entries into the ledger, so if you make a post, you could award an achievement based on 100 posts made. Wiring in the scoring game to CoasterBuzz functionality is just a matter of going to the Ninject container and getting an instance of the event publisher, and passing it events. Forum adapters were introduced into POP Forums a few versions ago, and they can intercept the model generated for forum topic lists and threads and designate an alternate view. These are used to make the "Day in Pictures" forum, where users can upload photos as frame-by-frame photo threads. Another adapter adds an association UI, so users can associate specific amusement parks with their trip report posts. The Silverlight-based Feed app talks to a simple JSON endpoint in the main app. This uses an underlying library I wrote ages ago, simply called Feeds, that aggregates event information. You inherit from a base class that creates instances of a publisher interface, and then use that class to send it an event type and any number of data fields. Feeds has two publishers: One is to the database, and that's used for the endpoint that talks to the Silverlight app. The second publisher publishes to Twitter, if the event is of the type "news." The wiring is a little strange, because for the new posts and topics events, I'm actually pulling out the forum repository classes from the Ninject container and replacing them with overridden methods to publish. I should probably be doing this at the service class level, but whatever. It's my mess. cstr.bz doesn't do anything interesting. It looks up the path, and if it has a match, does a 301 redirect to the long URL. The API site just serves up JSON for the Windows Phone app. The Windows Phone app is Silverlight, of course, and there isn't much to it. It does use the control toolkit, but beyond that, it relies on a simple class that creates a Webclient and calls the server for JSON to deserialize. The same class is now used by the Feed app, which used to use WCF. Simple is better. Data access in POP Forums is all straight SQL, because a lot of it was ported from the ASP.NET version. Most CoasterBuzz data access is handled by the Entity Framework, using the code-first model. The context class in this case does a lot of work to make sure that the table and key mapping works, since much of it breaks from the normal conventions of EF. One of the more powerful things you can do with EF, once you understand the little gotchas, is split tables by row into different entities. For example, a roller coaster photo has everything in the same row, including the metadata, the thumbnail bytes and the image itself. Obviously, if you want to get a list of photos to iterate over in a view, you don't want to get the image data. The use of navigation properties makes it easier to get just what you want. The front end includes Razor views in MVC, and jQuery is used for client-side goodness. I'm also using jQuery UI in a few places, for tabs, a dialog box and autocomplete. I'm also, tentatively, using jQuery Mobile. I've already ported most forum views to Mobile, but they need some work as v1.1 isn't finished yet. I'm not sure if I'll ship CoasterBuzz with mobile views or not yet. It's on the radar, but not something in my delivery criteria. That covers all of the big frameworks in play. Next time I hope to talk more about the front-end experience, which to me is where most of the fun is these days. Hoping to launch in the next month or two. Getting tired of looking at the old site!

    Read the article

  • The Great Divorce

    - by BlackRabbitCoder
    I have a confession to make: I've been in an abusive relationship for more than 17 years now.  Yes, I am not ashamed to admit it, but I'm finally doing something about it. I met her in college, she was new and sexy and amazingly fast -- and I'd never met anything like her before.  Her style and her power captivated me and I couldn't wait to learn more about her.  I took a chance on her, and though I learned a lot from her -- and will always be grateful for my time with her -- I think it's time to move on. Her name was C++, and she so outshone my previous love, C, that any thoughts of going back evaporated in the heat of this new romance.  She promised me she'd be gentle and not hurt me the way C did.  She promised me she'd clean-up after herself better than C did.  She promised me she'd be less enigmatic and easier to keep happy than C was.  But I was deceived.  Oh sure, as far as truth goes, it wasn't a complete lie.  To some extent she was more fun, more powerful, safer, and easier to maintain.  But it just wasn't good enough -- or at least it's not good enough now. I loved C++, some part of me still does, it's my first-love of programming languages and I recognize its raw power, its blazing speed, and its improvements over its predecessor.  But with today's hardware, at speeds we could only dream to conceive of twenty years ago, that need for speed -- at the cost of all else -- has died, and that has left my feelings for C++ moribund. If I ever need to write an operating system or a device driver, then I might need that speed.  But 99% of the time I don't.  I'm a business-type programmer and chances are 90% of you are too, and even the ones who need speed at all costs may be surprised by how much you sacrifice for that.   That's not to say that I don't want my software to perform, and it's not to say that in the business world we don't care about speed or that our job is somehow less difficult or technical.  There's many times we write programs to handle millions of real-time updates or handle thousands of financial transactions or tracking trading algorithms where every second counts.  But if I choose to write my code in C++ purely for speed chances are I'll never notice the speed increase -- and equally true chances are it will be far more prone to crash and far less easy to maintain.  Nearly without fail, it's the macro-optimizations you need, not the micro-optimizations.  If I choose to write a O(n2) algorithm when I could have used a O(n) algorithm -- that can kill me.  If I choose to go to the database to load a piece of unchanging data every time instead of caching it on first load -- that too can kill me.  And if I cross the network multiple times for pieces of data instead of getting it all at once -- yes that can also kill me.  But choosing an overly powerful and dangerous mid-level language to squeeze out every last drop of performance will realistically not make stock orders process any faster, and more likely than not open up the system to more risk of crashes and resource leaks. And that's when my love for C++ began to die.  When I noticed that I didn't need that speed anymore.  That that speed was really kind of a lie.  Sure, I can be super efficient and pack bits in a byte instead of using separate boolean values.  Sure, I can use an unsigned char instead of an int.  But in the grand scheme of things it doesn't matter as much as you think it does.  The key is maintainability, and that's where C++ failed me.  I like to tell the other developers I work with that there's two levels of correctness in coding: Is it immediately correct? Will it stay correct? That is, you can hack together any piece of code and make it correct to satisfy a task at hand, but if a new developer can't come in tomorrow and make a fairly significant change to it without jeopardizing that correctness, it won't stay correct. Some people laugh at me when I say I now prefer maintainability over speed.  But that is exactly the point.  If you focus solely on speed you tend to produce code that is much harder to maintain over the long hall, and that's a load of technical debt most shops can't afford to carry and end up completely scrapping code before it's time.  When good code is written well for maintainability, though, it can be correct both now and in the future. And you know the best part is?  My new love is nearly as fast as C++, and in some cases even faster -- and better than that, I know C# will treat me right.  Her creators have poured hundreds of thousands of hours of time into making her the sexy beast she is today.  They made her easy to understand and not an enigmatic mess.  They made her consistent and not moody and amorphous.  And they made her perform as fast as I care to go by optimizing her both at compile time and a run-time. Her code is so elegant and easy on the eyes that I'm not worried where she will run to or what she'll pull behind my back.  She is powerful enough to handle all my tasks, fast enough to execute them with blazing speed, maintainable enough so that I can rely on even fairly new peers to modify my work, and rich enough to allow me to satisfy any need.  C# doesn't ask me to clean up her messes!  She cleans up after herself and she tries to make my life easier for me by taking on most of those optimization tasks C++ asked me to take upon myself.  Now, there are many of you who would say that I am the cause of my own grief, that it was my fault C++ didn't behave because I didn't pay enough attention to her.  That I alone caused the pain she inflicted on me.  And to some extent, you have a point.  But she was so high maintenance, requiring me to know every twist and turn of her vast and unrestrained power that any wrong term or bout of forgetfulness was met with painful reminders that she wasn't going to watch my back when I made a mistake.  But C#, she loves me when I'm good, and she loves me when I'm bad, and together we make beautiful code that is both fast and safe. So that's why I'm leaving C++ behind.  She says she's changing for me, but I have no interest in what C++0x may bring.  Oh, I'll still keep in touch, and maybe I'll see her now and again when she brings her problems to my door and asks for some attention -- for I always have a soft spot for her, you see.  But she's out of my house now.  I have three kids and a dog and a cat, and all require me to clean up after them, why should I have to clean up after my programming language as well?

    Read the article

  • Testing Workflows &ndash; Test-After

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-after.aspxIn this post I’m going to outline a few common methods that can be used to increase the coverage of of your test suite.  This won’t be yet another post on why you should be doing testing; there are plenty of those types of posts already out there.  Assuming you know you should be testing, then comes the problem of how do I actual fit that into my day job.  When the opportunity to automate testing comes do you take it, or do you even recognize it? There are a lot of ways (workflows) to go about creating automated tests, just like there are many workflows to writing a program.  When writing a program you can do it from a top-down approach where you write the main skeleton of the algorithm and call out to dummy stub functions, or a bottom-up approach where the low level functionality is fully implement before it is quickly wired together at the end.  Both approaches are perfectly valid under certain contexts. Each approach you are skilled at applying is another tool in your tool belt.  The more vectors of attack you have on a problem – the better.  So here is a short, incomplete list of some of the workflows that can be applied to increasing the amount of automation in your testing and level of quality in general.  Think of each workflow as an opportunity that is available for you to take. Test workflows basically fall into 2 categories:  test first or test after.  Test first is the best approach.  However, this post isn’t about the one and only best approach.  I want to focus more on the lesser known, less ideal approaches that still provide an opportunity for adding tests.  In this post I’ll enumerate some test-after workflows.  In my next post I’ll cover test-first. Bug Reporting When someone calls you up or forwards you a email with a vague description of a bug its usually standard procedure to create or verify a reproduction plan for the bug via manual testing and log that in a bug tracking system.  This can be problematic.  Often reproduction plans when written down might skip a step that seemed obvious to the tester at the time or they might be missing some crucial environment setting. Instead of data entry into a bug tracking system, try opening up the test project and adding a failing unit test to prove the bug.  The test project guarantees that all aspects of the environment are setup properly and no steps are missing.  The language in the test project is much more precise than the English that goes into a bug tracking system. This workflow can easily be extended for Enhancement Requests as well as Bug Reporting. Exploratory Testing Exploratory testing comes in when you aren’t sure how the system will behave in a new scenario.  The scenario wasn’t planned for in the initial system requirements and there isn’t an existing test for it.  By definition the system behaviour is “undefined”. So write a new unit test to define that behaviour.  Add assertions to the tests to confirm your assumptions.  The new test becomes part of the living system specification that is kept up to date with the test suite. Examples This workflow is especially good when developing APIs.  When you are finally done your production API then comes the job of writing documentation on how to consume the API.  Good documentation will also include code examples.  Don’t let these code examples merely exist in some accompanying manual; implement them in a test suite. Example tests and documentation do not have to be created after the production API is complete.  It is best to write the example code (tests) as you go just before the production code. Smoke Tests Every system has a typical use case.  This represents the basic, core functionality of the system.  If this fails after an upgrade the end users will be hosed and they will be scratching their heads as to how it could be possible that an update got released with this core functionality broken. The tests for this core functionality are referred to as “smoke tests”.  It is a good idea to have them automated and run with each build in order to avoid extreme embarrassment and angry customers. Coverage Analysis Code coverage analysis is a tool that reports how much of the production code base is exercised by the test suite.  In Visual Studio this can be found under the Test main menu item. The tool will report a total number for the code coverage, which can be anywhere between 0 and 100%.  Coverage Analysis shouldn’t be used strictly for numbers reporting.  Companies shouldn’t set minimum coverage targets that mandate that all projects must have at least 80% or 100% test coverage.  These arbitrary requirements just invite gaming of the coverage analysis, which makes the numbers useless. The analysis tool will break down the coverage by the various classes and methods in projects.  Instead of focusing on the total number, drill down into this view and see which classes have high or low coverage.  It you are surprised by a low number on a class this is an opportunity to add tests. When drilling through the classes there will be generally two types of reaction to a surprising low test coverage number.  The first reaction type is a recognition that there is low hanging fruit to be picked.  There may be some classes or methods that aren’t being tested, which could easy be.  The other reaction type is “OMG”.  This were you find a critical piece of code that isn’t under test.  In both cases, go and add the missing tests. Test Refactoring The general theme of this post up to this point has been how to add more and more tests to a test suite.  I’ll step back from that a bit and remind that every line of code is a liability.  Each line of code has to be read and maintained, which costs money.  This is true regardless whether the code is production code or test code. Remember that the primary goal of the test suite is that it be easy to read so that people can easily determine the specifications of the system.  Make sure that adding more and more tests doesn’t interfere with this primary goal. Perform code reviews on the test suite as often as on production code.  Hold the test code up to the same high readability standards as the production code.  If the tests are hard to read then change them.  Look to remove duplication.  Duplicate setup code between two or more test methods that can be moved to a shared function.  Entire test methods can be removed if it is found that the scenario it tests is covered by other tests.  Its OK to delete a test that isn’t pulling its own weight anymore. Remember to only start refactoring when all the test are green.  Don’t refactor the tests and the production code at the same time.  An automated test suite can be thought of as a double entry book keeping system.  The unchanging, passing production code serves as the tests for the test suite while refactoring the tests. As with all refactoring, it is best to fit this into your regular work rather than asking for time later to get it done.  Fit this into the standard red-green-refactor cycle.  The refactor step no only applies to production code but also the tests, but not at the same time.  Perhaps the cycle should be called red-green-refactor production-refactor tests (not quite as catchy).   That about covers most of the test-after workflows I can think of.  In my next post I’ll get into test-first workflows.

    Read the article

  • SQL University: What and why of database refactoring

    - by Mladen Prajdic
    This is a post for a great idea called SQL University started by Jorge Segarra also famously known as SqlChicken on Twitter. It’s a collection of blog posts on different database related topics contributed by several smart people all over the world. So this week is mine and we’ll be talking about database testing and refactoring. In 3 posts we’ll cover: SQLU part 1 - What and why of database testing SQLU part 2 - What and why of database refactoring SQLU part 3 - Tools of the trade This is a second part of the series and in it we’ll take a look at what database refactoring is and why do it. Why refactor a database To know why refactor we first have to know what refactoring actually is. Code refactoring is a process where we change module internals in a way that does not change that module’s input/output behavior. For successful refactoring there is one crucial thing we absolutely must have: Tests. Automated unit tests are the only guarantee we have that we haven’t broken the input/output behavior before refactoring. If you haven’t go back ad read my post on the matter. Then start writing them. Next thing you need is a code module. Those are views, UDFs and stored procedures. By having direct table access we can kiss fast and sweet refactoring good bye. One more point to have a database abstraction layer. And no, ORM’s don’t fall into that category. But also know that refactoring is NOT adding new functionality to your code. Many have fallen into this trap. Don’t be one of them and resist the lure of the dark side. And it’s a strong lure. We developers in general love to add new stuff to our code, but hate fixing our own mistakes or changing existing code for no apparent reason. To be a good refactorer one needs discipline and focus. Now we know that refactoring is all about changing inner workings of existing code. This can be due to performance optimizations, changing internal code workflows or some other reason. This is a typical black box scenario to the outside world. If we upgrade the car engine it still has to drive on the road (preferably faster) and not fly (no matter how cool that would be). Also be aware that white box tests will break when we refactor. What to refactor in a database Refactoring databases doesn’t happen that often but when it does it can include a lot of stuff. Let us look at a few common cases. Adding or removing database schema objects Adding, removing or changing table columns in any way, adding constraints, keys, etc… All of these can be counted as internal changes not visible to the data consumer. But each of these carries a potential input/output behavior change. Dropping a column can result in views not working anymore or stored procedure logic crashing. Adding a unique constraint shows duplicated data that shouldn’t exist. Foreign keys break a truncate table command executed from an application that runs once a month. All these scenarios are very real and can happen. With the proper database abstraction layer fully covered with black box tests we can make sure something like that does not happen (hopefully at all). Changing physical structures Physical structures include heaps, indexes and partitions. We can pretty much add or remove those without changing the data returned by the database. But the performance can be affected. So here we use our performance tests. We do have them, right? Just by adding a single index we can achieve orders of magnitude performance improvement. Won’t that make users happy? But what if that index causes our write operations to crawl to a stop. again we have to test this. There are a lot of things to think about and have tests for. Without tests we can’t do successful refactoring! Fixing bad code We all have some bad code in our systems. We usually refer to that code as code smell as they violate good coding practices. Examples of such code smells are SQL injection, use of SELECT *, scalar UDFs or cursors, etc… Each of those is huge code smell and can result in major code changes. Take SELECT * from example. If we remove a column from a table the client using that SELECT * statement won’t have a clue about that until it runs. Then it will gracefully crash and burn. Not to mention the widely unknown SELECT * view refresh problem that Tomas LaRock (@SQLRockstar on Twitter) and Colin Stasiuk (@BenchmarkIT on Twitter) talk about in detail. Go read about it, it’s informative. Refactoring this includes replacing the * with column names and most likely change to application using the database. Breaking apart huge stored procedures Have you ever seen seen a stored procedure that was 2000 lines long? I have. It’s not pretty. It hurts the eyes and sucks the will to live the next 10 minutes. They are a maintenance nightmare and turn into things no one dares to touch. I’m willing to bet that 100% of time they don’t have a single test on them. Large stored procedures (and functions) are a clear sign that they contain business logic. General opinion on good database coding practices says that business logic has no business in the database. That’s the applications part. Refactoring such behemoths requires writing lots of edge case tests for the stored procedure input/output behavior and then start to refactor it. First we split the logic inside into smaller parts like new stored procedures and UDFs. Those then get called from the master stored procedure. Once we’ve successfully modularized the database code it’s best to transfer that logic into the applications consuming it. This only leaves the stored procedure with common data manipulation logic. Of course this isn’t always possible so having a plethora of performance and behavior unit tests is absolutely necessary to confirm we’ve actually improved the codebase in some way.   Refactoring is not a popular chore amongst developers or managers. The former don’t like fixing old code, the latter can’t see the financial benefit. Remember how we talked about being lousy at estimating future costs in the previous post? But there comes a time when it must be done. Hopefully I’ve given you some ideas how to get started. In the last post of the series we’ll take a look at the tools to use and an example of testing and refactoring.

    Read the article

  • Next-Generation Data Integration on Oracle Exadata

    - by Julien Testut
    Normal 0 false false false EN-US X-NONE X-NONE Companies are currently faced with increasing data volumes and retention times while simultaneously batch windows are shrinking. In the ‘Next-Generation Data Integration on Oracle Exadata’ session we will be discussing how Oracle with its innovative Data Integration solution along with Exadata can help companies tackle that challenge. Oracle Data Integrator and Oracle GoldenGate provide industry-leading performance and scalability for data integration on Oracle Exadata. They are both uniquely designed to take full advantage of the power of the database and to eliminate unnecessary middle-tier components which can often be bottlenecks for data movement and transformation. Combined with the extreme performance provided by Exadata our Data Integration products help companies move towards a more efficient and flexible data integration infrastructure. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} If you’re interested in hearing more about how our customers maximize the performance of their Exadata systems while minimizing batch windows, all without adding more hardware resources join us for the following session: Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Next-Generation Data Integration on Oracle Exadata  Thursday October, 4th - 11:15AM - 12:15PM Moscone West – Room 3005 We also have many other exciting sessions including 'Oracle Data Integrator Product Update and Future Strategy' on October 2nd at 1:15PM in Moscone West Room 3005. In this session we will discuss the ODI roadmap and its integration with engineered systems such as the Oracle Big Data Appliance. It's a session not to be missed! You can find a list of all the Data Integration sessions happening at Oracle OpenWorld in this document: Focus On Data Integration. If you will not be able to come to OpenWorld, for more information please check out our data sheet Oracle Data Integration Solutions and the Oracle Exadata Database Machine. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • The 20 Most Important Keyboard Shortcuts For Windows PCs

    - by Chris Hoffman
    Keyboard shortcuts are practically essential for using any type of PC. They’ll speed up almost everything you do. But long lists of keyboard shortcuts can quickly become overwhelming if you’re just getting started. This list will cover the most useful keyboard shortcuts that every Windows user should know. If you haven’t used keyboard shortcuts much, these will show you just how useful keyboard shortcuts can be. Windows Key + Search The Windows key is particularly important on Windows 8 — especially before Windows 8.1 — because it allows you to quickly return to the Start screen. On Windows 7, it opens the Start menu. Either way, you can start typing immediately after you press the Windows key to search for programs, settings, and files. For example, if you want to launch Firefox, you can press the Windows key, start typing the word Firefox, and press Enter when the Firefox shortcut appears. It’s a quick way to launch programs, open files, and locate Control Panel options without even touching your mouse and without digging through a cluttered Start menu. You can also use the arrow keys to select the shortcut you want to launch before pressing Enter. Copy, Cut, Paste Copy, Cut, and Paste are extremely important keyboard shortcuts for text-editing. If you do any typing on your computer, you probably use them. These options can be accessed using the mouse, either by right-clicking on selected text or opening the application’s Edit menu, but this is the slowest way to do it. After selecting some text, press Ctrl+C to copy it or Ctrl+X to cut it. Position the cursor where you want the text and use Ctrl+V to paste it. These shortcuts can save you a huge amount of time over using the mouse. Search the Current Page or File To quickly perform a search in the current application — whether you’re in a web browser, PDF viewer, document editor, or almost any other type of application — press Ctrl+F. The application’s search (or “Find”) feature will pop up, and you can instantly start typing a phrase you want to search for. You can generally press Enter to  go to the next appearance of the word or phrase in the document, quickly searching through it for what you’re interested in. Switch Between Applications and Tabs Rather than clicking buttons on your taskbar, Alt+Tab is a very quick way to switch between running applications. Windows orders the list of open windows by the order you accessed them, so if you’re only using two different applications, you can just press Alt+Tab to quickly switch between them. If switching between more than two windows, you’ll have to hold the Alt key and press Tab repeatedly to toggle through the list of open windows. If you miss the window you want, you can always press Alt+Shift+Tab to move through the list in reverse. To move between tabs in an application — such as the browser tabs in your web browser — press Ctrl+Tab. Ctrl+Shift+Tab will move through tabs in reverse. Quickly Print If you’re the kind of person who still prints things, you can quickly open the print window by pressing Ctrl+P. This can be faster than hunting down the Print option in every program you want to print something from. Basic Browser Shortcuts Web browser shortcuts can save you tons of time, too. Ctrl+T is a very useful one, as it will open a new tab with the address bar focused, so you can quickly press Ctrl +T, type a search phrase or web address, and press Enter to go there. To go back or forward while browsing, hold the Ctrl key and press the left or right arrow keys. If you’d just like to focus your web browser’s address bar so you can type a new web address or search without opening a new tab, press Ctrl + L. You can then start typing something and press Enter. Close Tabs and Windows To quickly close the current application, press Alt+F4. This works on the desktop and even in new Windows 8-style applications. To quickly close the current browser tab or document, press Ctrl+W. This will often close the current window if there are no other tabs open. Lock Your Computer When you’re done using your computer and want to step away, you may want to lock it. People won’t be able to log in and access your desktop unless they know your password. You can do this from the Start menu or Start screen, but the fastest way to lock your screen is by quickly pressing Windows Key + L before you get up. Access the Task Manager Ctrl+Alt+Delete will take you to a screen that allows you to quickly launch the Task Manager or perform other operations, such as signing out. This is particularly useful because if can be used to recover from situations where your computer doesn’t appear responsive or isn’t accepting input. For example, if a full-screen game becomes unresponsive, Ctrl+Alt+Delete will often allow you to escape from it and end it via the Task Manager. Windows 8 Shortcuts On Windows 8 PCs, there are other very important keyboard shortcuts. Windows Key + C will open your Charms bar, while Windows Key + Tab will open the new App Switcher. These keyboard shortcuts will allow you to avoid the hot corners, which can be tedious to use with a mouse. On the desktop side, Windows Key + D will take you back to the desktop from anywhere. Windows Key + X will open a special “power user menu” that gives you quick access to options that are hidden in the new Windows 8 interface, including Shut Down, Restart, and Control Panel. If you’re interested in learning more keyboard shortcuts, be sure to check our longer lists of 47 keyboard shortcuts that work in all web browsers and 42+ keyboard shortcuts to speed up text-editing. Image Credit: Jeroen Bennink on Flickr     

    Read the article

  • Developing a Cost Model for Cloud Applications

    - by BuckWoody
    Note - please pay attention to the date of this post. As much as I attempt to make the information below accurate, the nature of distributed computing means that components, units and pricing will change over time. The definitive costs for Microsoft Windows Azure and SQL Azure are located here, and are more accurate than anything you will see in this post: http://www.microsoft.com/windowsazure/offers/  When writing software that is run on a Platform-as-a-Service (PaaS) offering like Windows Azure / SQL Azure, one of the questions you must answer is how much the system will cost. I will not discuss the comparisons between on-premise costs (which are nigh impossible to calculate accurately) versus cloud costs, but instead focus on creating a general model for estimating costs for a given application. You should be aware that there are (at this writing) two billing mechanisms for Windows and SQL Azure: “Pay-as-you-go” or consumption, and “Subscription” or commitment. Conceptually, you can consider the former a pay-as-you-go cell phone plan, where you pay by the unit used (at a slightly higher rate) and the latter as a standard cell phone plan where you commit to a contract and thus pay lower rates. In this post I’ll stick with the pay-as-you-go mechanism for simplicity, which should be the maximum cost you would pay. From there you may be able to get a lower cost if you use the other mechanism. In any case, the model you create should hold. Developing a good cost model is essential. As a developer or architect, you’ll most certainly be asked how much something will cost, and you need to have a reliable way to estimate that. Businesses and Organizations have been used to paying for servers, software licenses, and other infrastructure as an up-front cost, and power, people to the systems and so on as an ongoing (and sometimes not factored) cost. When presented with a new paradigm like distributed computing, they may not understand the true cost/value proposition, and that’s where the architect and developer can guide the conversation to make a choice based on features of the application versus the true costs. The two big buckets of use-types for these applications are customer-based and steady-state. In the customer-based use type, each successful use of the program results in a sale or income for your organization. Perhaps you’ve written an application that provides the spot-price of foo, and your customer pays for the use of that application. In that case, once you’ve estimated your cost for a successful traversal of the application, you can build that into the price you charge the user. It’s a standard restaurant model, where the price of the meal is determined by the cost of making it, plus any profit you can make. In the second use-type, the application will be used by a more-or-less constant number of processes or users and no direct revenue is attached to the system. A typical example is a customer-tracking system used by the employees within your company. In this case, the cost model is often created “in reverse” - meaning that you pilot the application, monitor the use (and costs) and that cost is held steady. This is where the comparison with an on-premise system becomes necessary, even though it is more difficult to estimate those on-premise true costs. For instance, do you know exactly how much cost the air conditioning is because you have a team of system administrators? This may sound trivial, but that, along with the insurance for the building, the wiring, and every other part of the system is in fact a cost to the business. There are three primary methods that I’ve been successful with in estimating the cost. None are perfect, all are demand-driven. The general process is to lay out a matrix of: components units cost per unit and then multiply that times the usage of the system, based on which components you use in the program. That sounds a bit simplistic, but using those metrics in a calculation becomes more detailed. In all of the methods that follow, you need to know your application. The components for a PaaS include computing instances, storage, transactions, bandwidth and in the case of SQL Azure, database size. In most cases, architects start with the first model and progress through the other methods to gain accuracy. Simple Estimation The simplest way to calculate costs is to architect the application (even UML or on-paper, no coding involved) and then estimate which of the components you’ll use, and how much of each will be used. Microsoft provides two tools to do this - one is a simple slider-application located here: http://www.microsoft.com/windowsazure/pricing-calculator/  The other is a tool you download to create an “Return on Investment” (ROI) spreadsheet, which has the advantage of leading you through various questions to estimate what you plan to use, located here: https://roianalyst.alinean.com/msft/AutoLogin.do?d=176318219048082115  You can also just create a spreadsheet yourself with a structure like this: Program Element Azure Component Unit of Measure Cost Per Unit Estimated Use of Component Total Cost Per Component Cumulative Cost               Of course, the consideration with this model is that it is difficult to predict a system that is not running or hasn’t even been developed. Which brings us to the next model type. Measure and Project A more accurate model is to actually write the code for the application, using the Software Development Kit (SDK) which can run entirely disconnected from Azure. The code should be instrumented to estimate the use of the application components, logging to a local file on the development system. A series of unit and integration tests should be run, which will create load on the test system. You can use standard development concepts to track this usage, and even use Windows Performance Monitor counters. The best place to start with this method is to use the Windows Azure Diagnostics subsystem in your code, which you can read more about here: http://blogs.msdn.com/b/sumitm/archive/2009/11/18/introducing-windows-azure-diagnostics.aspx This set of API’s greatly simplifies tracking the application, and in fact you can use this information for more than just a cost model. After you have the tracking logs, you can plug the numbers into ay of the tools above, which should give a representative cost or in some cases a unit cost. The consideration with this model is that the SDK fabric is not a one-to-one comparison with performance on the actual Windows Azure fabric. Those differences are usually smaller, but they do need to be considered. Also, you may not be able to accurately predict the load on the system, which might lead to an architectural change, which changes the model. This leads us to the next, most accurate method for a cost model. Sample and Estimate Using standard statistical and other predictive math, once the application is deployed you will get a bill each month from Microsoft for your Azure usage. The bill is quite detailed, and you can export the data from it to do analysis, and using methods like regression and so on project out into the future what the costs will be. I normally advise that the architect also extrapolate a unit cost from those metrics as well. This is the information that should be reported back to the executives that pay the bills: the past cost, future projected costs, and unit cost “per click” or “per transaction”, as your case warrants. The challenge here is in the model itself - statistical methods are not foolproof, and the larger the sample (in this case I recommend the entire population, not a smaller sample) is key. References and Tools Articles: http://blogs.msdn.com/b/patrick_butler_monterde/archive/2010/02/10/windows-azure-billing-overview.aspx http://technet.microsoft.com/en-us/magazine/gg213848.aspx http://blog.codingoutloud.com/2011/06/05/azure-faq-how-much-will-it-cost-me-to-run-my-application-on-windows-azure/ http://blogs.msdn.com/b/johnalioto/archive/2010/08/25/10054193.aspx http://geekswithblogs.net/iupdateable/archive/2010/02/08/qampa-how-can-i-calculate-the-tco-and-roi-when.aspx   Other Tools: http://cloud-assessment.com/ http://communities.quest.com/community/cloud_tools

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

  • Thoughts on Build 2013

    - by D'Arcy Lussier
    Originally posted on: http://geekswithblogs.net/dlussier/archive/2013/06/30/153294.aspxAnd so another Build conference has come to an end. Below are my thoughts/perspectives on various aspects of the event. I’ll do a separate blog post on my thoughts of the Build message for developers. The Good Moscone center was a great venue for Build! Easy to get around, easy to get to, and well maintained, it was a very comfortable conference venue. Yeah, the free swag was nice. Build has built up an expectation that attendees will always get something; it’ll be interesting to see how Microsoft maintains this expectation over the next few Build events. I still maintain that free swag should never be the main reason one attends an event, and for me this was definitely just an added bonus. I’m planning on trying to use the Surface as a dedicated 2nd device at work for meetings, I’ll share my experiences over the next few months. The hackathon event was a great idea, although personally I couldn’t justify spending the money on a conference registration just to spend the entire conference coding. Still, the apps that were created were really great and there was a lot of passion and excitement around the hackathon. I wonder if they couldn’t have had the hackathon on the Monday/Tuesday for those that wanted to participate so they didn’t miss any of the actual conference over Wed/Thurs. San Francisco was a great city to host Build. Getting from hotels to the conference center was very easy (well especially for me, I was only 3 blocks away) and the city itself felt very safe. However, if I never have to fly into SFO again I’ll be alright with that! Delays going into and out of SFO and both apparently were due to the airport itself. The Bad Build is one of those oddities on the conference landscape where people will pay to commit to attending an event without knowing anything about the sessions. We got our list of conference sessions when we registered on Tuesday, not before. And even then, we only got titles and not descriptions (those were eventually made available via the conference’s mobile application). I get it…they’re going to make announcements and they don’t want to give anything away through the session titles. But honestly, there wasn’t anything in the session titles that I would have considered a surprise. Breakfasts were brutal. High-carb pastries, donuts, and muffins with fruit and hard boiled eggs does not a conference breakfast make. I can’t believe that the difference between a continental breakfast per person and a hot breakfast buffet would have been a huge impact to a conference fee that was already around $2000. The vendor area was anemic. I don’t know why Microsoft forces the vendors into cookie-cutter booth areas (this year they were all made of plywood material). WPC, TechEd – booth areas there allow the vendors to be creative with their displays. Not so much for Build. Really odd was the lack of Microsoft’s own representation around Bing. In the day 1 keynote Microsoft made a big deal about Bing as an API. Yet there was nobody in the vendor area set up to provide more information or have discussions with about the Bing API. The Ugly Our name badges were NFC enabled. The purpose of this, beyond the vendors being able to scan your info, wasn’t really made clear. An attendee I talked to showed how you could get a reader app on your phone so you can scan other members cards and collect their contact info – which is a kewl idea; business cards are so 1990’s. But I was *shocked* at the amount of information that was on our name badges! Here’s what’s displayed on our name badge: - Name - Company - Twitter Handle I’m ok with that. But here’s what actually gets read: - Name - Company - Address Used for Registration - Phone Number Used for Registration So sharing that info with another attendee, they get way more of my info than just how to find me on Twitter! Microsoft, you need to fix this for the future. If vendors want to collect information on attendees, they should be able to collect an ID from the badge, then get a report with corresponding records afterwards. My personal information should not be so readily available, and without my knowledge! Final Verdict Maybe its my older age, maybe its where I’m at in life with family, maybe its where I’m at in my career, but when I consider whether a conference experience was valuable I get to the core reason I attend: opportunities to learn, opportunities to network, opportunities to engage with Microsoft. Opportunities to Learn:  Sessions I attended were generally OK, with some really stand out ones on Day 2. I would love to see Microsoft adopt the Dojo format for a portion of their sessions. Hands On Labs are dull, lecture style sessions are great for information sharing. But a guided hands-on coding session (Read: Dojo) provides the best of both worlds. Being that all content is publically available online to everyone (Build attendee or not), the value of attending the conference sessions is decreased. The value though is in the discussions that take part in person afterwards, which leads to… Opportunities to Network: I enjoyed getting together with old friends and connecting with Twitter friends in person for the first time. I also had an opportunity to meet total strangers. So from a networking perspective, Build was fantastic! I still think it would have been great to have an area for ad-hoc discussions – where speakers could announce they’d be available for more questions after their sessions, or attendees who wanted to discuss more in depth on a topic with other attendees could arrange space. Some people have no problems being outgoing and making these things happen, but others are not and a structured model is more attractive. Opportunities to Engage with Microsoft: Hit and miss on this one. Outside of the vendor area, unless you cornered or reached out to a speaker, there wasn’t any defined way to connect with blue badges. And as I mentioned above, Microsoft didn’t have full representation in the vendor area (no Bing). All in all, Build was a fun party where I was informed about some new stuff and got some free swag. Was it worth the time away from home and the hit to my PD budget? I’d say Somewhat. Build is a great informational conference, but I wouldn’t call it a learning conference. Considering that TechEd seems to be moving to more of an IT Pro focus, independent developer conferences seem to be the best value for those looking to learn and not just be informed. With the rapid development cycle Microsoft is embracing, we’re already seeing Build happening twice within a 12 month period. If that continues, the value of attending Build in person starts to diminish – especially with so much content available online. If Microsoft wants Build to be a must-attend event in the future, they need to start incorporating aspects of Tech Ed, past PDCs, and other conferences so those that want to leave with more than free swag have something to attract them.

    Read the article

  • Configuring Oracle HTTP Server 12c for WebLogic Server Domain

    - by Emin Askerov
    Oracle HTTP Server (OHS) 12c 12.1.2 which was released in July 2013 as a part of Oracle Web Tier 12c is the web server component of Oracle Fusion Middleware. In essence this is Apache HTTP Server 2.2.22 (with critical bug fixes from higher versions) which includes modules developed specifically by Oracle. It provides a listener functionality for Oracle WebLogic Server and the framework for hosting static pages, dynamic pages, and applications over the Web. OHS can be easily managed by Weblogic Management Framework, a set of tools which provides administrative capabilities (start, stop, lifecycle operations, etc.) for Oracle Fusion Middleware products. In other words all tools which are familiar to us (Node Manager, WLST, Administration Console, Fusion Middleware Control etc.) presented as a part of Weblogic Management Framework and using for managing Java and System Components both for Weblogic Server and Standalone Domain types. You can familiarize yourself with these terms using related documentation: 1. Introduction to Oracle HTTP Server: http://docs.oracle.com/middleware/1212/webtier/index.html 2. Weblogic Management Framework: http://docs.oracle.com/middleware/1212/core/ASCON/terminology.htm#ASCON11260 In the given post I would like to cover rather simple use case how to configure OHS as web proxy in Weblogic Cluster environment. For example, we have existing Weblogic Domain where some managed servers have been joined to cluster and host business applications. We need to configure web proxy component which will act as entry point, load balancer for our cluster for user requests. Of course, we could install old good Apache HTTP Server and configure mod_wl plugin. However this solution not optimal from manageability perspective: we need to install Apache, install additional plugin then configure it by editing configuration file which is not really convenient for FMW Administrators and often increase time of performing of simple administrative task. Alternatively, we could use OHS as System Component within Weblogic Domain and use full power of Weblogic Management Framework in order to configure, manage and monitor it! I like this idea! What about you? I hope after reading this post you will agree with me. First of all it is necessary to download OHS binaries. You can use this link for downloading: http://www.oracle.com/technetwork/java/webtier/downloads/index2-303202.html As we will use Fusion Middleware Control for managing OHS instances it is necessary to extend your domain with Enterprise Manager and Oracle ADF and JRF templates. This is not topic for focusing in this post, but you could get more information from documentation or one of my previous posts: http://docs.oracle.com/middleware/1212/wls/WLDTR/fmw_templates.htm#sthref64 https://blogs.oracle.com/imc/entry/the_specifics_of_adf_12c Note: you should have properly configured Node Manager utility for managing OHS instances Let’s consider configuration process step by step: 1. Shut down all Weblogic instances of existing domain including Admin Server; 2. Install Oracle HTTP Server. You should use your Fusion Middleware Home Path (e.g. /u01/Oracle/FMW12) for Installation Location and select Colocated HTTP Server option as Installation Type. I will not focus on this topic in this post. All information related to OHS installation you could find here: http://docs.oracle.com/middleware/1212/webtier/WTINS/install_gui.htm#i1082009 3. Next we need to extend our existing domain with OHS component. In order to do this you should do the following: a. Run Fusion Middleware Configuration Wizard (ORACLE_HOME/oracle_common/common/bin/config.sh); b. On the step 1 select Update an existing domain option and point your Fusion Middleware Home Path; c. On the step 2 check Oracle HTTP Server, Oracle Enterprise Manager Plugin for WEBTIER templates; d. Go through other steps without any changes and finish configuration process. 4. Start Admin Server and all managed servers related to your cluster 5. Log in to Enterprise Manager FMW Control using http://<hostname>:<port>/em URL 6. Now we will create OHS instance within our Weblogic Domain Infrastructure. Navigate to Weblogic Domain -> Administration -> Create/Delete OHS menu item; 7. Enter to edit mode, clicking Changes -> Lock&Edit menu item; 8. Create new OHS instance clicking Create button; 9. Define Instance Name (e.g. DevOSH) and Machine parameters; 10. Now we need to define listen port. By default OHS will use 7777 port number for income HTTP requests. We could change it to any free port number we would like to use. In order to do it, right click on our created OHS instance (left hand panel) and navigate to Administration -> Port Configuration; 11. Click on record with port number 7777 and then click Edit button; 12. Change port number value (in our case this will be 8080) and then click OK button; 13. Now we need to edit mod_wl_ohs configuration in order to enable OHS to act as proxy for WebLogic Server Instances/Cluster; 14. In order to do it right click on our created OHS instance (left panel) and navigate to Administration -> mod_wl_ohs Configuration; a. In Weblogic Cluster you should enter cluster address (define <host:port> for all managed servers which participated in cluster), e.g: 192.168.56.2:7004,192.168.56.2:7005 b. Define Weblogic Port parameter at which the Oracle WebLogic Server host is listening for connection requests from the module (or from other servers); c. Check Dynamic Server List option. This will dynamically update cluster list for every request; d. In the Location table define list of endpoint locations which you would like to process. In order to do this click Add Row button and define Location, Weblogic Cluster, Path Trim and Path Prefix parameters (if required); e. Click Apply button in order to save changes. 15. Activate changes clicking Changes ? Activate Changes menu item; 16. Finally we will start configured OHS instance. Right click on OHS instance tree item under Web Tier folder, select Control -> Start Up menu item; 17. Ensure that OHS instance up and running and then test your environment. Run deployed application to your Weblogic Cluster accessing via OHS web proxy; Normal 0 false false false RU X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}

    Read the article

  • Day 3 - XNA: Hacking around with images

    - by dapostolov
    Yay! Today I'm going to get into some code! My mind has been on this all day! I find it amusing how I practice, daily, to be "in the moment" or "present" and the excitement and anticipation of this project seems to snatch it away from me frequently. WELL!!! (Shakes Excitedly) Let's do this =)! Let's code! For these next few days it is my intention to better understand image rendering using XNA; after said prototypes are complete I should (fingers crossed) be able to dive into my game code using the design document I hammered out the other night. On a personal note, I think the toughest thing right now is finding the time to do this project. Each night, after my little ones go to bed I can only really afford a couple hours of work on this project. However, I hope to utilise this time as best as I can because this is the first time in a while I've found a project that I've been passionate about. A friend recently asked me if I intend to go 3D or extend the game design. Yes. For now I'm keeping it simple. Lastly, just as a note, as I was doing some further research into image rendering this morning I came across some other XNA content and lessons learned. I believe this content could have probably been posted in the first couple of posts, however, I will share the new content as I learn it at the end of each day. Maybe I'll take some time later to fix the posts but for now Installation and Deployment - Lessons Learned I had installed the XNA studio  (Day 1) and the site instructions were pretty easy to follow. However, I had a small difficulty with my development environment. You see, I run a virtual desktop development environment. Even though I was able to code and compile all the tutorials the game failed to run...because I lacked a 3D capable card; it was not detected on the virtual box... First Lesson: The XNA runtime needs to "see" the 3D card! No sweat, Il copied the files over to my parent box and executed the program. ERROR. Hmm... Second Lesson (which I should have probably known but I let the excitement get the better of me): you need the XNA runtime on the client PC to run the game, oh, and don't forget the .Net Runtime! Sprite, it ain't just a Soft Drink... With these prototypes I intend to understand and perform the following tasks. learn game development terminology how to place and position (rotate) a static image on the screen how to layer static images on the screen understand image scaling can we reuse images? understand how framerate is handled in XNA how to display text , basic shapes, and colors on the screen how to interact with an image (collision of user input?) how to animate an image and understand basic animation techniques how to detect colliding images or screen edges how to manipulate the image, lets say colors, stretching how to focus on a segment of an image...like only displaying a frame on a film reel what's the best way to manage images (compression, storage, location, prevent artwork theft, etc.) Well, let's start with this "prototype" task list for now...Today, let's get an image on the screen and maybe I can mark a few of the tasks as completed... C# Prototype1 New Visual Studio Project Select the XNA Game Studio 3.1 Project Type Select the Windows Game 3.1 Template Type Prototype1 in the Name textbox provided Press OK. At this point code has auto-magically been created. Feel free to press the F5 key to run your first XNA program. You should have a blue screen infront of you. Without getting into the nitty gritty right, the code that was generated basically creates some basic code to clear the window content with the lovely CornFlowerBlue color. Something to notice, when you move your mouse into the window...nothing. ooooo spoooky. Let's put an image on that screen! Step A - Get an Image into the solution Under "Content" in your Solution Explorer, right click and add a new folder and name it "Sprites". Copy a small image in there; I copied a "Royalty Free" wizard hat from a quick google search and named it wizards_hat.jpg (rightfully so!) Step B - Add the sprite and position fields Now, open/edit  Game1.cs Locate the following line:  SpriteBatch spriteBatch; Under this line type the following:         SpriteBatch spriteBatch; // the line you are looking for...         Texture2D sprite;         Vector2 position; Step C - Load the image asset Locate the "Load Content" Method and duplicate the following:             protected override void LoadContent()         {             spriteBatch = new SpriteBatch(GraphicsDevice);             // your image name goes here...             sprite = Content.Load<Texture2D>("Sprites\\wizards_hat");             position = new Vector2(200, 100);             base.LoadContent();         } Step D - Draw the image Locate the "Draw" Method and duplicate the following:        protected override void Draw(GameTime gameTime)         {             GraphicsDevice.Clear(Color.CornflowerBlue);             spriteBatch.Begin(SpriteBlendMode.AlphaBlend);             spriteBatch.Draw(sprite, position, Color.White);             spriteBatch.End();             base.Draw(gameTime);         }  Step E - Compile and Run Engage! (F5) - Debug! Your image should now display on a cornflowerblue window about 200 pixels from the left and 100 pixels from the top. Awesome! =) Pretty cool how we only coded a few lines to display an image, but believe me, there is plenty going on behind the scenes. However, for now, I'm going to call it a night here. Blogging all this progress certainly takes time... However, tomorrow night I'm going to detail what we just did, plus start checking off points on that list! I'm wondering right now if I should add pictures / code to this post...let me know if you want them =) Best Regards, D.

    Read the article

  • Why We Should Learn to Stop Worrying and Love Millennials

    - by HCM-Oracle
    By Christine Mellon Much is said and written about the new generations of employees entering our workforce, as though they are a strange specimen, a mysterious life form to be “figured out,” accommodated and engaged – at a safe distance, of course.  At its worst, this talk takes a critical and disapproving tone, with baby boomer employees adamantly refusing to validate this new breed of worker, let alone determine how to help them succeed and achieve their potential.   The irony of our baby-boomer resentments and suspicions is that they belie the fact that we created the very vision that younger employees are striving to achieve.  From our frustrations with empty careers that did not fulfill us, from our opposition to “the man,” from our sharp memories of our parents’ toiling for 30 years just for the right to retire, from the simple desire not to live our lives in a state of invisibility, came the seeds of hope for something better. One characteristic of Millennial workers that grew from these seeds is the desire to experience as much as possible.  They are the “Experiential Employee”, with a passion for growing in diverse ways and expanding personal and professional horizons.  Rather than rooting themselves in a single company for a career, or even in a single career path, these employees are committed to building a broad portfolio of experiences and capabilities that will enable them to make a difference and to leave a mark of significance in the world.  How much richer is the organization that nurtures and leverages this inclination?  Our curmudgeonly ways must be surrendered and our focus redirected toward building the next generation of talent ecosystems, if we are to optimize what future generations have to offer.   Accelerating Professional Development In spite of our Boomer grumblings about Millennials’ “unrealistic” expectations, the truth is that we have a well-matched set of circumstances.  We have executives-in-waiting who want to learn quickly and a concurrent, urgent need to ramp up their development time, based on anticipated high levels of retirement in the next 10+ years.  Since we need to rapidly skill up these heirs to the corporate kingdom, isn’t it a fortunate coincidence that they are hungry to learn, develop and move fluidly throughout our organizations??  So our challenge now is to efficiently operationalize the wisdom we have acquired about effective learning and development.   We have already evolved from classroom-based models to diverse instructional methods.  The next step is to find the best approaches to help younger employees learn quickly and apply new learnings in an impactful way.   Creating temporary or even permanent functional partnerships among Millennial employees is one way to maximize outcomes.  This might take the form of 2 or more employees owning aspects of what once fell under a single role.  While one might argue this would mean duplication of resources, it could be a short term cost while employees come up to speed.  And the potential benefits would be numerous:  leveraging and validating the inherent sense of community of new generations, creating cross-functional skills with broad applicability, yielding additional perspectives and approaches to traditional work outcomes, and accelerating the performance curve for incumbents through Cooperative Learning (Johnson, D. and Johnson R., 1989, 1999).  This well-researched teaching strategy, where students support each other in the absorption and application of new information, has been shown to deliver faster, more efficient learning, and greater retention. Alternately, perhaps short term contracts with exiting retirees, or former retirees, to help facilitate the development of following generations may have merit.  Again, a short term cost, certainly.  However, the gains realized in shortening the learning curve, and strengthening engagement are substantial and lasting. Ultimately, there needs to be creative thinking applied for each organization on how to accelerate the capabilities of our future leaders in unique ways that mesh with current culture. The manner in which performance is evaluated must finally shift as well.  Employees will need to be assessed on how well they have developed key skills and capabilities vs. end-to-end mastery of functional positions they have no interest in keeping for an entire career. As we become more comfortable in placing greater and greater weight on competencies vs. tasks, we will realize increased organizational agility via this new generation of workers, which will be further enhanced by their natural flexibility and appetite for change. Revisiting Succession  For many years, organizations have failed to deliver desired succession planning outcomes.  According to CEB’s 2013 research, only 28% of current leaders were pre-identified in a succession plan. These disappointing results, along with the entrance of the experiential, Millennial employee into the workforce, may just provide the needed impetus for HR to reinvent succession processes.   We have recognized that the best professional development efforts are not always linear, and the time has come to fully adopt this philosophy in regard to succession as well.  Paths to specific organizational roles will not look the same for newer generations who seek out unique learning opportunities, without consideration of a singular career destination.  Rather than charting particular jobs as precursors for key positions, the experiences and skills behind what makes an incumbent successful must become essential in succession mapping.  And the multitude of ways in which those experiences and skills may be acquired must be factored into the process, along with the individual employee’s level of learning agility. While this may seem daunting, it is necessary and long overdue.  We have talked about the criticality of competency-based succession, however, we have not lived up to our own rhetoric.  Many Boomers have experienced the same frustration in our careers; knowing we are capable of shining in a particular role, but being denied the opportunity due to how our career history lined up, on paper, with documented job requirements.  These requirements usually emphasized past jobs/titles and specific tasks, versus capabilities, drive and willingness (let alone determination) to learn new things.  How satisfying would it be for us to leave a legacy where such narrow thinking no longer applies and potential is amplified? Realizing Diversity Another bloom from the seeds we Boomers have tried to plant over the past decades is a completely evolved view of diversity.  Millennial employees assume a diverse workforce, and are startled by anything less.  Their social tolerance, nurtured by wide and diverse networks, is unprecedented.  College graduates expect a similar landscape in the “real world” to what they experienced throughout their lives.  They appreciate and seek out divergent points of view and experiences without needing any persuasion.  The face of our U.S. workforce will likely see dramatic change as Millennials apply their fresh take on hiring and building strong teams, with an inherent sense of inclusion.  This wonderful aspect of the Millennial wave should be celebrated and strongly encouraged, as it is the fulfillment of our own aspirations. Future Perfect The Experiential Employee is operating more as a free agent than a long term player, and their commitment will essentially last as long as meaningful organizational culture and personal/professional opportunities keep their interest.  As Boomers, we have laid the foundation for this new, spirited employment attitude, and we should take pride in knowing that.  Generations to come will challenge organizations to excel in how they identify, manage and nurture talent. Let’s support and revel in the future that we’ve helped invent, rather than lament what we think has been lost.  After all, the future is always connected to the past.  And as so eloquently phrased by Antoine Lavoisier, French nobleman, chemist and politico:  “Nothing is Lost, Nothing is Created, and Everything is Transformed.” Christine has over 25 years of diverse HR experience.  She has held HR consulting and corporate roles, including CHRO positions for Echostar in Denver, a 6,000+ employee global engineering firm, and Aepona, a startup software firm, successfully acquired by Intel. Christine is a resource to Oracle clients, to assist in Human Capital Management strategy development and implementation, compensation practices, talent development initiatives, employee engagement, global HR management, and integrated HR systems and processes that support the full employee lifecycle. 

    Read the article

  • Communities - The importance of exchange and discussion

    Communication with your environment is an essential part of everyone's life. And it doesn't matter whether you are actually living in a rural area in the middle of nowhere, within the pulsating heart of a big city, or in my case on a wonderful island in the Indian Ocean. The ability to exchange your thoughts, your experience and your worries with another person helps you to get different points of view and new ideas on how to resolve an issue you might be confronted with. Benefits of community work What happens to be common sense in your daily life, also applies to your work environment. Working in IT, or ICT as it is called in Mauritius, requires a lot of reading and learning. Not only during your lectures at the university but with your colleagues in a project assignment and hopefully with 'unknown' pals in the universe of online communities. At least I can say that I learned quite a lot from other developers code, their responses in various forums, their numerous blog articles, and while attending local user group meetings. When I started to work as a professional software developer (or engineer some may say) years ago I immediately checked the existence of communities on the programming language, the database technology and other vital information on software development in general. Luckily, it wasn't too difficult to find. My employer had a subscription of the monthly magazines and newsletters of a national organisation which also run the biggest forum in that area. Getting in touch with other developers and reading their common problems but also solutions was a huge benefit to my growth. Image courtesy of Michael Kappel (CC BY-NC 2.0) Active participation and regular contribution to this community gave me some nice advantages, too. Within three years I was listed as a conference speaker at the annual developer's conference and provided several sessions on different topics during consecutive years. Back in 2004, I took over the responsibility and management of the monthly meetings of a regional user group, and organised it for more than two years. Furthermore, I was invited to the newly-founded community program of Microsoft Germany (Community Leader/Insider Program - CLIP). My website on Active FoxPro Pages was nominated in the second batch of online communities. Due to my community work and providing advice to others, I had the honour to be awarded as Microsoft Most Valuable Professional (MVP) - Visual Developer for Visual FoxPro in the years 2006 and 2007. It was a great experience to meet with other like-minded people and I'm really grateful for that. Just in case, more details are listed in my Curriculum Vitae. But this all changed when I moved to Mauritius... Cyber island Mauritius? During the first months in Mauritius I was way too busy to think about community activities at all. First of all, there was the new company that had to be set up, the new staff had to be trained and of course the communication work-flows and so on with the project managers back in Germany had to be sorted out, too. Second, I had to get a grip of my private matters like getting the basics for my new household or exploring the neighbourhood, and last but not least I needed a break from the hectic and intensive work prior to my departure. As soon as the sea literally calmed down, I started to have conversations with my colleagues about communities and user groups. Sadly, it turned out that there were none, or at least no one was aware of any at that time. Oh oh, what did I do? Anyway, having this kind of background and very positive experience with off-line and on-line activities I decided for myself that some day I'm going to found a community in Mauritius for all kind of IT/ICT-related fields. The main focus might be on software development but not on a certain technology or methodology. It was clear to me that it should be an open infrastructure and anyone is welcome to join, to experience, to share and to contribute if they would like to. That was the idea at that time... Ok, fast-forward to recent events. At the end of October 2012 I was invited to an event called Open Days organised by Microsoft Indian Ocean Islands together with other local partners and resellers. There I got in touch with local Technical Evangelist Arnaud Meslier and we had a good conversation on communities during the breaks. Eventually, I left a good impression on him, as we are having chats on Facebook or Skype irregularly. Well, seeing that my personal and professional surroundings have been settled and running smooth, having that great exchange and contact with Microsoft IOI (again), and being really eager to re-animate my intentions from 2007, I recently founded a new community: Mauritius Software Craftsmanship Community - #MSCC It took me a while to settle down with the name but it was obvious that the community should not be attached to one single technology, like ie. .NET user group, Oracle developers, or Joomla friends (these are fictitious names). There are several other reasons why I came up with 'Craftsmanship' as the core topic of this community. The expression of 'engineering' didn't feel right with the fields covered. Software development in all kind of facets is a craft, and therefore demands a lot of practice but also guidance from more experienced developers. It also includes the process of designing, modelling and drafting the ideas. Has to deal with various types of tests and test methodologies, and of course should be focused on flexible and agile ways of acting. In order to meet and to excel a customer's request for a solution. Next, I was looking for an easy way to handle the organisation of events and meeting appointments. Using all kind of social media platforms like Google+, LinkedIn, Facebook, Xing, etc. I was never really confident about their features of event handling. More by chance I stumbled upon Meetup.com and in combination with the other entities (G+ Communities, FB Pages or in Groups) I am looking forward to advertise and manage all future activities here: Mauritius Software Craftsmanship Community This is a community for those who care and are proud of what they do. For those developers, regardless how experienced they are, who want to improve and master their craft. This is a community for those who believe that being average is just not good enough. I know, there are not many 'craftsmen' yet but it's a start... Let's see how it looks like by the end of the year. There are free smartphone apps for Android and iOS from Meetup.com that allow you to keep track of meetings and to stay informed on latest updates. And last but not least, there will be a Trello workspace to collect and share ideas and provide downloads of slides, etc. Sharing is caring! As mentioned, the #MSCC is present in various social media networks in order to cover as many people as possible here in Mauritius. Following is an overview of the current networks: Twitter - Latest updates and quickies Google+ - Community channel Facebook - Community Page LinkedIn - Community Group Trello - Collaboration workspace to share and develop ideas Hopefully, this covers the majority of computer-related people in Mauritius. Please spread the word about the #MSCC between your colleagues, your friends and other interested 'geeks'. Your future looks bright Running and participating in a user group or any kind of community usually provides quite a number of advantages for anyone. On the one side it is very joyful for me to organise appointments and get in touch with people that might be interested to present a little demo of their projects or their recent problems they had to tackle down, and on the other side there are lots of companies that have various support programs or sponsorships especially tailored for user groups. At the moment, I already have a couple of gimmicks that I would like to hand out in small contests or raffles during one of the upcoming meetings, and as said, companies provide all kind of goodies, books free of charge, or sometimes even licenses for communities. Meeting other software developers or IT guys also opens up your point of view on the local market and there might be interesting projects or job offers available, too. A community like the Mauritius Software Craftsmanship Community is great for freelancers, self-employed, students and of course employees. Meetings will be organised on a regular basis, and I'm open to all kind of suggestions from you. Please leave a comment here in blog or join the conversations in the above mentioned social networks. Let's get this community up and running, my fellow Mauritians!

    Read the article

  • Oracle OpenWorld 2013 – Wrap up by Sven Bernhardt

    - by JuergenKress
    OOW 2013 is over and we’re heading home, so it is time to lean back and reflecting about the impressions we have from the conference. First of all: OOW was great! It was a pleasure to be a part of it. As already mentioned in our last blog article: It was the biggest OOW ever. Parallel to the conference the America’s Cup took place in San Francisco and the Oracle Team America won. Amazing job by the team and again congratulations from our side Back to the conference. The main topics for us are: Oracle SOA / BPM Suite 12c Adaptive Case management (ACM) Big Data Fast Data Cloud Mobile Below we will go a little more into detail, what are the key takeaways regarding the mentioned points: Oracle SOA / BPM Suite 12c During the five days at OOW, first details of the upcoming major release of Oracle SOA Suite 12c and Oracle BPM Suite 12c have been introduced. Some new key features are: Managed File Transfer (MFT) for transferring big files from a source to a target location Enhanced REST support by introducing a new REST binding Introduction of a generic cloud adapter, which can be used to connect to different cloud providers, like Salesforce Enhanced analytics with BAM, which has been totally reengineered (BAM Console now also runs in Firefox!) Introduction of templates (OSB pipelines, component templates, BPEL activities templates) EM as a single monitoring console OSB design-time integration into JDeveloper (Really great!) Enterprise modeling capabilities in BPM Composer These are only a few points from what is coming with 12c. We are really looking forward for the new realese to come out, because this seems to be really great stuff. The suite becomes more and more integrated. From 10g to 11g it was an evolution in terms of developing SOA-based applications. With 12c, Oracle continues it’s way – very impressive. Adaptive Case Management Another fantastic topic was Adaptive Case Management (ACM). The Oracle PMs did a great job especially at the demo grounds in showing the upcoming Case Management UI (will be available in 11g with the next BPM Suite MLR Patch), the roadmap and the differences between traditional business process modeling. They have been very busy during the conference because a lot of partners and customers have been interested Big Data Big Data is one of the current hype themes. Because of huge data amounts from different internal or external sources, the handling of these data becomes more and more challenging. Companies have a need for analyzing the data to optimize their business. The challenge is here: the amount of data is growing daily! To store and analyze the data efficiently, it is necessary to have a scalable and flexible infrastructure. Here it is important that hardware and software are engineered to work together. Therefore several new features of the Oracle Database 12c, like the new in-memory option, have been presented by Larry Ellison himself. From a hardware side new server machines like Fujitsu M10 or new processors, such as Oracle’s new M6-32 have been announced. The performance improvements, when using one of these hardware components in connection with the improved software solutions were really impressive. For more details about this, please take look at our previous blog post. Regarding Big Data, Oracle also introduced their Big Data architecture, which consists of: Oracle Big Data Appliance that is preconfigured with Hadoop Oracle Exdata which stores a huge amount of data efficently, to achieve optimal query performance Oracle Exalytics as a fast and scalable Business analytics system Analysis of the stored data can be performed using SQL, by streaming the data directly from Hadoop to an Oracle Database 12c. Alternatively the analysis can be directly implemented in Hadoop using “R”. In addition Oracle BI Tools can be used to analyze the data. Fast Data Fast Data is a complementary approach to Big Data. A huge amount of mostly unstructured data comes in via different channels with a high frequency. The analysis of these data streams is also important for companies, because the incoming data has to be analyzed regarding business-relevant patterns in real-time. Therefore these patterns must be identified efficiently and performant. To do so, in-memory grid solutions in combination with Oracle Coherence and Oracle Event Processing demonstrated very impressive how efficient real-time data processing can be. One example for Fast Data solutions that was shown during the OOW was the analysis of twitter streams regarding customer satisfaction. The feeds with negative words like “bad” or “worse” have been filtered and after a defined treshold has been reached in a certain timeframe, a business event was triggered. Cloud Another key trend in the IT market is of course Cloud Computing and what it means for companies and their businesses. Oracle announced their Cloud strategy and vision – companies can focus on their real business while all of the applications are available via Cloud. This also includes Oracle Database or Oracle Weblogic, so that companies can also build, deploy and run their own applications within the cloud. Three different approaches have been introduced: Infrastructure as a Service (IaaS) Platform as a Service (PaaS) Software as a Service (SaaS) Using the IaaS approach only the infrastructure components will be managed in the Cloud. Customers will be very flexible regarding memory, storage or number of CPUs because those parameters can be adjusted elastically. The PaaS approach means that besides the infrastructure also the platforms (such as databases or application servers) necessary for running applications will be provided within the Cloud. Here customers can also decide, if installation and management of these infrastructure components should be done by Oracle. The SaaS approach describes the most complete one, hence all applications a company uses are managed in the Cloud. Oracle is planning to provide all of their applications, like ERP systems or HR applications, as Cloud services. In conclusion this seems to be a very forward-thinking strategy, which opens up new possibilities for customers to manage their infrastructure and applications in a flexible, scalable and future-oriented manner. As you can see, our OOW days have been very very interresting. We collected many helpful informations for our projects. The new innovations presented at the confernce are great and being part of this was even greater! We are looking forward to next years’ conference! Links: http://www.oracle.com/openworld/index.html http://thecattlecrew.wordpress.com/2013/09/23/first-impressions-from-oracle-open-world-2013 SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: cattleCrew,Sven Bernhard,OOW2013,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Refactoring Part 1 : Intuitive Investments

    - by Wes McClure
    Fear, it’s what turns maintaining applications into a nightmare.  Technology moves on, teams move on, someone is left to operate the application, what was green is now perceived brown.  Eventually the business will evolve and changes will need to be made.  The approach to those changes often dictates the long term viability of the application.  Fear of change, lack of passion and a lack of interest in understanding the domain often leads to a paranoia to do anything that doesn’t involve duct tape and bailing twine.  Don’t get me wrong, those have a place in the short term viability of a project but they don’t have a place in the long term.  Add to it “us versus them” in regards to the original team and those that maintain it, internal politics and other factors and you have a recipe for disaster.  This results in code that quickly becomes unmanageable.  Even the most clever of designs will eventually become sub optimal and debt will amount that exponentially makes changes difficult.  This is where refactoring comes in, and it’s something I’m very passionate about.  Refactoring is about improving the process whereby we make change, it’s an exponential investment in the process of change. Without it we will incur exponential complexity that halts productivity. Investments, especially in the long term, require intuition and reflection.  How can we tackle new development effectively via evolving the original design and paying off debt that has been incurred? The longer we wait to ask and answer this question, the more it will cost us.  Small requests don’t warrant big changes, but realizing when changes now will pay off in the long term, and especially in the short term, is valuable. I have done my fair share of maintaining applications and continuously refactoring as needed, but recently I’ve begun work on a project that hasn’t had much debt, if any, paid down in years.  This is the first in a series of blog posts to try to capture the process which is largely driven by intuition of smaller refactorings from other projects. Signs that refactoring could help: Testability How can decreasing test time not pay dividends? One of the first things I found was that a very important piece often takes 30+ minutes to test.  I can only imagine how much time this has cost historically, but more importantly the time it might cost in the coming weeks: I estimate at least 10-20 hours per person!  This is simply unacceptable for almost any situation.  As it turns out, about 6 hours of working with this part of the application and I was able to cut the time down to under 30 seconds!  In less than the lost time of one week, I was able to fix the problem for all future weeks! If we can’t test fast then we can’t change fast, nor with confidence. Code is used by end users and it’s also used by developers, consider your own needs in terms of the code base.  Adding logic to enable/disable features during testing can help decouple parts of an application and lead to massive improvements.  What exactly is so wrong about test code in real code?  Often, these become features for operators and sometimes end users.  If you cannot run an integration test within a test runner in your IDE, it’s time to refactor. Readability Are variables named meaningfully via a ubiquitous language? Is the code segmented functionally or behaviorally so as to minimize the complexity of any one area? Are aspects properly segmented to avoid confusion (security, logging, transactions, translations, dependency management etc) Is the code declarative (what) or imperative (how)?  What matters, not how.  LINQ is a great abstraction of the what, not how, of collection manipulation.  The Reactive framework is a great example of the what, not how, of managing streams of data. Are constants abstracted and named, or are they just inline? Do people constantly bitch about the code/design? If the code is hard to understand, it will be hard to change with confidence.  It’s a large undertaking if the original designers didn’t pay much attention to readability and as such will never be done to “completion.”  Make sure not to go over board, instead use this as you change an application, not in lieu of changes (like with testability). Complexity Simplicity will never be achieved, it’s highly subjective.  That said, a lot of code can be significantly simplified, tidy it up as you go.  Refactoring will often converge upon a simplification step after enough time, keep an eye out for this. Understandability In the process of changing code, one often gains a better understanding of it.  Refactoring code is a good way to learn how it works.  However, it’s usually best in combination with other reasons, in effect killing two birds with one stone.  Often this is done when readability is poor, in which case understandability is usually poor as well.  In the large undertaking we are making with this legacy application, we will be replacing it.  Therefore, understanding all of its features is important and this refactoring technique will come in very handy. Unused code How can deleting things not help? This is a freebie in refactoring, it’s very easy to detect with modern tools, especially in statically typed languages.  We have VCS for a reason, if in doubt, delete it out (ok that was cheesy)! If you don’t know where to start when refactoring, this is an excellent starting point! Duplication Do not pray and sacrifice to the anti-duplication gods, there are excellent examples where consolidated code is a horrible idea, usually with divergent domains.  That said, mediocre developers live by copy/paste.  Other times features converge and aren’t combined.  Tools for finding similar code are great in the example of copy/paste problems.  Knowledge of the domain helps identify convergent concepts that often lead to convergent solutions and will give intuition for where to look for conceptual repetition. 80/20 and the Boy Scouts It’s often said that 80% of the time 20% of the application is used most.  These tend to be the parts that are changed.  There are also parts of the code where 80% of the time is spent changing 20% (probably for all the refactoring smells above).  I focus on these areas any time I make a change and follow the philosophy of the Boy Scout in cleaning up more than I messed up.  If I spend 2 hours changing an application, in the 20%, I’ll always spend at least 15 minutes cleaning it or nearby areas. This gives a huge productivity edge on developers that don’t. Ironically after a short period of time the 20% shrinks enough that we don’t have to spend 80% of our time there and can move on to other areas.   Refactoring is highly subjective, never attempt to refactor to completion!  Learn to be comfortable with leaving one part of the application in a better state than others.  It’s an evolution, not a revolution.  These are some simple areas to look into when making changes and can help get one started in the process.  I’ve often found that refactoring is a convergent process towards simplicity that sometimes spans a few hours but often can lead to massive simplifications over the timespan of weeks and months of regular development.

    Read the article

  • Refactoring FizzBuzz

    - by MarkPearl
    A few years ago I blogger about FizzBuzz, at the time the post was prompted by Scott Hanselman who had podcasted about how surprized he was that some programmers could not even solve the FizzBuzz problem within a reasonable period of time during a job interview. At the time I thought I would give the problem a go in F# and sure enough the solution was fairly simple – I then also did a basic solution in C# but never posted it. Since then I have learned that being able to solve a problem and how you solve the problem are two totally different things. Today I decided to give the problem a retry and see if I had learnt anything new in the last year or so. Here is how my solution looked after refactoring… Solution 1 – Cheap and Nasty public class FizzBuzzCalculator { public string NumberFormat(int number) { var numDivisibleBy3 = (number % 3) == 0; var numDivisibleBy5 = (number % 5) == 0; if (numDivisibleBy3 && numDivisibleBy5) return String.Format("{0} FizzBuz", number); else if (numDivisibleBy3) return String.Format("{0} Fizz", number); else if (numDivisibleBy5) return String.Format("{0} Buz", number); return number.ToString(); } } class Program { static void Main(string[] args) { var fizzBuzz = new FizzBuzzCalculator(); for (int i = 0; i < 100; i++) { Console.WriteLine(fizzBuzz.NumberFormat(i)); } } } My first attempt I just looked at solving the problem – it works, and could be an acceptable solution but tonight I thought I would see how far  I could refactor it… The section I decided to focus on was the mass of if..else code in the NumberFormat method. Solution 2 – Replacing If…Else with a Dictionary public class FizzBuzzCalculator { private readonly Dictionary<Tuple<bool, bool>, string> _mappings; public FizzBuzzCalculator(Dictionary<Tuple<bool, bool>, string> mappings) { _mappings = mappings; } public string NumberFormat(int number) { var numDivisibleBy3 = (number % 3) == 0; var numDivisibleBy5 = (number % 5) == 0; var mappedKey = new Tuple<bool, bool>(numDivisibleBy3, numDivisibleBy5); return String.Format("{0} {1}", number, _mappings[mappedKey]); } } class Program { static void Main(string[] args) { var mappings = new Dictionary<Tuple<bool, bool>, string> { { new Tuple<bool, bool>(true, true), "- FizzBuzz"}, { new Tuple<bool, bool>(true, false), "- Fizz"}, { new Tuple<bool, bool>(false, true), "- Buzz"}, { new Tuple<bool, bool>(false, false), ""} }; var fizzBuzz = new FizzBuzzCalculator(mappings); for (int i = 0; i < 100; i++) { Console.WriteLine(fizzBuzz.NumberFormat(i)); } Console.ReadLine(); } } In my second attempt I looked at removing the if else in the NumberFormat method. A dictionary proved to be useful for this – I added a constructor to the class and injected the dictionary mapping. One could argue that this is totally overkill, but if I was going to use this code in a large system an approach like this makes it easy to put this data in a configuration file, which would up its OC (Open for extensibility, closed for modification principle). I could of course take the OC principle even further – the check for divisibility by 3 and 5 is tightly coupled to this class. If I wanted to make it 4 instead of 3, I would need to adjust this class. This introduces my third refactoring. Solution 3 – Introducing Delegates and Injecting them into the class public delegate bool FizzBuzzComparison(int number); public class FizzBuzzCalculator { private readonly Dictionary<Tuple<bool, bool>, string> _mappings; private readonly FizzBuzzComparison _comparison1; private readonly FizzBuzzComparison _comparison2; public FizzBuzzCalculator(Dictionary<Tuple<bool, bool>, string> mappings, FizzBuzzComparison comparison1, FizzBuzzComparison comparison2) { _mappings = mappings; _comparison1 = comparison1; _comparison2 = comparison2; } public string NumberFormat(int number) { var mappedKey = new Tuple<bool, bool>(_comparison1(number), _comparison2(number)); return String.Format("{0} {1}", number, _mappings[mappedKey]); } } class Program { private static bool DivisibleByNum(int number, int divisor) { return number % divisor == 0; } public static bool Divisibleby3(int number) { return number % 3 == 0; } public static bool Divisibleby5(int number) { return number % 5 == 0; } static void Main(string[] args) { var mappings = new Dictionary<Tuple<bool, bool>, string> { { new Tuple<bool, bool>(true, true), "- FizzBuzz"}, { new Tuple<bool, bool>(true, false), "- Fizz"}, { new Tuple<bool, bool>(false, true), "- Buzz"}, { new Tuple<bool, bool>(false, false), ""} }; var fizzBuzz = new FizzBuzzCalculator(mappings, Divisibleby3, Divisibleby5); for (int i = 0; i < 100; i++) { Console.WriteLine(fizzBuzz.NumberFormat(i)); } Console.ReadLine(); } } I have taken this one step further and introduced delegates that are injected into the FizzBuzz Calculator class, from an OC principle perspective it has probably made it more compliant than the previous Solution 2, but there seems to be a lot of noise. Anonymous Delegates increase the readability level, which is what I have done in Solution 4. Solution 4 – Anon Delegates public delegate bool FizzBuzzComparison(int number); public class FizzBuzzCalculator { private readonly Dictionary<Tuple<bool, bool>, string> _mappings; private readonly FizzBuzzComparison _comparison1; private readonly FizzBuzzComparison _comparison2; public FizzBuzzCalculator(Dictionary<Tuple<bool, bool>, string> mappings, FizzBuzzComparison comparison1, FizzBuzzComparison comparison2) { _mappings = mappings; _comparison1 = comparison1; _comparison2 = comparison2; } public string NumberFormat(int number) { var mappedKey = new Tuple<bool, bool>(_comparison1(number), _comparison2(number)); return String.Format("{0} {1}", number, _mappings[mappedKey]); } } class Program { static void Main(string[] args) { var mappings = new Dictionary<Tuple<bool, bool>, string> { { new Tuple<bool, bool>(true, true), "- FizzBuzz"}, { new Tuple<bool, bool>(true, false), "- Fizz"}, { new Tuple<bool, bool>(false, true), "- Buzz"}, { new Tuple<bool, bool>(false, false), ""} }; var fizzBuzz = new FizzBuzzCalculator(mappings, (n) => n % 3 == 0, (n) => n % 5 == 0); for (int i = 0; i < 100; i++) { Console.WriteLine(fizzBuzz.NumberFormat(i)); } Console.ReadLine(); } }   Using the anonymous delegates I think the noise level has now been reduced. This is where I am going to end this post, I have gone through 4 iterations of the code from the initial solution using If..Else to delegates and dictionaries. I think each approach would have it’s pro’s and con’s and depending on the intention of where the code would be used would be a large determining factor. If you can think of an alternative way to do FizzBuzz, add a comment!

    Read the article

< Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >