Search Results

Search found 5946 results on 238 pages for 'heavy bytes'.

Page 159/238 | < Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >

  • Is There a Real Advantage to Generic Repository?

    - by Sam
    Was reading through some articles on the advantages of creating Generic Repositories for a new app (example). The idea seems nice because it lets me use the same repository to do several things for several different entity types at once: IRepository repo = new EfRepository(); // Would normally pass through IOC into constructor var c1 = new Country() { Name = "United States", CountryCode = "US" }; var c2 = new Country() { Name = "Canada", CountryCode = "CA" }; var c3 = new Country() { Name = "Mexico", CountryCode = "MX" }; var p1 = new Province() { Country = c1, Name = "Alabama", Abbreviation = "AL" }; var p2 = new Province() { Country = c1, Name = "Alaska", Abbreviation = "AK" }; var p3 = new Province() { Country = c2, Name = "Alberta", Abbreviation = "AB" }; repo.Add<Country>(c1); repo.Add<Country>(c2); repo.Add<Country>(c3); repo.Add<Province>(p1); repo.Add<Province>(p2); repo.Add<Province>(p3); repo.Save(); However, the rest of the implementation of the Repository has a heavy reliance on Linq: IQueryable<T> Query(); IList<T> Find(Expression<Func<T,bool>> predicate); T Get(Expression<Func<T,bool>> predicate); T First(Expression<Func<T,bool>> predicate); //... and so on This repository pattern worked fantastic for Entity Framework, and pretty much offered a 1 to 1 mapping of the methods available on DbContext/DbSet. But given the slow uptake of Linq on other data access technologies outside of Entity Framework, what advantage does this provide over working directly with the DbContext? I attempted to write a PetaPoco version of the Repository, but PetaPoco doesn't support Linq Expressions, which makes creating a generic IRepository interface pretty much useless unless you only use it for the basic GetAll, GetById, Add, Update, Delete, and Save methods and utilize it as a base class. Then you have to create specific repositories with specialized methods to handle all the "where" clauses that I could previously pass in as a predicate. Is the Generic Repository pattern useful for anything outside of Entity Framework? If not, why would someone use it at all instead of working directly with Entity Framework? Edit: Original link doesn't reflect the pattern I was using in my sample code. Here is an (updated link).

    Read the article

  • Web Development Goes Pre-Visual InterDev

    - by Ken Cox [MVP]
    As a longtime and hardcore ASP.NET webforms developer, I’m finding the new client-side development world a bit of a grind.  I love learning new technologies, but I can’t help feeling we’ve regressed and lost our old RAD advantage as we move heavy lifting to the client. For my latest project, I’m using Telerik’s KendoUI in Visual Studio 2012. To say I feel clumsy writing this much JavaScript is an understatement. It seems like the only safe way to ‘write’ this code is by copying a working snippet from someone else and pasting it into my HTML page.  For me, JavaScript has largely been for small UI tasks like client-side validation and a bit of AJAX – and often emitted by a server-side control. I find myself today lost in nests of curly braces that Ctrl+K, Ctrl+D doesn’t seem to understand that well either. IntelliSense, my old syntax saviour, doesn’t seem to have kept up with this cobweb of code either. Code completion? Not seeing it. As I fumbled about this evening, I thought about how web development rocketed forward when Microsoft introduced Visual InterDev. Its Design-Time Controls (DTCs) changed the way we created sites. All the iterations of Visual Studio have enhanced that server-side experience where you let a tool write the bulk of the code and manually finesse it from there. What happened? Why am I typing  properties and values (especially default values!) into VS 2012 to get a client-side grid on a page? Where are the drag and drop objects that traditionally provided 70 percent of the mark-up and configuration?  Did we forget how to write Property Pages where you enter a value and the correct syntax appears magically in the source code? To me, the tooling was looking the other way as the scene shifted from server-side code to nimble client-side script. It’ll have to catch up. Although JavaScript is the lingua franca of web browsers, the language is unwieldy, tough to maintain, and messy to debug. If a .NET JIT compiler can turn our VB, F#, and C# source code into an Intermediate Language that executes on a computer, I don’t see why there can’t be a client-side compiler that turns a .NET language into JavaScript that browsers can consume.

    Read the article

  • How to wrap console utils in webserver

    - by Alex Brown
    I have a big dataset (100Mbs/day) and a bunch of console a TCL/TK tools to view it - I want to turn it into a web app that I can build, and others can maintain. In long: my group runs simulations yielding 100s of Mbs of data daily, in multiple (mostly but not only) text forms. We have a bunch of scripts and tools, mostly old school 1990's style stuff requiring a 5-button mouse, as well as lots of ad-hoc scripts that engineers build out of frustration every month or so. These produces UIs, graphs, spreadsheets (various sizes), logs, event histories etc. I want to replace (or at least supplement) the xwindows / console style UI with a web-based one, so I need the following properties: pleasant to program can wrap existing command-line tools in separate views (I don't need to scrape GUIs or anything) as I port logic from the existing scripts I can create a modularised and pleasant codebase to replace it I can attach a web-ui to navigate between views - each view is likely to contain keys which might make sense to view in another I am new to building systems that have logic on the back-end and front-end of a web-server. from that point of view, they do this: backend wraps old-school executables, constructs calls into them and them takes the output and wraps it up, niceifies it and delivers it to the web client. For instance the tool might generate a number of indexed images (per invocation) which I might deliver all at once or on-demand. May (probably) need to to heavy stats on some sources. frontend provides navigation connecting multiple views, performs requests from one view for data from another (or self to self), etc. Probably will have some views with a lot of interactivity. Can people please point me towards viable solutions for this? I know it's a bit of an open question so as answers come in I hope to refine the spec until we have a good match. I guess I expect to see answers like "RoR!" "beans!" "Scala!" but please give an indication of why those are a good fit; I know nothing! I got bumped off SO for asking an open-ended question, so sorry if its OT here too (let me know). I take the policy that I use the best/closest matched language for a project but most of my team are extremely low level (ie pipeline stages and CDyn) so I don't have the peer group to know where to start.

    Read the article

  • Interconnect nodes in a Java distributed infrastructure for tweet processing

    - by David Moreno García
    I'm working in a new version of an old project that I used to download and process user statuses from Twitter. The main problem of that project was its infrastructure. I used multiple instances of a java application (trackers) to download from Twitter given an specific task (basically terms to search for), connected with a central node (a web application) that had to process all tweets once per day and generate a new task for each trackers once each 15 minutes. The central node also had to monitor all trackers and enable/disable them under user petition. This, as I said, was too slow because I had multiple bottlenecks, so in this new version I want to improve the infrastructure and isolate all functionalities in specific nodes. I also need a good notification system to receive notifications for any node. So, in the next diagram I show the components that I'll need in this new version: As you can see, there are more nodes. Here are some notes about them: Dashboard: Controls trackers statuses and send a single task to each of them (under user request). The trackers will use this task until replaced with a new one (if done, not each 15 minutes like before). Search engine: I need to store all the tweets. They are firstly stored in a local database for each tracker but after that I'm thinking on using something like Elasticsearch to be able to do fast searches. Tweet processor: Just and isolated component with its own database (maybe something like the search engine to have fast access to info generated by the module). In the future more could be added. Application UI: A web application with a shared database with the Dashboard (mainly to store users information and preferences). Indeed, both could be merged into a single web. The main difference with the previous version of the project is that now they will be isolated and they will only show information and send requests. I will not do any heavy task in them (like process tweets as I did before). So, having this components, my main headache is how to structure all to not have to rewrite a lot of code every time I need to access any new data. Another headache is how can I interconnect nodes. I could use sockets but that is a pain in the ass. Maybe a REST layer? And finally, if all the nodes are isolated, how could I generate notifications for each user which info is only in the database used by the Application UI? I'm programming this using Java and Spring (at least I used them in the last version) but I have no problems with changing the language if I can take advantage of a tool/library/engine to make my life easier and have a better platform. Any comment will be appreciated.

    Read the article

  • Who Are the BI Users in Your Neighborhood?

    - by [email protected]
    By Brian Dayton on March 19, 2010 10:52 PM Forrester's Boris Evelson recently wrote a blog titled "Who are the BI Personas?" that I enjoyed for a number of reasons. It's a quick read, easy to grasp and (refreshingly) focuses on the users of technology VS the technology. As Evelson admits, he meant to keep the reference chart at a high-level because there are too many different permutations and additional sub-categories to make such a chart useful. For me, I wouldn't head into the technical permutations but more the contextual use of BI and the issues that users experience. My thoughts brought up more questions than answers such as: Context: - HOW: With the exception of the "Power User" persona--likely some sort of business or operations analyst? - WHEN: Are they using the information to make real-time decisions on the front lines (a customer service manager or shipping/logistics VP) or are they using this information for cumulative analysis and business planning? Or both? - WHERE: What areas of the business are more or less likely to rely on BI across an organization? Human Resources, Operations, Facilities, Finance--- and why are some more prone to use data-driven analysis than others? Issues: - DELAYS & DRAG ON IT?: One of the persona characteristics Evelson calls out is a reliance on IT. Every persona except for the "Power User" has a heavy reliance on IT for support. What business issues or delays does that cause to users? What is the drag on IT resources who could potentially be creating instead of reporting? - HOW MANY CLICKS: If BI is being used within the context of a transaction (sales manager looking for upsell opportunities as an example) is that person getting the information within the context of that action or transaction? Or are they minimizing screens, logging into another application or reporting tool, running queries, etc.? Who are the BI Users in your neighborhood or line of business? Do Evelson's personas resonate--and do the tools that he calls out (he refers to it as "BI Style") resonate with what your personas have or need? Finally, I'm very interested if BI use is viewed as a bolt-on...or an integrated part of your daily enterprise processes?

    Read the article

  • Wireframing: A Day In the Life of UX Workshop at Oracle

    - by ultan o'broin
    The Oracle Applications User Experience team's Day in the Life (DITL) of User Experience (UX) event was run in Oracle's Redwood Shores HQ for Oracle Usability Advisory Board (OUAB) members. I was charged with putting together a wireframing session, together with Director of Financial Applications User Experience, Scott Robinson (@scottrobinson). Example of stunning new wireframing visuals we used on the DITL events. We put on a lively show, explaining the basics of wireframing, the concepts, what it is and isn't, considerations on wireframing tool choice, and then imparting some tips and best practices. But the real energy came when the OUAB customers and partners in the room were challenge to do some wireframing of their own. Wireframing is about bringing your business and product use cases to life in real UX visual terms, by creating a low-fidelity drawing to iterate and agree on in advance of prototyping and coding what is to be finally built and rolled out for users. All the best people wireframe. Leonardo da Vinci used "cartoons" on some great works, tracing outlines first and using red ochre or charcoal dropped through holes in the tracing parchment onto the canvas to outline the subject. (Image distributed under Wikimedia commons license) Wireframing an application's user experience design enables you to: Obtain stakeholder buy-in. Enable faster iteration of different designs. Determine the task flow navigation paths (in Oracle Fusion Applications navigation is linked with user roles). Develop a content strategy (readability, search engine optimization (SEO) of content, and so on) Lay out the pages, widgets, groups of features, and so on. Apply usability heuristics early (no replacement for usability testing, but a great way to do some heavy-lifting up front). Decide upstream which functional user experience design patterns to apply (out of the box solutions that expedite productivity). Assess which Oracle Application Development Framework (ADF) or equivalent technology components can be used (again, developer productivity is enhanced downstream). We ran a lively hands-on exercise where teams wireframed a choice of application scenarios using the time-honored tools of pen and paper. Scott worked the floor like a pro, pointing out great use of features, best practices, innovations, and making sure that the whole concept of wireframing, the gestalt, transferred. "We need more buttons!" The cry of the energized. Not quite. The winning wireframe session (online shopping scenario) from the Applications UX DITL event shown. Great fun, great energy, and great teamwork were evident in the room. Naturally, there were prizes for the best wireframe. Well, actually, prizes were handed out to the other attendees too! An exciting, slightly different aspect to delivery of this session made the wireframing event one of the highlights of the day. And definitely, something we will repeat again when we get the chance. Thanks to everyone who attended, contributed, and helped organize.

    Read the article

  • System freezes while not in use, how do I fix this?

    - by PHLAK
    Bare with me, the following is a bit winded. I have Ubuntu 10.10 Desktop 64-bit installed on my laptop and up until a few weeks ago it has been running great. Then one day, while I was not using the laptop it froze. I was logged in as my user but had locked the screen locked and closed the lid. I didn't notice that it had frozen until I opened the lid and wiggled the mouse to try and log in. The screen remained black and I got no response. I immediately tried Alt + F2, F3, F4, etc. but got no response. The only thing I could do was hold the power button to power off the machine. The freezing has happened as quickly as within 10-20 minutes of the system being logged off and lid closed and as long as 4-6 hours. My machine is NOT configured to go into standby when plugged in and this has happened both on AC power and battery. Troubleshooting I have performed: I uninstalled programs I knew that I had installed between when it was working fine and having problems. Those programs were CrashPlan, Shutter and Conky. After uninstalling ALL of these programs the freezing still occurs. Next, I decided to SSH into the machine from my desktop and leave an htop and tail of the syslog running. Here are screenshots of the last thing shown on both when the system froze: htop, syslog Here is a dump of my syslog after another freeze. The freeze happened at 9:14 and I didn't notice it until about 10 minutes later and rebooted, hence the 10 minute gap from 9:14 to 9:24. In the above syslog dump I noticed a lot of NVRM: os_raise_smp_barrier(), invalid context! and upon investigating that message learned it was from the proprietary Nvidia driver I had installed. Thinking this could be part of the problem I uninstalled the Nvidia driver and reverted to using the Nouveau driver. The computer still froze after a few hours. Lastly, thinking the problem could be caused by overheating I used compressed air to blow out any dust in the CPU vents and all other openings on the laptop. None of the above troubleshooting has helped and the freezing still occurs. What other steps can I take to troubleshoot and/or fix this problem? Note: Yesterday X started to eat up a lot of CPU power and eventually froze my system while I was forwarding an X session over SSH (from another PC to my laptop). I'm unsure if this is related or not as it doesn't match any of the symptoms of the problem above. Aside from this, the system has never frozen while in use, even under heavy load. EDIT: I just ran Memtest86+ and it made it through two passes without any errors. Just eliminating possible causes here.

    Read the article

  • Criteria for selecting timeout value?

    - by stijn
    Situation: a piece of software reads frames of data from a file in a seperate thread and puts it on a queue, emptied by another thread. That second thread periodically checks on the queue and fails rather gracefully, by showing an error message stating the read timed out, if no data is available within a certain amount of time. Initially this timeout was set to 200mSec. There was no real reasoning behind that constant though, but it worked fine. We measured on a couple of machines and for large data frames, larger than what would be used by customers, a read took like 20mSec whith no other load on the machine. However one customer now gets timeout errors now and then (on the second try all is fine, probably the file is in cache or the virus scanner leaves it alone). The programmers are like 'well, yeah, but that customer's machine is full of cruft, virus scanners, tons of unneeded background processes etc'. Of course the customer is like 'hey this should just work, shouldn't it'? While the programers have a point, since the software is heavy enough to validate the need for a dedicated machine, that does not make the customer happy. Increasing the timeout to 2 seconds, for example, solves the problem. But I'd like to make a proper decision now instead of just randomly pick some magic constant that is probably ok in 99% of cases. What criteria should be used for that? We could just pick a large number, but that feels wrong. (and then we end up with a program that has the horrible bahaviour of hanging when trying to read from a disconnected drive for instance, whereas we'd rather make it show an error right away). Or we could make the timeout value a user setting, but then we need to ducument it clearly and even then not all customers are tech savy enough to really understand what it does. Or we could try and wait until another customer reports timeouts and increase the value again. And again. Until we find something ok for 99.99% of the cases.. Any good practice for this type of situation?

    Read the article

  • Very different I/O performance in C++ on Windows

    - by Mr.Gate
    Hi all, I'm a new user and my english is not so good so I hope to be clear. We're facing a performance problem using large files (1GB or more) expecially (as it seems) when you try to grow them in size. Anyway... to verify our sensations we tryed the following (on Win 7 64Bit, 4core, 8GB Ram, 32 bit code compiled with VC2008) a) Open an unexisting file. Write it from the beginning up to 1Gb in 1Mb slots. Now you have a 1Gb file. Now randomize 10000 positions within that file, seek to that position and write 50 bytes in each position, no matter what you write. Close the file and look at the results. Time to create the file is quite fast (about 0.3"), time to write 10000 times is fast all the same (about 0.03"). Very good, this is the beginnig. Now try something else... b) Open an unexisting file, seek to 1Gb-1byte and write just 1 byte. Now you have another 1Gb file. Follow the next steps exactly same way of case 'a', close the file and look at the results. Time to create the file is the faster you can imagine (about 0.00009") but write time is something you can't believe.... about 90"!!!!! b.1) Open an unexisting file, don't write any byte. Act as before, ramdomizing, seeking and writing, close the file and look at the result. Time to write is long all the same: about 90"!!!!! Ok... this is quite amazing. But there's more! c) Open again the file you crated in case 'a', don't truncate it... randomize again 10000 positions and act as before. You're fast as before, about 0,03" to write 10000 times. This sounds Ok... try another step. d) Now open the file you created in case 'b', don't truncate it... randomize again 10000 positions and act as before. You're slow again and again, but the time is reduced to... 45"!! Maybe, trying again, the time will reduce. I actually wonder why... Any Idea? The following is part of the code I used to test what I told in previuos cases (you'll have to change someting in order to have a clean compilation, I just cut & paste from some source code, sorry). The sample can read and write, in random, ordered or reverse ordered mode, but write only in random order is the clearest test. We tryed using std::fstream but also using directly CreateFile(), WriteFile() and so on the results are the same (even if std::fstream is actually a little slower). Parameters for case 'a' = -f_tempdir_\casea.dat -n10000 -t -p -w Parameters for case 'b' = -f_tempdir_\caseb.dat -n10000 -t -v -w Parameters for case 'b.1' = -f_tempdir_\caseb.dat -n10000 -t -w Parameters for case 'c' = -f_tempdir_\casea.dat -n10000 -w Parameters for case 'd' = -f_tempdir_\caseb.dat -n10000 -w Run the test (and even others) and see... // iotest.cpp : Defines the entry point for the console application. // #include <windows.h> #include <iostream> #include <set> #include <vector> #include "stdafx.h" double RealTime_Microsecs() { LARGE_INTEGER fr = {0, 0}; LARGE_INTEGER ti = {0, 0}; double time = 0.0; QueryPerformanceCounter(&ti); QueryPerformanceFrequency(&fr); time = (double) ti.QuadPart / (double) fr.QuadPart; return time; } int main(int argc, char* argv[]) { std::string sFileName ; size_t stSize, stTimes, stBytes ; int retval = 0 ; char *p = NULL ; char *pPattern = NULL ; char *pReadBuf = NULL ; try { // Default stSize = 1<<30 ; // 1Gb stTimes = 1000 ; stBytes = 50 ; bool bTruncate = false ; bool bPre = false ; bool bPreFast = false ; bool bOrdered = false ; bool bReverse = false ; bool bWriteOnly = false ; // Comsumo i parametri for(int index=1; index < argc; ++index) { if ( '-' != argv[index][0] ) throw ; switch(argv[index][1]) { case 'f': sFileName = argv[index]+2 ; break ; case 's': stSize = xw::str::strtol(argv[index]+2) ; break ; case 'n': stTimes = xw::str::strtol(argv[index]+2) ; break ; case 'b':stBytes = xw::str::strtol(argv[index]+2) ; break ; case 't': bTruncate = true ; break ; case 'p' : bPre = true, bPreFast = false ; break ; case 'v' : bPreFast = true, bPre = false ; break ; case 'o' : bOrdered = true, bReverse = false ; break ; case 'r' : bReverse = true, bOrdered = false ; break ; case 'w' : bWriteOnly = true ; break ; default: throw ; break ; } } if ( sFileName.empty() ) { std::cout << "Usage: -f<File Name> -s<File Size> -n<Number of Reads and Writes> -b<Bytes per Read and Write> -t -p -v -o -r -w" << std::endl ; std::cout << "-t truncates the file, -p pre load the file, -v pre load 'veloce', -o writes in order mode, -r write in reverse order mode, -w Write Only" << std::endl ; std::cout << "Default: 1Gb, 1000 times, 50 bytes" << std::endl ; throw ; } if ( !stSize || !stTimes || !stBytes ) { std::cout << "Invalid Parameters" << std::endl ; return -1 ; } size_t stBestSize = 0x00100000 ; std::fstream fFile ; fFile.open(sFileName.c_str(), std::ios_base::binary|std::ios_base::out|std::ios_base::in|(bTruncate?std::ios_base::trunc:0)) ; p = new char[stBestSize] ; pPattern = new char[stBytes] ; pReadBuf = new char[stBytes] ; memset(p, 0, stBestSize) ; memset(pPattern, (int)(stBytes&0x000000ff), stBytes) ; double dTime = RealTime_Microsecs() ; size_t stCopySize, stSizeToCopy = stSize ; if ( bPre ) { do { stCopySize = std::min(stSizeToCopy, stBestSize) ; fFile.write(p, stCopySize) ; stSizeToCopy -= stCopySize ; } while (stSizeToCopy) ; std::cout << "Creating time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } else if ( bPreFast ) { fFile.seekp(stSize-1) ; fFile.write(p, 1) ; std::cout << "Creating Fast time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } size_t stPos ; ::srand((unsigned int)dTime) ; double dReadTime, dWriteTime ; stCopySize = stTimes ; std::vector<size_t> inVect ; std::vector<size_t> outVect ; std::set<size_t> outSet ; std::set<size_t> inSet ; // Prepare vector and set do { stPos = (size_t)(::rand()<<16) % stSize ; outVect.push_back(stPos) ; outSet.insert(stPos) ; stPos = (size_t)(::rand()<<16) % stSize ; inVect.push_back(stPos) ; inSet.insert(stPos) ; } while (--stCopySize) ; // Write & read using vectors if ( !bReverse && !bOrdered ) { std::vector<size_t>::iterator outI, inI ; outI = outVect.begin() ; inI = inVect.begin() ; stCopySize = stTimes ; dReadTime = 0.0 ; dWriteTime = 0.0 ; do { dTime = RealTime_Microsecs() ; fFile.seekp(*outI) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++outI ; if ( !bWriteOnly ) { dTime = RealTime_Microsecs() ; fFile.seekg(*inI) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++inI ; } } while (--stCopySize) ; std::cout << "Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " (Ave: " << xw::str::itoa(dWriteTime/stTimes, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { std::cout << "Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " (Ave: " << xw::str::itoa(dReadTime/stTimes, 10, 'f') << ")" << std::endl ; } } // End // Write in order if ( bOrdered ) { std::set<size_t>::iterator i = outSet.begin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.begin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End // Write in reverse order if ( bReverse ) { std::set<size_t>::reverse_iterator i = outSet.rbegin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.rbegin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End dTime = RealTime_Microsecs() ; fFile.close() ; std::cout << "Flush/Close Time is " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; std::cout << "Program Terminated" << std::endl ; } catch(...) { std::cout << "Something wrong or wrong parameters" << std::endl ; retval = -1 ; } if ( p ) delete []p ; if ( pPattern ) delete []pPattern ; if ( pReadBuf ) delete []pReadBuf ; return retval ; }

    Read the article

  • career planning advice [closed]

    - by JDB
    Possible Duplicate: Are certifications worth it? I am at the point in my career where people start to veer off into either management-type roles or they focus on solidifying their technical skills to stay in the development game for the long-haul. Here's my story: I've got a degree in economics, an MA in Political Science and an MBA in Finance and Management. In addition, I've done coursework in advanced math and software development (although no degree in math or software). All-in-all, I've got 13 years of post-secondary education under my belt. I, however, currently work as a software developer using C# for desktop, Silverlight, Flex and javascript for web, and objective c for mobile. I've been in software development for the past 3.3 years, and it seems like it comes pretty easy to me. I work in a field called "geospatial information systems," which just involves customization and manipulation of geospatial data. Right now I am looking at one of several certifications. Given this background, which of these certifications has the highest ceiling? CFA PMP various development/technological certifications from Microsoft, etc. Other? My academic and work experience are all heavy on the analytical/development side, esp. so given the MBA and the B.S. in Econ. The political science degree was really a lot of stats. So it seems that I would be good pursuing more of the CFA/analytical role. This is a difficult path, however, because I have no work experience in the financial sector, and the developers in finance are all "quants," which again, I am OK with, but I haven't done much statistical modeling in the past 3.3 years. The PMP would require knowledge of best practices as it pertains explicitly to software development. I also don't enjoy a lot of business travel, a common theme for most PMP jobs I've seen. If certifications is the route, which would you recommend? Anything else? I've thought about going back to try to knock out a B.S. in C.S., but I wasn't sure how long that would take, or what would be involved. Thoughts or recommendations? Thanks in advance! I turn 32 this weekend, which is what has forced me to think about these issues.

    Read the article

  • Why do old programming languages continue to be revised?

    - by SunAvatar
    This question is not, "Why do people still use old programming languages?" I understand that quite well. In fact the two programming languages I know best are C and Scheme, both of which date back to the 70s. Recently I was reading about the changes in C99 and C11 versus C89 (which seems to still be the most-used version of C in practice and the version I learned from K&R). Looking around, it seems like every programming language in heavy use gets a new specification at least once per decade or so. Even Fortran is still getting new revisions, despite the fact that most people using it are still using FORTRAN 77. Contrast this with the approach of, say, the typesetting system TeX. In 1989, with the release of TeX 3.0, Donald Knuth declared that TeX was feature-complete and future releases would contain only bug fixes. Even beyond this, he has stated that upon his death, "all remaining bugs will become features" and absolutely no further updates will be made. Others are free to fork TeX and have done so, but the resulting systems are renamed to indicate that they are different from the official TeX. This is not because Knuth thinks TeX is perfect, but because he understands the value of a stable, predictable system that will do the same thing in fifty years that it does now. Why do most programming language designers not follow the same principle? Of course, when a language is relatively new, it makes sense that it will go through a period of rapid change before settling down. And no one can really object to minor changes that don't do much more than codify existing pseudo-standards or correct unintended readings. But when a language still seems to need improvement after ten or twenty years, why not just fork it or start over, rather than try to change what is already in use? If some people really want to do object-oriented programming in Fortran, why not create "Objective Fortran" for that purpose, and leave Fortran itself alone? I suppose one could say that, regardless of future revisions, C89 is already a standard and nothing stops people from continuing to use it. This is sort of true, but connotations do have consequences. GCC will, in pedantic mode, warn about syntax that is either deprecated or has a subtly different meaning in C99, which means C89 programmers can't just totally ignore the new standard. So there must be some benefit in C99 that is sufficient to impose this overhead on everyone who uses the language. This is a real question, not an invitation to argue. Obviously I do have an opinion on this, but at the moment I'm just trying to understand why this isn't just how things are done already. I suppose the question is: What are the (real or perceived) advantages of updating a language standard, as opposed to creating a new language based on the old?

    Read the article

  • Best Practices for serializing/persisting String Object Dictionary entities

    - by Mark Heath
    I'm noticing a trend towards using a dictionary of string to object (or sometimes string to string), instead of strongly typed objects. For example, the new Katana project makes heavy use of IDictionary<string,object>. This approach avoids the need to continually update your entity classes/DTOs and the database tables that persist them with new properties. It also avoids the need to create new derived entity types to support new types of entity, since the Dictionary is flexible enough to store any arbitrary properties. Here's a contrived example: class StorageDevice { public int Id { get; set; } public string Name { get; set; } } class NetworkShare : StorageDevice { public string Path { get; set; } public string LoginName { get; set; } public string Password { get; set; } } class CloudStorage : StorageDevice { public string ServerUri { get; set } public string ContainerName { get; set; } public int PortNumber { get; set; } public Guid ApiKey { get; set; } } versus: class StorageDevice { public IDictionary<string, object> Properties { get; set; } } Basically I'm on the lookout for any talks, books or articles on this approach, so I can pick up on any best practices / difficulties to avoid. Here's my main questions: Does this approach have a name? (only thing I've heard used so far is "self-describing objects") What are the best practices for persisting these dictionaries into a relational database? Especially the challenges of deserializing them successfully with strongly typed languages like C#. Does it change anything if some of the objects in the dictionary are themselves lists of strongly typed entities? Should a second dictionary be used if you want to temporarily store objects that are not to be persisted/serialized across a network, or should you use some kind of namespacing on the keys to indicate this?

    Read the article

  • Fans running very fast on MacBook Pro 8.1 ubuntu 12.04

    - by Tomasz Kacprzak
    I installed Ubuntu 12.04 on Macbook Pro 8.1 and one of the first things I noticed was that the fans were starting to spin very fast every few minutes for 10-30 sec and then going back to normal. That was happening even without any processor load, when completely idle. The fans were usually spinning at 4000 RPM and made much noise. The computer was not getting hotter than usual. When running OSX Lion there was no noise at all, fans almost all the time at 2000 RPM. I spent some time on it and found out that Precise uses a deamon to control the temperature, called macfanctld. You can use /etc/macfanctld.conf to set the configuration. I found out that the high fan speed is not due to the fact that the temperature is getting hot, but because there are two sensors which indicate wrong numbers (you can check that using 'sensors' command ): TW0P: +129.0°C TCTD: +256.0°C TCFC: +0.0°C TMBS: +0.0°C or setting the macfanctld log level to 2: Speed: 4992, *AVG: 56.9C, TC0P: 50.2C, TG0P: 51.5C, Sensors: TB0T:34 TB1T:34 TB2T:33 TC0C:58 TC0D:56 TC0E:59 TC0F:60 TC0P:50 TC1C:58 TC2C:58 TC3C:58 TC4C:57 TCFC:0 TCGC:57 TCSA:53 TCTD:256 TG0D:52 TG0P:52 THSP:42 TM0S:64 TMBS:0 TP0P:54 TPCD:60 TW0P:129 Th1H:51 Th2H:48 Tm0P:40 Ts0P:32 Ts0S:43 Moreover, TCTD was randomly jumping from temperatures of 0 to 256, so this may be the reason for unjustified random fan speeds. macfanctld is taking an average of the sensors including the values above, so the actual AVG temp used to control the fans is wrong, usually biased up, hence high RPM and noise. The workaround solution is to use an option in the macfanctld.conf which allows to ignore the malfunctioning sensors: exclude: 13 16 21 24 After reboot the reported temperatures are usually normal and the fans are working at reasonable speeds. I tested the response of the fans to heavy processor load by asking MATLAB to invert 10000x10000 matrix and the AVG temperature jumped to 63deg, and the fan to max 6200 RPM and then got it back to normal temperature. So I think it is safe so far. There is a expired bug about the failing sensor readings: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/955538 which may be good to open again. My question would be: does anyone know what the failing sensors do and if there is any danger in excluding them? Maybe some better solution to this problem?

    Read the article

  • Fans running very fast on MacBook Pro 8.1

    - by Tomasz Kacprzak
    I installed Ubuntu 12.04 on Macbook Pro 8.1 and one of the first things I noticed was that the fans were starting to spin very fast every few minutes for 10-30 sec and then going back to normal. That was happening even without any processor load, when completely idle. The fans were usually spinning at 4000 RPM and made much noise. The computer was not getting hotter than usual. When running OSX Lion there was no noise at all, fans almost all the time at 2000 RPM. I spent some time on it and found out that Precise uses a deamon to control the temperature, called macfanctld. You can use /etc/macfanctld.conf to set the configuration. I found out that the high fan speed is not due to the fact that the temperature is getting hot, but because there are two sensors which indicate wrong numbers (you can check that using 'sensors' command ): TW0P: +129.0°C TCTD: +256.0°C TCFC: +0.0°C TMBS: +0.0°C or setting the macfanctld log level to 2: Speed: 4992, *AVG: 56.9C, TC0P: 50.2C, TG0P: 51.5C, Sensors: TB0T:34 TB1T:34 TB2T:33 TC0C:58 TC0D:56 TC0E:59 TC0F:60 TC0P:50 TC1C:58 TC2C:58 TC3C:58 TC4C:57 TCFC:0 TCGC:57 TCSA:53 TCTD:256 TG0D:52 TG0P:52 THSP:42 TM0S:64 TMBS:0 TP0P:54 TPCD:60 TW0P:129 Th1H:51 Th2H:48 Tm0P:40 Ts0P:32 Ts0S:43 Moreover, TCTD was randomly jumping from temperatures of 0 to 256, so this may be the reason for unjustified random fan speeds. macfanctld is taking an average of the sensors including the values above, so the actual AVG temp used to control the fans is wrong, usually biased up, hence high RPM and noise. The workaround solution is to use an option in the macfanctld.conf which allows to ignore the malfunctioning sensors: exclude: 13 16 21 24 After reboot the reported temperatures are usually normal and the fans are working at reasonable speeds. I tested the response of the fans to heavy processor load by asking MATLAB to invert 10000x10000 matrix and the AVG temperature jumped to 63deg, and the fan to max 6200 RPM and then got it back to normal temperature. So I think it is safe so far. There is a expired bug about the failing sensor readings: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/955538 which may be good to open again. My question would be: does anyone know what the failing sensors do and if there is any danger in excluding them? Maybe some better solution to this problem?

    Read the article

  • Making CopySourceAsHtml add-on work with VS2010

    - by DigiMortal
    As there are still bloggers who use CopySourceAsHtml add-on for Visual Studio to get syntax highlighted code to their blog posts and there is no guidance in CSAH site how to make it work with Visual Studio 2010 I will give my guidance here. Almost all code in this blog is syntax highlighted by this add-on (read more from my post Visual Studio add-in: CopySourceAsHTML). Last version of CSAH is available for VS2008 but it is easy to make it work with VS2010. Just follow these steps. Close VS2010 if it is opened. Goto folder MyDocuments\Visual Studio 2010. Move to AddIns subfolder (create it if there is no such subfolder). Create file called CopySourceAsHtml.AddIn and open it in text editor. Paste the following XML to editor:   <?xml version="1.0" encoding="utf-8" standalone="no"?> <Extensibility xmlns="http://schemas.microsoft.com/AutomationExtensibility"> <HostApplication> <Name>Microsoft Visual Studio Macros</Name> <Version>10.0</Version> </HostApplication> <HostApplication> <Name>Microsoft Visual Studio</Name> <Version>10.0</Version> </HostApplication> <Addin> <FriendlyName>CopySourceAsHtml</FriendlyName> <Description>Adds support to Microsoft Visual Studio 2010 for copying source code, syntax highlighting, and line numbers as HTML.</Description> <Assembly>JTLeigh.Tools.Development.CopySourceAsHtml, Version=3.0.3215.1, Culture=neutral, PublicKeyToken=bb2a58bdc03d2e14, processorArchitecture=MSIL</Assembly> <FullClassName>JTLeigh.Tools.Development.CopySourceAsHtml.Connect</FullClassName> <LoadBehavior>1</LoadBehavior> <CommandPreload>0</CommandPreload> <CommandLineSafe>0</CommandLineSafe> </Addin> </Extensibility> Save file and close it. Run VS2010 and activate add-on if it is not activated yet. That’s it. If you are heavy user of CSAH then I recommend you to bookmark this post. :)

    Read the article

  • Very different IO performance in C/C++

    - by Roberto Tirabassi
    Hi all, I'm a new user and my english is not so good so I hope to be clear. We're facing a performance problem using large files (1GB or more) expecially (as it seems) when you try to grow them in size. Anyway... to verify our sensations we tryed the following (on Win 7 64Bit, 4core, 8GB Ram, 32 bit code compiled with VC2008) a) Open an unexisting file. Write it from the beginning up to 1Gb in 1Mb slots. Now you have a 1Gb file. Now randomize 10000 positions within that file, seek to that position and write 50 bytes in each position, no matter what you write. Close the file and look at the results. Time to create the file is quite fast (about 0.3"), time to write 10000 times is fast all the same (about 0.03"). Very good, this is the beginnig. Now try something else... b) Open an unexisting file, seek to 1Gb-1byte and write just 1 byte. Now you have another 1Gb file. Follow the next steps exactly same way of case 'a', close the file and look at the results. Time to create the file is the faster you can imagine (about 0.00009") but write time is something you can't believe.... about 90"!!!!! b.1) Open an unexisting file, don't write any byte. Act as before, ramdomizing, seeking and writing, close the file and look at the result. Time to write is long all the same: about 90"!!!!! Ok... this is quite amazing. But there's more! c) Open again the file you crated in case 'a', don't truncate it... randomize again 10000 positions and act as before. You're fast as before, about 0,03" to write 10000 times. This sounds Ok... try another step. d) Now open the file you created in case 'b', don't truncate it... randomize again 10000 positions and act as before. You're slow again and again, but the time is reduced to... 45"!! Maybe, trying again, the time will reduce. I actually wonder why... Any Idea? The following is part of the code I used to test what I told in previuos cases (you'll have to change someting in order to have a clean compilation, I just cut & paste from some source code, sorry). The sample can read and write, in random, ordered or reverse ordered mode, but write only in random order is the clearest test. We tryed using std::fstream but also using directly CreateFile(), WriteFile() and so on the results are the same (even if std::fstream is actually a little slower). Parameters for case 'a' = -f_tempdir_\casea.dat -n10000 -t -p -w Parameters for case 'b' = -f_tempdir_\caseb.dat -n10000 -t -v -w Parameters for case 'b.1' = -f_tempdir_\caseb.dat -n10000 -t -w Parameters for case 'c' = -f_tempdir_\casea.dat -n10000 -w Parameters for case 'd' = -f_tempdir_\caseb.dat -n10000 -w Run the test (and even others) and see... // iotest.cpp : Defines the entry point for the console application. // #include <windows.h> #include <iostream> #include <set> #include <vector> #include "stdafx.h" double RealTime_Microsecs() { LARGE_INTEGER fr = {0, 0}; LARGE_INTEGER ti = {0, 0}; double time = 0.0; QueryPerformanceCounter(&ti); QueryPerformanceFrequency(&fr); time = (double) ti.QuadPart / (double) fr.QuadPart; return time; } int main(int argc, char* argv[]) { std::string sFileName ; size_t stSize, stTimes, stBytes ; int retval = 0 ; char *p = NULL ; char *pPattern = NULL ; char *pReadBuf = NULL ; try { // Default stSize = 1<<30 ; // 1Gb stTimes = 1000 ; stBytes = 50 ; bool bTruncate = false ; bool bPre = false ; bool bPreFast = false ; bool bOrdered = false ; bool bReverse = false ; bool bWriteOnly = false ; // Comsumo i parametri for(int index=1; index < argc; ++index) { if ( '-' != argv[index][0] ) throw ; switch(argv[index][1]) { case 'f': sFileName = argv[index]+2 ; break ; case 's': stSize = xw::str::strtol(argv[index]+2) ; break ; case 'n': stTimes = xw::str::strtol(argv[index]+2) ; break ; case 'b':stBytes = xw::str::strtol(argv[index]+2) ; break ; case 't': bTruncate = true ; break ; case 'p' : bPre = true, bPreFast = false ; break ; case 'v' : bPreFast = true, bPre = false ; break ; case 'o' : bOrdered = true, bReverse = false ; break ; case 'r' : bReverse = true, bOrdered = false ; break ; case 'w' : bWriteOnly = true ; break ; default: throw ; break ; } } if ( sFileName.empty() ) { std::cout << "Usage: -f<File Name> -s<File Size> -n<Number of Reads and Writes> -b<Bytes per Read and Write> -t -p -v -o -r -w" << std::endl ; std::cout << "-t truncates the file, -p pre load the file, -v pre load 'veloce', -o writes in order mode, -r write in reverse order mode, -w Write Only" << std::endl ; std::cout << "Default: 1Gb, 1000 times, 50 bytes" << std::endl ; throw ; } if ( !stSize || !stTimes || !stBytes ) { std::cout << "Invalid Parameters" << std::endl ; return -1 ; } size_t stBestSize = 0x00100000 ; std::fstream fFile ; fFile.open(sFileName.c_str(), std::ios_base::binary|std::ios_base::out|std::ios_base::in|(bTruncate?std::ios_base::trunc:0)) ; p = new char[stBestSize] ; pPattern = new char[stBytes] ; pReadBuf = new char[stBytes] ; memset(p, 0, stBestSize) ; memset(pPattern, (int)(stBytes&0x000000ff), stBytes) ; double dTime = RealTime_Microsecs() ; size_t stCopySize, stSizeToCopy = stSize ; if ( bPre ) { do { stCopySize = std::min(stSizeToCopy, stBestSize) ; fFile.write(p, stCopySize) ; stSizeToCopy -= stCopySize ; } while (stSizeToCopy) ; std::cout << "Creating time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } else if ( bPreFast ) { fFile.seekp(stSize-1) ; fFile.write(p, 1) ; std::cout << "Creating Fast time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } size_t stPos ; ::srand((unsigned int)dTime) ; double dReadTime, dWriteTime ; stCopySize = stTimes ; std::vector<size_t> inVect ; std::vector<size_t> outVect ; std::set<size_t> outSet ; std::set<size_t> inSet ; // Prepare vector and set do { stPos = (size_t)(::rand()<<16) % stSize ; outVect.push_back(stPos) ; outSet.insert(stPos) ; stPos = (size_t)(::rand()<<16) % stSize ; inVect.push_back(stPos) ; inSet.insert(stPos) ; } while (--stCopySize) ; // Write & read using vectors if ( !bReverse && !bOrdered ) { std::vector<size_t>::iterator outI, inI ; outI = outVect.begin() ; inI = inVect.begin() ; stCopySize = stTimes ; dReadTime = 0.0 ; dWriteTime = 0.0 ; do { dTime = RealTime_Microsecs() ; fFile.seekp(*outI) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++outI ; if ( !bWriteOnly ) { dTime = RealTime_Microsecs() ; fFile.seekg(*inI) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++inI ; } } while (--stCopySize) ; std::cout << "Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " (Ave: " << xw::str::itoa(dWriteTime/stTimes, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { std::cout << "Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " (Ave: " << xw::str::itoa(dReadTime/stTimes, 10, 'f') << ")" << std::endl ; } } // End // Write in order if ( bOrdered ) { std::set<size_t>::iterator i = outSet.begin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.begin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End // Write in reverse order if ( bReverse ) { std::set<size_t>::reverse_iterator i = outSet.rbegin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.rbegin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End dTime = RealTime_Microsecs() ; fFile.close() ; std::cout << "Flush/Close Time is " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; std::cout << "Program Terminated" << std::endl ; } catch(...) { std::cout << "Something wrong or wrong parameters" << std::endl ; retval = -1 ; } if ( p ) delete []p ; if ( pPattern ) delete []pPattern ; if ( pReadBuf ) delete []pReadBuf ; return retval ; }

    Read the article

  • Development Approach: User Interface In or Domain Model Out?

    - by Berin Loritsch
    While I've never delivered anything using Smalltalk, my brief time playing with it has definitely left its mark. The only way to describe the experience is MVC the way it was meant to be. Essentially, all the heavy lifting for your application is done in the business objects (or domain model if you are so inclined). The standard controls are bound to the business objects in some way. For example, a text box is mapped to an object's field (the field itself is an object so it's easy to do). A button would mapped to a method. This is all done with a very simple and natural API. We don't have to think about binding objects, etc. It just works. Yet, in many newer languages and APIs you are forced to think from the outside in. First with C++ and MFC, and now with C# and WPF, Microsoft has gotten it's developer world hooked on GUI builders where you build your application by implementing event handlers. Java Swing development isn't so different, only you are writing the code to instantiate the controls on the form yourself. For some projects, there may never even be a domain model--just event handlers. I've been in and around this model for most of my carreer. Each way forces you to think differently. With the Smalltalk approach, your domain is smart while your GUI is dumb. With the default VisualStudio approach, your GUI is smart while your domain model (if it exists) is rather anemic. Many developers that I work with see value in the Smalltalk approach, and try to shoehorn that approach into the VisualStudio environment. WPF has some dynamic binding features that makes it possible; but there are limitations. Inevitably some code that belongs in the domain model ends up in the GUI classes. So, which way do you design/develop your code? Why? GUI first. User interaction is paramount. Domain first. I need to make sure the system is correct before we put a UI on it. There's pros and cons for either approach. Domain model fits in there with crystal cathedrals and pie in the sky. GUI fits in there with quick and dirty (sometimes really dirty). And for an added bonus: How do you make sure the code is maintainable?

    Read the article

  • error about ACPI _OSC request failed (AE_NOT_FOUND)

    - by Yavuz Maslak
    I have ubuntu server 11.10 64 bit I see an error in kernel.log. This error comes out when the server reboot. some port of grep APCI in kernel.log; Dec 5 09:08:51 www kernel: [ 0.588605] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 5 09:08:51 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 5 09:08:51 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Which hardware may be cause this error ? root@www:# grep -r ACPI /var/log/kern.log Dec 5 09:08:51 www kernel: [ 0.000000] BIOS-e820: 00000000bf780000 - 00000000bf798000 (ACPI data) Dec 5 09:08:51 www kernel: [ 0.000000] BIOS-e820: 00000000bf798000 - 00000000bf7dc000 (ACPI NVS) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: RSDP 00000000000fb1a0 00014 (v00 ACPIAM) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: RSDT 00000000bf780000 00040 (v01 022410 RSDT1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: FACP 00000000bf780200 00084 (v01 022410 FACP1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: DSDT 00000000bf7804b0 0C359 (v01 A1279 A1279001 00000001 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: FACS 00000000bf798000 00040 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: APIC 00000000bf780390 000D8 (v01 022410 APIC1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: MCFG 00000000bf780470 0003C (v01 022410 OEMMCFG 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: OEMB 00000000bf798040 00072 (v01 022410 OEMB1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: HPET 00000000bf78f4b0 00038 (v01 022410 OEMHPET 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: OSFR 00000000bf78f4f0 000B0 (v01 022410 OEMOSFR 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: SSDT 00000000bf798fe0 00363 (v01 DpgPmm CpuPm 00000012 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: PM-Timer IO Port: 0x808 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x01] lapic_id[0x00] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x02] lapic_id[0x02] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x03] lapic_id[0x04] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x04] lapic_id[0x06] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x05] lapic_id[0x84] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x06] lapic_id[0x85] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x07] lapic_id[0x86] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x08] lapic_id[0x87] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x09] lapic_id[0x88] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0a] lapic_id[0x89] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0b] lapic_id[0x8a] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0c] lapic_id[0x8b] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0d] lapic_id[0x8c] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0e] lapic_id[0x8d] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0f] lapic_id[0x8e] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x10] lapic_id[0x8f] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x01] address[0xfec00000] gsi_base[0]) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x03] address[0xfec8a000] gsi_base[24]) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2 dfl dfl) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ0 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ2 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ9 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] Using ACPI (MADT) for SMP configuration information Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: HPET id: 0x8086a301 base: 0xfed00000 Dec 5 09:08:51 www kernel: [ 0.009507] ACPI: Core revision 20110413 Dec 5 09:08:51 www kernel: [ 0.499129] PM: Registering ACPI NVS region at bf798000 (278528 bytes) Dec 5 09:08:51 www kernel: [ 0.500749] ACPI: bus type pci registered Dec 5 09:08:51 www kernel: [ 0.502747] ACPI: EC: Look up EC in DSDT Dec 5 09:08:51 www kernel: [ 0.503788] ACPI: Executed 1 blocks of module-level executable AML code Dec 5 09:08:51 www kernel: [ 0.520435] ACPI: SSDT 00000000bf7980c0 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.520863] ACPI: Dynamic OEM Table Load: Dec 5 09:08:51 www kernel: [ 0.520990] ACPI: SSDT (null) 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.521308] ACPI: Interpreter enabled Dec 5 09:08:51 www kernel: [ 0.521366] ACPI: (supports S0 S1 S3 S4 S5) Dec 5 09:08:51 www kernel: [ 0.521611] ACPI: Using IOAPIC for interrupt routing Dec 5 09:08:51 www kernel: [ 0.522622] PCI: MMCONFIG at [mem 0xe0000000-0xefffffff] reserved in ACPI motherboard resources Dec 5 09:08:51 www kernel: [ 0.554150] ACPI: No dock devices found. Dec 5 09:08:51 www kernel: [ 0.554267] PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug Dec 5 09:08:51 www kernel: [ 0.555231] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-ff]) Dec 5 09:08:51 www kernel: [ 0.588224] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0._PRT] Dec 5 09:08:51 www kernel: [ 0.588398] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P1._PRT] Dec 5 09:08:51 www kernel: [ 0.588451] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P4._PRT] Dec 5 09:08:51 www kernel: [ 0.588473] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P6._PRT] Dec 5 09:08:51 www kernel: [ 0.588492] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P7._PRT] Dec 5 09:08:51 www kernel: [ 0.588512] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P8._PRT] Dec 5 09:08:51 www kernel: [ 0.588540] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE1._PRT] Dec 5 09:08:51 www kernel: [ 0.588559] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE3._PRT] Dec 5 09:08:51 www kernel: [ 0.588579] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE7._PRT] Dec 5 09:08:51 www kernel: [ 0.588605] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 5 09:08:51 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 5 09:08:51 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Dec 5 09:08:51 www kernel: [ 0.597666] ACPI: PCI Interrupt Link [LNKA] (IRQs 3 4 6 7 10 11 12 14 *15) Dec 5 09:08:51 www kernel: [ 0.598142] ACPI: PCI Interrupt Link [LNKB] (IRQs *5) Dec 5 09:08:51 www kernel: [ 0.598336] ACPI: PCI Interrupt Link [LNKC] (IRQs 3 4 6 7 10 *11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.598810] ACPI: PCI Interrupt Link [LNKD] (IRQs 3 4 6 7 *10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.599284] ACPI: PCI Interrupt Link [LNKE] (IRQs 3 4 6 7 10 11 12 *14 15) Dec 5 09:08:51 www kernel: [ 0.599762] ACPI: PCI Interrupt Link [LNKF] (IRQs *3 4 6 7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.600236] ACPI: PCI Interrupt Link [LNKG] (IRQs 3 4 6 *7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.600709] ACPI: PCI Interrupt Link [LNKH] (IRQs 3 *4 6 7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.601931] PCI: Using ACPI for IRQ routing Dec 5 09:08:51 www kernel: [ 0.628146] pnp: PnP ACPI init Dec 5 09:08:51 www kernel: [ 0.628211] ACPI: bus type pnp registered Dec 5 09:08:51 www kernel: [ 0.628417] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) Dec 5 09:08:51 www kernel: [ 0.628859] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 5 09:08:51 www kernel: [ 0.628915] pnp 00:02: Plug and Play ACPI device, IDs PNP0200 (active) Dec 5 09:08:51 www kernel: [ 0.628951] pnp 00:03: Plug and Play ACPI device, IDs PNP0b00 (active) Dec 5 09:08:51 www kernel: [ 0.628975] pnp 00:04: Plug and Play ACPI device, IDs PNP0800 (active) Dec 5 09:08:51 www kernel: [ 0.629004] pnp 00:05: Plug and Play ACPI device, IDs PNP0c04 (active) Dec 5 09:08:51 www kernel: [ 0.629229] system 00:06: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.629779] system 00:07: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.629849] pnp 00:08: Plug and Play ACPI device, IDs PNP0103 (active) Dec 5 09:08:51 www kernel: [ 0.629901] pnp 00:09: Plug and Play ACPI device, IDs INT0800 (active) Dec 5 09:08:51 www kernel: [ 0.630030] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630254] system 00:0b: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630304] pnp 00:0c: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) Dec 5 09:08:51 www kernel: [ 0.630359] pnp 00:0d: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) Dec 5 09:08:51 www kernel: [ 0.630492] system 00:0e: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630986] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 5 09:08:51 www kernel: [ 0.631078] pnp: PnP ACPI: found 16 devices Dec 5 09:08:51 www kernel: [ 0.631135] ACPI: ACPI bus type pnp unregistered Dec 5 09:08:51 www kernel: [ 0.726291] ACPI: Power Button [PWRB] Dec 5 09:08:51 www kernel: [ 0.726452] ACPI: Power Button [PWRF] Dec 5 09:08:51 www kernel: [ 0.726527] ACPI: acpi_idle yielding to intel_idle Dec 7 21:45:22 www kernel: [ 0.000000] BIOS-e820: 00000000bf780000 - 00000000bf798000 (ACPI data) Dec 7 21:45:22 www kernel: [ 0.000000] BIOS-e820: 00000000bf798000 - 00000000bf7dc000 (ACPI NVS) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: RSDP 00000000000fb1a0 00014 (v00 ACPIAM) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: RSDT 00000000bf780000 00040 (v01 022410 RSDT1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: FACP 00000000bf780200 00084 (v01 022410 FACP1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: DSDT 00000000bf7804b0 0C359 (v01 A1279 A1279001 00000001 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: FACS 00000000bf798000 00040 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: APIC 00000000bf780390 000D8 (v01 022410 APIC1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: MCFG 00000000bf780470 0003C (v01 022410 OEMMCFG 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: OEMB 00000000bf798040 00072 (v01 022410 OEMB1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: HPET 00000000bf78f4b0 00038 (v01 022410 OEMHPET 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: OSFR 00000000bf78f4f0 000B0 (v01 022410 OEMOSFR 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: SSDT 00000000bf798fe0 00363 (v01 DpgPmm CpuPm 00000012 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: PM-Timer IO Port: 0x808 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x01] lapic_id[0x00] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x02] lapic_id[0x02] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x03] lapic_id[0x04] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x04] lapic_id[0x06] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x05] lapic_id[0x84] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x06] lapic_id[0x85] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x07] lapic_id[0x86] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x08] lapic_id[0x87] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x09] lapic_id[0x88] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0a] lapic_id[0x89] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0b] lapic_id[0x8a] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0c] lapic_id[0x8b] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0d] lapic_id[0x8c] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0e] lapic_id[0x8d] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0f] lapic_id[0x8e] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x10] lapic_id[0x8f] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x01] address[0xfec00000] gsi_base[0]) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x03] address[0xfec8a000] gsi_base[24]) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2 dfl dfl) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ0 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ2 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ9 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] Using ACPI (MADT) for SMP configuration information Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: HPET id: 0x8086a301 base: 0xfed00000 Dec 7 21:45:22 www kernel: [ 0.009505] ACPI: Core revision 20110413 Dec 7 21:45:22 www kernel: [ 0.499203] PM: Registering ACPI NVS region at bf798000 (278528 bytes) Dec 7 21:45:22 www kernel: [ 0.500819] ACPI: bus type pci registered Dec 7 21:45:22 www kernel: [ 0.503121] ACPI: EC: Look up EC in DSDT Dec 7 21:45:22 www kernel: [ 0.504162] ACPI: Executed 1 blocks of module-level executable AML code Dec 7 21:45:22 www kernel: [ 0.520821] ACPI: SSDT 00000000bf7980c0 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.521247] ACPI: Dynamic OEM Table Load: Dec 7 21:45:22 www kernel: [ 0.521374] ACPI: SSDT (null) 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.521691] ACPI: Interpreter enabled Dec 7 21:45:22 www kernel: [ 0.521748] ACPI: (supports S0 S1 S3 S4 S5) Dec 7 21:45:22 www kernel: [ 0.521993] ACPI: Using IOAPIC for interrupt routing Dec 7 21:45:22 www kernel: [ 0.523002] PCI: MMCONFIG at [mem 0xe0000000-0xefffffff] reserved in ACPI motherboard resources Dec 7 21:45:22 www kernel: [ 0.554533] ACPI: No dock devices found. Dec 7 21:45:22 www kernel: [ 0.554649] PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug Dec 7 21:45:22 www kernel: [ 0.555620] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-ff]) Dec 7 21:45:22 www kernel: [ 0.588224] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0._PRT] Dec 7 21:45:22 www kernel: [ 0.588398] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P1._PRT] Dec 7 21:45:22 www kernel: [ 0.588451] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P4._PRT] Dec 7 21:45:22 www kernel: [ 0.588473] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P6._PRT] Dec 7 21:45:22 www kernel: [ 0.588492] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P7._PRT] Dec 7 21:45:22 www kernel: [ 0.588512] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P8._PRT] Dec 7 21:45:22 www kernel: [ 0.588540] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE1._PRT] Dec 7 21:45:22 www kernel: [ 0.588559] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE3._PRT] Dec 7 21:45:22 www kernel: [ 0.588579] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE7._PRT] Dec 7 21:45:22 www kernel: [ 0.588606] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 7 21:45:22 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 7 21:45:22 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Dec 7 21:45:22 www kernel: [ 0.597661] ACPI: PCI Interrupt Link [LNKA] (IRQs 3 4 6 7 10 11 12 14 *15) Dec 7 21:45:22 www kernel: [ 0.598137] ACPI: PCI Interrupt Link [LNKB] (IRQs *5) Dec 7 21:45:22 www kernel: [ 0.598331] ACPI: PCI Interrupt Link [LNKC] (IRQs 3 4 6 7 10 *11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.598804] ACPI: PCI Interrupt Link [LNKD] (IRQs 3 4 6 7 *10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.599278] ACPI: PCI Interrupt Link [LNKE] (IRQs 3 4 6 7 10 11 12 *14 15) Dec 7 21:45:22 www kernel: [ 0.599756] ACPI: PCI Interrupt Link [LNKF] (IRQs *3 4 6 7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.600230] ACPI: PCI Interrupt Link [LNKG] (IRQs 3 4 6 *7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.600704] ACPI: PCI Interrupt Link [LNKH] (IRQs 3 *4 6 7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.601926] PCI: Using ACPI for IRQ routing Dec 7 21:45:22 www kernel: [ 0.624115] pnp: PnP ACPI init Dec 7 21:45:22 www kernel: [ 0.624179] ACPI: bus type pnp registered Dec 7 21:45:22 www kernel: [ 0.624382] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) Dec 7 21:45:22 www kernel: [ 0.624821] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 7 21:45:22 www kernel: [ 0.624875] pnp 00:02: Plug and Play ACPI device, IDs PNP0200 (active) Dec 7 21:45:22 www kernel: [ 0.624911] pnp 00:03: Plug and Play ACPI device, IDs PNP0b00 (active) Dec 7 21:45:22 www kernel: [ 0.624933] pnp 00:04: Plug and Play ACPI device, IDs PNP0800 (active) Dec 7 21:45:22 www kernel: [ 0.624962] pnp 00:05: Plug and Play ACPI device, IDs PNP0c04 (active) Dec 7 21:45:22 www kernel: [ 0.625186] system 00:06: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.625733] system 00:07: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.625803] pnp 00:08: Plug and Play ACPI device, IDs PNP0103 (active) Dec 7 21:45:22 www kernel: [ 0.625856] pnp 00:09: Plug and Play ACPI device, IDs INT0800 (active) Dec 7 21:45:22 www kernel: [ 0.625984] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626206] system 00:0b: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626256] pnp 00:0c: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) Dec 7 21:45:22 www kernel: [ 0.626312] pnp 00:0d: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) Dec 7 21:45:22 www kernel: [ 0.626445] system 00:0e: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626936] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 7 21:45:22 www kernel: [ 0.627027] pnp: PnP ACPI: found 16 devices Dec 7 21:45:22 www kernel: [ 0.627084] ACPI: ACPI bus type pnp unregistered Dec 7 21:45:22 www kernel: [ 0.722086] ACPI: Power Button [PWRB] Dec 7 21:45:22 www kernel: [ 0.722246] ACPI: Power Button [PWRF] Dec 7 21:45:22 www kernel: [ 0.722320] ACPI: acpi_idle yielding to intel_idle

    Read the article

  • Speedstep and Intel x5570?

    - by sajal
    Hi, My new server has 2 x X5570 CPUs. Now here is the output of grep -i hz /proc/cpuinfo model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz cpu MHz : 1600.231 It always remains the same.. no matter how much load is mysql or any other app hogging. Even when mysql eats 2 or 3 CPUs at 100% each, the output of cpuinfo is the same. If fact mysql performance for some heavy inserts is poorer than my old E5430 server. Any clues? I contacted the server provider, they tried turning off SpeedStep and still we see the same results. Any insights would be helpful cause I am paying heavily for this box and would love to milk all juice i can.

    Read the article

  • Windows Azure: General Availability of Web Sites + Mobile Services, New AutoScale + Alerts Support, No Credit Card Needed for MSDN

    - by ScottGu
    This morning we released a major set of updates to Windows Azure.  These updates included: Web Sites: General Availability Release of Windows Azure Web Sites with SLA Mobile Services: General Availability Release of Windows Azure Mobile Services with SLA Auto-Scale: New automatic scaling support for Web Sites, Cloud Services and Virtual Machines Alerts/Notifications: New email alerting support for all Compute Services (Web Sites, Mobile Services, Cloud Services, and Virtual Machines) MSDN: No more credit card requirement for sign-up All of these improvements are now available to use immediately (note: some are still in preview).  Below are more details about them. Web Sites: General Availability Release of Windows Azure Web Sites I’m incredibly excited to announce the General Availability release of Windows Azure Web Sites. The Windows Azure Web Sites service is perfect for hosting a web presence, building customer engagement solutions, and delivering business web apps.  Today’s General Availability release means we are taking off the “preview” tag from the Free and Standard (formerly called reserved) tiers of Windows Azure Web Sites.  This means we are providing: A 99.9% monthly SLA (Service Level Agreement) for the Standard tier Microsoft Support available on a 24x7 basis (with plans that range from developer plans to enterprise Premier support) The Free tier runs in a shared compute environment and supports up to 10 web sites. While the Free tier does not come with an SLA, it works great for rapid development and testing and enables you to quickly spike out ideas at no cost. The Standard tier, which was called “Reserved” during the preview, runs using dedicated per-customer VM instances for great performance, isolation and scalability, and enables you to host up to 500 different Web sites within them.  You can easily scale your Standard instances on-demand using the Windows Azure Management Portal.  You can adjust VM instance sizes from a Small instance size (1 core, 1.75GB of RAM), up to a Medium instance size (2 core, 3.5GB of RAM), or Large instance (4 cores and 7 GB RAM).  You can choose to run between 1 and 10 Standard instances, enabling you to easily scale up your web backend to 40 cores of CPU and 70GB of RAM: Today’s release also includes general availability support for custom domain SSL certificate bindings for web sites running using the Standard tier. Customers will be able to utilize certificates they purchase for their custom domains and use either SNI or IP based SSL encryption. SNI encryption is available for all modern browsers and does not require an IP address.  SSL certificates can be used for individual sites or wild-card mapped across multiple sites (we charge extra for the use of a SSL cert – but the fee is per-cert and not per site which means you pay once for it regardless of how many sites you use it with).  Today’s release also includes the following new features: Auto-Scale support Today’s Windows Azure release adds preview support for Auto-Scaling web sites.  This enables you to setup automatic scale rules based on the activity of your instances – allowing you to automatically scale down (and save money) when they are below a CPU threshold you define, and automatically scale up quickly when traffic increases.  See below for more details. 64-bit and 32-bit mode support You can now choose to run your standard tier instances in either 32-bit or 64-bit mode (previously they only ran in 32-bit mode).  This enables you to address even more memory within individual web applications. Memory dumps Memory dumps can be very useful for diagnosing issues and debugging apps. Using a REST API, you can now get a memory dump of your sites, which you can then use for investigating issues in Visual Studio Debugger, WinDbg, and other tools. Scaling Sites Independently Prior to today’s release, all sites scaled up/down together whenever you scaled any site in a sub-region. So you may have had to keep your proof-of-concept or testing sites in a separate sub-region if you wanted to keep them in the Free tier. This will no longer be necessary.  Windows Azure Web Sites can now mix different tier levels in the same geographic sub-region. This allows you, for example, to selectively move some of your sites in the West US sub-region up to Standard tier when they require the features, scalability, and SLA of the Standard tier. Full pricing details on Windows Azure Web Sites can be found here.  Note that the “Shared Tier” of Windows Azure Web Sites remains in preview mode (and continues to have discounted preview pricing).  Mobile Services: General Availability Release of Windows Azure Mobile Services I’m incredibly excited to announce the General Availability release of Windows Azure Mobile Services.  Mobile Services is perfect for building scalable cloud back-ends for Windows 8.x, Windows Phone, Apple iOS, Android, and HTML/JavaScript applications.  Customers We’ve seen tremendous adoption of Windows Azure Mobile Services since we first previewed it last September, and more than 20,000 customers are now running mobile back-ends in production using it.  These customers range from startups like Yatterbox, to university students using Mobile Services to complete apps like Sly Fox in their spare time, to media giants like Verdens Gang finding new ways to deliver content, and telcos like TalkTalk Business delivering the up-to-the-minute information their customers require.  In today’s Build keynote, we demonstrated how TalkTalk Business is using Windows Azure Mobile Services to deliver service, outage and billing information to its customers, wherever they might be. Partners When we unveiled the source control and Custom API features I blogged about two weeks ago, we enabled a range of new scenarios, one of which is a more flexible way to work with third party services.  The following blogs, samples and tutorials from our partners cover great ways you can extend Mobile Services to help you build rich modern apps: New Relic allows developers to monitor and manage the end-to-end performance of iOS and Android applications connected to Mobile Services. SendGrid eliminates the complexity of sending email from Mobile Services, saving time and money, while providing reliable delivery to the inbox. Twilio provides a telephony infrastructure web service in the cloud that you can use with Mobile Services to integrate phone calls, text messages and IP voice communications into your mobile apps. Xamarin provides a Mobile Services add on to make it easy building cross-platform connected mobile aps. Pusher allows quickly and securely add scalable real-time messaging functionality to Mobile Services-based web and mobile apps. Visual Studio 2013 and Windows 8.1 This week during //build/ keynote, we demonstrated how Visual Studio 2013, Mobile Services and Windows 8.1 make building connected apps easier than ever. Developers building Windows 8 applications in Visual Studio can now connect them to Windows Azure Mobile Services by simply right clicking then choosing Add Connected Service. You can either create a new Mobile Service or choose existing Mobile Service in the Add Connected Service dialog. Once completed, Visual Studio adds a reference to Mobile Services SDK to your project and generates a Mobile Services client initialization snippet automatically. Add Push Notifications Push Notifications and Live Tiles are a key to building engaging experiences. Visual Studio 2013 and Mobile Services make it super easy to add push notifications to your Windows 8.1 app, by clicking Add a Push Notification item: The Add Push Notification wizard will then guide you through the registration with the Windows Store as well as connecting your app to a new or existing mobile service. Upon completion of the wizard, Visual Studio will configure your mobile service with the WNS credentials, as well as add sample logic to your client project and your mobile service that demonstrates how to send push notifications to your app. Server Explorer Integration In Visual Studio 2013 you can also now view your Mobile Services in the the Server Explorer. You can add tables, edit, and save server side scripts without ever leaving Visual Studio, as shown on the image below: Pricing With today’s general availability release we are announcing that we will be offering Mobile Services in three tiers – Free, Standard, and Premium.  Each tier is metered using a simple pricing model based on the # of API calls (bandwidth is included at no extra charge), and the Standard and Premium tiers are backed by 99.9% monthly SLAs.  You can elastically scale up or down the number of instances you have of each tier to increase the # of API requests your service can support – allowing you to efficiently scale as your business grows. The following table summarizes the new pricing model (full pricing details here):   You can find the full details of the new pricing model here. Build Conference Talks The //BUILD/ conference will be packed with sessions covering every aspect of developing connected applications with Mobile Services. The best part is that, even if you can’t be with us in San Francisco, every session is being streamed live. Be sure not to miss these talks: Mobile Services – Soup to Nuts — Josh Twist Building Cross-Platform Apps with Windows Azure Mobile Services — Chris Risner Connected Windows Phone Apps made Easy with Mobile Services — Yavor Georgiev Build Connected Windows 8.1 Apps with Mobile Services — Nick Harris Who’s that user? Identity in Mobile Apps — Dinesh Kulkarni Building REST Services with JavaScript — Nathan Totten Going Live and Beyond with Windows Azure Mobile Services — Kirill Gavrylyuk , Paul Batum Protips for Windows Azure Mobile Services — Chris Risner AutoScale: Dynamically scale up/down your app based on real-world usage One of the key benefits of Windows Azure is that you can dynamically scale your application in response to changing demand. In the past, though, you have had to either manually change the scale of your application, or use additional tooling (such as WASABi or MetricsHub) to automatically scale your application. Today, we’re announcing that AutoScale will be built-into Windows Azure directly.  With today’s release it is now enabled for Cloud Services, Virtual Machines and Web Sites (Mobile Services support will come soon). Auto-scale enables you to configure Windows Azure to automatically scale your application dynamically on your behalf (without any manual intervention) so you can achieve the ideal performance and cost balance. Once configured it will regularly adjust the number of instances running in response to the load in your application. Currently, we support two different load metrics: CPU percentage Storage queue depth (Cloud Services and Virtual Machines only) We’ll enable automatic scaling on even more scale metrics in future updates. When to use Auto-Scale The following are good criteria for services/apps that will benefit from the use of auto-scale: The service/app can scale horizontally (e.g. it can be duplicated to multiple instances) The service/app load changes over time If your app meets these criteria, then you should look to leverage auto-scale. How to Enable Auto-Scale To enable auto-scale, simply navigate to the Scale tab in the Windows Azure Management Portal for the app/service you wish to enable.  Within the scale tab turn the Auto-Scale setting on to either CPU or Queue (for Cloud Services and VMs) to enable Auto-Scale.  Then change the instance count and target CPU settings to configure the Auto-Scale ranges you want to maintain. The image below demonstrates how to enable Auto-Scale on a Windows Azure Web-Site.  I’ve configured the web-site so that it will run using between 1 and 5 VM instances.  The exact # used will depend on the aggregate CPU of the VMs using the 40-70% range I’ve configured below.  If the aggregate CPU goes above 70%, then Windows Azure will automatically add new VMs to the pool (up to the maximum of 5 instances I’ve configured it to use).  If the aggregate CPU drops below 40% then Windows Azure will automatically start shutting down VMs to save me money: Once you’ve turned auto-scale on, you can return to the Scale tab at any point and select Off to manually set the number of instances. Using the Auto-Scale Preview With today’s update you can now, in just a few minutes, have Windows Azure automatically adjust the number of instances you have running  in your apps to keep your service performant at an even better cost. Auto-scale is being released today as a preview feature, and will be free until General Availability. During preview, each subscription is limited to 10 separate auto-scale rules across all of the resources they have (Web sites, Cloud services or Virtual Machines). If you hit the 10 limit, you can disable auto-scale for any resource to enable it for another. Alerts and Notifications Starting today we are now providing the ability to configure threshold based alerts on monitoring metrics. This feature is available for compute services (cloud services, VM, websites and mobiles services). Alerts provide you the ability to get proactively notified of active or impending issues within your application.  You can define alert rules for: Virtual machine monitoring metrics that are collected from the host operating system (CPU percentage, network in/out, disk read bytes/sec and disk write bytes/sec) and on monitoring metrics from monitoring web endpoint urls (response time and uptime) that you have configured. Cloud service monitoring metrics that are collected from the host operating system (same as VM), monitoring metrics from the guest VM (from performance counters within the VM) and on monitoring metrics from monitoring web endpoint urls (response time and uptime) that you have configured. For Web Sites and Mobile Services, alerting rules can be configured on monitoring metrics from monitoring endpoint urls (response time and uptime) that you have configured. Creating Alert Rules You can add an alert rule for a monitoring metric by navigating to the Setting -> Alerts tab in the Windows Azure Management Portal. Click on the Add Rule button to create an alert rule. Give the alert rule a name and optionally add a description. Then pick the service which you want to define the alert rule on: The next step in the alert creation wizard will then filter the monitoring metrics based on the service you selected:   Once created the rule will show up in your alerts list within the settings tab: The rule above is defined as “not activated” since it hasn’t tripped over the CPU threshold we set.  If the CPU on the above machine goes over the limit, though, I’ll get an email notifying me from an Windows Azure Alerts email address ([email protected]). And when I log into the portal and revisit the alerts tab I’ll see it highlighted in red.  Clicking it will then enable me to see what is causing it to fail, as well as view the history of when it has happened in the past. Alert Notifications With today’s initial preview you can now easily create alerting rules based on monitoring metrics and get notified on active or impending issues within your application that require attention. During preview, each subscription is limited to 10 alert rules across all of the services that support alert rules. No More Credit Card Requirement for MSDN Subscribers Earlier this month (during TechEd 2013), Windows Azure announced that MSDN users will get Windows Azure Credits every month that they can use for any Windows Azure services they want. You can read details about this in my previous Dev/Test blog post. Today we are making further updates to enable an easier Windows Azure signup for MSDN users. MSDN users will now not be required to provide payment information (e.g. no credit card) during sign-up, so long as they use the service within the included monetary credit for the billing period. For usage beyond the monetary credit, they can enable overages by providing the payment information and remove the spending limit. This enables a super easy, one page sign-up experience for MSDN users.  Simply sign-up for your Windows Azure trial using the same Microsoft ID that you use to manage your MSDN account, then complete the one page sign-up form below and you will be able to spend your free monthly MSDN credits (up to $150 each month) on any Windows Azure resource for dev/test:   This makes it trivially easy for every MDSN customer to start using Windows Azure today.  If you haven’t signed up yet, I definitely recommend checking it out. Summary Today’s release includes a ton of great features that enable you to build even better cloud solutions.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Strange ZFS hidden filesystem problem

    - by RandomInsano
    Half of my ZFS filesystems are hidden in ZFS-fuse. Here's my story: So, I love ZFS. I used it for about six months on FreeBSD, but due to it crashing the kernel during heavy inter-filesystem IO load, I tried switching to Solaris 5.10. That was good, but when I attempted to do an import of my Version 13 pool into its Version 4 version of ZFS, there were some heafty problems. It may have tried to correct the filesystem definitions, I don't know. Since that version wasn't compatible with my pool, I've now switched to Ubuntu Server 10.4. That version more than supports that of my pool, but I can only see half of my filesystems. The filesystems I can see are the same as those Solaris could see. Now, despite those filesystems not being preset in a 'zfs list' command, I can still set properties on them and I can even still mount them and read and write files, but they just plain don't show up in 'zfs list'. I've mounted the major ones, but I'm not sure what other filesystems there are anymore (I have about eight that I can't see). Anyone have any idea what the heck is going on? I think I might try booting back into FreeBSD 8 (I still have the main boot drive laying around for that) and see if at least it is able to view the filesystems. I've also done a scrub while in Linux, and it found no errors with any of the data. Oddly, DMA read errors which caused problems on FreeBSD ZFS are reported by Linux, but ZFS-fuse doesn't find an error. That's a topic for another post however.

    Read the article

  • Query Execution Failed in Reporting Services reports

    - by Chris Herring
    I have some reporting services reports that talk to Analysis Services and at times they fail with the following error: An error occurred during client rendering. An error has occurred during report processing. Query execution failed for dataset 'AccountManagerAccountManager'. The connection cannot be used while an XmlReader object is open. This occurs sometimes when I change selections in the filter. It also occurs when the machine has been under heavy load and then will consistently error until SSAS is restarted. The log file contains the following error: processing!ReportServer_0-18!738!04/06/2010-11:01:14:: e ERROR: Throwing Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'., ; Info: Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'. ---> System.InvalidOperationException: The connection cannot be used while an XmlReader object is open. at Microsoft.AnalysisServices.AdomdClient.XmlaClient.CheckConnection() at Microsoft.AnalysisServices.AdomdClient.XmlaClient.ExecuteStatement(String statement, IDictionary connectionProperties, IDictionary commandProperties, IDataParameterCollection parameters, Boolean isMdx) at Microsoft.AnalysisServices.AdomdClient.AdomdConnection.XmlaClientProvider.Microsoft.AnalysisServices.AdomdClient.IExecuteProvider.ExecuteTabular(CommandBehavior behavior, ICommandContentProvider contentProvider, AdomdPropertyCollection commandProperties, IDataParameterCollection parameters) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.System.Data.IDbCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.DataExtensions.AdoMdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.OnDemandProcessing.RuntimeDataSet.RunDataSetQuery() Can anyone shed light on this issue?

    Read the article

  • Why won't xattr PECL extension build on 12.10?

    - by Dan Jones
    I was using the xattr pecl extension in 12.04 (in fact, I think since 10.04) without problem. Not surprisingly, I had to reinstall it after upgrading to 12.10 because of the new version of PHP. But now it fails to build, and I can't figure out why. Other PECL extensions have built fine. And I have libattr1 and libattr1-dev installed. Here's the output from the build: downloading xattr-1.1.0.tgz ... Starting to download xattr-1.1.0.tgz (5,204 bytes) .....done: 5,204 bytes 3 source files, building running: phpize Configuring for: PHP Api Version: 20100412 Zend Module Api No: 20100525 Zend Extension Api No: 220100525 libattr library installation dir? [autodetect] : building in /tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0 running: /tmp/pear/temp/xattr/configure --with-xattr checking for grep that handles long lines and -e... /bin/grep checking for egrep... /bin/grep -E checking for a sed that does not truncate output... /bin/sed checking for cc... cc checking whether the C compiler works... yes checking for C compiler default output file name... a.out checking for suffix of executables... checking whether we are cross compiling... no checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether cc accepts -g... yes checking for cc option to accept ISO C89... none needed checking how to run the C preprocessor... cc -E checking for icc... no checking for suncc... no checking whether cc understands -c and -o together... yes checking for system library directory... lib checking if compiler supports -R... no checking if compiler supports -Wl,-rpath,... yes checking build system type... x86_64-unknown-linux-gnu checking host system type... x86_64-unknown-linux-gnu checking target system type... x86_64-unknown-linux-gnu checking for PHP prefix... /usr checking for PHP includes... -I/usr/include/php5 -I/usr/include/php5/main -I/usr/include/php5/TSRM -I/usr/include/php5/Zend -I/usr/include/php5/ext -I/usr/include/php5/ext/date/lib checking for PHP extension directory... /usr/lib/php5/20100525 checking for PHP installed headers prefix... /usr/include/php5 checking if debug is enabled... no checking if zts is enabled... no checking for re2c... re2c checking for re2c version... 0.13.5 (ok) checking for gawk... gawk checking for xattr support... yes, shared checking for xattr files in default path... found in /usr checking for attr_get in -lattr... yes checking how to print strings... printf checking for a sed that does not truncate output... (cached) /bin/sed checking for fgrep... /bin/grep -F checking for ld used by cc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for BSD- or MS-compatible name lister (nm)... /usr/bin/nm -B checking the name lister (/usr/bin/nm -B) interface... BSD nm checking whether ln -s works... yes checking the maximum length of command line arguments... 1572864 checking whether the shell understands some XSI constructs... yes checking whether the shell understands "+="... yes checking how to convert x86_64-unknown-linux-gnu file names to x86_64-unknown-linux-gnu format... func_convert_file_noop checking how to convert x86_64-unknown-linux-gnu file names to toolchain format... func_convert_file_noop checking for /usr/bin/ld option to reload object files... -r checking for objdump... objdump checking how to recognize dependent libraries... pass_all checking for dlltool... no checking how to associate runtime and link libraries... printf %s\n checking for ar... ar checking for archiver @FILE support... @ checking for strip... strip checking for ranlib... ranlib checking for gawk... (cached) gawk checking command to parse /usr/bin/nm -B output from cc object... ok checking for sysroot... no checking for mt... mt checking if mt is a manifest tool... no checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking for dlfcn.h... yes checking for objdir... .libs checking if cc supports -fno-rtti -fno-exceptions... no checking for cc option to produce PIC... -fPIC -DPIC checking if cc PIC flag -fPIC -DPIC works... yes checking if cc static flag -static works... yes checking if cc supports -c -o file.o... yes checking if cc supports -c -o file.o... (cached) yes checking whether the cc linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... no configure: creating ./config.status config.status: creating config.h config.status: executing libtool commands running: make /bin/bash /tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/libtool --mode=compile cc -I. -I/tmp/pear/temp/xattr -DPHP_ATOM_INC -I/tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/include -I/tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/main -I/tmp/pear/temp/xattr -I/usr/include/php5 -I/usr/include/php5/main -I/usr/include/php5/TSRM -I/usr/include/php5/Zend -I/usr/include/php5/ext -I/usr/include/php5/ext/date/lib -DHAVE_CONFIG_H -g -O2 -c /tmp/pear/temp/xattr/xattr.c -o xattr.lo libtool: compile: cc -I. -I/tmp/pear/temp/xattr -DPHP_ATOM_INC -I/tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/include -I/tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/main -I/tmp/pear/temp/xattr -I/usr/include/php5 -I/usr/include/php5/main -I/usr/include/php5/TSRM -I/usr/include/php5/Zend -I/usr/include/php5/ext -I/usr/include/php5/ext/date/lib -DHAVE_CONFIG_H -g -O2 -c /tmp/pear/temp/xattr/xattr.c -fPIC -DPIC -o .libs/xattr.o /tmp/pear/temp/xattr/xattr.c:50:1: error: unknown type name 'function_entry' /tmp/pear/temp/xattr/xattr.c:51:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:51:2: error: (near initialization for 'xattr_functions[0]') /tmp/pear/temp/xattr/xattr.c:51:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:52:2: error: (near initialization for 'xattr_functions[1]') /tmp/pear/temp/xattr/xattr.c:52:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:53:2: error: (near initialization for 'xattr_functions[2]') /tmp/pear/temp/xattr/xattr.c:53:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:54:2: error: (near initialization for 'xattr_functions[3]') /tmp/pear/temp/xattr/xattr.c:54:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:55:2: error: (near initialization for 'xattr_functions[4]') /tmp/pear/temp/xattr/xattr.c:55:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: (near initialization for 'xattr_functions[5]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: (near initialization for 'xattr_functions[5]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: (near initialization for 'xattr_functions[5]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: (near initialization for 'xattr_functions[5]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:67:2: warning: initialization from incompatible pointer type [enabled by default] /tmp/pear/temp/xattr/xattr.c:67:2: warning: (near initialization for 'xattr_module_entry.functions') [enabled by default] /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_set': /tmp/pear/temp/xattr/xattr.c:122:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:122:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) /tmp/pear/temp/xattr/xattr.c:122:92: note: each undeclared identifier is reported only once for each function it appears in /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_get': /tmp/pear/temp/xattr/xattr.c:171:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:171:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) /tmp/pear/temp/xattr/xattr.c:187:2: warning: passing argument 4 of 'attr_get' from incompatible pointer type [enabled by default] In file included from /tmp/pear/temp/xattr/xattr.c:37:0: /usr/include/attr/attributes.h:122:12: note: expected 'int *' but argument is of type 'size_t *' /tmp/pear/temp/xattr/xattr.c:198:3: warning: passing argument 4 of 'attr_get' from incompatible pointer type [enabled by default] In file included from /tmp/pear/temp/xattr/xattr.c:37:0: /usr/include/attr/attributes.h:122:12: note: expected 'int *' but argument is of type 'size_t *' /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_supported': /tmp/pear/temp/xattr/xattr.c:243:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:243:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_remove': /tmp/pear/temp/xattr/xattr.c:288:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:288:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_list': /tmp/pear/temp/xattr/xattr.c:337:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:337:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) make: *** [xattr.lo] Error 1 ERROR: `make' failed There seem to be a few errors, but I can't make heads or tails of them. Does this just not work properly in 12.10? That would be a big problem for me.

    Read the article

  • What can cause an increase in inactive memory and how to reclaim it?

    - by Boaz
    Hi All, I have heavy application running on a CentOS server and I'm seeing a strange memory behavior. Here is a snapshot of a munin graph: As you can see the amount of committed memory increases gradually causing the swap file to be use. What strikes me odd is that the amount of inactive memory keeps growing as well. It is my understanding that the inactive memory is actually memory freed up but not yet clean by the OS and put back in the free memory pool. It seems that running out of memory is acutally caused by this lack of clean up, but I may be wrong. Can you give some tips to find the cause of the problem and/or cause CentOS to reclaim the inactive memory? Thanks. Some extra info: 1) I have a tmpfs mounted on /tmp and the number of files stored there grows (but it is double the amount of the inactive memory). 2) cat /proc/meminfo (at a later stage than the image) gives: MemTotal: 14371428 kB MemFree: 1207108 kB Buffers: 35440 kB Cached: 4276628 kB SwapCached: 785316 kB Active: 9038924 kB Inactive: 3902876 kB HighTotal: 0 kB HighFree: 0 kB LowTotal: 14371428 kB LowFree: 1207108 kB SwapTotal: 10223608 kB SwapFree: 6438320 kB Dirty: 627792 kB Writeback: 0 kB AnonPages: 7844560 kB Mapped: 49304 kB Slab: 146676 kB PageTables: 27480 kB NFS_Unstable: 0 kB Bounce: 0 kB CommitLimit: 17409320 kB Committed_AS: 16471488 kB VmallocTotal: 34359738367 kB VmallocUsed: 275852 kB VmallocChunk: 34359462007 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 Hugepagesize: 2048 kB 3) The application is a combination of MySQL, Heritrix (http://crawler.archive.org/ ) and a Tomcat based Java servlet to manage things.

    Read the article

  • What can cause an increase in inactive memory and how to reclaim it?

    - by Boaz
    I have heavy application running on a CentOS server and I'm seeing a strange memory behavior. Here is a snapshot of a munin graph: As you can see the amount of committed memory increases gradually causing the swap file to be use. What strikes me odd is that the amount of inactive memory keeps growing as well. It is my understanding that the inactive memory is actually memory freed up but not yet clean by the OS and put back in the free memory pool. It seems that running out of memory is acutally caused by this lack of clean up, but I may be wrong. Can you give some tips to find the cause of the problem and/or cause CentOS to reclaim the inactive memory? Thanks. Some extra info: 1) I have a tmpfs mounted on /tmp and the number of files stored there grows (but it is double the amount of the inactive memory). 2) cat /proc/meminfo (at a later stage than the image) gives: MemTotal: 14371428 kB MemFree: 1207108 kB Buffers: 35440 kB Cached: 4276628 kB SwapCached: 785316 kB Active: 9038924 kB Inactive: 3902876 kB HighTotal: 0 kB HighFree: 0 kB LowTotal: 14371428 kB LowFree: 1207108 kB SwapTotal: 10223608 kB SwapFree: 6438320 kB Dirty: 627792 kB Writeback: 0 kB AnonPages: 7844560 kB Mapped: 49304 kB Slab: 146676 kB PageTables: 27480 kB NFS_Unstable: 0 kB Bounce: 0 kB CommitLimit: 17409320 kB Committed_AS: 16471488 kB VmallocTotal: 34359738367 kB VmallocUsed: 275852 kB VmallocChunk: 34359462007 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 Hugepagesize: 2048 kB 3) The application is a combination of MySQL, Heritrix (http://crawler.archive.org/ ) and a Tomcat based Java servlet to manage things.

    Read the article

< Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >