Search Results

Search found 403 results on 17 pages for 'likewise'.

Page 16/17 | < Previous Page | 12 13 14 15 16 17  | Next Page >

  • Print driver installs failing

    - by Kasius
    All of the Windows 7 64-bit Enterprise machines in my organization are failing to install a good number of printer drivers that previously installed without issue. This only happens with printer drivers. And not with all printer drivers. Just some. Network drivers, video drivers, etc. have had no problems. Here is part of setupapi.dev.log for a Dymo LabelWriter printer driver that is failing to install: dvi: {Plug and Play Service: Device Install for USBPRINT\DYMOLABELWRITER_450_TURBO\6&538F51D&0&USB001} ump: Creating Install Process: DrvInst.exe 09:36:58.071 ndv: Infpath=C:\Windows\INF\oem0.inf ndv: DriverNodeName=dymo.inf:DYMO.NTamd64.6.0:LW_450_TURBO_VISTA:8.1.0.363:usbprint\dymolabelwriter_450_aa08 ndv: DriverStorepath=C:\Windows\System32\DriverStore\FileRepository\dymo.inf_amd64_neutral_3a631b118b7a5828\dymo.inf ndv: Building driver list from driver node strong name... dvi: Searching for hardware ID(s): dvi: usbprint\dymolabelwriter_450_aa08 dvi: dymolabelwriter_450_aa08 inf: Opened PNF: 'C:\Windows\System32\DriverStore\FileRepository\dymo.inf_amd64_neutral_3a631b118b7a5828\dymo.inf' ([strings]) dvi: Selected driver installs from section [LW_450_TURBO_VISTA] in 'c:\windows\system32\driverstore\filerepository\dymo.inf_amd64_neutral_3a631b118b7a5828\dymo.inf'. dvi: Class GUID of device changed to: {4d36e979-e325-11ce-bfc1-08002be10318}. dvi: Set selected driver complete. ndv: {Core Device Install} 09:36:58.133 inf: Opened INF: 'C:\Windows\INF\oem0.inf' ([strings]) inf: Saved PNF: 'C:\Windows\INF\oem0.PNF' (Language = 0409) dvi: {DIF_ALLOW_INSTALL} 09:36:58.164 dvi: Using exported function 'ClassInstall32' in module 'C:\Windows\system32\ntprint.dll'. dvi: Class installer == ntprint.dll,ClassInstall32 dvi: No CoInstallers found dvi: Class installer: Enter 09:36:58.164 dvi: Class installer: Exit dvi: Default installer: Enter 09:36:58.180 dvi: Default installer: Exit dvi: {DIF_ALLOW_INSTALL - exit(0xe000020e)} 09:36:58.180 ndv: Installing files... dvi: {DIF_INSTALLDEVICEFILES} 09:36:58.180 dvi: Class installer: Enter 09:36:58.180 inf: Opened INF: 'C:\Windows\System32\DriverStore\FileRepository\dymo.inf_amd64_neutral_3a631b118b7a5828\dymo.inf' ([strings]) inf: Opened INF: 'C:\Windows\System32\DriverStore\FileRepository\dymo.inf_amd64_neutral_3a631b118b7a5828\dymo.inf' ([strings]) !!! dvi: Class installer: failed(0x00000490)! !!! dvi: Error 1168: Element not found. dvi: {DIF_INSTALLDEVICEFILES - exit(0x00000490)} 09:37:22.063 ndv: Device install status=0x00000490 ndv: Performing device install final cleanup... ! ndv: Queueing up error report since device installation failed... ndv: {Core Device Install - exit(0x00000490)} 09:37:22.063 dvi: {DIF_DESTROYPRIVATEDATA} 09:37:22.063 dvi: Class installer: Enter 09:37:22.063 dvi: Class installer: Exit dvi: Default installer: Enter 09:37:22.063 dvi: Default installer: Exit dvi: {DIF_DESTROYPRIVATEDATA - exit(0xe000020e)} 09:37:22.063 ump: Server install process exited with code 0x00000490 09:37:22.063 ump: {Plug and Play Service: Device Install exit(00000490)} Notice these lines in particular: !!! dvi: Class installer: failed(0x00000490)! !!! dvi: Error 1168: Element not found. dvi: {DIF_INSTALLDEVICEFILES - exit(0x00000490)} 09:37:22.063 ndv: Device install status=0x00000490 From what I have read, the "Element not found" error should be accompanied by an event describing what element was not found. The error that appears in Device Manager is "The driver cannot be installed because it is either not digitally signed or not signed in the appropriate manner." It appears to be signed fine though. It has an accompanying .CAT file and worked previously. And when installing, the following messages are logged in setupapi.dev.log: sto: {DRIVERSTORE_IMPORT_NOTIFY_VALIDATE} 09:36:56.277 inf: Opened INF: 'C:\Windows\System32\DriverStore\Temp\{272e2305-961c-7942-9ede-966f01047043}\dymo.inf' ([strings]) sig: {_VERIFY_FILE_SIGNATURE} 09:36:56.292 sig: Key = dymo.inf sig: FilePath = C:\Windows\System32\DriverStore\Temp\{272e2305-961c-7942-9ede-966f01047043}\dymo.inf sig: Catalog = C:\Windows\System32\DriverStore\Temp\{272e2305-961c-7942-9ede-966f01047043}\DYMO.CAT sig: Success: File is signed in catalog. sig: {_VERIFY_FILE_SIGNATURE exit(0x00000000)} 09:36:56.355 sto: Validating driver package files against catalog 'DYMO.CAT'. sto: Driver package is valid. sto: {DRIVERSTORE_IMPORT_NOTIFY_VALIDATE exit(0x00000000)} 09:36:56.402 sto: Verified driver package signature: sto: Digital Signer Score = 0x0D000005 sto: Digital Signer Name = Microsoft Windows Hardware Compatibility Publisher Now here's where it gets strange. If I take it off the domain, it installs fine. But it doesn't seem to have anything to do with Group Policy. I moved the machine to an OU that blocks inheritance, ran a gpupdate, ran rsop.msc to verify, and tried again. And it still didn't work. Likewise, I removed a machine from the domain, manually set all of the domain Group Policy settings in gpedit.msc, and tried that way, and it worked fine. So it seems like the Group Policy settings are irrelevant. What other domain-related issue could be causing this though? Any ideas on what to try next would be greatly appreciated. I'm not sure where to go from here. Thanks!

    Read the article

  • CodePlex Daily Summary for Sunday, September 16, 2012

    CodePlex Daily Summary for Sunday, September 16, 2012Popular ReleasesVisual Studio Icon Patcher: VSIP-1.5.1: This fixes a bug in the 1.5 release where it would crash when no language packs were installed for VS2010.sheetengine - Isometric HTML5 JavaScript Display Engine: sheetengine v1.1.0: This release of sheetengine introduces major drawing optimizations. A background canvas is created with the full drawn scenery onto which only the changed parts are redrawn. For example a moving object will cause only its bounding box to be redrawn instead of the full scene. This background canvas is copied to the main canvas in each iteration. For this reason the size of the bounding box of every object needs to be defined and also the width and height of the background canvas. The example...VFPX: Desktop Alerts 1.0.2: This update for the Desktop Alerts contains changes to behavior for setting custom sounds for alerts. I have removed ALERTWAV.TXT from the project, and also removed DA_DEFAULTSOUND from the VFPALERT.H file. The AlertManager class and Alert class both have a "default" cSound of ADDBS(JUSTPATH(_VFP.ServerName))+"alert.wav" --- so, as long as you distribute a sound file with the file name "alert.wav" along with the EXE, that file will be used. You can set your own sound file globally by setti...MCEBuddy 2.x: MCEBuddy 2.2.15: Changelog for 2.2.15 (32bit and 64bit) 1. Added support for %originalfilepath% to get the source file full path. Used for custom commands only. 2. Added support for better parsing of Media Portal XML files to extract ShowName and Episode Name and download additional details from TVDB (like Season No, Episode No etc). 3. Added support for TVDB seriesID in metadata 4. Added support for eMail non blocking UI testCrashReporter.NET : Exception reporting library for C# and VB.NET: CrashReporter.NET 1.2: *Added html mail format which shows hierarchical exception report for better understanding.DotNetNuke Search Engine Sitemaps Provider: Version 02.00.00: New release of the Search Engine Sitemap Providers New version - not backwards compatible with 1.x versions New sandboxing to prevent exceptions in module providers interfering with main provider Now installable using the Host->Extensions page New sitemaps available for Active Forums and Ventrian Property Agent Now derived from DotNetNuke Provider base for better framework integration DotNetNuke minimum compatibility raised to DNN 5.2, .NET to 3.5PDF Viewer Web part: PDF Viewer Web Part: PDF Viewer Web PartMicrosoft Ajax Minifier: Microsoft Ajax Minifier 4.67: Fix issue #18629 - incorrectly handling null characters in string literals and not throwing an error when outside string literals. update for Issue #18600 - forgot to make the ///#DEBUG= directive also set a known-global for the given debug namespace. removed the kill-switch for disregarding preprocessor define-comments (///#IF and the like) and created a separate CodeSettings.IgnorePreprocessorDefines property for those who really need to turn that off. Some people had been setting -kil...MPC-BE: Media Player Classic BE 1.0.1.0 build 1122: MPC-BE is a free and open source audio and video player for Windows. MPC-BE is based on the original "Media Player Classic" project (Gabest) and "Media Player Classic Home Cinema" project (Casimir666), contains additional features and bug fixes. Supported Operating Systems: Windows XP SP2, Vista, 7 32bit/64bit System Requirements: An SSE capable CPU The latest DirectX 9.0c runtime (June 2010). Install it regardless of the operating system, they all need it. Web installer: http://www.micro...Preactor Object Model: Visual Studio Template .NET 3.5: Visual Studio Template with all the necessary files to get started with POM. You will still need to Get the Preactor.ObjectModel and Preactor.ObjectModleExtensions libraries from Nuget though. You will also need to sign with assembly with a strong name key.Lakana - WPF Framework: Lakana V2: Lakana V2 contains : - Lakana WPF Forms (with sample project) - Lakana WPF Navigation (with sample project)Microsoft SQL Server Product Samples: Database: OData QueryFeed workflow activity: The OData QueryFeed sample activity shows how to create a workflow activity that consumes an OData resource, and renders entity properties in a Microsoft Excel 2010 worksheet or Microsoft Word 2010 document. Using the sample QueryFeed activity, you can consume any OData resource. The sample activity uses LINQ to project OData metadata into activity designer expression items. By setting activity expressions, a fully qualified OData query string is constructed consisting of Resource, Filter, Or...YTNet: YTNet Version 1.0: YT Net Version 1.0 The first release of the YT Net library. This release supports: - Searching YouTube videos by title - Loading the different versions of a video, ordered by the itag value - Downloading videos The release is well tested witch a bunch of unit tests and two sample applications (A Console and a WPF application).F# 3.0 Sample Pack: FSharp 3.0 Sample Pack for Visual Studio 2012 RTM: F# 3.0 Sample Pack for Visual Studio 2012 RTMANPR MX: ANPR_MX Release 1: ANPR MX Release 1 Features: Correctly detects plate area. Provides potential values for the recognized plate. Allows images 800x600 and below.Cocktail: Cocktail v1.0.1: PrerequisitesVisual Studio 2010 with SP1 (any edition but Express) Optional: Silverlight 4 or 5 Note: Install Silverlight 4 Tools and then the Silverlight 4 Toolkit. Likewise for Silverlight 5 Tools and the Silverlight 5 Toolkit DevForce Express 6.1.8.1 or greater Included in the Cocktail download, DevForce Express requires registration) Important: Install DevForce after all other components. Download contentsDebug and release assemblies API documentation Source code Licens...weber: weber v0.1: first release, creates a basic browser shell and allows user to navigate to web sites.Arduino for Visual Studio: Arduino 1.x for Visual Studio 2012, 2010 and 2008: Register for the forum for more news and updates Version 1209.15 is beta and resolves a number of issues in Visual Studio 2012 and minor debugger fixes for all vs versions. After you have tested a working installation, if you would like to beta the debug tool then email beta at visualmicro.com. Version 1208.19 (click the downloads tab) is considered stable for visual studio 2010 and 2008. Key Features of 1209.10 Support for Visual Studio 2012 (.NET 4.5) Debug tools beta team can re-e...AcDown????? - AcDown Downloader Framework: AcDown????? v4.1: ??●AcDown??????????、??、??、???????。????,????,?????????????????????????。???????????Acfun、????(Bilibili)、??、??、YouTube、??、???、??????、SF????、????????????。 ●??????AcPlay?????,??????、????????????????。 ● AcDown??????????????????,????????????????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7/8 ???? 32??64? ???Linux ????(1)????????Windows XP???,?????????.NET Framework 2.0???(x86),?????"?????????"??? (2)???????????Linux???,????????Mono?? ??...Move Mouse: Move Mouse 2.5.2: FIXED - Minor fixes and improvements.New ProjectsBadoev1Lab: ???? ?? ??????? ?????????Banking.NET: Banking.NET is a .NET 4 based Home - Banking Application.ColdFire Studio Macro Assembler and Simulator: Integrated ColdFire MCUs macro assembler and simulator. Write programs in ColdFire assembly or load binary code and test them in a simulator. Eve Galaxy Map: EGM provides an API for the host application to visualize data across a 3D rendering of the Eve Online universe, similar to the in-game Star Map.Hamaazan (Rated): hamaazan website + robotHBCI.NET: HBCI.NET is a .NET 3.5 Library, which communicates with your bank account via HBCI 2.2, FinTS 3.0 and 4.0Http Explorer: A GUI for crafting and submitting http requests and viewing the resulting response.LINQ for C++: LINQ for C++ is an attempt to bring LINQ-like list manipulation to C++11.mroftalpdxs: I WANT TO TEST THE POSSILITY OF PUBLICATTION OF THE DOCUMMMENET.my-secondlib: This is Win 8 Test Code RepoNET Library to interface with Zephyr Bluetooth Heart Rate Monitor: .NET Library for interfacing to Zephyr Heart Rate MonitorPkuBookStore: PkuBookStoreSmallTune: SmallTune is an audioplayer with a long tradition, being completely rewritten and redesigned by now.Taylor's Professional Services: CIS470 Team B Senior ProjectTFS Test Case Review: Provides a means to review Test Cases created in Microsoft Test Manager in a clean, easy-to-read interface.Visual Studio 2012 all caps menu option: A Visual Studio 2012 add-in that allows the user to turn all caps in menu titles on and off in the Visual Studio options dialog. XNA Map Editor: This is a Map Editor that is still in development. It's a map editor for a 2D Platformer. Grid tile placement,loading tiles and objects Made with XNA and C#.

    Read the article

  • OpenVPN - client-to-client traffic working in one direction but not the other

    - by Pawz
    I have the following VPN configuration: +------------+ +------------+ +------------+ | outpost |----------------| kino |----------------| guchuko | +------------+ +------------+ +------------+ OS: FreeBSD 6.2 OS: Gentoo 2.6.32 OS: Gentoo 2.6.33.3 Keyname: client3 Keyname: server Keyname: client1 eth0: 10.0.1.254 eth0: 203.x.x.x eth0: 192.168.0.6 tun0: 192.168.150.18 tun0: 192.168.150.1 tun0: 192.168.150.10 P-t-P: 192.166.150.17 P-t-P: 192.168.150.2 P-t-P: 192.168.150.9 Kino is the server and has client-to-client enabled. I am using "fragment 1400" and "mssfix" on all three machines. An mtu-test on both connections is successful. All three machines have ip forwarding enabled, by this on the gentoo boxes: net.ipv4.conf.all.forwarding = 1 And this on the FreeBSD box: net.inet.ip.forwarding: 1 In the server's "ccd" directory is the following files: client1: iroute 192.168.0.0 255.255.255.0 client3: iroute 10.0.1.0 255.255.255.0 The server config has these routes configured: push "route 192.168.0.0 255.255.255.0" push "route 10.0.1.0 255.255.255.0" route 192.168.0.0 255.255.255.0 route 10.0.1.0 255.255.255.0 Kino's routing table looks like this: 192.168.150.0 192.168.150.2 255.255.255.0 UG 0 0 0 tun0 10.0.1.0 192.168.150.2 255.255.255.0 UG 0 0 0 tun0 192.168.0.0 192.168.150.2 255.255.255.0 UG 0 0 0 tun0 192.168.150.2 0.0.0.0 255.255.255.255 UH 0 0 0 tun0 Outpost's like this: 192.168.150 192.168.150.17 UGS 0 17 tun0 192.168.0 192.168.150.17 UGS 0 2 tun0 192.168.150.17 192.168.150.18 UH 3 0 tun0 And Guchuko's like this: 192.168.150.0 192.168.150.9 255.255.255.0 UG 0 0 0 tun0 10.0.1.0 192.168.150.9 255.255.255.0 UG 0 0 0 tun0 192.168.150.9 0.0.0.0 255.255.255.255 UH 0 0 0 tun0 Now, the tests. Pings from Guchuko to Outpost's LAN IP work OK, as does the reverse - pings from Outpost to Guchuko's LAN IP. However... Pings from Outpost, to a machine on Guchuko's LAN work fine: .(( root@outpost )). (( 06:39 PM )) :: ~ :: # ping 192.168.0.3 PING 192.168.0.3 (192.168.0.3): 56 data bytes 64 bytes from 192.168.0.3: icmp_seq=0 ttl=63 time=462.641 ms 64 bytes from 192.168.0.3: icmp_seq=1 ttl=63 time=557.909 ms But a ping from Guchuko, to a machine on Outpost's LAN does not: .(( root@guchuko )). (( 06:43 PM )) :: ~ :: # ping 10.0.1.253 PING 10.0.1.253 (10.0.1.253) 56(84) bytes of data. --- 10.0.1.253 ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 2000ms Guchuko's tcpdump of tun0 shows: 18:46:27.716931 IP 192.168.150.10 > 10.0.1.253: ICMP echo request, id 63009, seq 1, length 64 18:46:28.716715 IP 192.168.150.10 > 10.0.1.253: ICMP echo request, id 63009, seq 2, length 64 18:46:29.716714 IP 192.168.150.10 > 10.0.1.253: ICMP echo request, id 63009, seq 3, length 64 Outpost's tcpdump on tun0 shows: 18:44:00.333341 IP 192.168.150.10 > 10.0.1.253: ICMP echo request, id 63009, seq 3, length 64 18:44:01.334073 IP 192.168.150.10 > 10.0.1.253: ICMP echo request, id 63009, seq 4, length 64 18:44:02.331849 IP 192.168.150.10 > 10.0.1.253: ICMP echo request, id 63009, seq 5, length 64 So Outpost is receiving the ICMP request destined for the machine on it's subnet, but appears not be forwarding it. Outpost has gateway_enable="YES" in its rc.conf which correctly sets net.inet.ip.forwarding to 1 as mentioned earlier. As far as I know, that's all that's required to make a FreeBSD box forward packets between interfaces. Is there something else I could be forgetting ? FWIW, pinging 10.0.1.253 from Kino has the same result - the traffic does not get forwarded. UPDATE: I've found that I can only ping certain IP's on Guchuko's LAN from Outpost. From Outpost I can ping 192.168.0.3 and 192.168.0.2, but 192.168.99 and 192.168.0.4 are unreachable. The same tcpdump behavior can be seen. I think this means the problem can't be due to ipforwarding or routing, because Outpost can reach SOME hosts on Guchuko's LAN but not others and likewise, Guchuko can reach two hosts on Outpost's LAN, but not others. This baffles me.

    Read the article

  • Linking LLVM JIT Code to Static LLVM Libraries?

    - by inflector
    I'm in the process of implementing a cross-platform (Mac OS X, Windows, and Linux) application which will do lots of CPU intensive analysis of financial data. The bulk of the analysis engine will be written in C++ for speed reasons, with a user-accessible scripting engine interfacing with the C++ testing engine. I want to write several scripting front-ends over time to emulate other popular software with existing large user bases. The first front will be a VisualBasic-like scripting language. I'm thinking that LLVM would be perfect for my needs. Performance is very important because of the sheer amount of data; it can take hours or days to run a single run of tests to get an answer. I believe that using LLVM will also allow me to use a single back-end solution while I implement different front-ends for different flavors of the scripting language over time. The testing engine itself will be separated from the interface and testing will even take place in a separate process with progress and results being reported to the testing management interface. Tests will consist of scripting code integrated with the testing engine code. In a previous implementation of a similar commercial testing system I wrote, I built a fast interpreter which easily interfaced with the testing library because it was written in C++ and linked directly to the testing engine library. Callbacks from scripting code to testing library objects involved translating between the formats with significant overhead. I'm imagining that with LLVM, I could implement the callbacks into C++ directly so that I could make the scripting code work almost as if it had been written in C++. Likewise, if all the code was compiled to LLVM byte-code format, it seems like the LLVM optimizers could optimize across the boundaries between the scripting language and the testing engine code that was written in C++. I don't want to have to compile the testing engine every time. Ideally, I'd like to JIT compile only the scripting code. For small tests, I'd skip some optimization passes, while for large tests, I'd perform full optimizations during the link. So is this possible? Can I precompile the testing engine to a .o object file or .a library file and then link in the scripting code using the JIT? Finally, ideally, I'd like to have the scripting code implement specific methods as subclasses for a specific C++ class. So the C++ testing engine would only see C++ objects while the JIT setup code compiled scripting code that implemented some of the methods for the objects. It seems that if I used the right name mangling algorithm it would be relatively easy to set up the LLVM generation for the scripting language to look like a C++ method call which could then be linked into the testing engine. Thus the linking stage would go in two directions, calls from the scripting language into the testing engine objects to retrieve pricing information and test state information and calls from the testing engine of methods of some particular C++ objects where the code was supplied not from C++ but from the scripting language. In summary: 1) Can I link in precompiled (either .bc, .o, or .a) files as part of the JIT compilation, code-generation process? 2) Can I link in code using that the process in 1) above in such a way that I am able to create code that acts as if it was all written in C++?

    Read the article

  • Recommended integration mechanism for bi-directional, authenticated, encrypted connection in C clien

    - by rcampbell
    Let me first give an example. Imagine you have a single server running a JVM application. This server keeps a collection of N equations, once for each client: Client #1: 2x Client #2: 1 + y Client #3: z/4 This server includes an HTTP interface so that random visitors can type https://www.acme.com/client/3 int their browsers and see the latest evaluated result of z/4. The tricky part is that either the client or the server may change the variable value at any time, informing the other party immediately. More specifically, Client #3 - a C app - can initially tell the server that z = 20. An hour later that same client informs the server that z = 23. Likewise the server can later inform the client that z = 28. As caf pointed out in the comments, there can be a race condition when values are changed by the client and server simultaneously. The solution would be for both client and server to send the operation performed in their message, which would need to be executed by the other party. To keep things simple, let's limit the operations to (commutative) addition, allowing us to disregard message ordering. For example, the client seeds the server with z = 20: server:z=20, client:z=20 server sends {+3} message (so z=23 locally) & client sends {-2} message (so z=18 locally) at the exact same time server receives {-2} message at some point, adds to his local copy so z=21 client receives {+3} message at some point, adds to his local copy so z=21 As long as all messages are eventually evaluated by both parties, the correct answer will eventually be given to the users of the client and server since we limited ourselves to commutative operations (addition of 3 and -2). This does mean that both client and server can be returning incorrect answers in the time it takes for messages to be exchanged and processed. While undesirable, I believe this is unavoidable. Some possible implementations of this idea include: Open an encrypted, always on TCP socket connection for communication Pros: no additional infrastructure needed, client and server know immediately if there is a problem (disconnect) with the other party, fairly straightforward (except the the encryption), native support from both JVM and C platforms Cons: pretty low-level so you end up writing a lot yourself (protocol, delivery verification, retry-on-failure logic), probably have a lot of firewall headaches during client app installation Asynchronous messaging (ex: ActiveMQ) Pros: transactional, both C & Java integration, free up the client and server apps from needing retry logic or delivery verification, pretty straightforward encryption, easy extensibility via message filters/routers/etc Cons: need additional infrastructure (message server) which must never fail, Database or file system as asynchronous integration point Same pros/cons as above but messier RESTful Web Service Pros: simple, possible reuse of the server's existing REST API, SSL figures out the encryption problem for you (maybe use RSA key a la GitHub for authentication?) Cons: Client now needs to run a C HTTP REST server w/SSL, client and server need retry logic. Axis2 has both a Java and C version, but you may be limited to SOAP. What other techniques should I be evaluating? What real world experiences have you had with these mechanisms? Which do you recommend for this problem and why?

    Read the article

  • multple inner joins 3 or more crashes mysql server 5.1.30 opensolaris

    - by user331849
    when doing simple query on 4 inner joined tables, the server crashes with the output below appearing in the the mysql .err file. eg. select * from table1 inner join table2 on table1.a = table2.a and table1.b = table2.b inner join table3 on table2.a = table3.a and table2.c = table3.c inner join table4 on table3.a = table4.a and table3.d = table4.d If i remove one of the tables it executes fine. Likewise if I remove a different table, it executes fine. Though all tables have been checked anyway, this would suggest that it is not a problem specifically with one of the tables. mysql.err trace: 100503 18:13:19 - mysqld got signal 11 ; This could be because you hit a bug. It is also possible that this binary or one of the libraries it was linked against is corrupt, improperly built, or misconfigured. This error can also be caused by malfunctioning hardware. We will try our best to scrape up some info that will hopefully help diagnose the problem, but since we have already crashed, something is definitely wrong and this may fail. key_buffer_size=1572864000 read_buffer_size=2097152 max_used_connections=11 max_threads=151 threads_connected=10 It is possible that mysqld could use up to key_buffer_size + (read_buffer_size + sort_buffer_size)*max_threads = 2155437 K bytes of memory Hope that's ok; if not, decrease some variables in the equation. thd: 0x72febda8 Attempting backtrace. You can use the following information to find out where mysqld died. If you see no messages after this, something went terribly wrong... stack_bottom = fe07efb0 thread_stack 0x40000 Trying to get some variables. Some pointers may be invalid and cause the dump to abort... thd-query at be1021f0 = explain select * from business inner join timetable on business.id = timetable.business_id inner join timetableentry on timetable.business_id = timetableentry.business_id and timetable.kid = timetableentry.parent inner join staff on timetable.business_id = staff.business_id and timetable.staf f_person = staff.kid where business.id = '3050bb04fda41df64a9c1c149150026c' thd-thread_id=9 thd-killed=NOT_KILLED The manual page at http://dev.mysql.com/doc/mysql/en/crashing.html contains information that should help you find out what is causing the crash. 100503 18:13:19 mysqld_safe mysqld restarted 100503 18:13:20 InnoDB: Failed to set DIRECTIO_ON on file ./ibdata1: OPEN: Inap propriate ioctl for device, continuing anyway 100503 18:13:20 InnoDB: Failed to set DIRECTIO_ON on file ./ibdata1: OPEN: Inap propriate ioctl for device, continuing anyway InnoDB: The log sequence number in ibdata files does not match InnoDB: the log sequence number in the ib_logfiles! 100503 18:13:20 InnoDB: Database was not shut down normally! InnoDB: Starting crash recovery. InnoDB: Reading tablespace information from the .ibd files... InnoDB: Restoring possible half-written data pages from the doublewrite InnoDB: buffer... InnoDB: Last MySQL binlog file position 0 2731, file name ./mysql-bin.000093 100503 18:13:20 InnoDB: Started; log sequence number 0 2650338426 100503 18:13:20 [Note] Recovering after a crash using mysql-bin 100503 18:13:20 [Note] Starting crash recovery... 100503 18:13:20 [Note] Crash recovery finished. This on opensolaris SunOS 5.11 snv_111b i86pc i386 i86pc Mysql 5.1.30 Here is a snippet from the my.cnf file: key_buffer = 1500M max_allowed_packet = 1M thread_stack = 256K thread_cache_size = 8 sort_buffer_size = 2M read_buffer_size = 2M read_rnd_buffer_size = 8M table_cache = 512 tmp_table_size = 400M max_heap_table_size = 64M query_cache_limit = 20M query_cache_size = 200M Is this a bug or a configuration issue?

    Read the article

  • Is it possible to shuffle a 2D matrix while preserving row AND column frequencies?

    - by j_random_hacker
    Suppose I have a 2D array like the following: GACTG AGATA TCCGA Each array element is taken from a small finite set (in my case, DNA nucleotides -- {A, C, G, T}). I would like to randomly shuffle this array somehow while preserving both row and column nucleotide frequencies. Is this possible? Can it be done efficiently? [EDIT]: By this I mean I want to produce a new matrix where each row has the same number of As, Cs, Gs and Ts as the corresponding row of the original matrix, and where each column has the same number of As, Cs, Gs and Ts as the corresponding column of the original matrix. Permuting the rows or columns of the original matrix will not achieve this in general. (E.g. for the example above, the top row has 2 Gs, and 1 each of A, C and T; if this row was swapped with row 2, the top row in the resulting matrix would have 3 As, 1 G and 1 T.) It's simple enough to preserve just column frequencies by shuffling a column at a time, and likewise for rows. But doing this will in general alter the frequencies of the other kind. My thoughts so far: If it's possible to pick 2 rows and 2 columns so that the 4 elements at the corners of this rectangle have the pattern XY YX for some pair of distinct elements X and Y, then replacing these 4 elements with YX XY will maintain both row and column frequencies. In the example at the top, this can be done for (at least) rows 1 and 2 and columns 2 and 5 (whose corners give the 2x2 matrix AG;GA), and for rows 1 and 3 and columns 1 and 4 (whose corners give GT;TG). Clearly this could be repeated a number of times to produce some level of randomisation. Generalising a bit, any "subrectangle" induced by a subset of rows and a subset of columns, in which the frequencies of all rows are the same and the frequencies of all columns are the same, can have both its rows and columns permuted to produce a valid complete rectangle. (Of these, only those subrectangles in which at least 1 element is changed are actually interesting.) Big questions: Are all valid complete matrices reachable by a series of such "subrectangle rearrangements"? I suspect the answer is yes. Are all valid subrectangle rearrangements decomposable into a series of 2x2 swaps? I suspect the answer is no, but I hope it's yes, since that would seem to make it easier to come up with an efficient algorithm. Can some or all of the valid rearrangements be computed efficiently? This question addresses a special case in which the set of possible elements is {0, 1}. The solutions people have come up with there are similar to what I have come up with myself, and are probably usable, but not ideal as they require an arbitrary amount of backtracking to work correctly. Also I'm concerned that only 2x2 swaps are considered. Finally, I would ideally like a solution that can be proven to select a matrix uniformly at random from the set of all matrices having identical row frequencies and column frequencies to the original. I know, I'm asking for a lot :)

    Read the article

  • The Art of Productivity

    - by dwahlin
    Getting things done has always been a challenge regardless of gender, age, race, skill, or job position. No matter how hard some people try, they end up procrastinating tasks until the last minute. Some people simply focus better when they know they’re out of time and can’t procrastinate any longer. How many times have you put off working on a term paper in school until the very last minute? With only a few hours left your mental energy and focus seem to kick in to high gear especially as you realize that you either get the paper done now or risk failing. It’s amazing how a little pressure can turn into a motivator and allow our minds to focus on a given task. Some people seem to specialize in procrastinating just about everything they do while others tend to be the “doers” who get a lot done and ultimately rise up the ladder at work. What’s the difference between these types of people? Is it pure laziness or are other factors at play? I think that some people are certainly more motivated than others, but I also think a lot of it is based on the process that “doers” tend to follow - whether knowingly or unknowingly. While I’ve certainly fought battles with procrastination, I’ve always had a knack for being able to get a lot done in a relatively short amount of time. I think a lot of my “get it done” attitude goes back to the the strong work ethic my parents instilled in me at a young age. I remember my dad saying, “You need to learn to work hard!” when I was around 5 years old. I remember that moment specifically because I was on a tractor with him the first time I heard it while he was trying to move some large rocks into a pile. The tractor was big but so were the rocks and my dad had to balance the tractor perfectly so that it didn’t tip forward too far. It was challenging work and somewhat tedious but my dad finished the task and taught me a few important lessons along the way including persistence, the importance of having a skill, and getting the job done right without skimping along the way. In this post I’m going to list a few of the techniques and processes I follow that I hope may be beneficial to others. I blogged about the general concept back in 2009 but thought I’d share some updated information and lessons learned since then. Most of the ideas that follow came from learning and refining my daily work process over the years. However, since most of the ideas are common sense (at least in my opinion), I suspect they can be found in other productivity processes that are out there. Let’s start off with one of the most important yet simple tips: Start Each Day with a List. Start Each Day with a List What are you planning to get done today? Do you keep track of everything in your head or rely on your calendar? While most of us think that we’re pretty good at managing “to do” lists strictly in our head you might be surprised at how affective writing out lists can be. By writing out tasks you’re forced to focus on the most important tasks to accomplish that day, commit yourself to those tasks, and have an easy way to track what was supposed to get done and what actually got done. Start every morning by making a list of specific tasks that you want to accomplish throughout the day. I’ll even go so far as to fill in times when I’d like to work on tasks if I have a lot of meetings or other events tying up my calendar on a given day. I’m not a big fan of using paper since I type a lot faster than I write (plus I write like a 3rd grader according to my wife), so I use the Sticky Notes feature available in Windows. Here’s an example of yesterday’s sticky note: What do you add to your list? That’s the subject of the next tip. Focus on Small Tasks It’s no secret that focusing on small, manageable tasks is more effective than trying to focus on large and more vague tasks. When you make your list each morning only add tasks that you can accomplish within a given time period. For example, if I only have 30 minutes blocked out to work on an article I don’t list “Write Article”. If I do that I’ll end up wasting 30 minutes stressing about how I’m going to get the article done in 30 minutes and ultimately get nothing done. Instead, I’ll list something like “Write Introductory Paragraphs for Article”. The next day I may add, “Write first section of article” or something that’s small and manageable – something I’m confident that I can get done. You’ll find that once you’ve knocked out several smaller tasks it’s easy to continue completing others since you want to keep the momentum going. In addition to keeping my tasks focused and small, I also make a conscious effort to limit my list to 4 or 5 tasks initially. I’ve found that if I list more than 5 tasks I feel a bit overwhelmed which hurts my productivity. It’s easy to add additional tasks as you complete others and you get the added benefit of that confidence boost of knowing that you’re being productive and getting things done as you remove tasks and add others. Getting Started is the Hardest (Yet Easiest) Part I’ve always found that getting started is the hardest part and one of the biggest contributors to procrastination. Getting started working on tasks is a lot like getting a large rock pushed to the bottom of a hill. It’s difficult to get the rock rolling at first, but once you manage to get it rocking some it’s really easy to get it rolling on its way to the bottom. As an example, I’ve written 100s of articles for technical magazines over the years and have really struggled with the initial introductory paragraphs. Keep in mind that these are the paragraphs that don’t really add that much value (in my opinion anyway). They introduce the reader to the subject matter and nothing more. What a waste of time for me to sit there stressing about how to start the article. On more than one occasion I’ve spent more than an hour trying to come up with 2-3 paragraphs of text.  Talk about a productivity killer! Whether you’re struggling with a writing task, some code for a project, an email, or other tasks, jumping in without thinking too much is the best way to get started I’ve found. I’m not saying that you shouldn’t have an overall plan when jumping into a task, but on some occasions you’ll find that if you simply jump into the task and stop worrying about doing everything perfectly that things will flow more smoothly. For my introductory paragraph problem I give myself 5 minutes to write out some general concepts about what I know the article will cover and then spend another 10-15 minutes going back and refining that information. That way I actually have some ideas to work with rather than a blank sheet of paper. If I still find myself struggling I’ll write the rest of the article first and then circle back to the introductory paragraphs once I’m done. To sum this tip up: Jump into a task without thinking too hard about it. It’s better to to get the rock at the top of the hill rocking some than doing nothing at all. You can always go back and refine your work.   Learn a Productivity Technique and Stick to It There are a lot of different productivity programs and seminars out there being sold by companies. I’ve always laughed at how much money people spend on some of these motivational programs/seminars because I think that being productive isn’t that hard if you create a re-useable set of steps and processes to follow. That’s not to say that some of these programs/seminars aren’t worth the money of course because I know they’ve definitely benefited some people that have a hard time getting things done and staying focused. One of the best productivity techniques I’ve ever learned is called the “Pomodoro Technique” and it’s completely free. This technique is an extremely simple way to manage your time without having to remember a bunch of steps, color coding mechanisms, or other processes. The technique was originally developed by Francesco Cirillo in the 80s and can be implemented with a simple timer. In a nutshell here’s how the technique works: Pick a task to work on Set the timer to 25 minutes and work on the task Once the timer rings record your time Take a 5 minute break Repeat the process Here’s why the technique works well for me: It forces me to focus on a single task for 25 minutes. In the past I had no time goal in mind and just worked aimlessly on a task until I got interrupted or bored. 25 minutes is a small enough chunk of time for me to stay focused. Any distractions that may come up have to wait until after the timer goes off. If the distraction is really important then I stop the timer and record my time up to that point. When the timer is running I act as if I only have 25 minutes total for the task (like you’re down to the last 25 minutes before turning in your term paper….frantically working to get it done) which helps me stay focused and turns into a “beat the clock” type of game. It’s actually kind of fun if you treat it that way and really helps me focus on a the task at hand. I automatically know how much time I’m spending on a given task (more on this later) by using this technique. I know that I have 5 minutes after each pomodoro (the 25 minute sprint) to waste on anything I’d like including visiting a website, stepping away from the computer, etc. which also helps me stay focused when the 25 minute timer is counting down. I use this technique so much that I decided to build a program for Windows 8 called Pomodoro Focus (I plan to blog about how it was built in a later post). It’s a Windows Store application that allows people to track tasks, productive time spent on tasks, interruption time experienced while working on a given task, and the number of pomodoros completed. If a time estimate is given when the task is initially created, Pomodoro Focus will also show the task completion percentage. I like it because it allows me to track my tasks, time spent on tasks (very useful in the consulting world), and even how much time I wasted on tasks (pressing the pause button while working on a task starts the interruption timer). I recently added a new feature that charts productive and interruption time for tasks since I wanted to see how productive I was from week to week and month to month. A few screenshots from the Pomodoro Focus app are shown next, I had a lot of fun building it and use it myself to as I work on tasks.   There are certainly many other productivity techniques and processes out there (and a slew of books describing them), but the Pomodoro Technique has been the simplest and most effective technique I’ve ever come across for staying focused and getting things done.   Persistence is Key Getting things done is great but one of the biggest lessons I’ve learned in life is that persistence is key especially when you’re trying to get something done that at times seems insurmountable. Small tasks ultimately lead to larger tasks getting accomplished, however, it’s not all roses along the way as some of the smaller tasks may come with their own share of bumps and bruises that lead to discouragement about the end goal and whether or not it is worth achieving at all. I’ve been on several long-term projects over my career as a software developer (I have one personal project going right now that fits well here) and found that repeating, “Persistence is the key!” over and over to myself really helps. Not every project turns out to be successful, but if you don’t show persistence through the hard times you’ll never know if you succeeded or not. Likewise, if you don’t persistently stick to the process of creating a daily list, follow a productivity process, etc. then the odds of consistently staying productive aren’t good.   Track Your Time How much time do you actually spend working on various tasks? If you don’t currently track time spent answering emails, on phone calls, and working on various tasks then you might be surprised to find out that a task that you thought was going to take you 30 minutes ultimately ended up taking 2 hours. If you don’t track the time you spend working on tasks how can you expect to learn from your mistakes, optimize your time better, and become more productive? That’s another reason why I like the Pomodoro Technique – it makes it easy to stay focused on tasks while also tracking how much time I’m working on a given task.   Eliminate Distractions I blogged about this final tip several years ago but wanted to bring it up again. If you want to be productive (and ultimately successful at whatever you’re doing) then you can’t waste a lot of time playing games or on Twitter, Facebook, or other time sucking websites. If you see an article you’re interested in that has no relation at all to the tasks you’re trying to accomplish then bookmark it and read it when you have some spare time (such as during a pomodoro break). Fighting the temptation to check your friends’ status updates on Facebook? Resist the urge and realize how much those types of activities are hurting your productivity and taking away from your focus. I’ll admit that eliminating distractions is still tough for me personally and something I have to constantly battle. But, I’ve made a conscious decision to cut back on my visits and updates to Facebook, Twitter, Google+ and other sites. Sure, my Klout score has suffered as a result lately, but does anyone actually care about those types of scores aside from your online “friends” (few of whom you’ve actually met in person)? :-) Ultimately it comes down to self-discipline and how badly you want to be productive and successful in your career, life goals, hobbies, or whatever you’re working on. Rather than having your homepage take you to a time wasting news site, game site, social site, picture site, or others, how about adding something like the following as your homepage? Every time your browser opens you’ll see a personal message which helps keep you on the right track. You can download my ubber-sophisticated homepage here if interested. Summary Is there a single set of steps that if followed can ultimately lead to productivity? I don’t think so since one size has never fit all. Every person is different, works in their own unique way, and has their own set of motivators, distractions, and more. While I certainly don’t consider myself to be an expert on the subject of productivity, I do think that if you learn what steps work best for you and gradually refine them over time that you can come up with a personal productivity process that can serve you well. Productivity is definitely an “art” that anyone can learn with a little practice and persistence. You’ve seen some of the steps that I personally like to follow and I hope you find some of them useful in boosting your productivity. If you have others you use please leave a comment. I’m always looking for ways to improve.

    Read the article

  • Sorting Algorithms

    - by MarkPearl
    General Every time I go back to university I find myself wading through sorting algorithms and their implementation in C++. Up to now I haven’t really appreciated their true value. However as I discovered this last week with Dictionaries in C# – having a knowledge of some basic programming principles can greatly improve the performance of a system and make one think twice about how to tackle a problem. I’m going to cover briefly in this post the following: Selection Sort Insertion Sort Shellsort Quicksort Mergesort Heapsort (not complete) Selection Sort Array based selection sort is a simple approach to sorting an unsorted array. Simply put, it repeats two basic steps to achieve a sorted collection. It starts with a collection of data and repeatedly parses it, each time sorting out one element and reducing the size of the next iteration of parsed data by one. So the first iteration would go something like this… Go through the entire array of data and find the lowest value Place the value at the front of the array The second iteration would go something like this… Go through the array from position two (position one has already been sorted with the smallest value) and find the next lowest value in the array. Place the value at the second position in the array This process would be completed until the entire array had been sorted. A positive about selection sort is that it does not make many item movements. In fact, in a worst case scenario every items is only moved once. Selection sort is however a comparison intensive sort. If you had 10 items in a collection, just to parse the collection you would have 10+9+8+7+6+5+4+3+2=54 comparisons to sort regardless of how sorted the collection was to start with. If you think about it, if you applied selection sort to a collection already sorted, you would still perform relatively the same number of iterations as if it was not sorted at all. Many of the following algorithms try and reduce the number of comparisons if the list is already sorted – leaving one with a best case and worst case scenario for comparisons. Likewise different approaches have different levels of item movement. Depending on what is more expensive, one may give priority to one approach compared to another based on what is more expensive, a comparison or a item move. Insertion Sort Insertion sort tries to reduce the number of key comparisons it performs compared to selection sort by not “doing anything” if things are sorted. Assume you had an collection of numbers in the following order… 10 18 25 30 23 17 45 35 There are 8 elements in the list. If we were to start at the front of the list – 10 18 25 & 30 are already sorted. Element 5 (23) however is smaller than element 4 (30) and so needs to be repositioned. We do this by copying the value at element 5 to a temporary holder, and then begin shifting the elements before it up one. So… Element 5 would be copied to a temporary holder 10 18 25 30 23 17 45 35 – T 23 Element 4 would shift to Element 5 10 18 25 30 30 17 45 35 – T 23 Element 3 would shift to Element 4 10 18 25 25 30 17 45 35 – T 23 Element 2 (18) is smaller than the temporary holder so we put the temporary holder value into Element 3. 10 18 23 25 30 17 45 35 – T 23   We now have a sorted list up to element 6. And so we would repeat the same process by moving element 6 to a temporary value and then shifting everything up by one from element 2 to element 5. As you can see, one major setback for this technique is the shifting values up one – this is because up to now we have been considering the collection to be an array. If however the collection was a linked list, we would not need to shift values up, but merely remove the link from the unsorted value and “reinsert” it in a sorted position. Which would reduce the number of transactions performed on the collection. So.. Insertion sort seems to perform better than selection sort – however an implementation is slightly more complicated. This is typical with most sorting algorithms – generally, greater performance leads to greater complexity. Also, insertion sort performs better if a collection of data is already sorted. If for instance you were handed a sorted collection of size n, then only n number of comparisons would need to be performed to verify that it is sorted. It’s important to note that insertion sort (array based) performs a number item moves – every time an item is “out of place” several items before it get shifted up. Shellsort – Diminishing Increment Sort So up to now we have covered Selection Sort & Insertion Sort. Selection Sort makes many comparisons and insertion sort (with an array) has the potential of making many item movements. Shellsort is an approach that takes the normal insertion sort and tries to reduce the number of item movements. In Shellsort, elements in a collection are viewed as sub-collections of a particular size. Each sub-collection is sorted so that the elements that are far apart move closer to their final position. Suppose we had a collection of 15 elements… 10 20 15 45 36 48 7 60 18 50 2 19 43 30 55 First we may view the collection as 7 sub-collections and sort each sublist, lets say at intervals of 7 10 60 55 – 20 18 – 15 50 – 45 2 – 36 19 – 48 43 – 7 30 10 55 60 – 18 20 – 15 50 – 2 45 – 19 36 – 43 48 – 7 30 (Sorted) We then sort each sublist at a smaller inter – lets say 4 10 55 60 18 – 20 15 50 2 – 45 19 36 43 – 48 7 30 10 18 55 60 – 2 15 20 50 – 19 36 43 45 – 7 30 48 (Sorted) We then sort elements at a distance of 1 (i.e. we apply a normal insertion sort) 10 18 55 60 2 15 20 50 19 36 43 45 7 30 48 2 7 10 15 18 19 20 30 36 43 45 48 50 55 (Sorted) The important thing with shellsort is deciding on the increment sequence of each sub-collection. From what I can tell, there isn’t any definitive method and depending on the order of your elements, different increment sequences may perform better than others. There are however certain increment sequences that you may want to avoid. An even based increment sequence (e.g. 2 4 8 16 32 …) should typically be avoided because it does not allow for even elements to be compared with odd elements until the final sort phase – which in a way would negate many of the benefits of using sub-collections. The performance on the number of comparisons and item movements of Shellsort is hard to determine, however it is considered to be considerably better than the normal insertion sort. Quicksort Quicksort uses a divide and conquer approach to sort a collection of items. The collection is divided into two sub-collections – and the two sub-collections are sorted and combined into one list in such a way that the combined list is sorted. The algorithm is in general pseudo code below… Divide the collection into two sub-collections Quicksort the lower sub-collection Quicksort the upper sub-collection Combine the lower & upper sub-collection together As hinted at above, quicksort uses recursion in its implementation. The real trick with quicksort is to get the lower and upper sub-collections to be of equal size. The size of a sub-collection is determined by what value the pivot is. Once a pivot is determined, one would partition to sub-collections and then repeat the process on each sub collection until you reach the base case. With quicksort, the work is done when dividing the sub-collections into lower & upper collections. The actual combining of the lower & upper sub-collections at the end is relatively simple since every element in the lower sub-collection is smaller than the smallest element in the upper sub-collection. Mergesort With quicksort, the average-case complexity was O(nlog2n) however the worst case complexity was still O(N*N). Mergesort improves on quicksort by always having a complexity of O(nlog2n) regardless of the best or worst case. So how does it do this? Mergesort makes use of the divide and conquer approach to partition a collection into two sub-collections. It then sorts each sub-collection and combines the sorted sub-collections into one sorted collection. The general algorithm for mergesort is as follows… Divide the collection into two sub-collections Mergesort the first sub-collection Mergesort the second sub-collection Merge the first sub-collection and the second sub-collection As you can see.. it still pretty much looks like quicksort – so lets see where it differs… Firstly, mergesort differs from quicksort in how it partitions the sub-collections. Instead of having a pivot – merge sort partitions each sub-collection based on size so that the first and second sub-collection of relatively the same size. This dividing keeps getting repeated until the sub-collections are the size of a single element. If a sub-collection is one element in size – it is now sorted! So the trick is how do we put all these sub-collections together so that they maintain their sorted order. Sorted sub-collections are merged into a sorted collection by comparing the elements of the sub-collection and then adjusting the sorted collection. Lets have a look at a few examples… Assume 2 sub-collections with 1 element each 10 & 20 Compare the first element of the first sub-collection with the first element of the second sub-collection. Take the smallest of the two and place it as the first element in the sorted collection. In this scenario 10 is smaller than 20 so 10 is taken from sub-collection 1 leaving that sub-collection empty, which means by default the next smallest element is in sub-collection 2 (20). So the sorted collection would be 10 20 Lets assume 2 sub-collections with 2 elements each 10 20 & 15 19 So… again we would Compare 10 with 15 – 10 is the winner so we add it to our sorted collection (10) leaving us with 20 & 15 19 Compare 20 with 15 – 15 is the winner so we add it to our sorted collection (10 15) leaving us with 20 & 19 Compare 20 with 19 – 19 is the winner so we add it to our sorted collection (10 15 19) leaving us with 20 & _ 20 is by default the winner so our sorted collection is 10 15 19 20. Make sense? Heapsort (still needs to be completed) So by now I am tired of sorting algorithms and trying to remember why they were so important. I think every year I go through this stuff I wonder to myself why are we made to learn about selection sort and insertion sort if they are so bad – why didn’t we just skip to Mergesort & Quicksort. I guess the only explanation I have for this is that sometimes you learn things so that you can implement them in future – and other times you learn things so that you know it isn’t the best way of implementing things and that you don’t need to implement it in future. Anyhow… luckily this is going to be the last one of my sorts for today. The first step in heapsort is to convert a collection of data into a heap. After the data is converted into a heap, sorting begins… So what is the definition of a heap? If we have to convert a collection of data into a heap, how do we know when it is a heap and when it is not? The definition of a heap is as follows: A heap is a list in which each element contains a key, such that the key in the element at position k in the list is at least as large as the key in the element at position 2k +1 (if it exists) and 2k + 2 (if it exists). Does that make sense? At first glance I’m thinking what the heck??? But then after re-reading my notes I see that we are doing something different – up to now we have really looked at data as an array or sequential collection of data that we need to sort – a heap represents data in a slightly different way – although the data is stored in a sequential collection, for a sequential collection of data to be in a valid heap – it is “semi sorted”. Let me try and explain a bit further with an example… Example 1 of Potential Heap Data Assume we had a collection of numbers as follows 1[1] 2[2] 3[3] 4[4] 5[5] 6[6] For this to be a valid heap element with value of 1 at position [1] needs to be greater or equal to the element at position [3] (2k +1) and position [4] (2k +2). So in the above example, the collection of numbers is not in a valid heap. Example 2 of Potential Heap Data Lets look at another collection of numbers as follows 6[1] 5[2] 4[3] 3[4] 2[5] 1[6] Is this a valid heap? Well… element with the value 6 at position 1 must be greater or equal to the element at position [3] and position [4]. Is 6 > 4 and 6 > 3? Yes it is. Lets look at element 5 as position 2. It must be greater than the values at [4] & [5]. Is 5 > 3 and 5 > 2? Yes it is. If you continued to examine this second collection of data you would find that it is in a valid heap based on the definition of a heap.

    Read the article

  • A jQuery Plug-in to monitor Html Element CSS Changes

    - by Rick Strahl
    Here's a scenario I've run into on a few occasions: I need to be able to monitor certain CSS properties on an HTML element and know when that CSS element changes. The need for this arose out of wanting to build generic components that could 'attach' themselves to other objects and monitor changes on the ‘parent’ object so the dependent object can adjust itself accordingly. What I wanted to create is a jQuery plug-in that allows me to specify a list of CSS properties to monitor and have a function fire in response to any change to any of those CSS properties. The result are the .watch() and .unwatch() jQuery plug-ins. Here’s a simple example page of this plug-in that demonstrates tracking changes to an element being moved with draggable and closable behavior: http://www.west-wind.com/WestWindWebToolkit/samples/Ajax/jQueryPluginSamples/WatcherPlugin.htm Try it with different browsers – IE and FireFox use the DOM event handlers and Chrome, Safari and Opera use setInterval handlers to manage this behavior. It should work in all of them but all but IE and FireFox will show a bit of lag between the changes in the main element and the shadow. The relevant HTML for this example is this fragment of a main <div> (#notebox) and an element that is to mimic a shadow (#shadow). <div class="containercontent"> <div id="notebox" style="width: 200px; height: 150px;position: absolute; z-index: 20; padding: 20px; background-color: lightsteelblue;"> Go ahead drag me around and close me! </div> <div id="shadow" style="background-color: Gray; z-index: 19;position:absolute;display: none;"> </div> </div> The watcher plug in is then applied to the main <div> and shadow in sync with the following plug-in code: <script type="text/javascript"> $(document).ready(function () { var counter = 0; $("#notebox").watch("top,left,height,width,display,opacity", function (data, i) { var el = $(this); var sh = $("#shadow"); var propChanged = data.props[i]; var valChanged = data.vals[i]; counter++; showStatus("Prop: " + propChanged + " value: " + valChanged + " " + counter); var pos = el.position(); var w = el.outerWidth(); var h = el.outerHeight(); sh.css({ width: w, height: h, left: pos.left + 5, top: pos.top + 5, display: el.css("display"), opacity: el.css("opacity") }); }) .draggable() .closable() .css("left", 10); }); </script> When you run this page as you drag the #notebox element the #shadow element will maintain and stay pinned underneath the #notebox element effectively keeping the shadow attached to the main element. Likewise, if you hide or fadeOut() the #notebox element the shadow will also go away – show the #notebox element and the shadow also re-appears because we are assigning the display property from the parent on the shadow. Note we’re attaching the .watch() plug-in to the #notebox element and have it fire whenever top,left,height,width,opacity or display CSS properties are changed. The passed data element contains a props[] and vals[] array that holds the properties monitored and their current values. An index passed as the second parm tells you which property has changed and what its current value is (propChanged/valChanged in the code above). The rest of the watcher handler code then deals with figuring out the main element’s position and recalculating and setting the shadow’s position using the jQuery .css() function. Note that this is just an example to demonstrate the watch() behavior here – this is not the best way to create a shadow. If you’re interested in a more efficient and cleaner way to handle shadows with a plug-in check out the .shadow() plug-in in ww.jquery.js (code search for fn.shadow) which uses native CSS features when available but falls back to a tracked shadow element on browsers that don’t support it, which is how this watch() plug-in came about in the first place :-) How does it work? The plug-in works by letting the user specify a list of properties to monitor as a comma delimited string and a handler function: el.watch("top,left,height,width,display,opacity", function (data, i) {}, 100, id) You can also specify an interval (if no DOM event monitoring isn’t available in the browser) and an ID that identifies the event handler uniquely. The watch plug-in works by hooking up to DOMAttrModified in FireFox, to onPropertyChanged in Internet Explorer, or by using a timer with setInterval to handle the detection of changes for other browsers. Unfortunately WebKit doesn’t support DOMAttrModified consistently at the moment so Safari and Chrome currently have to use the slower setInterval mechanism. In response to a changed property (or a setInterval timer hit) a JavaScript handler is fired which then runs through all the properties monitored and determines if and which one has changed. The DOM events fire on all property/style changes so the intermediate plug-in handler filters only those hits we’re interested in. If one of our monitored properties has changed the specified event handler function is called along with a data object and an index that identifies the property that’s changed in the data.props/data.vals arrays. The jQuery plugin to implement this functionality looks like this: (function($){ $.fn.watch = function (props, func, interval, id) { /// <summary> /// Allows you to monitor changes in a specific /// CSS property of an element by polling the value. /// when the value changes a function is called. /// The function called is called in the context /// of the selected element (ie. this) /// </summary> /// <param name="prop" type="String">CSS Properties to watch sep. by commas</param> /// <param name="func" type="Function"> /// Function called when the value has changed. /// </param> /// <param name="interval" type="Number"> /// Optional interval for browsers that don't support DOMAttrModified or propertychange events. /// Determines the interval used for setInterval calls. /// </param> /// <param name="id" type="String">A unique ID that identifies this watch instance on this element</param> /// <returns type="jQuery" /> if (!interval) interval = 100; if (!id) id = "_watcher"; return this.each(function () { var _t = this; var el$ = $(this); var fnc = function () { __watcher.call(_t, id) }; var data = { id: id, props: props.split(","), vals: [props.split(",").length], func: func, fnc: fnc, origProps: props, interval: interval, intervalId: null }; // store initial props and values $.each(data.props, function (i) { data.vals[i] = el$.css(data.props[i]); }); el$.data(id, data); hookChange(el$, id, data); }); function hookChange(el$, id, data) { el$.each(function () { var el = $(this); if (typeof (el.get(0).onpropertychange) == "object") el.bind("propertychange." + id, data.fnc); else if ($.browser.mozilla) el.bind("DOMAttrModified." + id, data.fnc); else data.intervalId = setInterval(data.fnc, interval); }); } function __watcher(id) { var el$ = $(this); var w = el$.data(id); if (!w) return; var _t = this; if (!w.func) return; // must unbind or else unwanted recursion may occur el$.unwatch(id); var changed = false; var i = 0; for (i; i < w.props.length; i++) { var newVal = el$.css(w.props[i]); if (w.vals[i] != newVal) { w.vals[i] = newVal; changed = true; break; } } if (changed) w.func.call(_t, w, i); // rebind event hookChange(el$, id, w); } } $.fn.unwatch = function (id) { this.each(function () { var el = $(this); var data = el.data(id); try { if (typeof (this.onpropertychange) == "object") el.unbind("propertychange." + id, data.fnc); else if ($.browser.mozilla) el.unbind("DOMAttrModified." + id, data.fnc); else clearInterval(data.intervalId); } // ignore if element was already unbound catch (e) { } }); return this; } })(jQuery); Note that there’s a corresponding .unwatch() plug-in that can be used to stop monitoring properties. The ID parameter is optional both on watch() and unwatch() – a standard name is used if you don’t specify one, but it’s a good idea to use unique names for each element watched to avoid overlap in event ids especially if you’re monitoring many elements. The syntax is: $.fn.watch = function(props, func, interval, id) props A comma delimited list of CSS style properties that are to be watched for changes. If any of the specified properties changes the function specified in the second parameter is fired. func The function fired in response to a changed styles. Receives this as the element changed and an object parameter that represents the watched properties and their respective values. The first parameter is passed in this structure: { id: watcherId, props: [], vals: [], func: thisFunc, fnc: internalHandler, origProps: strPropertyListOnWatcher }; A second parameter is the index of the changed property so data.props[i] or data.vals[i] gets the property and changed value. interval The interval for setInterval() for those browsers that don't support property watching in the DOM. In milliseconds. id An optional id that identifies this watcher. Required only if multiple watchers might be hooked up to the same element. The default is _watcher if not specified. It’s been a Journey I started building this plug-in about two years ago and had to make many modifications to it in response to changes in jQuery and also in browser behaviors. I think the latest round of changes made should make this plug-in fairly future proof going forward (although I hope there will be better cross-browser change event notifications in the future). One of the big problems I ran into had to do with recursive change notifications – it looks like starting with jQuery 1.44 and later, jQuery internally modifies element properties on some calls to some .css()  property retrievals and things like outerHeight/Width(). In IE this would cause nasty lock up issues at times. In response to this I changed the code to unbind the events when the handler function is called and then rebind when it exits. This also makes user code less prone to stack overflow recursion as you can actually change properties on the base element. It also means though that if you change one of the monitors properties in the handler the watch() handler won’t fire in response – you need to resort to a setTimeout() call instead to force the code to run outside of the handler: $("#notebox") el.watch("top,left,height,width,display,opacity", function (data, i) { var el = $(this); … // this makes el changes work setTimeout(function () { el.css("top", 10) },10); }) Since I’ve built this component I’ve had a lot of good uses for it. The .shadow() fallback functionality is one of them. Resources The watch() plug-in is part of ww.jquery.js and the West Wind West Wind Web Toolkit. You’re free to use this code here or the code from the toolkit. West Wind Web Toolkit Latest version of ww.jquery.js (search for fn.watch) watch plug-in documentation © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  JavaScript  jQuery  

    Read the article

  • CodePlex Daily Summary for Friday, March 02, 2012

    CodePlex Daily Summary for Friday, March 02, 2012Popular ReleasesMedia Companion: MC 3.433b Release: General More GUI tweaks (mostly imperceptible!) Updates for mc_com.exe TV The 'Watched' button has been re-instigated Added TV Menu sub-option to search ALL for new Episodes (includes locked shows) Movies Added 'Source' field (eg DVD, Bluray, HDTV), customisable in Advanced Preferences (try it out, let us know how it works!) Added HTML <<format>> tag with optional parameters for video container, source, and resolution (updated HTML tags to be added to Documentation shortly) Known Issu...Picturethrill: Version 2.3.2.0: Release includes Self-Update feature for Picturethrill. What that means for users is that they are always guaranteed to have a fresh copy of Picturethrill on their computers with all latest fixes. When Picturethrill adds a new website to get pictures from, you will get it too!THE NVL Maker: The NVL Maker Ver 3.11: SIM??????,TRA??????, ????????????????,??????~(??????????????????) ??: 115?? ???? http://115.com/file/bewo7t11#THENVLMakerver3.11sim.zip MediaFire ???? http://www.mediafire.com/?wj9dmk3eb70mdzt 3.11 ??? ???: ·????????????UNICODE????????????????????(??Data.xp3) ·?????.?(https://sites.google.com/site/hiyuadv/) ?????????krkrcht.exe ·?????????Editor.exe,????????krkrcht.exe?? ??: ·Wizard.exe??,BUG??,?????????????? ·????(Code)???,???????????????, ·??3.10?,???????????????,?????????????? ...Simple MVVM Toolkit for Silverlight, WPF and Windows Phone: Simple MVVM Toolkit v3.0.0.0: Added support for Silverlight 5.0 and Windows Phone 7.1. Upgraded project templates and samples. Upgraded installer. There are some new prerequisites required for this version, namely Silverlight 5 Tools, Expression Blend Preview for Silverlight 5 (until the SDK is released), Windows Phone 7.1 SDK. Because it is in the experimental band, I have also removed the dependency on the Silverlight Testing Framework. You can use it if you wish, but the Ria Services project template no longer uses ...CODE Framework: 4.0.20301: The latest version adds a number of new features to the WPF system (such as stylable and testable messagebox support) as well as various new features throughout the system (especially in the Utilities namespace).MyRouter (Virtual WiFi Router): MyRouter 1.0.1 (Beta): A friendlier User Interface. A logger file to catch exceptions so you may send it to use to improve and fix any bugs that may occur. A feedback form because we always love hearing what you guy's think of MyRouter. Check for update menu item for you to stay up to date will the latest changes. Facebook fan page so you may spread the word and share MyRouter with friends and family And Many other exciting features were sure your going to love!WPF Sound Visualization Library: WPF SVL 0.3 (Source, Binaries, Examples, Help): Version 0.3 of WPFSVL. This includes three new controls: an equalizer, a digital clock, and a time editor.Cocktail: Cocktail v0.4: PrerequisitesVisual Studio 2010 with SP1 (any edition but Express) SQL Server Express (included automatically with most Visual Studio installs) Optional: Silverlight 4 or 5 Note: Install Silverlight 4 Tools and then the Silverlight 4 Toolkit. Likewise for Silverlight 5 Tools and the Silverlight 5 Toolkit DevForce Universal Express 6.1.6 or greater Included in the Cocktail download, DevForce Universal Express requires registration) Important: Install DevForce after all other compo...ZXing.Net: ZXing.Net 0.4.0.0: sync with rev. 2196 of the java version important fix for RGBLuminanceSource generating barcode bitmaps Windows Phone demo client (only tested with emulator, because I don't have a Windows Phone) Barcode generation support for Windows Forms demo client Webcam support for Windows Forms demo clientOrchard Project: Orchard 1.4: Please read our release notes for Orchard 1.4: http://docs.orchardproject.net/Documentation/Orchard-1-4-Release-Notes.NET Assembly Information: Assembly Information 2.1.0.1: - Fixed the issue in which AnyCPU binaries were shown as 32bit - Added support to show the errors in-case if some dlls failed to load.FluentData -Micro ORM with a fluent API that makes it simple to query a database: FluentData version 1.2: New features: - QueryValues method - Added support for automapping to enumerations (both int and string are supported). Fixed 2 reported issues.NetSqlAzMan - .NET SQL Authorization Manager: 3.6.0.15: 3.6.0.15 28-Feb-2012 • Fix: The communication object, System.ServiceModel.Channels.ServiceChannel, cannot be used for communication because it is in the Faulted state. Work Item 10435: http://netsqlazman.codeplex.com/workitem/10435 • Fix: Made StorageCache thread safe. Thanks to tangrl. • Fix: Members property of SqlAzManApplicationGroup is not functioning. Thanks to tangrl. Work Item 10267: http://netsqlazman.codeplex.com/workitem/10267 • Fix: Indexer are making database calls. Thanks to t...SCCM Client Actions Tool: Client Actions Tool v1.1: SCCM Client Actions Tool v1.1 is the latest version. It comes with following changes since last version: Added stop button to stop the ongoing process. Added action "Query update status". Added option "saveOnlineComputers" in config.ini to enable saving list of online computers from last session. Default value for "LatestClientVersion" set to SP2 R3 (4.00.6487.2157). Wuauserv service manual startup mode is considered healthy on Windows 7. Errors are now suppressed in checkReleases...Document.Editor: 2012.1: Whats new for Document.Editor 2012.1: Improved Recent Documents list Improved Insert Shape Improved Dialogs Minor Bug Fix's, improvements and speed upsSharpCompress - a fully native C# library for RAR, 7Zip, Zip, Tar, GZip, BZip2: SharpCompress 0.8: API Updates: SOLID Extract Method for Archives (7Zip and RAR). ExtractAllEntries method on Archive classes will extract archives as a streaming file. This can offer better 7Zip extraction performance if any of the entries are solid. The IsSolid method on 7Zip archives will return true if any are solid. Removed IExtractionListener was removed in favor of events. Unit tests show example. Bug fixes: PPMd passes tests plus other fixes (Thanks Pavel) Zip used to always write a Post Descri...Social Network Importer for NodeXL: SocialNetImporter(v.1.3): This new version includes: - Download new networks for Facebook fan pages. - New options for downloading more posts - Bug fixes To use the new graph data provider, do the following: Unzip the Zip file into the "PlugIns" folder that can be found in the NodeXL installation folder (i.e "C:\Program Files\Social Media Research Foundation\NodeXL Excel Template\PlugIns") Open NodeXL template and you can access the new importer from the "Import" menuContent Slider Module for DotNetNuke: 01.02.00: This release has the following updates and new features: Feature: One-Click Enabling of Pager Setting Feature: Cache Sliders for Performance Feature: Configurable Cache Setting Enhancement: Transitions can be Selected Bug: Secure Folder Images not Viewable Bug: Sliders Disappear on Postback Bug: Remote Images Cause Error Bug: Deleted Images Cause Error System Requirements DotNetNuke v06.00.00 or newer .Net Framework v3.5 SP1 or newer SQL Server 2005 or newerImage Resizer for Windows: Image Resizer 3 Preview 3: Here is yet another iteration toward what will eventually become Image Resizer 3. This release is stable. However, I'm calling it a preview since there are still many features I'd still like to add before calling it complete. Updated on February 28 to fix an issue with installing on multi-user machines. As usual, here is my progress report. Done Preview 3 Fix: 3206 3076 3077 5688 Fix: 7420 Fix: 7527 Fix: 7576 7612 Preview 2 6308 6309 Fix: 7339 Fix: 7357 Preview 1 UI...Finestra Virtual Desktops: 2.5.4500: This is a bug fix release for version 2.5. It fixes several things and adds a couple of minor features. See the 2.5 release notes for more information on the major new features in that version. Important - If Finestra crashes on startup for you, you must install the Visual C++ 2010 runtime from http://www.microsoft.com/download/en/details.aspx?id=5555. Fixes a bug with window animations not refreshing the screen on XP and with DWM off Fixes a bug with with crashing on XP due to a bug in t...New ProjectsaSMS.dll: aSMS.dll is an open source library to provide developer to convert a message (SMS) to PDU and convert PDU to message (SMS). aSMS.dll can be consumed by Windows Form Application, Windows Presentation Fundation, Console Application, ASP.NET Web Application, etc.Convert Number To Letter: you can convert number to persian Letter. ?????? ??? ?????? ???????? ??? ???? ??? ?? ?? ???? ????? ????? ????CRM 2011 Remove Children From Parent Entity Form: This CRM 2011 solution will allow to Remove Child entity records from Parent Entity Form.Cygnus: Cygnus v2GovDev for TFS: Microsoft Team Foundation Server (TFS) 2010 is the collaboration platform at the core of Microsoft’s application lifecycle management solution. In addition to core features like source control, build automation and work-item tracking, TFS enables teams to align projects with industry processes such as Agile, Scrum and CMMi via the use of customable XML Process Templates. Since 2005, TFS has been a welcomed addition to the Microsoft developer tool line-up by Government Agencies of all siz...Historia: Historia est un logiciel d'aide à la création de roman.Infiltrator - code profiler module for Orchard: Infiltrator is a simple profiler for Orchard, built as a module. Metro App: The Metro App for Windows 8Mouse Gesture Library: <Mouse Gesture Library> makes it easier for <.net Framework users> to build <WPF Applications>Netduino Multithreaded Webserver and DataLogger: Home logger is for logging sensor outputs and serving the collected data via webpages. It runs on the Netduino Plus. Using the .net micro framework 4.2 Written in C#. 1 x logging thread 1 x web dispatcher thread 4 x request handler threads (configurable) Also includes text file upload. Not much space left.Orchard DateTimeRange: DateTimeRange is a module for the Orchard CMS 1.4 (http://orchardproject.net/). It is a Module that adds an extra field that you can use in your content types. The field contains a configurable start - end date/time range or period. It is developed in C#, ASP.Net MVC and works with Orchard CMS 1.4 or higher.QLTB: Qu?n Lý Thi?t B? 2012QuickSpecsFinder: Una piccola utilità, abbozzata, per il recupero delle info di base di un personal computer (Memoria, Disco, Processore...)Simple Interpreted Assembler: Simple Interpreted Assembler is an IDE + Interpreter for a simplistic Assembly looking language I created. It is stack based ala' the CIL found in .NET.SkyWay: Sandbox mmo gametesttom03012012hg01: testtom03012012hg01testtom03012012hg04: testtom03012012hg04testtom03012012tfs02: testtom03012012tfs02Tiny Forum: The forum application built upon apworks framework.UPS Address Validation: Library uses UPS Address Validation API to validate address with possible parameters such as city, State, postal code, and etc. Additional information can be found at [url:https://www.ups.com/upsdeveloperkit/downloadresource?loc=en_US]. A sample test program validates all postal codes.Visual Studio LightSwitch application DB script generator: Introduction: ExportDatabaseScript tool is used to generate Sql server DB script from the LightSwitch internal database. Take a situation, We are developing the LightSwitch business application and we are using the internal database [ApplicationData] for storing Data. As our apW8Hackathon2012: W8Hackathon2012Windows Phone Commands for VS2010: The Windows Phone Commands is an open-source project built on top of. Microsoft Net 4.0, framework. This effort provides a powerful tool to assist the development phone for windows 7.1 as Isolate Storage Explorer (with copies of folders and files), Deployer, Build integrated, etc.Zdravlje na kvadrat: Program za vodenje fitness centra.ZobiesOnYourLawn-express: java learn

    Read the article

  • Paging over a lazy-loaded collection with NHibernate

    - by HackedByChinese
    I read this article where Ayende states NHibernate can (compared to EF 4): Collection with lazy=”extra” – Lazy extra means that NHibernate adapts to the operations that you might run on top of your collections. That means that blog.Posts.Count will not force a load of the entire collection, but rather would create a “select count(*) from Posts where BlogId = 1” statement, and that blog.Posts.Contains() will likewise result in a single query rather than paying the price of loading the entire collection to memory. Collection filters and paged collections - this allows you to define additional filters (including paging!) on top of your entities collections, which means that you can easily page through the blog.Posts collection, and not have to load the entire thing into memory. So I decided to put together a test case. I created the cliché Blog model as a simple demonstration, with two classes as follows: public class Blog { public virtual int Id { get; private set; } public virtual string Name { get; set; } public virtual ICollection<Post> Posts { get; private set; } public virtual void AddPost(Post item) { if (Posts == null) Posts = new List<Post>(); if (!Posts.Contains(item)) Posts.Add(item); } } public class Post { public virtual int Id { get; private set; } public virtual string Title { get; set; } public virtual string Body { get; set; } public virtual Blog Blog { get; private set; } } My mappings files look like this: <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" default-access="property" auto-import="true" default-cascade="none" default-lazy="true"> <class xmlns="urn:nhibernate-mapping-2.2" name="Model.Blog, TestEntityFramework, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" table="Blogs"> <id name="Id" type="System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <column name="Id" /> <generator class="identity" /> </id> <property name="Name" type="System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <column name="Name" /> </property> <property name="Type" type="System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <column name="Type" /> </property> <bag lazy="extra" name="Posts"> <key> <column name="Blog_Id" /> </key> <one-to-many class="Model.Post, TestEntityFramework, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" /> </bag> </class> </hibernate-mapping> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" default-access="property" auto-import="true" default-cascade="none" default-lazy="true"> <class xmlns="urn:nhibernate-mapping-2.2" name="Model.Post, TestEntityFramework, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" table="Posts"> <id name="Id" type="System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <column name="Id" /> <generator class="identity" /> </id> <property name="Title" type="System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <column name="Title" /> </property> <property name="Body" type="System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <column name="Body" /> </property> <many-to-one class="Model.Blog, TestEntityFramework, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" name="Blog"> <column name="Blog_id" /> </many-to-one> </class> </hibernate-mapping> My test case looks something like this: using (ISession session = Configuration.Current.CreateSession()) // this class returns a custom ISession that represents either EF4 or NHibernate { blogs = (from b in session.Linq<Blog>() where b.Name.Contains("Test") orderby b.Id select b); Console.WriteLine("# of Blogs containing 'Test': {0}", blogs.Count()); Console.WriteLine("Viewing the first 5 matching Blogs."); foreach (Blog b in blogs.Skip(0).Take(5)) { Console.WriteLine("Blog #{0} \"{1}\" has {2} Posts.", b.Id, b.Name, b.Posts.Count); Console.WriteLine("Viewing first 5 matching Posts."); foreach (Post p in b.Posts.Skip(0).Take(5)) { Console.WriteLine("Post #{0} \"{1}\" \"{2}\"", p.Id, p.Title, p.Body); } } } Using lazy="extra", the call to b.Posts.Count does do a SELECT COUNT(Id)... which is great. However, b.Posts.Skip(0).Take(5) just grabs all Posts for Blog.Id = ?id, and then LINQ on the application side is just taking the first 5 from the resulting collection. What gives?

    Read the article

  • CodePlex Daily Summary for Saturday, March 03, 2012

    CodePlex Daily Summary for Saturday, March 03, 2012Popular ReleasesAcDown????? - Anime&Comic Downloader: AcDown????? v3.9.1: ?? ●AcDown??????????、??、??????,????1M,????,????,?????????????????????????。???????????Acfun、????(Bilibili)、??、??、YouTube、??、???、??????、SF????、????????????。??????AcPlay?????,??????、????????????????。 ● AcDown???????????????????????????,???,???????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7/8 ????????????? ??:????????Windows XP???,?????????.NET Framework 2.0???(x86),?????"?????????"??? ??????????????,??????????: ??"AcDo...Windows Phone Commands for VS2010: Version 1.0: Initial Release Version 1.0 Connect from device or emulator (Monitors the connection) Show Device information (Plataform, build , version, avaliable memory, total memory, architeture Manager installed applications (Launch, uninstall and explorer isolate storage files) Manager core applications (Launch blocked applications from emulator (Office, Calculator, alarm, calendar , etc) Manager blocked settings from emulator (Airplane Mode, Celullar Network, Wifi, etc) Deploy and update ap...DNN Metro7 style Skin package: Metro7 style Skin for DotNetNuke 06.01.00: Changes on Version 06.01.00 Fixed issue on GraySmallTitle container, that breaks the layout Fixed issue on Blue Metro7 Skin where the Search, Login, Register, Date is missing Fixed issue with the Version numbers on the target file Fixed issue where the jQuery and jQuery-UI files not deleted on upgrade from Version 01.00.00 Added a internal page where the Image Slider would be replaces with a BannerPaneMedia Companion: MC 3.433b Release: General More GUI tweaks (mostly imperceptible!) Updates for mc_com.exe TV The 'Watched' button has been re-instigated Added TV Menu sub-option to search ALL for new Episodes (includes locked shows) Movies Added 'Source' field (eg DVD, Bluray, HDTV), customisable in Advanced Preferences (try it out, let us know how it works!) Added HTML <<format>> tag with optional parameters for video container, source, and resolution (updated HTML tags to be added to Documentation shortly) Known Issu...Picturethrill: Version 2.3.2.0: Release includes Self-Update feature for Picturethrill. What that means for users is that they are always guaranteed to have a fresh copy of Picturethrill on their computers with all latest fixes. When Picturethrill adds a new website to get pictures from, you will get it too!THE NVL Maker: The NVL Maker Ver 3.11: SIM??????,TRA??????, ????????????????,??????~(??????????????????) ??: 115?? ???? http://115.com/file/bewo7t11#THENVLMakerver3.11sim.zip MediaFire ???? http://www.mediafire.com/?wj9dmk3eb70mdzt 3.11 ??? ???: ·????????????UNICODE????????????????????(??Data.xp3) ·?????.?(https://sites.google.com/site/hiyuadv/) ?????????krkrcht.exe ·?????????Editor.exe,????????krkrcht.exe?? ??: ·Wizard.exe??,BUG??,?????????????? ·????(Code)???,???????????????, ·??3.10?,???????????????,?????????????? ...Simple MVVM Toolkit for Silverlight, WPF and Windows Phone: Simple MVVM Toolkit v3.0.0.0: Added support for Silverlight 5.0 and Windows Phone 7.1. Upgraded project templates and samples. Upgraded installer. There are some new prerequisites required for this version, namely Silverlight 5 Tools, Expression Blend Preview for Silverlight 5 (until the SDK is released), Windows Phone 7.1 SDK. Because it is in the experimental band, I have also removed the dependency on the Silverlight Testing Framework. You can use it if you wish, but the Ria Services project template no longer uses ...CODE Framework: 4.0.20301: The latest version adds a number of new features to the WPF system (such as stylable and testable messagebox support) as well as various new features throughout the system (especially in the Utilities namespace).WPF Sound Visualization Library: WPF SVL 0.3 (Source, Binaries, Examples, Help): Version 0.3 of WPFSVL. This includes three new controls: an equalizer, a digital clock, and a time editor.Cocktail: Cocktail v0.4: PrerequisitesVisual Studio 2010 with SP1 (any edition but Express) SQL Server Express (included automatically with most Visual Studio installs) Optional: Silverlight 4 or 5 Note: Install Silverlight 4 Tools and then the Silverlight 4 Toolkit. Likewise for Silverlight 5 Tools and the Silverlight 5 Toolkit DevForce Universal Express 6.1.6 or greater Included in the Cocktail download, DevForce Universal Express requires registration) Important: Install DevForce after all other compo...Orchard Project: Orchard 1.4: Please read our release notes for Orchard 1.4: http://docs.orchardproject.net/Documentation/Orchard-1-4-Release-NotesFluentData -Micro ORM with a fluent API that makes it simple to query a database: FluentData version 1.2: New features: - QueryValues method - Added support for automapping to enumerations (both int and string are supported). Fixed 2 reported issues.NetSqlAzMan - .NET SQL Authorization Manager: 3.6.0.15: 3.6.0.15 28-Feb-2012 • Fix: The communication object, System.ServiceModel.Channels.ServiceChannel, cannot be used for communication because it is in the Faulted state. Work Item 10435: http://netsqlazman.codeplex.com/workitem/10435 • Fix: Made StorageCache thread safe. Thanks to tangrl. • Fix: Members property of SqlAzManApplicationGroup is not functioning. Thanks to tangrl. Work Item 10267: http://netsqlazman.codeplex.com/workitem/10267 • Fix: Indexer are making database calls. Thanks to t...SCCM Client Actions Tool: Client Actions Tool v1.1: SCCM Client Actions Tool v1.1 is the latest version. It comes with following changes since last version: Added stop button to stop the ongoing process. Added action "Query update status". Added option "saveOnlineComputers" in config.ini to enable saving list of online computers from last session. Default value for "LatestClientVersion" set to SP2 R3 (4.00.6487.2157). Wuauserv service manual startup mode is considered healthy on Windows 7. Errors are now suppressed in checkReleases...Document.Editor: 2012.1: Whats new for Document.Editor 2012.1: Improved Recent Documents list Improved Insert Shape Improved Dialogs Minor Bug Fix's, improvements and speed upsASP.NET REST Services Framework: Release 1.1 - Standard version: Beginning from v1.1 the REST-services Framework is compatible with ASP.NET Routing model as well with CRUD (Create, Read, Update, and Delete) principle. These two are often important when building REST API functionality within your application. It also includes ability to apply Filters to a class to target all WebRest methods, as well as some performance enhancements. New version includes Metadata Explorer providing ability exploring the existing services that becomes essential as the number ...SQL Live Monitor: SQL Live Monitor 1.31: A quick fix to make it this version work with SQL 2012. Version 2 already has 2012 working, but am still developing the UI in version 2, so this is just an interim fix to allow user to monitor SQL 2012.DotNet.Highcharts: DotNet.Highcharts 1.1 with Examples: Fixed small bug in JsonSerializer about the numbers represented as string. Fixed Issue 310: decimal values don't work Fixed Issue 345: Disable Animation Refactored Highcharts class. Implemented Issue 341: More charts on one page. Added new class Container which can combine and display multiple charts. Usage: new Container(new[] { chart1, chart2, chart3, chart4 }) Implemented Feature 302: Inside an UpdatePanel - Added method (InFunction) which create the Highchart inside JavaScript f...Content Slider Module for DotNetNuke: 01.02.00: This release has the following updates and new features: Feature: One-Click Enabling of Pager Setting Feature: Cache Sliders for Performance Feature: Configurable Cache Setting Enhancement: Transitions can be Selected Bug: Secure Folder Images not Viewable Bug: Sliders Disappear on Postback Bug: Remote Images Cause Error Bug: Deleted Images Cause Error System Requirements DotNetNuke v06.00.00 or newer .Net Framework v3.5 SP1 or newer SQL Server 2005 or newerImage Resizer for Windows: Image Resizer 3 Preview 3: Here is yet another iteration toward what will eventually become Image Resizer 3. This release is stable. However, I'm calling it a preview since there are still many features I'd still like to add before calling it complete. Updated on February 28 to fix an issue with installing on multi-user machines. As usual, here is my progress report. Done Preview 3 Fix: 3206 3076 3077 5688 Fix: 7420 Fix: 7527 Fix: 7576 7612 Preview 2 6308 6309 Fix: 7339 Fix: 7357 Preview 1 UI...New Projectsbinbin pager: pager extensionCC&PPTK-VSN: CC&PPTK-VSN Thi?t l?p SVN di nhóm D16TPMCCG (Crud Class Generator): CCGDatamodel Manager: Datamodel Manager is tool for managing database part of application.Daun Management Studio: Daun Management Studio is a management tool that is used for configuring, managing, and administering all components within MongoDB. The tool includes both script editors and graphical tools which work with features of MongoDB.DotNetNuke Role-Based Control Panels: This provider extends the DotNetNuke control panel by allowing a host to specify the particular control panel that is to be loaded by role (and site). For non-administrators any user interface may be utilized, allowing for flexible custom functionality not otherwise possible.HTML Creator: HTML Creator allows a web designer/developer to concentrate on the design and development of their web project; not the mundane tasks of project development. HTML Creator will combine the development, testing, debugging, and publishing stages into a complete workflow. This project uses .NET 4 Framework, Visual Basic 2010, and WPF as the primary programming languages.Ibiiztera: 3D shapes and figures renderingiNavigate: Same jQuery autocomplete, but with more optionsMapUpdater: MapUpdater is a simple application that connects to one or more ftp servers, downloads your minecraft world data, generates images and uploads them to another ftp server. c10t is the only renderer currently supported.Minecraft Web Launcher: Minecraft Web Launcher detects attempts to use an incomplete Minecraft.net API and overrides it, allowing you to launch Minecraft from a web browser and go directly to a certain server.MS CRM 2011 - Orbis- Client Caching Tool: The purpose of this tool is to cache all or the top most aspx pages. Caching means that this tool tests the Microsoft Dynamics CRM Client offline setting. If the client is offline OrbCrmCC ensures in a defined interval that the MSCRM Client host is up and that the aspx files are Mushroom: A very nice tool for web developers for both client-side or server-side development. What I will do here is to turn my own development environment into a very easy-to-use gui application which will run on Windows, Linux, and MacOS. It will support different languages, frameworks, and databases. Mushroom will make individuals and teams work much more efficiently by doing all the drudgery automatically. By providing some standard ways of doing things, --of course without enforcing them, i...My NerdDinner for WP7: A sample OData app for Windows Phone 7.1 based on NerdDinner.com servicesNClassify: nclassifyRealAge: EN: Real Age a gadget / web page showing Your current age inclusive the leap days. Funny for birthday parties ! ES: Edad verdadero un gadget / página web calculando Tu edad verdadero actual incluido las días intercalares. Divertido para fiestas de cumpleaños! DE: Wahres Alter ein Gadget / eine Webseite das Dein wahres aktuelles Alter berechnet inklusive Schalttage. Lustig für Geburtstagsparties ! HTML, javascript, XMLSharpInteract: A library that aims at providing a more easy interface to a set of interaction tools.SL5 Basic Calculator (No Frill) ver 1.0: the project is a basic calculator control developed in Silverlight 5, feel free to include in your projects. However CODE is AS/IS without any guarantee and warantee . use at your own risk(Source code included.SlyLamb: We develop applications for Windows Phone 7. Here we place our open application examples.SQLinq - use LINQ to generate Ad-Hoc Sql Queries: Easily generate ad-hoc SQL code using LINQ in a strongly typed manner that allows for compile time validation of you sql scripts.SSamTV: LVTN2012WildSoft Own Project: Personal WildSoftware Own ProjectWP7 Weather: WP7 Weather shows weather from site weather.uaym2u: this is my portal for demo

    Read the article

  • Java Animation Memory Overload [on hold]

    - by user2425429
    I need a way to reduce the memory usage of these programs while keeping the functionality. Every time I add 50 milliseconds or so to the set&display loop in AnimationTest1, it throws an out of memory error. Here is the code I have now: import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import javax.swing.ImageIcon; public class AnimationTest1 { public static void main(String args[]) { AnimationTest1 test = new AnimationTest1(); test.run(); } private static final DisplayMode POSSIBLE_MODES[] = { new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(640, 480, 16, 0) }; private static final long DEMO_TIME = 4000; private ScreenManager screen; private Image bgImage; private Animation anim; public void loadImages() { // create animation List<Polygon> polygons=new ArrayList(); int[] x=new int[]{20,4,4,20,40,56,56,40}; int[] y=new int[]{20,32,40,44,44,40,32,20}; polygons.add(new Polygon(x,y,8)); anim = new Animation(); //# of frames long startTime = System.currentTimeMillis(); long currTimer = startTime; long elapsedTime = 0; boolean animated = false; Graphics2D g = screen.getGraphics(); int width=200; int height=200; //set&display loop while (currTimer - startTime < DEMO_TIME*2) { //draw the polygons if(!animated){ for(int j=0; j<polygons.size();j++){ for(int pos=0; pos<polygons.get(j).npoints; pos++){ polygons.get(j).xpoints[pos]+=1; } } anim.setNewPolyFrame(polygons , width , height , 64); } else{ // update animation anim.update(elapsedTime); draw(g); g.dispose(); screen.update(); try{ Thread.sleep(20); } catch(InterruptedException ie){} } if(currTimer - startTime == DEMO_TIME) animated=true; elapsedTime = System.currentTimeMillis() - currTimer; currTimer += elapsedTime; } } public void run() { screen = new ScreenManager(); try { DisplayMode displayMode = screen.findFirstCompatibleMode(POSSIBLE_MODES); screen.setFullScreen(displayMode); loadImages(); } finally { screen.restoreScreen(); } } public void draw(Graphics g) { // draw background g.drawImage(bgImage, 0, 0, null); // draw image g.drawImage(anim.getImage(), 0, 0, null); } } ScreenManager: import java.awt.Color; import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.GraphicsEnvironment; import java.awt.Toolkit; import java.awt.Window; import java.awt.event.KeyListener; import java.awt.event.MouseListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; import javax.swing.JPanel; public class ScreenManager extends JPanel { private GraphicsDevice device; /** Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment=GraphicsEnvironment.getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); setBackground(Color.white); } /** Returns a list of compatible display modes for the default device on the system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** Returns the first compatible mode in a list of modes. Returns null if no modes are compatible. */ public DisplayMode findFirstCompatibleMode( DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** Determines if two display modes "match". Two display modes match if they have the same resolution, bit depth, and refresh rate. The bit depth is ignored if one of the modes has a bit depth of DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** Enters full screen mode and changes the display mode. If the specified display mode is null or not compatible with this device, or if the display mode cannot be changed on this system, the current display mode is used. <p> The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { JFrame frame = new JFrame(); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(true); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } } frame.createBufferStrategy(2); Graphics g=frame.getGraphics(); g.setColor(Color.white); g.drawRect(0, 0, frame.WIDTH, frame.HEIGHT); frame.paintAll(g); g.setColor(Color.black); g.dispose(); } /** Gets the graphics context for the display. The ScreenManager uses double buffering, so applications must call update() to show any graphics drawn. <p> The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D)strategy.getDrawGraphics(); } else { return null; } } /** Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) Toolkit.getDefaultToolkit().sync(); } /** Returns the window currently used in full screen mode. Returns null if the device is not in full screen mode. */ public Window getFullScreenWindow() { return device.getFullScreenWindow(); } /** Returns the width of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** Returns the height of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparency) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparency); } return null; } } Animation: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; /** The Animation class manages a series of images (frames) and the amount of time to display each frame. */ public class Animation { private ArrayList frames; private int currFrameIndex; private long animTime; private long totalDuration; /** Creates a new, empty Animation. */ public Animation() { frames = new ArrayList(); totalDuration = 0; start(); } /** Adds an image to the animation with the specified duration (time to display the image). */ public synchronized void addFrame(BufferedImage image, long duration){ ScreenManager s = new ScreenManager(); totalDuration += duration; frames.add(new AnimFrame(image, totalDuration)); } /** Starts the animation over from the beginning. */ public synchronized void start() { animTime = 0; currFrameIndex = 0; } /** Updates the animation's current image (frame), if necessary. */ public synchronized void update(long elapsedTime) { if (frames.size() >= 1) { animTime += elapsedTime; /*if (animTime >= totalDuration) { animTime = animTime % totalDuration; currFrameIndex = 0; }*/ while (animTime > getFrame(0).endTime) { frames.remove(0); } } } /** Gets the Animation's current image. Returns null if this animation has no images. */ public synchronized Image getImage() { if (frames.size() > 0&&!(currFrameIndex>=frames.size())) { return getFrame(currFrameIndex).image; } else{ System.out.println("There are no frames!"); System.exit(0); } return null; } private AnimFrame getFrame(int i) { return (AnimFrame)frames.get(i); } private class AnimFrame { Image image; long endTime; public AnimFrame(Image image, long endTime) { this.image = image; this.endTime = endTime; } } public void setNewPolyFrame(List<Polygon> polys,int imagewidth,int imageheight,int time){ BufferedImage image=new BufferedImage(imagewidth, imageheight, 1); Graphics g=image.getGraphics(); for(int i=0;i<polys.size();i++){ g.drawPolygon(polys.get(i)); } addFrame(image,time); g.dispose(); } }

    Read the article

  • Animation Color [on hold]

    - by user2425429
    I'm having problems in my java program for animation. I'm trying to draw a hexagon with a shape similar to that of a trapezoid. Then, I'm making it move to the right for a certain amount of time (DEMO_TIME). Animation and ScreenManager are "API" classes, and AnimationTest1 is a demo. In my test program, it runs with a black screen and white stroke color. I'd like to know why this happened and how to fix it. I'm a beginner, so I apologize for this question being stupid to all you game programmers. Here is the code I have now: import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import javax.swing.ImageIcon; public class AnimationTest1 { public static void main(String args[]) { AnimationTest1 test = new AnimationTest1(); test.run(); } private static final DisplayMode POSSIBLE_MODES[] = { new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(640, 480, 16, 0) }; private static final long DEMO_TIME = 4000; private ScreenManager screen; private Image bgImage; private Animation anim; public void loadImages() { // create animation List<Polygon> polygons=new ArrayList(); int[] x=new int[]{20,4,4,20,40,56,56,40}; int[] y=new int[]{20,32,40,44,44,40,32,20}; polygons.add(new Polygon(x,y,8)); anim = new Animation(); //# of frames long startTime = System.currentTimeMillis(); long currTimer = startTime; long elapsedTime = 0; boolean animated = false; Graphics2D g = screen.getGraphics(); int width=200; int height=200; while (currTimer - startTime < DEMO_TIME*2) { //draw the polygons if(!animated){ for(int j=0; j<polygons.size();j++){ for(int pos=0; pos<polygons.get(j).npoints; pos++){ polygons.get(j).xpoints[pos]+=1; } } anim.setNewPolyFrame(polygons , width , height , 64); } else{ // update animation anim.update(elapsedTime); draw(g); g.dispose(); screen.update(); try{ Thread.sleep(20); } catch(InterruptedException ie){} } if(currTimer - startTime == DEMO_TIME) animated=true; elapsedTime = System.currentTimeMillis() - currTimer; currTimer += elapsedTime; } } public void run() { screen = new ScreenManager(); try { DisplayMode displayMode = screen.findFirstCompatibleMode(POSSIBLE_MODES); screen.setFullScreen(displayMode); loadImages(); } finally { screen.restoreScreen(); } } public void draw(Graphics g) { // draw background g.drawImage(bgImage, 0, 0, null); // draw image g.drawImage(anim.getImage(), 0, 0, null); } } ScreenManager: import java.awt.Color; import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.GraphicsEnvironment; import java.awt.Toolkit; import java.awt.Window; import java.awt.event.KeyListener; import java.awt.event.MouseListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; import javax.swing.JPanel; public class ScreenManager extends JPanel { private GraphicsDevice device; /** Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment=GraphicsEnvironment.getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); setBackground(Color.white); } /** Returns a list of compatible display modes for the default device on the system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** Returns the first compatible mode in a list of modes. Returns null if no modes are compatible. */ public DisplayMode findFirstCompatibleMode( DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** Determines if two display modes "match". Two display modes match if they have the same resolution, bit depth, and refresh rate. The bit depth is ignored if one of the modes has a bit depth of DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** Enters full screen mode and changes the display mode. If the specified display mode is null or not compatible with this device, or if the display mode cannot be changed on this system, the current display mode is used. <p> The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { JFrame frame = new JFrame(); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(true); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } } frame.createBufferStrategy(2); Graphics g=frame.getGraphics(); g.setColor(Color.white); g.drawRect(0, 0, frame.WIDTH, frame.HEIGHT); frame.paintAll(g); g.setColor(Color.black); g.dispose(); } /** Gets the graphics context for the display. The ScreenManager uses double buffering, so applications must call update() to show any graphics drawn. <p> The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D)strategy.getDrawGraphics(); } else { return null; } } /** Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) Toolkit.getDefaultToolkit().sync(); } /** Returns the window currently used in full screen mode. Returns null if the device is not in full screen mode. */ public Window getFullScreenWindow() { return device.getFullScreenWindow(); } /** Returns the width of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** Returns the height of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparency) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparency); } return null; } } Animation: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; /** The Animation class manages a series of images (frames) and the amount of time to display each frame. */ public class Animation { private ArrayList frames; private int currFrameIndex; private long animTime; private long totalDuration; /** Creates a new, empty Animation. */ public Animation() { frames = new ArrayList(); totalDuration = 0; start(); } /** Adds an image to the animation with the specified duration (time to display the image). */ public synchronized void addFrame(BufferedImage image, long duration){ ScreenManager s = new ScreenManager(); totalDuration += duration; frames.add(new AnimFrame(image, totalDuration)); } /** Starts the animation over from the beginning. */ public synchronized void start() { animTime = 0; currFrameIndex = 0; } /** Updates the animation's current image (frame), if necessary. */ public synchronized void update(long elapsedTime) { if (frames.size() >= 1) { animTime += elapsedTime; /*if (animTime >= totalDuration) { animTime = animTime % totalDuration; currFrameIndex = 0; }*/ while (animTime > getFrame(0).endTime) { frames.remove(0); } } } /** Gets the Animation's current image. Returns null if this animation has no images. */ public synchronized Image getImage() { if (frames.size() > 0&&!(currFrameIndex>=frames.size())) { return getFrame(currFrameIndex).image; } else{ System.out.println("There are no frames!"); System.exit(0); } return null; } private AnimFrame getFrame(int i) { return (AnimFrame)frames.get(i); } private class AnimFrame { Image image; long endTime; public AnimFrame(Image image, long endTime) { this.image = image; this.endTime = endTime; } } public void setNewPolyFrame(List<Polygon> polys,int imagewidth,int imageheight,int time){ BufferedImage image=new BufferedImage(imagewidth, imageheight, 1); Graphics g=image.getGraphics(); for(int i=0;i<polys.size();i++){ g.drawPolygon(polys.get(i)); } addFrame(image,time); g.dispose(); } }

    Read the article

  • Using FiddlerCore to capture HTTP Requests with .NET

    - by Rick Strahl
    Over the last few weeks I’ve been working on my Web load testing utility West Wind WebSurge. One of the key components of a load testing tool is the ability to capture URLs effectively so that you can play them back later under load. One of the options in WebSurge for capturing URLs is to use its built-in capture tool which acts as an HTTP proxy to capture any HTTP and HTTPS traffic from most Windows HTTP clients, including Web Browsers as well as standalone Windows applications and services. To make this happen, I used Eric Lawrence’s awesome FiddlerCore library, which provides most of the functionality of his desktop Fiddler application, all rolled into an easy to use library that you can plug into your own applications. FiddlerCore makes it almost too easy to capture HTTP content! For WebSurge I needed to capture all HTTP traffic in order to capture the full HTTP request – URL, headers and any content posted by the client. The result of what I ended up creating is this semi-generic capture form: In this post I’m going to demonstrate how easy it is to use FiddlerCore to build this HTTP Capture Form.  If you want to jump right in here are the links to get Telerik’s Fiddler Core and the code for the demo provided here. FiddlerCore Download FiddlerCore on NuGet Show me the Code (WebSurge Integration code from GitHub) Download the WinForms Sample Form West Wind Web Surge (example implementation in live app) Note that FiddlerCore is bound by a license for commercial usage – see license.txt in the FiddlerCore distribution for details. Integrating FiddlerCore FiddlerCore is a library that simply plugs into your application. You can download it from the Telerik site and manually add the assemblies to your project, or you can simply install the NuGet package via:       PM> Install-Package FiddlerCore The library consists of the FiddlerCore.dll as well as a couple of support libraries (CertMaker.dll and BCMakeCert.dll) that are used for installing SSL certificates. I’ll have more on SSL captures and certificate installation later in this post. But first let’s see how easy it is to use FiddlerCore to capture HTTP content by looking at how to build the above capture form. Capturing HTTP Content Once the library is installed it’s super easy to hook up Fiddler functionality. Fiddler includes a number of static class methods on the FiddlerApplication object that can be called to hook up callback events as well as actual start monitoring HTTP URLs. In the following code directly lifted from WebSurge, I configure a few filter options on Form level object, from the user inputs shown on the form by assigning it to a capture options object. In the live application these settings are persisted configuration values, but in the demo they are one time values initialized and set on the form. Once these options are set, I hook up the AfterSessionComplete event to capture every URL that passes through the proxy after the request is completed and start up the Proxy service:void Start() { if (tbIgnoreResources.Checked) CaptureConfiguration.IgnoreResources = true; else CaptureConfiguration.IgnoreResources = false; string strProcId = txtProcessId.Text; if (strProcId.Contains('-')) strProcId = strProcId.Substring(strProcId.IndexOf('-') + 1).Trim(); strProcId = strProcId.Trim(); int procId = 0; if (!string.IsNullOrEmpty(strProcId)) { if (!int.TryParse(strProcId, out procId)) procId = 0; } CaptureConfiguration.ProcessId = procId; CaptureConfiguration.CaptureDomain = txtCaptureDomain.Text; FiddlerApplication.AfterSessionComplete += FiddlerApplication_AfterSessionComplete; FiddlerApplication.Startup(8888, true, true, true); } The key lines for FiddlerCore are just the last two lines of code that include the event hookup code as well as the Startup() method call. Here I only hook up to the AfterSessionComplete event but there are a number of other events that hook various stages of the HTTP request cycle you can also hook into. Other events include BeforeRequest, BeforeResponse, RequestHeadersAvailable, ResponseHeadersAvailable and so on. In my case I want to capture the request data and I actually have several options to capture this data. AfterSessionComplete is the last event that fires in the request sequence and it’s the most common choice to capture all request and response data. I could have used several other events, but AfterSessionComplete is one place where you can look both at the request and response data, so this will be the most common place to hook into if you’re capturing content. The implementation of AfterSessionComplete is responsible for capturing all HTTP request headers and it looks something like this:private void FiddlerApplication_AfterSessionComplete(Session sess) { // Ignore HTTPS connect requests if (sess.RequestMethod == "CONNECT") return; if (CaptureConfiguration.ProcessId > 0) { if (sess.LocalProcessID != 0 && sess.LocalProcessID != CaptureConfiguration.ProcessId) return; } if (!string.IsNullOrEmpty(CaptureConfiguration.CaptureDomain)) { if (sess.hostname.ToLower() != CaptureConfiguration.CaptureDomain.Trim().ToLower()) return; } if (CaptureConfiguration.IgnoreResources) { string url = sess.fullUrl.ToLower(); var extensions = CaptureConfiguration.ExtensionFilterExclusions; foreach (var ext in extensions) { if (url.Contains(ext)) return; } var filters = CaptureConfiguration.UrlFilterExclusions; foreach (var urlFilter in filters) { if (url.Contains(urlFilter)) return; } } if (sess == null || sess.oRequest == null || sess.oRequest.headers == null) return; string headers = sess.oRequest.headers.ToString(); var reqBody = sess.GetRequestBodyAsString(); // if you wanted to capture the response //string respHeaders = session.oResponse.headers.ToString(); //var respBody = session.GetResponseBodyAsString(); // replace the HTTP line to inject full URL string firstLine = sess.RequestMethod + " " + sess.fullUrl + " " + sess.oRequest.headers.HTTPVersion; int at = headers.IndexOf("\r\n"); if (at < 0) return; headers = firstLine + "\r\n" + headers.Substring(at + 1); string output = headers + "\r\n" + (!string.IsNullOrEmpty(reqBody) ? reqBody + "\r\n" : string.Empty) + Separator + "\r\n\r\n"; BeginInvoke(new Action<string>((text) => { txtCapture.AppendText(text); UpdateButtonStatus(); }), output); } The code starts by filtering out some requests based on the CaptureOptions I set before the capture is started. These options/filters are applied when requests actually come in. This is very useful to help narrow down the requests that are captured for playback based on options the user picked. I find it useful to limit requests to a certain domain for captures, as well as filtering out some request types like static resources – images, css, scripts etc. This is of course optional, but I think it’s a common scenario and WebSurge makes good use of this feature. AfterSessionComplete like other FiddlerCore events, provides a Session object parameter which contains all the request and response details. There are oRequest and oResponse objects to hold their respective data. In my case I’m interested in the raw request headers and body only, as you can see in the commented code you can also retrieve the response headers and body. Here the code captures the request headers and body and simply appends the output to the textbox on the screen. Note that the Fiddler events are asynchronous, so in order to display the content in the UI they have to be marshaled back the UI thread with BeginInvoke, which here simply takes the generated headers and appends it to the existing textbox test on the form. As each request is processed, the headers are captured and appended to the bottom of the textbox resulting in a Session HTTP capture in the format that Web Surge internally supports, which is basically raw request headers with a customized 1st HTTP Header line that includes the full URL rather than a server relative URL. When the capture is done the user can either copy the raw HTTP session to the clipboard, or directly save it to file. This raw capture format is the same format WebSurge and also Fiddler use to import/export request data. While this code is application specific, it demonstrates the kind of logic that you can easily apply to the request capture process, which is one of the reasonsof why FiddlerCore is so powerful. You get to choose what content you want to look up as part of your own application logic and you can then decide how to capture or use that data as part of your application. The actual captured data in this case is only a string. The user can edit the data by hand or in the the case of WebSurge, save it to disk and automatically open the captured session as a new load test. Stopping the FiddlerCore Proxy Finally to stop capturing requests you simply disconnect the event handler and call the FiddlerApplication.ShutDown() method:void Stop() { FiddlerApplication.AfterSessionComplete -= FiddlerApplication_AfterSessionComplete; if (FiddlerApplication.IsStarted()) FiddlerApplication.Shutdown(); } As you can see, adding HTTP capture functionality to an application is very straight forward. FiddlerCore offers tons of features I’m not even touching on here – I suspect basic captures are the most common scenario, but a lot of different things can be done with FiddlerCore’s simple API interface. Sky’s the limit! The source code for this sample capture form (WinForms) is provided as part of this article. Adding Fiddler Certificates with FiddlerCore One of the sticking points in West Wind WebSurge has been that if you wanted to capture HTTPS/SSL traffic, you needed to have the full version of Fiddler and have HTTPS decryption enabled. Essentially you had to use Fiddler to configure HTTPS decryption and the associated installation of the Fiddler local client certificate that is used for local decryption of incoming SSL traffic. While this works just fine, requiring to have Fiddler installed and then using a separate application to configure the SSL functionality isn’t ideal. Fortunately FiddlerCore actually includes the tools to register the Fiddler Certificate directly using FiddlerCore. Why does Fiddler need a Certificate in the first Place? Fiddler and FiddlerCore are essentially HTTP proxies which means they inject themselves into the HTTP conversation by re-routing HTTP traffic to a special HTTP port (8888 by default for Fiddler) and then forward the HTTP data to the original client. Fiddler injects itself as the system proxy in using the WinInet Windows settings  which are the same settings that Internet Explorer uses and that are configured in the Windows and Internet Explorer Internet Settings dialog. Most HTTP clients running on Windows pick up and apply these system level Proxy settings before establishing new HTTP connections and that’s why most clients automatically work once Fiddler – or FiddlerCore/WebSurge are running. For plain HTTP requests this just works – Fiddler intercepts the HTTP requests on the proxy port and then forwards them to the original port (80 for HTTP and 443 for SSL typically but it could be any port). For SSL however, this is not quite as simple – Fiddler can easily act as an HTTPS/SSL client to capture inbound requests from the server, but when it forwards the request to the client it has to also act as an SSL server and provide a certificate that the client trusts. This won’t be the original certificate from the remote site, but rather a custom local certificate that effectively simulates an SSL connection between the proxy and the client. If there is no custom certificate configured for Fiddler the SSL request fails with a certificate validation error. The key for this to work is that a custom certificate has to be installed that the HTTPS client trusts on the local machine. For a much more detailed description of the process you can check out Eric Lawrence’s blog post on Certificates. If you’re using the desktop version of Fiddler you can install a local certificate into the Windows certificate store. Fiddler proper does this from the Options menu: This operation does several things: It installs the Fiddler Root Certificate It sets trust to this Root Certificate A new client certificate is generated for each HTTPS site monitored Certificate Installation with FiddlerCore You can also provide this same functionality using FiddlerCore which includes a CertMaker class. Using CertMaker is straight forward to use and it provides an easy way to create some simple helpers that can install and uninstall a Fiddler Root certificate:public static bool InstallCertificate() { if (!CertMaker.rootCertExists()) { if (!CertMaker.createRootCert()) return false; if (!CertMaker.trustRootCert()) return false; } return true; } public static bool UninstallCertificate() { if (CertMaker.rootCertExists()) { if (!CertMaker.removeFiddlerGeneratedCerts(true)) return false; } return true; } InstallCertificate() works by first checking whether the root certificate is already installed and if it isn’t goes ahead and creates a new one. The process of creating the certificate is a two step process – first the actual certificate is created and then it’s moved into the certificate store to become trusted. I’m not sure why you’d ever split these operations up since a cert created without trust isn’t going to be of much value, but there are two distinct steps. When you trigger the trustRootCert() method, a message box will pop up on the desktop that lets you know that you’re about to trust a local private certificate. This is a security feature to ensure that you really want to trust the Fiddler root since you are essentially installing a man in the middle certificate. It’s quite safe to use this generated root certificate, because it’s been specifically generated for your machine and thus is not usable from external sources, the only way to use this certificate in a trusted way is from the local machine. IOW, unless somebody has physical access to your machine, there’s no useful way to hijack this certificate and use it for nefarious purposes (see Eric’s post for more details). Once the Root certificate has been installed, FiddlerCore/Fiddler create new certificates for each site that is connected to with HTTPS. You can end up with quite a few temporary certificates in your certificate store. To uninstall you can either use Fiddler and simply uncheck the Decrypt HTTPS traffic option followed by the remove Fiddler certificates button, or you can use FiddlerCore’s CertMaker.removeFiddlerGeneratedCerts() which removes the root cert and any of the intermediary certificates Fiddler created. Keep in mind that when you uninstall you uninstall the certificate for both FiddlerCore and Fiddler, so use UninstallCertificate() with care and realize that you might affect the Fiddler application’s operation by doing so as well. When to check for an installed Certificate Note that the check to see if the root certificate exists is pretty fast, while the actual process of installing the certificate is a relatively slow operation that even on a fast machine takes a few seconds. Further the trust operation pops up a message box so you probably don’t want to install the certificate repeatedly. Since the check for the root certificate is fast, you can easily put a call to InstallCertificate() in any capture startup code – in which case the certificate installation only triggers when a certificate is in fact not installed. Personally I like to make certificate installation explicit – just like Fiddler does, so in WebSurge I use a small drop down option on the menu to install or uninstall the SSL certificate:   This code calls the InstallCertificate and UnInstallCertificate functions respectively – the experience with this is similar to what you get in Fiddler with the extra dialog box popping up to prompt confirmation for installation of the root certificate. Once the cert is installed you can then capture SSL requests. There’s a gotcha however… Gotcha: FiddlerCore Certificates don’t stick by Default When I originally tried to use the Fiddler certificate installation I ran into an odd problem. I was able to install the certificate and immediately after installation was able to capture HTTPS requests. Then I would exit the application and come back in and try the same HTTPS capture again and it would fail due to a missing certificate. CertMaker.rootCertExists() would return false after every restart and if re-installed the certificate a new certificate would get added to the certificate store resulting in a bunch of duplicated root certificates with different keys. What the heck? CertMaker and BcMakeCert create non-sticky CertificatesI turns out that FiddlerCore by default uses different components from what the full version of Fiddler uses. Fiddler uses a Windows utility called MakeCert.exe to create the Fiddler Root certificate. FiddlerCore however installs the CertMaker.dll and BCMakeCert.dll assemblies, which use a different crypto library (Bouncy Castle) for certificate creation than MakeCert.exe which uses the Windows Crypto API. The assemblies provide support for non-windows operation for Fiddler under Mono, as well as support for some non-Windows certificate platforms like iOS and Android for decryption. The bottom line is that the FiddlerCore provided bouncy castle assemblies are not sticky by default as the certificates created with them are not cached as they are in Fiddler proper. To get certificates to ‘stick’ you have to explicitly cache the certificates in Fiddler’s internal preferences. A cache aware version of InstallCertificate looks something like this:public static bool InstallCertificate() { if (!CertMaker.rootCertExists()) { if (!CertMaker.createRootCert()) return false; if (!CertMaker.trustRootCert()) return false; App.Configuration.UrlCapture.Cert = FiddlerApplication.Prefs.GetStringPref("fiddler.certmaker.bc.cert", null); App.Configuration.UrlCapture.Key = FiddlerApplication.Prefs.GetStringPref("fiddler.certmaker.bc.key", null); } return true; } public static bool UninstallCertificate() { if (CertMaker.rootCertExists()) { if (!CertMaker.removeFiddlerGeneratedCerts(true)) return false; } App.Configuration.UrlCapture.Cert = null; App.Configuration.UrlCapture.Key = null; return true; } In this code I store the Fiddler cert and private key in an application configuration settings that’s stored with the application settings (App.Configuration.UrlCapture object). These settings automatically persist when WebSurge is shut down. The values are read out of Fiddler’s internal preferences store which is set after a new certificate has been created. Likewise I clear out the configuration settings when the certificate is uninstalled. In order for these setting to be used you have to also load the configuration settings into the Fiddler preferences *before* a call to rootCertExists() is made. I do this in the capture form’s constructor:public FiddlerCapture(StressTestForm form) { InitializeComponent(); CaptureConfiguration = App.Configuration.UrlCapture; MainForm = form; if (!string.IsNullOrEmpty(App.Configuration.UrlCapture.Cert)) { FiddlerApplication.Prefs.SetStringPref("fiddler.certmaker.bc.key", App.Configuration.UrlCapture.Key); FiddlerApplication.Prefs.SetStringPref("fiddler.certmaker.bc.cert", App.Configuration.UrlCapture.Cert); }} This is kind of a drag to do and not documented anywhere that I could find, so hopefully this will save you some grief if you want to work with the stock certificate logic that installs with FiddlerCore. MakeCert provides sticky Certificates and the same functionality as Fiddler But there’s actually an easier way. If you want to skip the above Fiddler preference configuration code in your application you can choose to distribute MakeCert.exe instead of certmaker.dll and bcmakecert.dll. When you use MakeCert.exe, the certificates settings are stored in Windows so they are available without any custom configuration inside of your application. It’s easier to integrate and as long as you run on Windows and you don’t need to support iOS or Android devices is simply easier to deal with. To integrate into your project, you can remove the reference to CertMaker.dll (and the BcMakeCert.dll assembly) from your project. Instead copy MakeCert.exe into your output folder. To make sure MakeCert.exe gets pushed out, include MakeCert.exe in your project and set the Build Action to None, and Copy to Output Directory to Copy if newer. Note that the CertMaker.dll reference in the project has been removed and on disk the files for Certmaker.dll, as well as the BCMakeCert.dll files on disk. Keep in mind that these DLLs are resources of the FiddlerCore NuGet package, so updating the package may end up pushing those files back into your project. Once MakeCert.exe is distributed FiddlerCore checks for it first before using the assemblies so as long as MakeCert.exe exists it’ll be used for certificate creation (at least on Windows). Summary FiddlerCore is a pretty sweet tool, and it’s absolutely awesome that we get to plug in most of the functionality of Fiddler right into our own applications. A few years back I tried to build this sort of functionality myself for an app and ended up giving up because it’s a big job to get HTTP right – especially if you need to support SSL. FiddlerCore now provides that functionality as a turnkey solution that can be plugged into your own apps easily. The only downside is FiddlerCore’s documentation for more advanced features like certificate installation which is pretty sketchy. While for the most part FiddlerCore’s feature set is easy to work with without any documentation, advanced features are often not intuitive to gleam by just using Intellisense or the FiddlerCore help file reference (which is not terribly useful). While Eric Lawrence is very responsive on his forum and on Twitter, there simply isn’t much useful documentation on Fiddler/FiddlerCore available online. If you run into trouble the forum is probably the first place to look and then ask a question if you can’t find the answer. The best documentation you can find is Eric’s Fiddler Book which covers a ton of functionality of Fiddler and FiddlerCore. The book is a great reference to Fiddler’s feature set as well as providing great insights into the HTTP protocol. The second half of the book that gets into the innards of HTTP is an excellent read for anybody who wants to know more about some of the more arcane aspects and special behaviors of HTTP – it’s well worth the read. While the book has tons of information in a very readable format, it’s unfortunately not a great reference as it’s hard to find things in the book and because it’s not available online you can’t electronically search for the great content in it. But it’s hard to complain about any of this given the obvious effort and love that’s gone into this awesome product for all of these years. A mighty big thanks to Eric Lawrence  for having created this useful tool that so many of us use all the time, and also to Telerik for picking up Fiddler/FiddlerCore and providing Eric the resources to support and improve this wonderful tool full time and keeping it free for all. Kudos! Resources FiddlerCore Download FiddlerCore NuGet Fiddler Capture Sample Form Fiddler Capture Form in West Wind WebSurge (GitHub) Eric Lawrence’s Fiddler Book© Rick Strahl, West Wind Technologies, 2005-2014Posted in .NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • West Wind WebSurge - an easy way to Load Test Web Applications

    - by Rick Strahl
    A few months ago on a project the subject of load testing came up. We were having some serious issues with a Web application that would start spewing SQL lock errors under somewhat heavy load. These sort of errors can be tough to catch, precisely because they only occur under load and not during typical development testing. To replicate this error more reliably we needed to put a load on the application and run it for a while before these SQL errors would flare up. It’s been a while since I’d looked at load testing tools, so I spent a bit of time looking at different tools and frankly didn’t really find anything that was a good fit. A lot of tools were either a pain to use, didn’t have the basic features I needed, or are extravagantly expensive. In  the end I got frustrated enough to build an initially small custom load test solution that then morphed into a more generic library, then gained a console front end and eventually turned into a full blown Web load testing tool that is now called West Wind WebSurge. I got seriously frustrated looking for tools every time I needed some quick and dirty load testing for an application. If my aim is to just put an application under heavy enough load to find a scalability problem in code, or to simply try and push an application to its limits on the hardware it’s running I shouldn’t have to have to struggle to set up tests. It should be easy enough to get going in a few minutes, so that the testing can be set up quickly so that it can be done on a regular basis without a lot of hassle. And that was the goal when I started to build out my initial custom load tester into a more widely usable tool. If you’re in a hurry and you want to check it out, you can find more information and download links here: West Wind WebSurge Product Page Walk through Video Download link (zip) Install from Chocolatey Source on GitHub For a more detailed discussion of the why’s and how’s and some background continue reading. How did I get here? When I started out on this path, I wasn’t planning on building a tool like this myself – but I got frustrated enough looking at what’s out there to think that I can do better than what’s available for the most common simple load testing scenarios. When we ran into the SQL lock problems I mentioned, I started looking around what’s available for Web load testing solutions that would work for our whole team which consisted of a few developers and a couple of IT guys both of which needed to be able to run the tests. It had been a while since I looked at tools and I figured that by now there should be some good solutions out there, but as it turns out I didn’t really find anything that fit our relatively simple needs without costing an arm and a leg… I spent the better part of a day installing and trying various load testing tools and to be frank most of them were either terrible at what they do, incredibly unfriendly to use, used some terminology I couldn’t even parse, or were extremely expensive (and I mean in the ‘sell your liver’ range of expensive). Pick your poison. There are also a number of online solutions for load testing and they actually looked more promising, but those wouldn’t work well for our scenario as the application is running inside of a private VPN with no outside access into the VPN. Most of those online solutions also ended up being very pricey as well – presumably because of the bandwidth required to test over the open Web can be enormous. When I asked around on Twitter what people were using– I got mostly… crickets. Several people mentioned Visual Studio Load Test, and most other suggestions pointed to online solutions. I did get a bunch of responses though with people asking to let them know what I found – apparently I’m not alone when it comes to finding load testing tools that are effective and easy to use. As to Visual Studio, the higher end skus of Visual Studio and the test edition include a Web load testing tool, which is quite powerful, but there are a number of issues with that: First it’s tied to Visual Studio so it’s not very portable – you need a VS install. I also find the test setup and terminology used by the VS test runner extremely confusing. Heck, it’s complicated enough that there’s even a Pluralsight course on using the Visual Studio Web test from Steve Smith. And of course you need to have one of the high end Visual Studio Skus, and those are mucho Dinero ($$$) – just for the load testing that’s rarely an option. Some of the tools are ultra extensive and let you run analysis tools on the target serves which is useful, but in most cases – just plain overkill and only distracts from what I tend to be ultimately interested in: Reproducing problems that occur at high load, and finding the upper limits and ‘what if’ scenarios as load is ramped up increasingly against a site. Yes it’s useful to have Web app instrumentation, but often that’s not what you’re interested in. I still fondly remember early days of Web testing when Microsoft had the WAST (Web Application Stress Tool) tool, which was rather simple – and also somewhat limited – but easily allowed you to create stress tests very quickly. It had some serious limitations (mainly that it didn’t work with SSL),  but the idea behind it was excellent: Create tests quickly and easily and provide a decent engine to run it locally with minimal setup. You could get set up and run tests within a few minutes. Unfortunately, that tool died a quiet death as so many of Microsoft’s tools that probably were built by an intern and then abandoned, even though there was a lot of potential and it was actually fairly widely used. Eventually the tools was no longer downloadable and now it simply doesn’t work anymore on higher end hardware. West Wind Web Surge – Making Load Testing Quick and Easy So I ended up creating West Wind WebSurge out of rebellious frustration… The goal of WebSurge is to make it drop dead simple to create load tests. It’s super easy to capture sessions either using the built in capture tool (big props to Eric Lawrence, Telerik and FiddlerCore which made that piece a snap), using the full version of Fiddler and exporting sessions, or by manually or programmatically creating text files based on plain HTTP headers to create requests. I’ve been using this tool for 4 months now on a regular basis on various projects as a reality check for performance and scalability and it’s worked extremely well for finding small performance issues. I also use it regularly as a simple URL tester, as it allows me to quickly enter a URL plus headers and content and test that URL and its results along with the ability to easily save one or more of those URLs. A few weeks back I made a walk through video that goes over most of the features of WebSurge in some detail: Note that the UI has slightly changed since then, so there are some UI improvements. Most notably the test results screen has been updated recently to a different layout and to provide more information about each URL in a session at a glance. The video and the main WebSurge site has a lot of info of basic operations. For the rest of this post I’ll talk about a few deeper aspects that may be of interest while also giving a glance at how WebSurge works. Session Capturing As you would expect, WebSurge works with Sessions of Urls that are played back under load. Here’s what the main Session View looks like: You can create session entries manually by individually adding URLs to test (on the Request tab on the right) and saving them, or you can capture output from Web Browsers, Windows Desktop applications that call services, your own applications using the built in Capture tool. With this tool you can capture anything HTTP -SSL requests and content from Web pages, AJAX calls, SOAP or REST services – again anything that uses Windows or .NET HTTP APIs. Behind the scenes the capture tool uses FiddlerCore so basically anything you can capture with Fiddler you can also capture with Web Surge Session capture tool. Alternately you can actually use Fiddler as well, and then export the captured Fiddler trace to a file, which can then be imported into WebSurge. This is a nice way to let somebody capture session without having to actually install WebSurge or for your customers to provide an exact playback scenario for a given set of URLs that cause a problem perhaps. Note that not all applications work with Fiddler’s proxy unless you configure a proxy. For example, .NET Web applications that make HTTP calls usually don’t show up in Fiddler by default. For those .NET applications you can explicitly override proxy settings to capture those requests to service calls. The capture tool also has handy optional filters that allow you to filter by domain, to help block out noise that you typically don’t want to include in your requests. For example, if your pages include links to CDNs, or Google Analytics or social links you typically don’t want to include those in your load test, so by capturing just from a specific domain you are guaranteed content from only that one domain. Additionally you can provide url filters in the configuration file – filters allow to provide filter strings that if contained in a url will cause requests to be ignored. Again this is useful if you don’t filter by domain but you want to filter out things like static image, css and script files etc. Often you’re not interested in the load characteristics of these static and usually cached resources as they just add noise to tests and often skew the overall url performance results. In my testing I tend to care only about my dynamic requests. SSL Captures require Fiddler Note, that in order to capture SSL requests you’ll have to install the Fiddler’s SSL certificate. The easiest way to do this is to install Fiddler and use its SSL configuration options to get the certificate into the local certificate store. There’s a document on the Telerik site that provides the exact steps to get SSL captures to work with Fiddler and therefore with WebSurge. Session Storage A group of URLs entered or captured make up a Session. Sessions can be saved and restored easily as they use a very simple text format that simply stored on disk. The format is slightly customized HTTP header traces separated by a separator line. The headers are standard HTTP headers except that the full URL instead of just the domain relative path is stored as part of the 1st HTTP header line for easier parsing. Because it’s just text and uses the same format that Fiddler uses for exports, it’s super easy to create Sessions by hand manually or under program control writing out to a simple text file. You can see what this format looks like in the Capture window figure above – the raw captured format is also what’s stored to disk and what WebSurge parses from. The only ‘custom’ part of these headers is that 1st line contains the full URL instead of the domain relative path and Host: header. The rest of each header are just plain standard HTTP headers with each individual URL isolated by a separator line. The format used here also uses what Fiddler produces for exports, so it’s easy to exchange or view data either in Fiddler or WebSurge. Urls can also be edited interactively so you can modify the headers easily as well: Again – it’s just plain HTTP headers so anything you can do with HTTP can be added here. Use it for single URL Testing Incidentally I’ve also found this form as an excellent way to test and replay individual URLs for simple non-load testing purposes. Because you can capture a single or many URLs and store them on disk, this also provides a nice HTTP playground where you can record URLs with their headers, and fire them one at a time or as a session and see results immediately. It’s actually an easy way for REST presentations and I find the simple UI flow actually easier than using Fiddler natively. Finally you can save one or more URLs as a session for later retrieval. I’m using this more and more for simple URL checks. Overriding Cookies and Domains Speaking of HTTP headers – you can also overwrite cookies used as part of the options. One thing that happens with modern Web applications is that you have session cookies in use for authorization. These cookies tend to expire at some point which would invalidate a test. Using the Options dialog you can actually override the cookie: which replaces the cookie for all requests with the cookie value specified here. You can capture a valid cookie from a manual HTTP request in your browser and then paste into the cookie field, to replace the existing Cookie with the new one that is now valid. Likewise you can easily replace the domain so if you captured urls on west-wind.com and now you want to test on localhost you can do that easily easily as well. You could even do something like capture on store.west-wind.com and then test on localhost/store which would also work. Running Load Tests Once you’ve created a Session you can specify the length of the test in seconds, and specify the number of simultaneous threads to run each session on. Sessions run through each of the URLs in the session sequentially by default. One option in the options list above is that you can also randomize the URLs so each thread runs requests in a different order. This avoids bunching up URLs initially when tests start as all threads run the same requests simultaneously which can sometimes skew the results of the first few minutes of a test. While sessions run some progress information is displayed: By default there’s a live view of requests displayed in a Console-like window. On the bottom of the window there’s a running total summary that displays where you’re at in the test, how many requests have been processed and what the requests per second count is currently for all requests. Note that for tests that run over a thousand requests a second it’s a good idea to turn off the console display. While the console display is nice to see that something is happening and also gives you slight idea what’s happening with actual requests, once a lot of requests are processed, this UI updating actually adds a lot of CPU overhead to the application which may cause the actual load generated to be reduced. If you are running a 1000 requests a second there’s not much to see anyway as requests roll by way too fast to see individual lines anyway. If you look on the options panel, there is a NoProgressEvents option that disables the console display. Note that the summary display is still updated approximately once a second so you can always tell that the test is still running. Test Results When the test is done you get a simple Results display: On the right you get an overall summary as well as breakdown by each URL in the session. Both success and failures are highlighted so it’s easy to see what’s breaking in your load test. The report can be printed or you can also open the HTML document in your default Web Browser for printing to PDF or saving the HTML document to disk. The list on the right shows you a partial list of the URLs that were fired so you can look in detail at the request and response data. The list can be filtered by success and failure requests. Each list is partial only (at the moment) and limited to a max of 1000 items in order to render reasonably quickly. Each item in the list can be clicked to see the full request and response data: This particularly useful for errors so you can quickly see and copy what request data was used and in the case of a GET request you can also just click the link to quickly jump to the page. For non-GET requests you can find the URL in the Session list, and use the context menu to Test the URL as configured including any HTTP content data to send. You get to see the full HTTP request and response as well as a link in the Request header to go visit the actual page. Not so useful for a POST as above, but definitely useful for GET requests. Finally you can also get a few charts. The most useful one is probably the Request per Second chart which can be accessed from the Charts menu or shortcut. Here’s what it looks like:   Results can also be exported to JSON, XML and HTML. Keep in mind that these files can get very large rather quickly though, so exports can end up taking a while to complete. Command Line Interface WebSurge runs with a small core load engine and this engine is plugged into the front end application I’ve shown so far. There’s also a command line interface available to run WebSurge from the Windows command prompt. Using the command line you can run tests for either an individual URL (similar to AB.exe for example) or a full Session file. By default when it runs WebSurgeCli shows progress every second showing total request count, failures and the requests per second for the entire test. A silent option can turn off this progress display and display only the results. The command line interface can be useful for build integration which allows checking for failures perhaps or hitting a specific requests per second count etc. It’s also nice to use this as quick and dirty URL test facility similar to the way you’d use Apache Bench (ab.exe). Unlike ab.exe though, WebSurgeCli supports SSL and makes it much easier to create multi-URL tests using either manual editing or the WebSurge UI. Current Status Currently West Wind WebSurge is still in Beta status. I’m still adding small new features and tweaking the UI in an attempt to make it as easy and self-explanatory as possible to run. Documentation for the UI and specialty features is also still a work in progress. I plan on open-sourcing this product, but it won’t be free. There’s a free version available that provides a limited number of threads and request URLs to run. A relatively low cost license  removes the thread and request limitations. Pricing info can be found on the Web site – there’s an introductory price which is $99 at the moment which I think is reasonable compared to most other for pay solutions out there that are exorbitant by comparison… The reason code is not available yet is – well, the UI portion of the app is a bit embarrassing in its current monolithic state. The UI started as a very simple interface originally that later got a lot more complex – yeah, that never happens, right? Unless there’s a lot of interest I don’t foresee re-writing the UI entirely (which would be ideal), but in the meantime at least some cleanup is required before I dare to publish it :-). The code will likely be released with version 1.0. I’m very interested in feedback. Do you think this could be useful to you and provide value over other tools you may or may not have used before? I hope so – it already has provided a ton of value for me and the work I do that made the development worthwhile at this point. You can leave a comment below, or for more extensive discussions you can post a message on the West Wind Message Board in the WebSurge section Microsoft MVPs and Insiders get a free License If you’re a Microsoft MVP or a Microsoft Insider you can get a full license for free. Send me a link to your current, official Microsoft profile and I’ll send you a not-for resale license. Send any messages to [email protected]. Resources For more info on WebSurge and to download it to try it out, use the following links. West Wind WebSurge Home Download West Wind WebSurge Getting Started with West Wind WebSurge Video© Rick Strahl, West Wind Technologies, 2005-2014Posted in ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Oracle Coherence, Split-Brain and Recovery Protocols In Detail

    - by Ricardo Ferreira
    This article provides a high level conceptual overview of Split-Brain scenarios in distributed systems. It will focus on a specific example of cluster communication failure and recovery in Oracle Coherence. This includes a discussion on the witness protocol (used to remove failed cluster members) and the panic protocol (used to resolve Split-Brain scenarios). Note that the removal of cluster members does not necessarily indicate a Split-Brain condition. Oracle Coherence does not (and cannot) detect a Split-Brain as it occurs, the condition is only detected when cluster members that previously lost contact with each other regain contact. Cluster Topology and Configuration In order to create an good didactic for the article, let's assume a cluster topology and configuration. In this example we have a six member cluster, consisting of one JVM on each physical machine. The member IDs are as follows: Member ID  IP Address  1  10.149.155.76  2  10.149.155.77  3  10.149.155.236  4  10.149.155.75  5  10.149.155.79  6  10.149.155.78 Members 1, 2, and 3 are connected to a switch, and members 4, 5, and 6 are connected to a second switch. There is a link between the two switches, which provides network connectivity between all of the machines. Member 1 is the first member to join this cluster, thus making it the senior member. Member 6 is the last member to join this cluster. Here is a log snippet from Member 6 showing the complete member set: 2010-02-26 15:27:57.390/3.062 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=main, member=6): Started DefaultCacheServer... SafeCluster: Name=cluster:0xDDEB Group{Address=224.3.5.3, Port=35465, TTL=4} MasterMemberSet ( ThisMember=Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) OldestMember=Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) ActualMemberSet=MemberSet(Size=6, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=5, Timestamp=2010-02-26 15:27:49.095, Address=10.149.155.79:8088, MachineId=1103, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:3229, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) RecycleMillis=120000 RecycleSet=MemberSet(Size=0, BitSetCount=0 ) ) At approximately 15:30, the connection between the two switches is severed: Thirty seconds later (the default packet timeout in development mode) the logs indicate communication failures across the cluster. In this example, the communication failure was caused by a network failure. In a production setting, this type of communication failure can have many root causes, including (but not limited to) network failures, excessive GC, high CPU utilization, swapping/virtual memory, and exceeding maximum network bandwidth. In addition, this type of failure is not necessarily indicative of a split brain. Any communication failure will be logged in this fashion. Member 2 logs a communication failure with Member 5: 2010-02-26 15:30:32.638/196.928 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=2): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=5, Timestamp=2010-02-26 15:27:49.095, Address=10.149.155.79:8088, MachineId=1103, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:3229, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) ) The Coherence clustering protocol (TCMP) is a reliable transport mechanism built on UDP. In order for the protocol to be reliable, it requires an acknowledgement (ACK) for each packet delivered. If a packet fails to be acknowledged within the configured timeout period, the Coherence cluster member will log a packet timeout (as seen in the log message above). When this occurs, the cluster member will consult with other members to determine who is at fault for the communication failure. If the witness members agree that the suspect member is at fault, the suspect is removed from the cluster. If the witnesses unanimously disagree, the accuser is removed. This process is known as the witness protocol. Since Member 2 cannot communicate with Member 5, it selects two witnesses (Members 1 and 4) to determine if the communication issue is with Member 5 or with itself (Member 2). However, Member 4 is on the switch that is no longer accessible by Members 1, 2 and 3; thus a packet timeout for member 4 is recorded as well: 2010-02-26 15:30:35.648/199.938 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=2): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) Member 1 has the ability to confirm the departure of member 4, however Member 6 cannot as it is also inaccessible. At the same time, Member 3 sends a request to remove Member 6, which is followed by a report from Member 3 indicating that Member 6 has departed the cluster: 2010-02-26 15:30:35.706/199.996 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=2): MemberLeft request for Member 6 received from Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) 2010-02-26 15:30:35.709/199.999 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=2): MemberLeft notification for Member 6 received from Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) The log for Member 3 determines how Member 6 departed the cluster: 2010-02-26 15:30:35.161/191.694 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=3): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) ) 2010-02-26 15:30:35.165/191.698 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=3): Member departure confirmed by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) ); removing Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) In this case, Member 3 happened to select two witnesses that it still had connectivity with (Members 1 and 2) thus resulting in a simple decision to remove Member 6. Given the departure of Member 6, Member 2 is left with a single witness to confirm the departure of Member 4: 2010-02-26 15:30:35.713/200.003 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=2): Member departure confirmed by MemberSet(Size=1, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) ); removing Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) In the meantime, Member 4 logs a missing heartbeat from the senior member. This message is also logged on Members 5 and 6. 2010-02-26 15:30:07.906/150.453 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=PacketListenerN, member=4): Scheduled senior member heartbeat is overdue; rejoining multicast group. Next, Member 4 logs a TcpRing failure with Member 2, thus resulting in the termination of Member 2: 2010-02-26 15:30:21.421/163.968 Oracle Coherence GE 3.5.3/465p2 <D4> (thread=Cluster, member=4): TcpRing: Number of socket exceptions exceeded maximum; last was "java.net.SocketTimeoutException: connect timed out"; removing the member: 2 For quick process termination detection, Oracle Coherence utilizes a feature called TcpRing which is a sparse collection of TCP/IP-based connections between different members in the cluster. Each member in the cluster is connected to at least one other member, which (if at all possible) is running on a different physical box. This connection is not used for any data transfer, only heartbeat communications are sent once a second per each link. If a certain number of exceptions are thrown while trying to re-establish a connection, the member throwing the exceptions is removed from the cluster. Member 5 logs a packet timeout with Member 3 and cites witnesses Members 4 and 6: 2010-02-26 15:30:29.791/165.037 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=5): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) 2010-02-26 15:30:29.798/165.044 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=5): Member departure confirmed by MemberSet(Size=2, BitSetCount=2 Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ); removing Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) Eventually we are left with two distinct clusters consisting of Members 1, 2, 3 and Members 4, 5, 6, respectively. In the latter cluster, Member 4 is promoted to senior member. The connection between the two switches is restored at 15:33. Upon the restoration of the connection, the cluster members immediately receive cluster heartbeats from the two senior members. In the case of Members 1, 2, and 3, the following is logged: 2010-02-26 15:33:14.970/369.066 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=1): The member formerly known as Member(Id=4, Timestamp=2010-02-26 15:30:35.341, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) has been forcefully evicted from the cluster, but continues to emit a cluster heartbeat; henceforth, the member will be shunned and its messages will be ignored. Likewise for Members 4, 5, and 6: 2010-02-26 15:33:14.343/336.890 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=4): The member formerly known as Member(Id=1, Timestamp=2010-02-26 15:30:31.64, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) has been forcefully evicted from the cluster, but continues to emit a cluster heartbeat; henceforth, the member will be shunned and its messages will be ignored. This message indicates that a senior heartbeat is being received from members that were previously removed from the cluster, in other words, something that should not be possible. For this reason, the recipients of these messages will initially ignore them. After several iterations of these messages, the existence of multiple clusters is acknowledged, thus triggering the panic protocol to reconcile this situation. When the presence of more than one cluster (i.e. Split-Brain) is detected by a Coherence member, the panic protocol is invoked in order to resolve the conflicting clusters and consolidate into a single cluster. The protocol consists of the removal of smaller clusters until there is one cluster remaining. In the case of equal size clusters, the one with the older Senior Member will survive. Member 1, being the oldest member, initiates the protocol: 2010-02-26 15:33:45.970/400.066 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=1): An existence of a cluster island with senior Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) containing 3 nodes have been detected. Since this Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) is the senior of an older cluster island, the panic protocol is being activated to stop the other island's senior and all junior nodes that belong to it. Member 3 receives the panic: 2010-02-26 15:33:45.803/382.336 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=3): Received panic from senior Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) caused by Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member 4, the senior member of the younger cluster, receives the kill message from Member 3: 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. In turn, Member 4 requests the departure of its junior members 5 and 6: 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. 2010-02-26 15:33:43.343/349.015 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=6): Received a Kill message from a valid Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer); stopping cluster service. Once Members 4, 5, and 6 restart, they rejoin the original cluster with senior member 1. The log below is from Member 4. Note that it receives a different member id when it rejoins the cluster. 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. 2010-02-26 15:33:46.921/369.468 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Service Cluster left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Invocation:InvocationService, member=4): Service InvocationService left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=OptimisticCache, member=4): Service OptimisticCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=ReplicatedCache, member=4): Service ReplicatedCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=DistributedCache, member=4): Service DistributedCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Invocation:Management, member=4): Service Management left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service Management with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service DistributedCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service ReplicatedCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service OptimisticCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service InvocationService with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member(Id=6, Timestamp=2010-02-26 15:33:47.046, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) left Cluster with senior member 4 2010-02-26 15:33:49.218/371.765 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=main, member=n/a): Restarting cluster 2010-02-26 15:33:49.421/371.968 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=n/a): Service Cluster joined the cluster with senior service member n/a 2010-02-26 15:33:49.625/372.172 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=n/a): This Member(Id=5, Timestamp=2010-02-26 15:33:50.499, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=1) joined cluster "cluster:0xDDEB" with senior Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) Cool isn't it?

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Microsoft Introduces WebMatrix

    - by Rick Strahl
    originally published in CoDe Magazine Editorial Microsoft recently released the first CTP of a new development environment called WebMatrix, which along with some of its supporting technologies are squarely aimed at making the Microsoft Web Platform more approachable for first-time developers and hobbyists. But in the process, it also provides some updated technologies that can make life easier for existing .NET developers. Let’s face it: ASP.NET development isn’t exactly trivial unless you already have a fair bit of familiarity with sophisticated development practices. Stick a non-developer in front of Visual Studio .NET or even the Visual Web Developer Express edition and it’s not likely that the person in front of the screen will be very productive or feel inspired. Yet other technologies like PHP and even classic ASP did provide the ability for non-developers and hobbyists to become reasonably proficient in creating basic web content quickly and efficiently. WebMatrix appears to be Microsoft’s attempt to bring back some of that simplicity with a number of technologies and tools. The key is to provide a friendly and fully self-contained development environment that provides all the tools needed to build an application in one place, as well as tools that allow publishing of content and databases easily to the web server. WebMatrix is made up of several components and technologies: IIS Developer Express IIS Developer Express is a new, self-contained development web server that is fully compatible with IIS 7.5 and based on the same codebase that IIS 7.5 uses. This new development server replaces the much less compatible Cassini web server that’s been used in Visual Studio and the Express editions. IIS Express addresses a few shortcomings of the Cassini server such as the inability to serve custom ISAPI extensions (i.e., things like PHP or ASP classic for example), as well as not supporting advanced authentication. IIS Developer Express provides most of the IIS 7.5 feature set providing much better compatibility between development and live deployment scenarios. SQL Server Compact 4.0 Database access is a key component for most web-driven applications, but on the Microsoft stack this has mostly meant you have to use SQL Server or SQL Server Express. SQL Server Compact is not new-it’s been around for a few years, but it’s been severely hobbled in the past by terrible tool support and the inability to support more than a single connection in Microsoft’s attempt to avoid losing SQL Server licensing. The new release of SQL Server Compact 4.0 supports multiple connections and you can run it in ASP.NET web applications simply by installing an assembly into the bin folder of the web application. In effect, you don’t have to install a special system configuration to run SQL Compact as it is a drop-in database engine: Copy the small assembly into your BIN folder (or from the GAC if installed fully), create a connection string against a local file-based database file, and then start firing SQL requests. Additionally WebMatrix includes nice tools to edit the database tables and files, along with tools to easily upsize (and hopefully downsize in the future) to full SQL Server. This is a big win, pending compatibility and performance limits. In my simple testing the data engine performed well enough for small data sets. This is not only useful for web applications, but also for desktop applications for which a fully installed SQL engine like SQL Server would be overkill. Having a local data store in those applications that can potentially be accessed by multiple users is a welcome feature. ASP.NET Razor View Engine What? Yet another native ASP.NET view engine? We already have Web Forms and various different flavors of using that view engine with Web Forms and MVC. Do we really need another? Microsoft thinks so, and Razor is an implementation of a lightweight, script-only view engine. Unlike the Web Forms view engine, Razor works only with inline code, snippets, and markup; therefore, it is more in line with current thinking of what a view engine should represent. There’s no support for a “page model” or any of the other Web Forms features of the full-page framework, but just a lightweight scripting engine that works with plain markup plus embedded expressions and code. The markup syntax for Razor is geared for minimal typing, plus some progressive detection of where a script block/expression starts and ends. This results in a much leaner syntax than the typical ASP.NET Web Forms alligator (<% %>) tags. Razor uses the @ sign plus standard C# (or Visual Basic) block syntax to delineate code snippets and expressions. Here’s a very simple example of what Razor markup looks like along with some comment annotations: <!DOCTYPE html> <html>     <head>         <title></title>     </head>     <body>     <h1>Razor Test</h1>          <!-- simple expressions -->     @DateTime.Now     <hr />     <!-- method expressions -->     @DateTime.Now.ToString("T")          <!-- code blocks -->     @{         List<string> names = new List<string>();         names.Add("Rick");         names.Add("Markus");         names.Add("Claudio");         names.Add("Kevin");     }          <!-- structured block statements -->     <ul>     @foreach(string name in names){             <li>@name</li>     }     </ul>           <!-- Conditional code -->        @if(true) {                        <!-- Literal Text embedding in code -->        <text>         true        </text>;    }    else    {        <!-- Literal Text embedding in code -->       <text>       false       </text>;    }    </body> </html> Like the Web Forms view engine, Razor parses pages into code, and then executes that run-time compiled code. Effectively a “page” becomes a code file with markup becoming literal text written into the Response stream, code snippets becoming raw code, and expressions being written out with Response.Write(). The code generated from Razor doesn’t look much different from similar Web Forms code that only uses script tags; so although the syntax may look different, the operational model is fairly similar to the Web Forms engine minus the overhead of the large Page object model. However, there are differences: -Razor pages are based on a new base class, Microsoft.WebPages.WebPage, which is hosted in the Microsoft.WebPages assembly that houses all the Razor engine parsing and processing logic. Browsing through the assembly (in the generated ASP.NET Temporary Files folder or GAC) will give you a good idea of the functionality that Razor provides. If you look closely, a lot of the feature set matches ASP.NET MVC’s view implementation as well as many of the helper classes found in MVC. It’s not hard to guess the motivation for this sort of view engine: For beginning developers the simple markup syntax is easier to work with, although you obviously still need to have some understanding of the .NET Framework in order to create dynamic content. The syntax is easier to read and grok and much shorter to type than ASP.NET alligator tags (<% %>) and also easier to understand aesthetically what’s happening in the markup code. Razor also is a better fit for Microsoft’s vision of ASP.NET MVC: It’s a new view engine without the baggage of Web Forms attached to it. The engine is more lightweight since it doesn’t carry all the features and object model of Web Forms with it and it can be instantiated directly outside of the HTTP environment, which has been rather tricky to do for the Web Forms view engine. Having a standalone script parser is a huge win for other applications as well – it makes it much easier to create script or meta driven output generators for many types of applications from code/screen generators, to simple form letters to data merging applications with user customizability. For me personally this is very useful side effect and who knows maybe Microsoft will actually standardize they’re scripting engines (die T4 die!) on this engine. Razor also better fits the “view-based” approach where the view is supposed to be mostly a visual representation that doesn’t hold much, if any, code. While you can still use code, the code you do write has to be self-contained. Overall I wouldn’t be surprised if Razor will become the new standard view engine for MVC in the future – and in fact there have been announcements recently that Razor will become the default script engine in ASP.NET MVC 3.0. Razor can also be used in existing Web Forms and MVC applications, although that’s not working currently unless you manually configure the script mappings and add the appropriate assemblies. It’s possible to do it, but it’s probably better to wait until Microsoft releases official support for Razor scripts in Visual Studio. Once that happens, you can simply drop .cshtml and .vbhtml pages into an existing ASP.NET project and they will work side by side with classic ASP.NET pages. WebMatrix Development Environment To tie all of these three technologies together, Microsoft is shipping WebMatrix with an integrated development environment. An integrated gallery manager makes it easy to download and load existing projects, and then extend them with custom functionality. It seems to be a prominent goal to provide community-oriented content that can act as a starting point, be it via a custom templates or a complete standard application. The IDE includes a project manager that works with a single project and provides an integrated IDE/editor for editing the .cshtml and .vbhtml pages. A run button allows you to quickly run pages in the project manager in a variety of browsers. There’s no debugging support for code at this time. Note that Razor pages don’t require explicit compilation, so making a change, saving, and then refreshing your page in the browser is all that’s needed to see changes while testing an application locally. It’s essentially using the auto-compiling Web Project that was introduced with .NET 2.0. All code is compiled during run time into dynamically created assemblies in the ASP.NET temp folder. WebMatrix also has PHP Editing support with syntax highlighting. You can load various PHP-based applications from the WebMatrix Web Gallery directly into the IDE. Most of the Web Gallery applications are ready to install and run without further configuration, with Wizards taking you through installation of tools, dependencies, and configuration of the database as needed. WebMatrix leverages the Web Platform installer to pull the pieces down from websites in a tight integration of tools that worked nicely for the four or five applications I tried this out on. Click a couple of check boxes and fill in a few simple configuration options and you end up with a running application that’s ready to be customized. Nice! You can easily deploy completed applications via WebDeploy (to an IIS server) or FTP directly from within the development environment. The deploy tool also can handle automatically uploading and installing the database and all related assemblies required, making deployment a simple one-click install step. Simplified Database Access The IDE contains a database editor that can edit SQL Compact and SQL Server databases. There is also a Database helper class that facilitates database access by providing easy-to-use, high-level query execution and iteration methods: @{       var db = Database.OpenFile("FirstApp.sdf");     string sql = "select * from customers where Id > @0"; } <ul> @foreach(var row in db.Query(sql,1)){         <li>@row.FirstName @row.LastName</li> } </ul> The query function takes a SQL statement plus any number of positional (@0,@1 etc.) SQL parameters by simple values. The result is returned as a collection of rows which in turn have a row object with dynamic properties for each of the columns giving easy (though untyped) access to each of the fields. Likewise Execute and ExecuteNonQuery allow execution of more complex queries using similar parameter passing schemes. Note these queries use string-based queries rather than LINQ or Entity Framework’s strongly typed LINQ queries. While this may seem like a step back, it’s also in line with the expectations of non .NET script developers who are quite used to writing and using SQL strings in code rather than using OR/M frameworks. The only question is why was something not included from the beginning in .NET and Microsoft made developers build custom implementations of these basic building blocks. The implementation looks a lot like a DataTable-style data access mechanism, but to be fair, this is a common approach in scripting languages. This type of syntax that uses simple, static, data object methods to perform simple data tasks with one line of code are common in scripting languages and are a good match for folks working in PHP/Python, etc. Seems like Microsoft has taken great advantage of .NET 4.0’s dynamic typing to provide this sort of interface for row iteration where each row has properties for each field. FWIW, all the examples demonstrate using local SQL Compact files - I was unable to get a SQL Server connection string to work with the Database class (the connection string wasn’t accepted). However, since the code in the page is still plain old .NET, you can easily use standard ADO.NET code or even LINQ or Entity Framework models that are created outside of WebMatrix in separate assemblies as required. The good the bad the obnoxious - It’s still .NET The beauty (or curse depending on how you look at it :)) of Razor and the compilation model is that, behind it all, it’s still .NET. Although the syntax may look foreign, it’s still all .NET behind the scenes. You can easily access existing tools, helpers, and utilities simply by adding them to the project as references or to the bin folder. Razor automatically recognizes any assembly reference from assemblies in the bin folder. In the default configuration, Microsoft provides a host of helper functions in a Microsoft.WebPages assembly (check it out in the ASP.NET temp folder for your application), which includes a host of HTML Helpers. If you’ve used ASP.NET MVC before, a lot of the helpers should look familiar. Documentation at the moment is sketchy-there’s a very rough API reference you can check out here: http://www.asp.net/webmatrix/tutorials/asp-net-web-pages-api-reference Who needs WebMatrix? Uhm… good Question Clearly Microsoft is trying hard to create an environment with WebMatrix that is easy to use for newbie developers. The goal seems to be simplicity in providing a minimal development environment and an easy-to-use script engine/language that makes it easy to get started with. There’s also some focus on community features that can be used as starting points, such as Web Gallery applications and templates. The community features in particular are very nice and something that would be nice to eventually see in Visual Studio as well. The question is whether this is too little too late. Developers who have been clamoring for a simpler development environment on the .NET stack have mostly left for other simpler platforms like PHP or Python which are catering to the down and dirty developer. Microsoft will be hard pressed to win those folks-and other hardcore PHP developers-back. Regardless of how much you dress up a script engine fronted by the .NET Framework, it’s still the .NET Framework and all the complexity that drives it. While .NET is a fine solution in its breadth and features once you get a basic handle on the core features, the bar of entry to being productive with the .NET Framework is still pretty high. The MVC style helpers Microsoft provides are a good step in the right direction, but I suspect it’s not enough to shield new developers from having to delve much deeper into the Framework to get even basic applications built. Razor and its helpers is trying to make .NET more accessible but the reality is that in order to do useful stuff that goes beyond the handful of simple helpers you still are going to have to write some C# or VB or other .NET code. If the target is a hobby/amateur/non-programmer the learning curve isn’t made any easier by WebMatrix it’s just been shifted a tad bit further along in your development endeavor when you run out of canned components that are supplied either by Microsoft or the community. The database helpers are interesting and actually I’ve heard a lot of discussion from various developers who’ve been resisting .NET for a really long time perking up at the prospect of easier data access in .NET than the ridiculous amount of code it takes to do even simple data access with raw ADO.NET. It seems sad that such a simple concept and implementation should trigger this sort of response (especially since it’s practically trivial to create helpers like these or pick them up from countless libraries available), but there it is. It also shows that there are plenty of developers out there who are more interested in ‘getting stuff done’ easily than necessarily following the latest and greatest practices which are overkill for many development scenarios. Sometimes it seems that all of .NET is focused on the big life changing issues of development, rather than the bread and butter scenarios that many developers are interested in to get their work accomplished. And that in the end may be WebMatrix’s main raison d'être: To bring some focus back at Microsoft that simpler and more high level solutions are actually needed to appeal to the non-high end developers as well as providing the necessary tools for the high end developers who want to follow the latest and greatest trends. The current version of WebMatrix hits many sweet spots, but it also feels like it has a long way to go before it really can be a tool that a beginning developer or an accomplished developer can feel comfortable with. Although there are some really good ideas in the environment (like the gallery for downloading apps and components) which would be a great addition for Visual Studio as well, the rest of the development environment just feels like crippleware with required functionality missing especially debugging and Intellisense, but also general editor support. It’s not clear whether these are because the product is still in an early alpha release or whether it’s simply designed that way to be a really limited development environment. While simple can be good, nobody wants to feel left out when it comes to necessary tool support and WebMatrix just has that left out feeling to it. If anything WebMatrix’s technology pieces (which are really independent of the WebMatrix product) are what are interesting to developers in general. The compact IIS implementation is a nice improvement for development scenarios and SQL Compact 4.0 seems to address a lot of concerns that people have had and have complained about for some time with previous SQL Compact implementations. By far the most interesting and useful technology though seems to be the Razor view engine for its light weight implementation and it’s decoupling from the ASP.NET/HTTP pipeline to provide a standalone scripting/view engine that is pluggable. The first winner of this is going to be ASP.NET MVC which can now have a cleaner view model that isn’t inconsistent due to the baggage of non-implemented WebForms features that don’t work in MVC. But I expect that Razor will end up in many other applications as a scripting and code generation engine eventually. Visual Studio integration for Razor is currently missing, but is promised for a later release. The ASP.NET MVC team has already mentioned that Razor will eventually become the default MVC view engine, which will guarantee continued growth and development of this tool along those lines. And the Razor engine and support tools actually inherit many of the features that MVC pioneered, so there’s some synergy flowing both ways between Razor and MVC. As an existing ASP.NET developer who’s already familiar with Visual Studio and ASP.NET development, the WebMatrix IDE doesn’t give you anything that you want. The tools provided are minimal and provide nothing that you can’t get in Visual Studio today, except the minimal Razor syntax highlighting, so there’s little need to take a step back. With Visual Studio integration coming later there’s little reason to look at WebMatrix for tooling. It’s good to see that Microsoft is giving some thought about the ease of use of .NET as a platform For so many years, we’ve been piling on more and more new features without trying to take a step back and see how complicated the development/configuration/deployment process has become. Sometimes it’s good to take a step - or several steps - back and take another look and realize just how far we’ve come. WebMatrix is one of those reminders and one that likely will result in some positive changes on the platform as a whole. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET   IIS7  

    Read the article

  • iPhone SDK vs. Windows Phone 7 Series SDK Challenge, Part 2: MoveMe

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. If youre seeing this series for the first time, check out Part 1: Hello World. A note on methodologyin the prior post there was some feedback about lines of code not being a very good metric for this exercise.  I dont really disagree, theres a lot more to this than lines of code but I believe that is a relevant metric, even if its not the ultimate one.  And theres no perfect answer here.  So I am going to continue to report the number of lines of code that I, as a developer would need to write in these apps as a data point, and Ill leave it up to the reader to determine how that fits in with overall complexity, etc.  The first example was so basic that I think it was difficult to talk about in real terms.  I think that as these apps get more complex, the subjective differences in concept count and will be more important.  MoveMe The MoveMe app is the main end-to-end app writing example in the iPhone SDK, called Creating an iPhone Application.  This application demonstrates a few concepts, including handling touch input, how to do animations, and how to do some basic transforms. The behavior of the application is pretty simple.  User touches the button: The button does a throb type animation where it scales up and then back down briefly. User drags the button: After a touch begins, moving the touch point will drag the button around with the touch. User lets go of the button: The button animates back to its original position, but does a few small bounces as it reaches its original point, which makes the app fun and gives it an extra bit of interactivity. Now, how would I write an app that meets this spec for Windows Phone 7 Series, and how hard would it be?  Lets find out!     Implementing the UI Okay, lets build the UI for this application.  In the HelloWorld example, we did all the UI design in Visual Studio and/or by hand in XAML.  In this example, were going to use the Expression Blend 4 Beta. You might be wondering when to use Visual Studio, when to use Blend, and when to do XAML by hand.  Different people will have different takes on this, but heres mine: XAML by hand simple UI that doesnt contain animations, gradients, etc., and or UI that I want to really optimize and craft when I know exactly what I want to do. Visual Studio Basic UI layout, property setting, data binding, etc. Blend Any serious design work needs to be done in Blend, including animations, handling states and transitions, styling and templating, editing resources. As in Part 1, go ahead and fire up Visual Studio 2010 Express for Windows Phone (yes, soon it will take longer to say the name of our products than to start them up!), and create a new Windows Phone Application.  As in Part 1, clear out the XAML from the designer.  An easy way to do this is to just: Click on the design surface Hit Control+A Hit Delete Theres a little bit left over (the Grid.RowDefinitions element), just go ahead and delete that element so were starting with a clean state of only one outer Grid element. To use Blend, we need to save this project.  See, when you create a project with Visual Studio Express, it doesnt commit it to the disk (well, in a place where you can find it, at least) until you actually save the project.  This is handy if youre doing some fooling around, because it doesnt clutter your disk with WindowsPhoneApplication23-like directories.  But its also kind of dangerous, since when you close VS, if you dont save the projectits all gone.  Yes, this has bitten me since I was saving files and didnt remember that, so be careful to save the project/solution via Save All, at least once. So, save and note the location on disk.  Start Expression Blend 4 Beta, and chose File > Open Project/Solution, and load your project.  You should see just about the same thing you saw over in VS: a blank, black designer surface. Now, thinking about this application, we dont really need a button, even though it looks like one.  We never click it.  So were just going to create a visual and use that.  This is also true in the iPhone example above, where the visual is actually not a button either but a jpg image with a nice gradient and round edges.  Well do something simple here that looks pretty good. In Blend, look in the tool pane on the left for the icon that looks like the below (the highlighted one on the left), and hold it down to get the popout menu, and choose Border:    Okay, now draw out a box in the middle of the design surface of about 300x100.  The Properties Pane to the left should show the properties for this item. First, lets make it more visible by giving it a border brush.  Set the BorderBrush to white by clicking BorderBrush and dragging the color selector all the way to the upper right in the palette.  Then, down a bit farther, make the BorderThickness 4 all the way around, and the CornerRadius set to 6. In the Layout section, do the following to Width, Height, Horizontal and Vertical Alignment, and Margin (all 4 margin values): Youll see the outline now is in the middle of the design surface.  Now lets give it a background color.  Above BorderBrush select Background, and click the third tab over: Gradient Brush.  Youll see a gradient slider at the bottom, and if you click the markers, you can edit the gradient stops individually (or add more).  In this case, you can select something you like, but wheres what I chose: Left stop: #BFACCFE2 (I just picked a spot on the palette and set opacity to 75%, no magic here, feel free to fiddle these or just enter these numbers into the hex area and be done with it) Right stop: #FF3E738F Okay, looks pretty good.  Finally set the name of the element in the Name field at the top of the Properties pane to welcome. Now lets add some text.  Just hit T and itll select the TextBlock tool automatically: Now draw out some are inside our welcome visual and type Welcome!, then click on the design surface (to exit text entry mode) and hit V to go back into selection mode (or the top item in the tool pane that looks like a mouse pointer).  Click on the text again to select it in the tool pane.  Just like the border, we want to center this.  So set HorizontalAlignment and VerticalAlignment to Center, and clear the Margins: Thats it for the UI.  Heres how it looks, on the design surface: Not bad!  Okay, now the fun part Adding Animations Using Blend to build animations is a lot of fun, and its easy.  In XAML, I can not only declare elements and visuals, but also I can declare animations that will affect those visuals.  These are called Storyboards. To recap, well be doing two animations: The throb animation when the element is touched The center animation when the element is released after being dragged. The throb animation is just a scale transform, so well do that first.  In the Objects and Timeline Pane (left side, bottom half), click the little + icon to add a new Storyboard called touchStoryboard: The timeline view will appear.  In there, click a bit to the right of 0 to create a keyframe at .2 seconds: Now, click on our welcome element (the Border, not the TextBlock in it), and scroll to the bottom of the Properties Pane.  Open up Transform, click the third tab ("Scale), and set X and Y to 1.2: This all of this says that, at .2 seconds, I want the X and Y size of this element to scale to 1.2. In fact you can see this happen.  Push the Play arrow in the timeline view, and youll see the animation run! Lets make two tweaks.  First, we want the animation to automatically reverse so it scales up then back down nicely. Click in the dropdown that says touchStoryboard in Objects and Timeline, then in the Properties pane check Auto Reverse: Now run it again, and youll see it go both ways. Lets even make it nicer by adding an easing function. First, click on the Render Transform item in the Objects tree, then, in the Property Pane, youll see a bunch of easing functions to choose from.  Feel free to play with this, then seeing how each runs.  I chose Circle In, but some other ones are fun.  Try them out!  Elastic In is kind of fun, but well stick with Circle In.  Thats it for that animation. Now, we also want an animation to move the Border back to its original position when the user ends the touch gesture.  This is exactly the same process as above, but just targeting a different transform property. Create a new animation called releaseStoryboard Select a timeline point at 1.2 seconds. Click on the welcome Border element again Scroll to the Transforms panel at the bottom of the Properties Pane Choose the first tab (Translate), which may already be selected Set both X and Y values to 0.0 (we do this just to make the values stick, because the value is already 0 and we need Blend to know we want to save that value) Click on RenderTransform in the Objects tree In the properties pane, choose Bounce Out Set Bounces to 6, and Bounciness to 4 (feel free to play with these as well) Okay, were done. Note, if you want to test this Storyboard, you have to do something a little tricky because the final value is the same as the initial value, so playing it does nothing.  If you want to play with it, do the following: Next to the selection dropdown, hit the little "x (Close Storyboard) Go to the Translate Transform value for welcome Set X,Y to 50, 200, respectively (or whatever) Select releaseStoryboard again from the dropdown Hit play, see it run Go into the object tree and select RenderTransform to change the easing function. When youre done, hit the Close Storyboard x again and set the values in Transform/Translate back to 0 Wiring Up the Animations Okay, now go back to Visual Studio.  Youll get a prompt due to the modification of MainPage.xaml.  Hit Yes. In the designer, click on the welcome Border element.  In the Property Browser, hit the Events button, then double click each of ManipulationStarted, ManipulationDelta, ManipulationCompleted.  Youll need to flip back to the designer from code, after each double click. Its code time.  Here we go. Here, three event handlers have been created for us: welcome_ManipulationStarted: This will execute when a manipulation begins.  Think of it as MouseDown. welcome_ManipulationDelta: This executes each time a manipulation changes.  Think MouseMove. welcome_ManipulationCompleted: This will  execute when the manipulation ends. Think MouseUp. Now, in ManipuliationStarted, we want to kick off the throb animation that we called touchAnimation.  Thats easy: 1: private void welcome_ManipulationStarted(object sender, ManipulationStartedEventArgs e) 2: { 3: touchStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Likewise, when the manipulation completes, we want to re-center the welcome visual with our bounce animation: 1: private void welcome_ManipulationCompleted(object sender, ManipulationCompletedEventArgs e) 2: { 3: releaseStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Note there is actually a way to kick off these animations from Blend directly via something called Triggers, but I think its clearer to show whats going on like this.  A Trigger basically allows you to say When this event fires, trigger this Storyboard, so its the exact same logical process as above, but without the code. But how do we get the object to move?  Well, for that we really dont want an animation because we want it to respond immediately to user input. We do this by directly modifying the transform to match the offset for the manipulation, and then well let the animation bring it back to zero when the manipulation completes.  The manipulation events do a great job of keeping track of all the stuff that you usually had to do yourself when doing drags: where you started from, how far youve moved, etc. So we can easily modify the position as below: 1: private void welcome_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 2: { 3: CompositeTransform transform = (CompositeTransform)welcome.RenderTransform; 4:   5: transform.TranslateX = e.CumulativeManipulation.Translation.X; 6: transform.TranslateY = e.CumulativeManipulation.Translation.Y; 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Thats it! Go ahead and run the app in the emulator.  I suggest running without the debugger, its a little faster (CTRL+F5).  If youve got a machine that supports DirectX 10, youll see nice smooth GPU accelerated graphics, which also what it looks like on the phone, running at about 60 frames per second.  If your machine does not support DX10 (like the laptop Im writing this on!), it wont be quite a smooth so youll have to take my word for it! Comparing Against the iPhone This is an example where the flexibility and power of XAML meets the tooling of Visual Studio and Blend, and the whole experience really shines.  So, for several things that are declarative and 100% toolable with the Windows Phone 7 Series, this example does them with code on the iPhone.  In parens is the lines of code that I count to do these operations. PlacardView.m: 19 total LOC Creating the view that hosts the button-like image and the text Drawing the image that is the background of the button Drawing the Welcome text over the image (I think you could technically do this step and/or the prior one using Interface Builder) MoveMeView.m:  63 total LOC Constructing and running the scale (throb) animation (25) Constructing the path describing the animation back to center plus bounce effect (38) Beyond the code count, yy experience with doing this kind of thing in code is that its VERY time intensive.  When I was a developer back on Windows Forms, doing GDI+ drawing, we did this stuff a lot, and it took forever!  You write some code and even once you get it basically working, you see its not quite right, you go back, tweak the interval, or the math a bit, run it again, etc.  You can take a look at the iPhone code here to judge for yourself.  Scroll down to animatePlacardViewToCenter toward the bottom.  I dont think this code is terribly complicated, but its not what Id call simple and its not at all simple to get right. And then theres a few other lines of code running around for setting up the ViewController and the Views, about 15 lines between MoveMeAppDelegate, PlacardView, and MoveMeView, plus the assorted decls in the h files. Adding those up, I conservatively get something like 100 lines of code (19+63+15+decls) on iPhone that I have to write, by hand, to make this project work. The lines of code that I wrote in the examples above is 5 lines of code on Windows Phone 7 Series. In terms of incremental concept counts beyond the HelloWorld app, heres a shot at that: iPhone: Drawing Images Drawing Text Handling touch events Creating animations Scaling animations Building a path and animating along that Windows Phone 7 Series: Laying out UI in Blend Creating & testing basic animations in Blend Handling touch events Invoking animations from code This was actually the first example I tried converting, even before I did the HelloWorld, and I was pretty surprised.  Some of this is luck that this app happens to match up with the Windows Phone 7 Series platform just perfectly.  In terms of time, I wrote the above application, from scratch, in about 10 minutes.  I dont know how long it would take a very skilled iPhone developer to write MoveMe on that iPhone from scratch, but if I was to write it on Silverlight in the same way (e.g. all via code), I think it would likely take me at least an hour or two to get it all working right, maybe more if I ended up picking the wrong strategy or couldnt get the math right, etc. Making Some Tweaks Silverlight contains a feature called Projections to do a variety of 3D-like effects with a 2D surface. So lets play with that a bit. Go back to Blend and select the welcome Border in the object tree.  In its properties, scroll down to the bottom, open Transform, and see Projection at the bottom.  Set X,Y,Z to 90.  Youll see the element kind of disappear, replaced by a thin blue line. Now Create a new animation called startupStoryboard. Set its key time to .5 seconds in the timeline view Set the projection values above to 0 for X, Y, and Z. Save Go back to Visual Studio, and in the constructor, add the following bold code (lines 7-9 to the constructor: 1: public MainPage() 2: { 3: InitializeComponent(); 4:   5: SupportedOrientations = SupportedPageOrientation.Portrait; 6:   7: this.Loaded += (s, e) => 8: { 9: startupStoryboard.Begin(); 10: }; 11: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If the code above looks funny, its using something called a lambda in C#, which is an inline anonymous method.  Its just a handy shorthand for creating a handler like the manipulation ones above. So with this youll get a nice 3D looking fly in effect when the app starts up.  Here it is, in flight: Pretty cool!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Mouse Clicks, Reactive Extensions and StreamInsight Mashup

    I had an hour spare this afternoon so I wanted to have another play with Reactive Extensions in .Net and StreamInsight.  I also didn’t want to simply use a console window as a way of gathering events so I decided to use a windows form instead. The task I set myself was this. Whenever I click on my form I want to subscribe to the event and output its location to the console window and also the timestamp of the event.  In addition to this I want to know for every mouse click I do, how many mouse clicks have happened in the last 5 seconds. The second point here is really interesting.  I have often found this when working with people on problems.  It is how you ask the question that determines how you tackle the problem.  I will show 2 ways of possibly answering the second question depending on how the question was interpreted. As a side effect of this example I will show how time in StreamInsight can stand still.  This is an important concept and we can see it in the output later. Now to the code.  I will break it all down in this blogpost but you can download the solution and see it all together. I created a Console application and then instantiate a windows form.   frm = new Form(); Thread g = new Thread(CallUI); g.SetApartmentState(ApartmentState.STA); g.Start();   Call UI looks like this   static void CallUI() { System.Windows.Forms.Application.Run(frm); frm.Activate(); frm.BringToFront(); }   Now what we need to do is create an observable from the MouseClick event on the form.  For this we use the Reactive Extensions.   var lblevt = Observable.FromEvent<MouseEventArgs>(frm, "MouseClick").Timestamp();   As mentioned earlier I have two objectives in this example and to solve the first I am going to again use the Reactive extensions.  Let’s subscribe to the MouseClick event and output the location and timestamp to the console. lblevt.Subscribe(evt => { Console.WriteLine("Clicked: {0}, {1} ", evt.Value.EventArgs.Location,evt.Timestamp); }); That should take care of obective #1 but what about the second objective.  For that we need some temporal windowing and this means StreamInsight.  First we need to turn our Observable collection of MouseClick events into a PointStream Server s = Server.Create("Default"); Microsoft.ComplexEventProcessing.Application a = s.CreateApplication("MouseClicks"); var input = lblevt.ToPointStream( a, evt => PointEvent.CreateInsert( evt.Timestamp, new { loc = evt.Value.EventArgs.Location.ToString(), ts = evt.Timestamp.ToLocalTime().ToString() }), AdvanceTimeSettings.IncreasingStartTime);   Now that we have created out PointStream we need to do something with it and this is where we get to our second objective.  It is pretty clear that we want some kind of windowing but what? Here is one way of doing it.  It might not be what you wanted but again it is how the second objective is interpreted   var q = from i in input.TumblingWindow(TimeSpan.FromSeconds(5), HoppingWindowOutputPolicy.ClipToWindowEnd) select new { CountOfClicks = i.Count() };   The above code creates tumbling windows of 5 seconds and counts the number of events in the windows.  If there are no events in the window then no result is output.  Likewise until an event (MouseClick) is issued then we do not see anything in the output (that is not strictly true because it is the CTI strapped to our MouseClick events that flush the events through the StreamInsight engine not the events themselves).  This approach is centred around the windows and not the events.  Until the windows complete and a CTI is issued then no events are pushed through. An alternate way of answering our second question is below   var q = from i in input.AlterEventDuration(evt => TimeSpan.FromSeconds(5)).SnapshotWindow(SnapshotWindowOutputPolicy.Clip) select new { CountOfClicks = i.Count() };   In this code we extend the duration of each MouseClick to five seconds.  We then create  Snapshot Windows over those events.  Snapshot windows are discussed in detail here.  With this solution we are centred around the events.  It is the events that are driving the output.  Let’s have a look at the output from this solution as it may be a little confusing. First though let me show how we get the output from StreamInsight into the Console window. foreach (var x in q.ToPointEnumerable().Where(e => e.EventKind != EventKind.Cti)) { Console.WriteLine(x.Payload.CountOfClicks); }   Ok so now to the output.   The table at the top shows the output from our routine and the table at the bottom helps to explain the output.  One of the things that will help as well is, you will note that for our PointStream we set the issuing of CTIs to be IncreasingStartTime.  What this means is that the CTI is placed right at the start of the event so will not flush the event with which it was issued but will flush those prior to it.  In the bottom table the Blue fill is where we issued a click.  Yellow fill is the duration and boundaries of our events.  The numbers at the bottom indicate the count of events   Clicked 22:40:16                                 Clicked 23:40:18                                 1                                   Clicked 23:40:20                                 2                                   Clicked 23:40:22                                 3                                   2                                   Clicked 23:40:24                                 3                                   2                                   Clicked 23:40:32                                 3                                   2                                   1                                                                                                         secs 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32                                                                                                                                                                                                                         counts   1   2 3 2 3 2 3   2   1           What we can see here in the output is that the counts include all the end edges that have occurred between the mouse clicks.  If we look specifically at the mouse click at 22:40:32. then we see that 3 events are returned to us. These include the following End Edge count at 22:40:25 End Edge count at 22:40:27 End Edge count at 22:40:29 Another thing we notice is that until we actually issue a CTI at 22:40:32 then those last 3 snapshot window counts will never be reported. Hopefully this has helped to explain  a few concepts around StreamInsight and the IObservable() pattern.   You can download this solution from here and play.  You will need the Reactive Framework from here and StreamInsight 1.1

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Solving embarassingly parallel problems using Python multiprocessing

    - by gotgenes
    How does one use multiprocessing to tackle embarrassingly parallel problems? Embarassingly parallel problems typically consist of three basic parts: Read input data (from a file, database, tcp connection, etc.). Run calculations on the input data, where each calculation is independent of any other calculation. Write results of calculations (to a file, database, tcp connection, etc.). We can parallelize the program in two dimensions: Part 2 can run on multiple cores, since each calculation is independent; order of processing doesn't matter. Each part can run independently. Part 1 can place data on an input queue, part 2 can pull data off the input queue and put results onto an output queue, and part 3 can pull results off the output queue and write them out. This seems a most basic pattern in concurrent programming, but I am still lost in trying to solve it, so let's write a canonical example to illustrate how this is done using multiprocessing. Here is the example problem: Given a CSV file with rows of integers as input, compute their sums. Separate the problem into three parts, which can all run in parallel: Process the input file into raw data (lists/iterables of integers) Calculate the sums of the data, in parallel Output the sums Below is traditional, single-process bound Python program which solves these three tasks: #!/usr/bin/env python # -*- coding: UTF-8 -*- # basicsums.py """A program that reads integer values from a CSV file and writes out their sums to another CSV file. """ import csv import optparse import sys def make_cli_parser(): """Make the command line interface parser.""" usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV", __doc__, """ ARGUMENTS: INPUT_CSV: an input CSV file with rows of numbers OUTPUT_CSV: an output file that will contain the sums\ """]) cli_parser = optparse.OptionParser(usage) return cli_parser def parse_input_csv(csvfile): """Parses the input CSV and yields tuples with the index of the row as the first element, and the integers of the row as the second element. The index is zero-index based. :Parameters: - `csvfile`: a `csv.reader` instance """ for i, row in enumerate(csvfile): row = [int(entry) for entry in row] yield i, row def sum_rows(rows): """Yields a tuple with the index of each input list of integers as the first element, and the sum of the list of integers as the second element. The index is zero-index based. :Parameters: - `rows`: an iterable of tuples, with the index of the original row as the first element, and a list of integers as the second element """ for i, row in rows: yield i, sum(row) def write_results(csvfile, results): """Writes a series of results to an outfile, where the first column is the index of the original row of data, and the second column is the result of the calculation. The index is zero-index based. :Parameters: - `csvfile`: a `csv.writer` instance to which to write results - `results`: an iterable of tuples, with the index (zero-based) of the original row as the first element, and the calculated result from that row as the second element """ for result_row in results: csvfile.writerow(result_row) def main(argv): cli_parser = make_cli_parser() opts, args = cli_parser.parse_args(argv) if len(args) != 2: cli_parser.error("Please provide an input file and output file.") infile = open(args[0]) in_csvfile = csv.reader(infile) outfile = open(args[1], 'w') out_csvfile = csv.writer(outfile) # gets an iterable of rows that's not yet evaluated input_rows = parse_input_csv(in_csvfile) # sends the rows iterable to sum_rows() for results iterable, but # still not evaluated result_rows = sum_rows(input_rows) # finally evaluation takes place as a chain in write_results() write_results(out_csvfile, result_rows) infile.close() outfile.close() if __name__ == '__main__': main(sys.argv[1:]) Let's take this program and rewrite it to use multiprocessing to parallelize the three parts outlined above. Below is a skeleton of this new, parallelized program, that needs to be fleshed out to address the parts in the comments: #!/usr/bin/env python # -*- coding: UTF-8 -*- # multiproc_sums.py """A program that reads integer values from a CSV file and writes out their sums to another CSV file, using multiple processes if desired. """ import csv import multiprocessing import optparse import sys NUM_PROCS = multiprocessing.cpu_count() def make_cli_parser(): """Make the command line interface parser.""" usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV", __doc__, """ ARGUMENTS: INPUT_CSV: an input CSV file with rows of numbers OUTPUT_CSV: an output file that will contain the sums\ """]) cli_parser = optparse.OptionParser(usage) cli_parser.add_option('-n', '--numprocs', type='int', default=NUM_PROCS, help="Number of processes to launch [DEFAULT: %default]") return cli_parser def main(argv): cli_parser = make_cli_parser() opts, args = cli_parser.parse_args(argv) if len(args) != 2: cli_parser.error("Please provide an input file and output file.") infile = open(args[0]) in_csvfile = csv.reader(infile) outfile = open(args[1], 'w') out_csvfile = csv.writer(outfile) # Parse the input file and add the parsed data to a queue for # processing, possibly chunking to decrease communication between # processes. # Process the parsed data as soon as any (chunks) appear on the # queue, using as many processes as allotted by the user # (opts.numprocs); place results on a queue for output. # # Terminate processes when the parser stops putting data in the # input queue. # Write the results to disk as soon as they appear on the output # queue. # Ensure all child processes have terminated. # Clean up files. infile.close() outfile.close() if __name__ == '__main__': main(sys.argv[1:]) These pieces of code, as well as another piece of code that can generate example CSV files for testing purposes, can be found on github. I would appreciate any insight here as to how you concurrency gurus would approach this problem. Here are some questions I had when thinking about this problem. Bonus points for addressing any/all: Should I have child processes for reading in the data and placing it into the queue, or can the main process do this without blocking until all input is read? Likewise, should I have a child process for writing the results out from the processed queue, or can the main process do this without having to wait for all the results? Should I use a processes pool for the sum operations? If yes, what method do I call on the pool to get it to start processing the results coming into the input queue, without blocking the input and output processes, too? apply_async()? map_async()? imap()? imap_unordered()? Suppose we didn't need to siphon off the input and output queues as data entered them, but could wait until all input was parsed and all results were calculated (e.g., because we know all the input and output will fit in system memory). Should we change the algorithm in any way (e.g., not run any processes concurrently with I/O)?

    Read the article

  • Why is my simple recusive method for this game always off by 1?

    - by FrankTheTank
    I'm attempting to create a text-based version of this game: http://www.cse.nd.edu/java/SameGame.html Here is the code I have so far: #include <iostream> #include <vector> #include <ctime> class Clickomania { public: Clickomania(); std::vector<std::vector<int> > board; int move(int, int); bool isSolved(); void print(); void pushDown(); bool isValid(); }; Clickomania::Clickomania() : board(12, std::vector<int>(8,0)) { srand((unsigned)time(0)); for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { int color = (rand() % 3) + 1; board[i][j] = color; } } } void Clickomania::pushDown() { for(int i = 0; i < 8; i++) { for(int j = 0; j < 12; j++) { if (board[j][i] == 0) { for(int k = j; k > 0; k--) { board[k][i] = board[k-1][i]; } board[0][i] = 0; } } } } int Clickomania::move(int row, int col) { bool match = false; int totalMatches = 0; if (row > 12 || row < 0 || col > 8 || col < 0) { return 0; } int currentColor = board[row][col]; board[row][col] = 0; if ((row + 1) < 12) { if (board[row+1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row+1, col); } } if ((row - 1) >= 0) { if (board[row-1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row-1, col); } } if ((col + 1) < 8) { if (board[row][col+1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col+1); } } if ((col - 1) >= 0) { if (board[row][col-1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col-1); } } return totalMatches; } void Clickomania::print() { for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { std::cout << board[i][j]; } std::cout << "\n"; } } int main() { Clickomania game; game.print(); int row; int col; std::cout << "Enter row: "; std::cin >> row; std::cout << "Enter col: "; std::cin >> col; int numDestroyed = game.move(row,col); game.print(); std::cout << "Destroyed: " << numDestroyed << "\n"; } The method that is giving me trouble is my "move" method. This method, given a pair of coordinates, should delete all the squares at that coordinate with the same number and likewise with all the squares with the same number connected to it. If you play the link I gave above you'll see how the deletion works on a click. int Clickomania::move(int row, int col) { bool match = false; int totalMatches = 0; if (row > 12 || row < 0 || col > 8 || col < 0) { return 0; } int currentColor = board[row][col]; board[row][col] = 0; if ((row + 1) < 12) { if (board[row+1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row+1, col); } } if ((row - 1) >= 0) { if (board[row-1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row-1, col); } } if ((col + 1) < 8) { if (board[row][col+1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col+1); } } if ((col - 1) >= 0) { if (board[row][col-1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col-1); } } return totalMatches; } My move() method above works fine, as in, it will delete the appropriate "blocks" and replace them with zeros. However, the number of destroyed (value returned) is always one off (too small). I believe this is because the first call of move() isn't being counted but I don't know how to differentiate between the first call or subsequent calls in that recursive method. How can I modify my move() method so it returns the correct number of destroyed blocks?

    Read the article

< Previous Page | 12 13 14 15 16 17  | Next Page >