Search Results

Search found 729 results on 30 pages for 'robin das'.

Page 16/30 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • Save the Date: Oracle Partner Day Deutschland

    - by Alliances & Channels Redaktion
    SAVE THE DATE ORACLE PARTNER DAYS 12. November 2014 Campus Kronberg in Kronberg bei FRANKFURTDer deutsche FY15 Oracle Partner Day findet am Mittwoch, 12. November 2014, im Campus Kronberg in Kronberg bei Frankfurt statt. Bitte vermerken Sie den Termin schon heute in Ihrem Kalender!Die Oracle Partner Day Veranstaltung bringt Sie auf den aktuellen Stand, informiert Sie über die neuesten Oracle Strategien und Neuheiten rund um das Oracle Produktportfolio und dies im Anschluss an die Oracle OpenWorld Konferenz in San Francisco (28. September bis 2. Oktober 2014). Kompakte Informationen, die Sie sofort nutzen können.Der Oracle Partner Day Event halt, was er verspricht. Er ist das ideale Forum für Partner und Oracle Vertreter gleichermaßen, um sich gemeinsam zu engagieren, voneinander zu lernen, Wissen miteinander zu teilen und bietet eine Plattform für die Identifizierung neuer Geschäftsmöglichkeiten in der PartnerNetwork Community. Die Teilnahme am Partner Day Event ist für Sie als Oracle Partner kostenfrei. Weitere Informationen zur Veranstaltung sowie die vollständige Agenda wird in Kürze online verfügbar sein. Wenn Sie heute bereits Ihren Platz reservieren möchten oder Fragen haben, schicken Sie einfach eine kurze Email an [email protected] freuen uns auf Sie!Oracle Partner Day Team Germany

    Read the article

  • Hands On Workshop "APEX Mobile": Sommer 2013

    - by Carsten Czarski
    Anwendungen für Mobile Endgeräte sind derzeit in aller Munde - nahezu überall taucht die Anforderung "Unterstützung von Smartphones oder Tablets" auf. Wie die meisten wissen, werden mobile Endgeräte mit der aktuellen APEX Version 4.2 out-of-the-box unterstützt. Und mobile Anwendungen werden in typischer APEX-Manier schnell und einfach erstellt. Wie einfach das geht, können Sie nicht nur mit dem neuen Workshop Guide: APEX-Anwendungen für mobile Endgeräte selbst nachvollziehen, sondern auch in einem der APEX Mobile Hands On Workshops 'LIVE' erleben. Dort erfahren Sie ... Wie man eine APEX-Anwendung, basierend auf Tabellen erstellt APEX Komponenten wie Formulare, Berichte, Diagramme oder Kalender einbindet Wie man auf das GPS in einem Smartphone zugreift, die Koordinaten in der Datenbank speichern und damit arbeiten kann Wie man auf die Kamera zugreift, die Bilder speichert und einfache Bildoperationen durchführen kann Und vieles mehr ... Darüber hinaus ist natürlich auch Zeit für den Austausch und zur Diskussion vorgesehen. Details zu Agenda, Terminen und Workshop-Voraussetzungen finden Sie auf der Webseite. Die Teilnahme an der Veranstaltung ist kostenlos - melden Sie sich am besten gleich an.

    Read the article

  • Exklusiv für Oracle Academy-Teilnehmer und nur bis 15. Juli 2011: bis zu 68% Preisnachlass auf Self-Study-Kurse

    - by bwolf
    Kennen Sie schon unsere Oracle University-Produkte zum eigenständigen Lernen? Oracle University bieten Ihnen eine große Auswahl von individuellen Kursen verfügbar als Self-Study CDs an. Diese Kurse sind zu 100 % angelehnt an unsere Klassenraumkurse oder beinhalten spezifische und individuelle Schwerpunkte. Die CDs der Oracle University werden jederzeit auf den neuesten IT Standards konzipiert und sind genau auf die Bedürfnisse unserer Kunden zugeschnitten. Ihre Vorteile:  Durch unser einmaliges Angebot der Self-Study CDs können Sie...: ...Ihr bereits vorhandenes Wissen vertiefen oder erweitern ...als individuelles Nachschlagewerk Ihr Know-How immer auf dem neusten Stand halten ...unsere Self-Study CDs unbegrenzt zeitlich nutzen ...jederzeit die Inhalte nochmal nachschlagen und vertiefen ...neue Mitarbeiter einfach einarbeiten ...Reisekosten zu 100% vermeiden ...und können jederzeit zeitlich flexibel sein. Folgende attraktive Preiskonditionen bieten wir exklusiv nur für Oracle Academy-Teilnehmer an. Sie erhalten schon ab der  1. Self-Study CD 58 % Preisnachlass Sie erhalten ab der 11. Self-Study CD 63 % PreisnachlassS Sie erhalten ab der 21. Self-Study CD 68 % PreisnachlassS So erhalten Sie z.B. unseren Self-Study-Kurs Fundamentals of the Java Programming Language, Java SE 6, schon für 218,82 € zzgl. MwSt Die komplette Liste verfügbarer Self-Study-Kurse finden Sie hier Wichtig: Das Angebot ist nur bis zum 15. Juli 2011 gültig! Da das Angebot NICHT bei Online-Buchungen gilt, kontaktieren Sie bitte unsere Kollegin Nele Mletschkowsky (Tel. kostenfrei 0800-1862336).

    Read the article

  • APEX auf der DOAG2012

    - by carstenczarski
    Die DOAG2012, die im deutschsprachigen Raum wichtigste Konferenz für Oracle-Anwender steht vor der Tür. Vom 20. bis zum 22. November trifft sich die Oracle Community in Nürnberg. Und natürlich spielt auch Application Express eine wichtige Rolle auf der Konferenz: Insgesamt 26 Vorträge beschäftigen sich mit verschiedenen Aspekten der Anwendungsentwicklung mit Application Express. Hören Sie spannende Neuigkeiten vom APEX Development Team (Patrick Wolf, Marc Sewtz, Christian Neumüller) und von anderen, anerkannten APEX Experten aus dem deutschsprachigen Raum - mit Peter Raganitsch, Dietmar Aust oder Niels de Bruijn seien nur drei genannt. Wie im letzten Jahr haben Sie auch dieses Jahr wieder die Gelegenheit, den APEX Experten (und dem APEX Development Team) direkte Fragen zu stellen. Das APEX Experten Panel findet am ersten Konferenztag (20.11.) um 16:00 Uhr im Raum Hongkong statt. Wie im letzten Jahr bitten wir Sie, uns Ihre Fragen für das Panel hier einzureichen. Die Liste werden wir vor der Konferenz konsolidieren und an die APEX-Experten weitergeben, so dass alle Themen im Panel zur Sprache kommen können.

    Read the article

  • JMX Monitoring of GlassFish Servers

    - by tjquinn
    Did you ever wonder what this message in your GlassFish server.log file means? JMXStartupService has started JMXConnector on JMXService URL service:jmx:rmi://192.168.2.102:8686/jndi/rmi://192.168.2.102:8686/jmxrmi It means you can monitor any GlassFish server process, remotely or locally, using any standard Java Management Extensions (JMX) client.  Examples: jconsole or jvisualvm.   Copy the part of the log message that starts with "service:" into the Add JMX Connection dialog of jvisualvm:  or into the New Connection dialog of jconsole: (The full string is truncated in the on-screen display, but if you copied from the server.log and pasted into the form it should all be there.) The examples above are for a DAS, and your host will probably be different.   The server.log files for other GlassFish servers (instances) will have similar log entries giving the JMX connection string to use for those processes.  Look for the host and/or port to be different. Note a few things about security: Here we've assumed you are using the default admin username and password.  If you are not, just enter a valid admin username and password for your installation.  Once connected, you have normal access to all the JVM statistics and controls. You can use JMX clients that support MBeans to view the GlassFish configuration.  When you connect to the DAS, you can also change that configuration, but you can only view configuration when you connect to an instance. To use a JMX client on one system to connect to a GlassFish server running on another system, you need to enable secure admin if you have not already done so: asadmin change-admin-password (respond to the prompts) asadmin enable-secure-admin asadmin restart-domain (as prompted in the output from enable-secure-admin)

    Read the article

  • Daten-Fluthelfer

    - by A&C Redaktion
    „Schneller entscheiden als der Wettbewerb", so heißt der neue Sales Guide zum Thema Business Intelligence für Oracle Partner. Unter diesem Motto gibt die Broschüre auf nur zwölf Seiten einen soliden Überblick, wie man die ungeheuren Datenmengen, mit denen Unternehmen tagtäglich zu kämpfen haben, effizient analysieren und nutzen kann. Alles fängt bekanntlich ganz harmlos an: Langsam und fast unbemerkt steigen die Datenmengen, bis sie plötzlich zum schier unlösbaren Problem werden - und das auf mehreren Ebenen: Die Endanwender sind unzufrieden über lange Ladeprozesse, die Datenqualität und die Abfrageperformance Die Betriebskosten steigen mit dem erhöhten Administrations- und Wartungsaufwand Die Entwicklungsproduktivität ist gering, denn der manuelle Aufwand für Datenbereinigung und -strukturierung ist hoch und die Anbindung neuer Datenquellen zunehmend kompliziert Irgendwann ist es an der Zeit für eine Gesamt-Architektur, die die Zentralisierung von BI- und Warehouse-Komponenten ermöglicht. Der Sales Guide zeigt Lösungen auf, für die sich verschiedene große Unternehmen entschieden haben, darunter ein internationaler Finanzdienstleister und eine der größten Online-Auktionsplattformen. Der Sales Guide behandelt nicht nur die Probleme rund um das Datawarehousing, sondern bietet wie immer auch eine Handreichung zur Ermittlung des Kundebedarfs und zum vertrieblichen Vorgehen. Hier geht's zum Download (nur mit OPN-Passwort): Sales Guide BI und Datawarehouse Mit dem Dauerthema Business Intelligence setzen sich auch die Oracle Solutions Partner Communities auseinander.

    Read the article

  • JMS ConnectionFactory creation error WSVR0073W

    - by scottyab
    I must confess I’m not a JMS aficionado, one of our guys has written a Java webservice client [postcode lookup web service] and from a Remote Java client are calling a Message Driven Bean running in Websphere 6.1, using JMS. Getting the following error when attempted to create the Connection Factory. To which configured within Websphere jms/WSProxyQueueConnectionFactory. WARNING: WSVR0073W. Googling WSVR0073W yields little, the error code is an unknown error. Can anyone shed any light on potential issues creating the connection factory. Code Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY, contextFactoryName); env.put(Context.PROVIDER_URL, providerURL); env.put("com.ibm.CORBA.ORBInit","com.ibm.ws.sib.client.ORB"); namingContext = new InitialContext(env); System.out.println("callRemoteService: get connectionFactoriy, request/response queues, session. Naming contex env =" + env); // Find everything we need to communicate... connectionFactory = (QueueConnectionFactory) namingContext.lookup(getQueueConnectionFactoryName()); requestQueue = (Queue) namingContext.lookup(getRequestQueueName()); Console output: calling RemoteService with hostname[MyServer:2813] and postcode[M4E 3W1]callRemoteService hostname[MyServer:2813] messess text[M4E 3W1] callRemoteService: get connectionFactoriy, request/response queues, session. Naming contex env ={com.ibm.CORBA.ORBInit=com.ibm.ws.sib.client.ORB, java.naming.provider.url=iiop:// MyServer:2813/, java.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory} 05-Jan-2011 13:51:04 null null WARNING: WSVR0073W 05-Jan-2011 13:51:05 null null WARNING: jndiGetObjInstErr 05-Jan-2011 13:51:05 null null WARNING: jndiNamingException callRemoteService: closing connections and resources com.ibm.websphere.naming.CannotInstantiateObjectException: Exception occurred while the JNDI NamingManager was processing a javax.naming.Reference object. [Root exception is java.lang.NoClassDefFoundError: Invalid Implementation Key, com.ibm.ws.transaction.NonRecovWSTxManager] at com.ibm.ws.naming.util.Helpers.processSerializedObjectForLookupExt(Helpers.java:1000) at com.ibm.ws.naming.util.Helpers.processSerializedObjectForLookup(Helpers.java:705) at com.ibm.ws.naming.jndicos.CNContextImpl.processResolveResults(CNContextImpl.java:2097) at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1951) at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1866) at com.ibm.ws.naming.jndicos.CNContextImpl.lookupExt(CNContextImpl.java:1556) at com.ibm.ws.naming.jndicos.CNContextImpl.lookup(CNContextImpl.java:1358) at com.ibm.ws.naming.util.WsnInitCtx.lookup(WsnInitCtx.java:172) at javax.naming.InitialContext.lookup(InitialContext.java:450) at com.das.jms.clients.BaseWSProxyClient.callRemoteService(BaseWSProxyClient.java:180) at com.das.jms.clients.RemotePostCodeLookup.findAddress(RemotePostCodeLookup.java:38) at com.das.jms.RemoteServiceAccess.findAddress(RemoteServiceAccess.java:80) at com.das.jms.TestRemoteAccess.testSuccessLookup(TestRemoteAccess.java:20) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:37) at java.lang.reflect.Method.invoke(Method.java:599) at junit.framework.TestCase.runTest(TestCase.java:168) at junit.framework.TestCase.runBare(TestCase.java:134) at junit.framework.TestResult$1.protect(TestResult.java:110) at junit.framework.TestResult.runProtected(TestResult.java:128) at junit.framework.TestResult.run(TestResult.java:113) at junit.framework.TestCase.run(TestCase.java:124) at junit.framework.TestSuite.runTest(TestSuite.java:232) at junit.framework.TestSuite.run(TestSuite.java:227) at org.junit.internal.runners.OldTestClassRunner.run(OldTestClassRunner.java:76) at org.eclipse.jdt.internal.junit4.runner.JUnit4TestReference.run(JUnit4TestReference.java:45) at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:38) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:460)com.ibm.websphere.naming.CannotInstantiateObjectException: Exception occurred while the JNDI NamingManager was processing a javax.naming.Reference object. [Root exception is java.lang.NoClassDefFoundError: Invalid Implementation Key, com.ibm.ws.transaction.NonRecovWSTxManager] [[B@4d794d79 at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:673) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:386) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:196) Caused by: java.lang.NoClassDefFoundError: Invalid Implementation Key, com.ibm.ws.transaction.NonRecovWSTxManager at com.ibm.ws.Transaction.TransactionManagerFactory.getUOWCurrent(TransactionManagerFactory.java:125) at com.ibm.ws.rsadapter.AdapterUtil.<clinit>(AdapterUtil.java:271) at java.lang.J9VMInternals.initializeImpl(Native Method) at java.lang.J9VMInternals.initialize(J9VMInternals.java:200) at com.ibm.ejs.j2c.ConnectionFactoryBuilderImpl.getObjectInstance(ConnectionFactoryBuilderImpl.java:281) at javax.naming.spi.NamingManager.getObjectInstanceByFactoryInReference(NamingManager.java:480) at javax.naming.spi.NamingManager.getObjectInstance(NamingManager.java:345) at com.ibm.ws.naming.util.Helpers.processSerializedObjectForLookupExt(Helpers.java:896) ... 31 more

    Read the article

  • Squid server - multiple originservers with different domains

    - by jduncan
    I have 2 squid servers load-balanced with F5 LTMs set up as a reverse proxy. My problem: origin server A hosts domains 1, 2, and 3 origin server B hosts domains 4 and 5. how can I set up squid so that it will cache all vhosts for both servers? my current config: cache_peer serverA parent 80 0 round-robin no-query originserver login=PASS If I add a second line: cache_peer serverB parent 80 0 round-robin no-query originserver login=PASS it only caches domains on serverB, requests for serverA content generate 404 errors. I don't use squid a whole lot, and all help is appreciated. thanks.

    Read the article

  • Slow login to load-balanced Terminal Server 2008 behind Gateway Server

    - by Frans
    I have a small load-balanced (using Session Broker) Terminal Server 2008 farm behind a Gateway Server which is accessed from the Internet. The problem I have is that there is a delay of 20-30 seconds if the session broker switches the user to another server during login. I think this is related to the fact that I am forcing the security layer to be RDP rather than SSL. The background The Gateway server has a public routeable IP addres and DNS name so it can be accessed from the Internet and all users come in via this route (the system is used to provide access to hosted applications to external customers). The actual terminal servers only have internal IP addresses. This works really well, except that with a Vista or Windows 7 client, the Remote Desktop client will negotiate with the server to use SSL for the security layer. This then exposes the auto-generated certificate that TS1 or TS2 has - but since they are internal, auto-generated certificates, the client will get a stern warning that the certificate is not valid. I can't give the servers a properly authorised certificate as the servers do not have public routeable IP address or DNS name. Instead, I am using Group Policy to force the connections to be over RDP instead of SSL. \Computer Configuration\Policies\Administrative Templates\Windows Components\Terminal Services\Terminal Server\Security\Require use of specific security layer for remote (RDP) connections The Windows 7 user now gets a much less stern warning that "the server's identity cannot be confirmed" which I can live with. I don't have enough control over the end-user's machines to ask them to install a new root certificate either. TS1 and TS2 are also load-balanced using the Session Broker, which is installed on the Gateway Server. I am using round-robin DNS, so the user's initial connection will go via Gateway1 to either TS1 or TS2. TS1/TS2 will then talk to the session broker and may pass the user to the other server. I.e. the user may get connected to TS2, but after talking to the session broker the user may be passed to TS1, which is where they will run their session. When this switching of servers happens, in my setup, the screen sits with the word "Welcome" for 20-30 seconds after which it flickers, Welcome is shown again and then flashing through nthe normal login screens (i.e. "wait for user profile manager" etc). Having done some research, I think what is happening is that the user is being fully logged on to TS2 (while "Welcome" is shown) before being passed to TS1, where they are then logged in again. It is interesting that normally when you see the ""Welcome" word, the little circle to left rotates. However, it does not rotate during this delay - the screen just looks frozen. This blog post leads me to think that this is because CredSSP is not being used, probably because I am disallowing SSL and forcing RDP. What I have tried I enabled SSL again which removes the "Welcome" delay. However, it seems to introduc a new delay much earlier in the process. Specifically, when the RDP client is saying "initialising connection" - this is now much slower. Quite apart from the fact that my certificate problem precludes me using that solution without considerable difficulty. I tried disabling the load balancing (just remove the servers from the session broker farm) and the connections do not have any delay. The problem is also intermittent in the sense that it only happens when the user gets bumped from one server to another. I tested this by trying to connect directly to TS1 (via the Gateway, of course) and then checking which server I actually got connected to. Just to be sure, I also by-passed the round-robin DNS to see if it had any impact and it doesn't. The setup is essentially in line with MS recommendations here: TS Session Broker Load Balancing Step-by-Step Guide I tried changing to using a dedicated redirector. Basically, rather than using a round-robin DNS, I pointed my DNS to the Gateway server and configured it to be a dedicated redirector (disallow logons, add it to the farm). Same problem, alas. Any ideas or suggestions gratefully received.

    Read the article

  • GlassFish Clustering with DCOM on Windows

    - by ByronNevins
    DCOM - Distributed COM, a Microsoft protocol for communicating with Windows machines. Why use DCOM? In GlassFish 3.1 SSH is used as the standard way to run commands on remote nodes for clustering.  It is very difficult for users to get SSH configured properly on Windows.  SSH does not come with Windows so we have to depend on third party tools.  And then the user is forced to install and configure these tools -- which can be tricky. DCOM is available on all supported platforms.  It is built-in to Windows. The idea is to use DCOM to communicate with remote Windows nodes.  This has the huge advantage that the user has to do minimal, if any, configuration on the Windows nodes. Implementation HighlightsTwo open Source Libraries have been added to GlassFish: Jcifs – a SAMBA implementation in Java J-interop – A Java implementation for making DCOM calls to remote Windows computers.   Note that any supported platform can use DCOM to work with Windows nodes -- not just Windows.E.g. you can have a Linux DAS work with Windows remote instances.All existing SSH commands now have a corresponding DCOM command – except for setup-ssh which isn’t needed for DCOM.  validate-dcom is an all new command. New DCOM Commands create-node-dcom delete-node-dcom install-node-dcom list-nodes-dcom ping-node-dcom uninstall-node-dcom update-node-dcom validate-dcom setup-local-dcom (This is only available via Update Center for GlassFish 3.1.2) These commands are in-place in the trunk (4.0).  And in the branch (3.1.2) Windows Configuration Challenges There are an infinite number of possible configurations of Windows if you look at it as a combination of main release, service-pack, special drivers, software, configuration etc.  Later versions of Windows err on the side of tightening security be default.  This means that the Windows host may need to have configuration changes made.These configuration changes mostly need to be made by the user.  setup-local-dcom will assist you in making required changes to the Windows Registry.  See the reference blogs for details. The validate-dcom Command validate-dcom is a crucial command.  It should be run before any other commands.  If it does not run successfully then there is no point in running other commands.The validate-dcom command must be used from a DAS machine to test a different Windows machine.  If  validate-dcom runs successfully you can be confident that all the DCOM commands will work.  Conversely, the opposite is also true:  If validate-dcom fails, then no DCOM commands will work. What validate-dcom does Verify that the remote host is not the local machine. Resolves the remote host name Checks that the remote DCOM port is being listened on (135, 139) Checks that the remote host’s File Sharing is enabled (port 445) It copies a file (a script) to the remote host to verify that SAMBA is working and authorization is correct It runs a script that it copied on-the-fly to the remote host. Tips and Tricks The bread and butter commands that use DCOM are existing commands like create-instance, start-instance etc.   All of the commands that have dcom in their name are for dealing with the actual nodes. The way the software works is to call asadmin.bat on the remote machine and run a command.  This means that you can track these commands easily on the remote machine with the usual tools.  E.g. using AS_LOGFILE, looking at log files, etc.  It’s easy to attach a debugger to the remote asadmin process, “just in time”, if necessary. How to debug the remote commands:Edit the asadmin.bat file that is in the glassfish/bin folder.  Use glassfish/lib/nadmin.bat in GlassFish 4.0+Add these options to the java call:-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=1234  Now if you run, say start-instance on DAS, you can attach your debugger, at your leisure, to the remote machines port 1234.  It will be running start-local-instance and patiently waiting for you to attach.

    Read the article

  • How do you re-mount an ext3 fs readwrite after it gets mounted readonly from a disk error?

    - by cagenut
    Its a relatively common problem when something goes wrong in a SAN for ext3 to detect the disk write errors and remount the filesystem read-only. Thats all well and good, only when the SAN is fixed I can't figure out how to re-re-mount the filesystem read-write without rebooting. Behold: [root@localhost ~]# multipath -ll mpath0 (36001f93000a310000299000200000000) dm-2 XIOTECH,ISE1400 [size=1.1T][features=1 queue_if_no_path][hwhandler=0][rw] \_ round-robin 0 [prio=2][active] \_ 1:0:0:1 sdb 8:16 [active][ready] \_ 2:0:0:1 sdc 8:32 [active][ready] [root@localhost ~]# mount /dev/mapper/mpath0 /mnt/foo [root@localhost ~]# touch /mnt/foo/blah All good, now I yank the LUN out from under it. [root@localhost ~]# touch /mnt/foo/blah [root@localhost ~]# touch /mnt/foo/blah touch: cannot touch `/mnt/foo/blah': Read-only file system [root@localhost ~]# tail /var/log/messages Mar 18 13:17:33 localhost multipathd: sdb: tur checker reports path is down Mar 18 13:17:34 localhost multipathd: sdc: tur checker reports path is down Mar 18 13:17:35 localhost kernel: Aborting journal on device dm-2. Mar 18 13:17:35 localhost kernel: Buffer I/O error on device dm-2, logical block 1545 Mar 18 13:17:35 localhost kernel: lost page write due to I/O error on dm-2 Mar 18 13:17:36 localhost kernel: ext3_abort called. Mar 18 13:17:36 localhost kernel: EXT3-fs error (device dm-2): ext3_journal_start_sb: Detected aborted journal Mar 18 13:17:36 localhost kernel: Remounting filesystem read-only It only thinks its read-only, in reality its not even there. [root@localhost ~]# multipath -ll sdb: checker msg is "tur checker reports path is down" sdc: checker msg is "tur checker reports path is down" mpath0 (36001f93000a310000299000200000000) dm-2 XIOTECH,ISE1400 [size=1.1T][features=0][hwhandler=0][rw] \_ round-robin 0 [prio=0][enabled] \_ 1:0:0:1 sdb 8:16 [failed][faulty] \_ 2:0:0:1 sdc 8:32 [failed][faulty] [root@localhost ~]# ll /mnt/foo/ ls: reading directory /mnt/foo/: Input/output error total 20 -rw-r--r-- 1 root root 0 Mar 18 13:11 bar How it still remembers that 'bar' file being there... mystery, but not important right now. Now I re-present the LUN: [root@localhost ~]# tail /var/log/messages Mar 18 13:23:58 localhost multipathd: sdb: tur checker reports path is up Mar 18 13:23:58 localhost multipathd: 8:16: reinstated Mar 18 13:23:58 localhost multipathd: mpath0: queue_if_no_path enabled Mar 18 13:23:58 localhost multipathd: mpath0: Recovered to normal mode Mar 18 13:23:58 localhost multipathd: mpath0: remaining active paths: 1 Mar 18 13:23:58 localhost multipathd: dm-2: add map (uevent) Mar 18 13:23:58 localhost multipathd: dm-2: devmap already registered Mar 18 13:23:59 localhost multipathd: sdc: tur checker reports path is up Mar 18 13:23:59 localhost multipathd: 8:32: reinstated Mar 18 13:23:59 localhost multipathd: mpath0: remaining active paths: 2 Mar 18 13:23:59 localhost multipathd: dm-2: add map (uevent) Mar 18 13:23:59 localhost multipathd: dm-2: devmap already registered [root@localhost ~]# multipath -ll mpath0 (36001f93000a310000299000200000000) dm-2 XIOTECH,ISE1400 [size=1.1T][features=1 queue_if_no_path][hwhandler=0][rw] \_ round-robin 0 [prio=2][enabled] \_ 1:0:0:1 sdb 8:16 [active][ready] \_ 2:0:0:1 sdc 8:32 [active][ready] Great right? It says [rw] right there. Not so fast: [root@localhost ~]# touch /mnt/foo/blah touch: cannot touch `/mnt/foo/blah': Read-only file system OK, doesn't do it automatically, I'll just give it a little push: [root@localhost ~]# mount -o remount /mnt/foo mount: block device /dev/mapper/mpath0 is write-protected, mounting read-only Noooooooooo. I have tried all sorts of different mount/tune2fs/dmsetup commands and I cannot figure out how to get it to un-flag the block device as write-protected. Rebooting will fix it, but I'd much rather do it on-line. An hour of googling has gotten me nowhere either. Save me ServerFault.

    Read the article

  • How do you re-mount an ext3 fs readwrite after it gets mounted readonly from a disk error?

    - by cagenut
    Its a relatively common problem when something goes wrong in a SAN for ext3 to detect the disk write errors and remount the filesystem read-only. Thats all well and good, only when the SAN is fixed I can't figure out how to re-re-mount the filesystem read-write without rebooting. Behold: [root@localhost ~]# multipath -ll mpath0 (36001f93000a310000299000200000000) dm-2 XIOTECH,ISE1400 [size=1.1T][features=1 queue_if_no_path][hwhandler=0][rw] \_ round-robin 0 [prio=2][active] \_ 1:0:0:1 sdb 8:16 [active][ready] \_ 2:0:0:1 sdc 8:32 [active][ready] [root@localhost ~]# mount /dev/mapper/mpath0 /mnt/foo [root@localhost ~]# touch /mnt/foo/blah All good, now I yank the LUN out from under it. [root@localhost ~]# touch /mnt/foo/blah [root@localhost ~]# touch /mnt/foo/blah touch: cannot touch `/mnt/foo/blah': Read-only file system [root@localhost ~]# tail /var/log/messages Mar 18 13:17:33 localhost multipathd: sdb: tur checker reports path is down Mar 18 13:17:34 localhost multipathd: sdc: tur checker reports path is down Mar 18 13:17:35 localhost kernel: Aborting journal on device dm-2. Mar 18 13:17:35 localhost kernel: Buffer I/O error on device dm-2, logical block 1545 Mar 18 13:17:35 localhost kernel: lost page write due to I/O error on dm-2 Mar 18 13:17:36 localhost kernel: ext3_abort called. Mar 18 13:17:36 localhost kernel: EXT3-fs error (device dm-2): ext3_journal_start_sb: Detected aborted journal Mar 18 13:17:36 localhost kernel: Remounting filesystem read-only It only thinks its read-only, in reality its not even there. [root@localhost ~]# multipath -ll sdb: checker msg is "tur checker reports path is down" sdc: checker msg is "tur checker reports path is down" mpath0 (36001f93000a310000299000200000000) dm-2 XIOTECH,ISE1400 [size=1.1T][features=0][hwhandler=0][rw] \_ round-robin 0 [prio=0][enabled] \_ 1:0:0:1 sdb 8:16 [failed][faulty] \_ 2:0:0:1 sdc 8:32 [failed][faulty] [root@localhost ~]# ll /mnt/foo/ ls: reading directory /mnt/foo/: Input/output error total 20 -rw-r--r-- 1 root root 0 Mar 18 13:11 bar How it still remembers that 'bar' file being there... mystery, but not important right now. Now I re-present the LUN: [root@localhost ~]# tail /var/log/messages Mar 18 13:23:58 localhost multipathd: sdb: tur checker reports path is up Mar 18 13:23:58 localhost multipathd: 8:16: reinstated Mar 18 13:23:58 localhost multipathd: mpath0: queue_if_no_path enabled Mar 18 13:23:58 localhost multipathd: mpath0: Recovered to normal mode Mar 18 13:23:58 localhost multipathd: mpath0: remaining active paths: 1 Mar 18 13:23:58 localhost multipathd: dm-2: add map (uevent) Mar 18 13:23:58 localhost multipathd: dm-2: devmap already registered Mar 18 13:23:59 localhost multipathd: sdc: tur checker reports path is up Mar 18 13:23:59 localhost multipathd: 8:32: reinstated Mar 18 13:23:59 localhost multipathd: mpath0: remaining active paths: 2 Mar 18 13:23:59 localhost multipathd: dm-2: add map (uevent) Mar 18 13:23:59 localhost multipathd: dm-2: devmap already registered [root@localhost ~]# multipath -ll mpath0 (36001f93000a310000299000200000000) dm-2 XIOTECH,ISE1400 [size=1.1T][features=1 queue_if_no_path][hwhandler=0][rw] \_ round-robin 0 [prio=2][enabled] \_ 1:0:0:1 sdb 8:16 [active][ready] \_ 2:0:0:1 sdc 8:32 [active][ready] Great right? It says [rw] right there. Not so fast: [root@localhost ~]# touch /mnt/foo/blah touch: cannot touch `/mnt/foo/blah': Read-only file system OK, doesn't do it automatically, I'll just give it a little push: [root@localhost ~]# mount -o remount /mnt/foo mount: block device /dev/mapper/mpath0 is write-protected, mounting read-only The hell you are: [root@localhost ~]# mount -o remount,rw /mnt/foo mount: block device /dev/mapper/mpath0 is write-protected, mounting read-only Noooooooooo. I have tried all sorts of different mount/tune2fs/dmsetup commands and I cannot figure out how to get it to un-flag the block device as write-protected. Rebooting will fix it, but I'd much rather do it on-line. An hour of googling has gotten me nowhere either. Save me ServerFault.

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Update: Super Hero

    While I was looking for a completely different article back in 2007, I came across my Super Hero & Super Villain rating... Well, it was time for an update: Your Super Hero results: You are Spider-Man Spider-Man 75% Supergirl 70% Green Lantern 70% Robin 57% The Flash 55% Hulk 50% Catwoman 50% Superman 45% Batman 40% Wonder Woman 40% Iron Man 40% You are intelligent, witty, a bit geeky and have great power and responsibility. Click here to take the Superhero Personality Test

    Read the article

  • Tuxedo Load Balancing

    - by Todd Little
    A question I often receive is how does Tuxedo perform load balancing.  This is often asked by customers that see an imbalance in the number of requests handled by servers offering a specific service. First of all let me say that Tuxedo really does load or request optimization instead of load balancing.  What I mean by that is that Tuxedo doesn't attempt to ensure that all servers offering a specific service get the same number of requests, but instead attempts to ensure that requests are processed in the least amount of time.   Simple round robin "load balancing" can be employed to ensure that all servers for a particular service are given the same number of requests.  But the question I ask is, "to what benefit"?  Instead Tuxedo scans the queues (which may or may not correspond to servers based upon SSSQ - Single Server Single Queue or MSSQ - Multiple Server Single Queue) to determine on which queue a request should be placed.  The scan is always performed in the same order and during the scan if a queue is empty the request is immediately placed on that queue and request routing is done.  However, should all the queues be busy, meaning that requests are currently being processed, Tuxedo chooses the queue with the least amount of "work" queued to it where work is the sum of all the requests queued weighted by their "load" value as defined in the UBBCONFIG file.  What this means is that under light loads, only the first few queues (servers) process all the requests as an empty queue is often found before reaching the end of the scan.  Thus the first few servers in the queue handle most of the requests.  While this sounds non-optimal, in fact it capitalizes on the underlying operating systems and hardware behavior to produce the best possible performance.  Round Robin scheduling would spread the requests across all the available servers and thus require all of them to be in memory, and likely not share much in the way of hardware or memory caches.  Tuxedo's system maximizes the various caches and thus optimizes overall performance.  Hopefully this makes sense and now explains why you may see a few servers handling most of the requests.  Under heavy load, meaning enough load to keep all servers that can handle a request busy, you should see a relatively equal number of requests processed.  Next post I'll try and cover how this applies to servers in a clustered (MP) environment because the load balancing there is a little more complicated. Regards,Todd LittleOracle Tuxedo Chief Architect

    Read the article

  • Advanced System Monitor/Task Manager?

    - by instanceofTom
    When using kubuntu I noticed that the standard task manager/system monitor was a bit more capable than gnome-system-monitor, is there a more advanced system/task monitor for ubuntu that is based on gnome opposed to KDE? Specifically the features from the Kubuntu task manager that I am looking for are the ability to control the I/O priority of individual processes (not just their nice), and the ability to control the I/O scheduling algorithm ( round-robin, FIFO, etc). What are my options?

    Read the article

  • Friday Fun: Archers Oath

    - by Asian Angel
    This week’s game puts your archery skills to the test as you race against time to save innocent captives from the hangman’s noose. Are you good enough to show Robin Hood a thing or two about using a bow or will you be shot down in shame? How to Stress Test the Hard Drives in Your PC or Server How To Customize Your Android Lock Screen with WidgetLocker The Best Free Portable Apps for Your Flash Drive Toolkit

    Read the article

  • Customers Go On Record About Oracle ERP and HCM Cloud Services

    - by Kathryn Perry
    Listen to these Oracle customers from Red Robin, Herbalife, LendingClub, and Cricket.talk about how they're using Oracle ERP and HCM Cloud Services. Collectively they're driving cost savings, managing global, fast paced growth, automating processes, implementing quickly in the cloud, and much more. Here's the video link: http://www.youtube.com/user/FusionAppsAtOracle

    Read the article

  • Sticky connection and HTTPS support for HAProxy

    - by Saif
    Hi Mates, We have 2 HTTP Load balancer with HAproxy and heartbeat. There are 4 apache nodes in this cluster. It's doing round robin load balancing. The HTTP cluster working fine. We are having problem with our portal because it uses SSO. We need sticky connection support in our HAproxy. Also we need load balancing for HTTPS traffic. Here's our HAproxy conf file. global # to have these messages end up in /var/log/haproxy.log you will # need to: # # 1) configure syslog to accept network log events. This is done # by adding the '-r' option to the SYSLOGD_OPTIONS in # /etc/sysconfig/syslog # # 2) configure local2 events to go to the /var/log/haproxy.log # file. A line like the following can be added to # /etc/sysconfig/syslog # # local2.* /var/log/haproxy.log # log 127.0.0.1 local0 log 127.0.0.1 local1 notice chroot /var/lib/haproxy pidfile /var/run/haproxy.pid maxconn 4000 user haproxy group haproxy daemon # turn on stats unix socket stats socket /var/lib/haproxy/stats #--------------------------------------------------------------------- # common defaults that all the 'listen' and 'backend' sections will # use if not designated in their block #--------------------------------------------------------------------- defaults mode http log global option httplog option dontlognull option http-server-close option forwardfor except 127.0.0.0/8 option redispatch retries 3 timeout http-request 10s timeout queue 1m timeout connect 10s timeout client 1m timeout server 1m timeout http-keep-alive 10s timeout check 10s maxconn 3000 #--------------------------------------------------------------------- # main frontend which proxys to the backends #--------------------------------------------------------------------- frontend main *:5000 acl url_static path_beg -i /static /images /javascript /stylesheets acl url_static path_end -i .jpg .gif .png .css .js use_backend static if url_static default_backend app #--------------------------------------------------------------------- # static backend for serving up images, stylesheets and such #--------------------------------------------------------------------- backend static balance roundrobin server static 127.0.0.1:4331 check #--------------------------------------------------------------------- # round robin balancing between the various backends #--------------------------------------------------------------------- backend app listen ha-http 10.190.1.28:80 mode http stats enable stats auth admin:xxxxxx balance roundrobin cookie JSESSIONID prefix option httpclose option forwardfor option httpchk HEAD /haproxy.txt HTTP/1.0 server apache1 portal-04:80 cookie A check server apache2 im-01:80 cookie B check server apache3 im-02:80 cookie B check server apache4 im-03:80 cookie B check Please advice. Thanks for your help in advance.

    Read the article

  • Howo to get Multipath IO with Dell MD3600i into active/active setup?

    - by Disco
    I'm desperately trying to improve performance of my SAN connection. Here's what i have: [root@xnode1 dell]# multipath -ll mpath1 (36d4ae520009bd7cc0000030e4fe8230b) dm-2 DELL,MD36xxi [size=5.5T][features=3 queue_if_no_path pg_init_retries 50][hwhandler=1 rdac][rw] \_ round-robin 0 [prio=200][active] \_ 18:0:0:0 sdb 8:16 [active][ready] \_ 19:0:0:0 sdd 8:48 [active][ghost] \_ 20:0:0:0 sdf 8:80 [active][ghost] \_ 21:0:0:0 sdh 8:112 [active][ready] And multipath.conf : defaults { udev_dir /dev polling_interval 5 prio_callout none rr_min_io 100 max_fds 8192 user_friendly_names yes path_grouping_policy multibus default_features "1 fail_if_no_path" } blacklist { device { vendor "*" product "Universal Xport" } } devices { device { vendor "DELL" product "MD36xxi" path_checker rdac path_selector "round-robin 0" hardware_handler "1 rdac" failback immediate features "2 pg_init_retries 50" no_path_retry 30 rr_min_io 100 prio_callout "/sbin/mpath_prio_rdac /dev/%n" } } And sessions. [root@xnode1 dell]# iscsiadm -m session tcp: [13] 10.0.51.220:3260,1 iqn.1984-05.com.dell:powervault.md3600i.6d4ae520009bd7cc000000004fd7507c tcp: [14] 10.0.50.221:3260,2 iqn.1984-05.com.dell:powervault.md3600i.6d4ae520009bd7cc000000004fd7507c tcp: [15] 10.0.51.221:3260,2 iqn.1984-05.com.dell:powervault.md3600i.6d4ae520009bd7cc000000004fd7507c tcp: [16] 10.0.50.220:3260,1 iqn.1984-05.com.dell:powervault.md3600i.6d4ae520009bd7cc000000004fd7507c I'm getting very poor read performance : dd if=/dev/mapper/mpath1 of=/dev/null bs=1M count=1000 The SAN is configured as follows: CTRL0,PORT0 : 10.0.50.220 CTRL0,PORT1 : 10.0.50.221 CTRL1,PORT0 : 10.0.51.220 CTRL1,PORT1 : 10.0.51.221 And on the host : IF0 : 10.0.50.1 IF1 : 10.0.51.1 (Dual 10GbE Ethernet Card Intel DA2) It's connected to a 10gbE switch dedicated for SAN traffic. My questions being; why the connection is set up as 'ghost' and not 'ready' like an active/active configuration ?

    Read the article

  • Sticky connection and HTTPS support for HAProxy

    - by Saif
    We have 2 HTTP Load balancer with HAproxy and heartbeat. There are 4 apache nodes in this cluster. It's doing round robin load balancing. The HTTP cluster working fine. We are having problem with our portal because it uses SSO. We need sticky connection support in our HAproxy. Also we need load balancing for HTTPS traffic. Here's our HAproxy conf file. global # to have these messages end up in /var/log/haproxy.log you will # need to: # # 1) configure syslog to accept network log events. This is done # by adding the '-r' option to the SYSLOGD_OPTIONS in # /etc/sysconfig/syslog # # 2) configure local2 events to go to the /var/log/haproxy.log # file. A line like the following can be added to # /etc/sysconfig/syslog # # local2.* /var/log/haproxy.log # log 127.0.0.1 local0 log 127.0.0.1 local1 notice chroot /var/lib/haproxy pidfile /var/run/haproxy.pid maxconn 4000 user haproxy group haproxy daemon # turn on stats unix socket stats socket /var/lib/haproxy/stats #--------------------------------------------------------------------- # common defaults that all the 'listen' and 'backend' sections will # use if not designated in their block #--------------------------------------------------------------------- defaults mode http log global option httplog option dontlognull option http-server-close option forwardfor except 127.0.0.0/8 option redispatch retries 3 timeout http-request 10s timeout queue 1m timeout connect 10s timeout client 1m timeout server 1m timeout http-keep-alive 10s timeout check 10s maxconn 3000 #--------------------------------------------------------------------- # main frontend which proxys to the backends #--------------------------------------------------------------------- frontend main *:5000 acl url_static path_beg -i /static /images /javascript /stylesheets acl url_static path_end -i .jpg .gif .png .css .js use_backend static if url_static default_backend app #--------------------------------------------------------------------- # static backend for serving up images, stylesheets and such #--------------------------------------------------------------------- backend static balance roundrobin server static 127.0.0.1:4331 check #--------------------------------------------------------------------- # round robin balancing between the various backends #--------------------------------------------------------------------- backend app listen ha-http 10.190.1.28:80 mode http stats enable stats auth admin:xxxxxx balance roundrobin cookie JSESSIONID prefix option httpclose option forwardfor option httpchk HEAD /haproxy.txt HTTP/1.0 server apache1 portal-04:80 cookie A check server apache2 im-01:80 cookie B check server apache3 im-02:80 cookie B check server apache4 im-03:80 cookie B check Please advice. Thanks for your help in advance.

    Read the article

  • Linux NIC Bonding Issue (CentOS 4 / RHEL 3)

    - by jinanwow
    I am having an issue with bonding NICs on CentOS 4. It appears the bonding driver does work, but it is stuck in round-robin mode and I am trying to get to active-backup. The current config is: ifcfg-bond0 DEVICE=bond0 IPADDR=192.168.204.18 NETMASK=255.255.255.0 ONBOOT=yes BOOTPROTO=none USERCTL=no TYPE=Bonding BONDING_OPTS="mode=1 miimon=100" ifcfg-eth1 DEVICE=eth1 BOOTPROTO=none ONBOOT=yes TYPE=Ethernet MASTER=bond0 SLAVE=yes ifcfg-eth3 DEVICE=eth3 ONBOOT=yes BOOTPROTO=none TYPE=Ethernet MASTER=bond0 SLAVE=yes cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v2.6.3-rh (June 8, 2005) Bonding Mode: load balancing (round-robin) MII Status: up MII Polling Interval (ms): 0 Up Delay (ms): 0 Down Delay (ms): 0 Slave Interface: eth1 MII Status: up Link Failure Count: 0 Permanent HW addr: 00:17:a4:8f:94:b1 Slave Interface: eth3 MII Status: up Link Failure Count: 0 Permanent HW addr: 00:1b:21:56:b8:69 cat /etc/modprobe.conf alias eth0 tg3 alias eth1 tg3 alias eth3 e1000 alias eth2 e1000 alias bond0 bonding options bond0 mode=1 miimon=100 I have tried moving the bonding information out of the ifcfg-bond0 into the modprobe configuration file. It seems that it is stuck in RR and I am trying to get it into the Active-backup (mode 1) state. Any ideas what would be causing this issue?

    Read the article

  • How to best tune my SAN/Initiators for best performance?

    - by Disco
    Recent owner of a Dell PowerVault MD3600i i'm experiencing some weird results. I have a dedicated 24x 10GbE Switch (PowerConnect 8024), setup to jumbo frames 9K. The MD3600 has 2 RAID controllers, each has 2x 10GbE ethernet nics. There's nothing else on the switch; one VLAN for SAN traffic. Here's my multipath.conf defaults { udev_dir /dev polling_interval 5 selector "round-robin 0" path_grouping_policy multibus getuid_callout "/sbin/scsi_id -g -u -s /block/%n" prio_callout none path_checker readsector0 rr_min_io 100 max_fds 8192 rr_weight priorities failback immediate no_path_retry fail user_friendly_names yes # prio rdac } blacklist { device { vendor "*" product "Universal Xport" } # devnode "^sd[a-z]" } devices { device { vendor "DELL" product "MD36xxi" path_grouping_policy group_by_prio prio rdac # polling_interval 5 path_checker rdac path_selector "round-robin 0" hardware_handler "1 rdac" failback immediate features "2 pg_init_retries 50" no_path_retry 30 rr_min_io 100 prio_callout "/sbin/mpath_prio_rdac /dev/%n" } } And iscsid.conf : node.startup = automatic node.session.timeo.replacement_timeout = 15 node.conn[0].timeo.login_timeout = 15 node.conn[0].timeo.logout_timeout = 15 node.conn[0].timeo.noop_out_interval = 5 node.conn[0].timeo.noop_out_timeout = 10 node.session.iscsi.InitialR2T = No node.session.iscsi.ImmediateData = Yes node.session.iscsi.FirstBurstLength = 262144 node.session.iscsi.MaxBurstLength = 16776192 node.conn[0].iscsi.MaxRecvDataSegmentLength = 262144 After my tests; i can barely come to 200 Mb/s read/write. Should I expect more than that ? Providing it has dual 10 GbE my thoughts where to come around the 400 Mb/s. Any ideas ? Guidelines ? Troubleshooting tips ?

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >