Search Results

Search found 20211 results on 809 pages for 'language implementation'.

Page 160/809 | < Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >

  • Which ISO format should I use to store a user's language?

    - by John Himmelman
    Should I use ISO 639-1 (2-letter abbreviation) or ISO 639-2 (3 letter abbrv) to store the user's language? Both are official standards, but which is the de facto standard in the development community? I think ISO 639-1 would be easier to remember, and is probably more popular for that reason, but thats just a guess. The site I'm building will have a separate site for the US, Brazil, Russia, China, & the UK. http://en.wikipedia.org/wiki/ISO_639

    Read the article

  • If i write in assembly or machine language, will the program work on any computer with a compatible processor?

    - by user663425
    Basically, i'm wanting to know if i can use either machine or assembly language to write a program that will work on any computer with an x86 processor, despite differences in operating systems. For example, you run a program and no matter what computer it's on, it'll display "Hello, World!" I know it's a little crazy to want to know either of these to languages, but i figure it's an incredible thing to learn, so why not?

    Read the article

  • Joining the same model twice in a clean way, but making the code reusable

    - by Shako
    I have a model Painting which has a Paintingtitle in each language and a Paintingdescription in each language: class Painting < ActiveRecord::Base has_many :paintingtitles, :dependent => :destroy has_many :paintingdescriptions, :dependent => :destroy end class Paintingtitle < ActiveRecord::Base belongs_to :painting belongs_to :language end class Paintingdescription < ActiveRecord::Base belongs_to :painting belongs_to :language end class Language < ActiveRecord::Base has_many :paintingtitles, :dependent => :nullify has_many :paintingdescriptions, :dependent => :nullify has_many :paintings, :through => :paintingtitles end As you might notice, I reference the Language model from my Painting model via both the Paintingtitle model and Paintingdescription model. This works for me when getting a list of paintings with their title and description in a specific language: cond = {"paintingdescription_languages.code" => language_code, "paintingtitle_languages.code" => language_code} cond['paintings.publish'] = 1 unless admin paginate( :all, :select => ["paintings.id, paintings.publish, paintings.photo_file_name, paintingtitles.title, paintingdescriptions.description"], :joins => " INNER JOIN paintingdescriptions ON (paintings.id = paintingdescriptions.painting_id) INNER JOIN paintingtitles ON (paintings.id = paintingtitles.painting_id) INNER JOIN languages paintingdescription_languages ON (paintingdescription_languages.id = paintingdescriptions.language_id) INNER JOIN languages paintingtitle_languages ON (paintingtitle_languages.id = paintingtitles.language_id) ", :conditions => cond, :page => page, :per_page => APP_CONFIG['per_page'], :order => "id DESC" ) Now I wonder if this is a correct way of doing this. I need to fetch paintings with their title and description in different functions, but I don't want to specify this long join statement each time. Is there a cleaner way, for instance making use of the has_many through? e.g. has_many :paintingdescription_languages, :through => :paintingdescriptions, :source => :language has_many :paintingtitle_languages, :through => :paintingtitles, :source => :language But if I implement above 2 lines together with the following ones, then only paintingtitles are filtered by language, and not the paintingdescriptions: cond = {"languages.code" => language_code} cond['paintings.publish'] = 1 unless admin paginate( :all, :select => ["paintings.id, paintings.publish, paintings.photo_file_name, paintingtitles.title, paintingdescriptions.description"], :joins => [:paintingdescription_languages, :paintingtitle_languages], :conditions => cond, :page => page, :per_page => APP_CONFIG['per_page'], :order => "id DESC" )

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Hi i have a c programming doubt in the implementation of hash table?

    - by aks
    Hi i have a c programming doubt in the implementation of hash table? I have implemented the hash table for storing some strings? I am having problem while dealing with hash collisons. I am following chaining link-list approach to overcome the same? But, somehow my code is behaving differently. I am not able to debug the same? Can somebody help? This is what i am facing: Say first time, i insert a string called gaur. My hash map calculates the index as 0 and inserts the string successfully. However, when another string whose hash map also when calculates turns out to be 0, my previous value gets overrridden i.e. gaur will be replaced by new string. This is my code: struct list { char *string; struct list *next; }; struct hash_table { int size; /* the size of the table */ struct list **table; /* the table elements */ }; struct hash_table *create_hash_table(int size) { struct hash_table *new_table; int i; if (size<1) return NULL; /* invalid size for table */ /* Attempt to allocate memory for the table structure */ if ((new_table = malloc(sizeof(struct hash_table))) == NULL) { return NULL; } /* Attempt to allocate memory for the table itself */ if ((new_table->table = malloc(sizeof(struct list *) * size)) == NULL) { return NULL; } /* Initialize the elements of the table */ for(i=0; i<size; i++) new_table->table[i] = '\0'; /* Set the table's size */ new_table->size = size; return new_table; } unsigned int hash(struct hash_table *hashtable, char *str) { unsigned int hashval = 0; int i = 0; for(; *str != '\0'; str++) { hashval += str[i]; i++; } return (hashval % hashtable->size); } struct list *lookup_string(struct hash_table *hashtable, char *str) { printf("\n enters in lookup_string \n"); struct list * new_list; unsigned int hashval = hash(hashtable, str); /* Go to the correct list based on the hash value and see if str is * in the list. If it is, return return a pointer to the list element. * If it isn't, the item isn't in the table, so return NULL. */ for(new_list = hashtable->table[hashval]; new_list != NULL;new_list = new_list->next) { if (strcmp(str, new_list->string) == 0) return new_list; } printf("\n returns NULL in lookup_string \n"); return NULL; } int add_string(struct hash_table *hashtable, char *str) { printf("\n enters in add_string \n"); struct list *new_list; struct list *current_list; unsigned int hashval = hash(hashtable, str); printf("\n hashval = %d", hashval); /* Attempt to allocate memory for list */ if ((new_list = malloc(sizeof(struct list))) == NULL) { printf("\n enters here \n"); return 1; } /* Does item already exist? */ current_list = lookup_string(hashtable, str); if (current_list == NULL) { printf("\n DEBUG Purpose \n"); printf("\n NULL \n"); } /* item already exists, don't insert it again. */ if (current_list != NULL) { printf("\n Item already present...\n"); return 2; } /* Insert into list */ printf("\n Inserting...\n"); new_list->string = strdup(str); new_list->next = NULL; //new_list->next = hashtable->table[hashval]; if(hashtable->table[hashval] == NULL) { hashtable->table[hashval] = new_list; } else { struct list * temp_list = hashtable->table[hashval]; while(temp_list->next!=NULL) temp_list = temp_list->next; temp_list->next = new_list; hashtable->table[hashval] = new_list; } return 0; }

    Read the article

  • Introducing functional programming constructs in non-functional programming languages

    - by Giorgio
    This question has been going through my mind quite a lot lately and since I haven't found a convincing answer to it I would like to know if other users of this site have thought about it as well. In the recent years, even though OOP is still the most popular programming paradigm, functional programming is getting a lot of attention. I have only used OOP languages for my work (C++ and Java) but I am trying to learn some FP in my free time because I find it very interesting. So, I started learning Haskell three years ago and Scala last summer. I plan to learn some SML and Caml as well, and to brush up my (little) knowledge of Scheme. Well, a lot of plans (too ambitious?) but I hope I will find the time to learn at least the basics of FP during the next few years. What is important for me is how functional programming works and how / whether I can use it for some real projects. I have already developed small tools in Haskell. In spite of my strong interest for FP, I find it difficult to understand why functional programming constructs are being added to languages like C#, Java, C++, and so on. As a developer interested in FP, I find it more natural to use, say, Scala or Haskell, instead of waiting for the next FP feature to be added to my favourite non-FP language. In other words, why would I want to have only some FP in my originally non-FP language instead of looking for a language that has a better support for FP? For example, why should I be interested to have lambdas in Java if I can switch to Scala where I have much more FP concepts and access all the Java libraries anyway? Similarly: why do some FP in C# instead of using F# (to my knowledge, C# and F# can work together)? Java was designed to be OO. Fine. I can do OOP in Java (and I would like to keep using Java in that way). Scala was designed to support OOP + FP. Fine: I can use a mix of OOP and FP in Scala. Haskell was designed for FP: I can do FP in Haskell. If I need to tune the performance of a particular module, I can interface Haskell with some external routines in C. But why would I want to do OOP with just some basic FP in Java? So, my main point is: why are non-functional programming languages being extended with some functional concept? Shouldn't it be more comfortable (interesting, exciting, productive) to program in a language that has been designed from the very beginning to be functional or multi-paradigm? Don't different programming paradigms integrate better in a language that was designed for it than in a language in which one paradigm was only added later? The first explanation I could think of is that, since FP is a new concept (it isn't new at all, but it is new for many developers), it needs to be introduced gradually. However, I remember my switch from imperative to OOP: when I started to program in C++ (coming from Pascal and C) I really had to rethink the way in which I was coding, and to do it pretty fast. It was not gradual. So, this does not seem to be a good explanation to me. Or can it be that many non-FP programmers are not really interested in understanding and using functional programming, but they find it practically convenient to adopt certain FP-idioms in their non-FP language? IMPORTANT NOTE Just in case (because I have seen several language wars on this site): I mentioned the languages I know better, this question is in no way meant to start comparisons between different programming languages to decide which is better / worse. Also, I am not interested in a comparison of OOP versus FP (pros and cons). The point I am interested in is to understand why FP is being introduced one bit at a time into existing languages that were not designed for it even though there exist languages that were / are specifically designed to support FP.

    Read the article

  • Functional programming constructs in non-functional programming languages

    - by Giorgio
    This question has been going through my mind quite a lot lately and since I haven't found a convincing answer to it I would like to know if other users of this site have thought about it as well. In the recent years, even though OOP is still the most popular programming paradigm, functional programming is getting a lot of attention. I have only used OOP languages for my work (C++ and Java) but I am trying to learn some FP in my free time because I find it very interesting. So, I started learning Haskell three years ago and Scala last summer. I plan to learn some SML and Caml as well, and to brush up my (little) knowledge of Scheme. Well, a lot of plans (too ambitious?) but I hope I will find the time to learn at least the basics of FP during the next few years. What is important for me is how functional programming works and how / whether I can use it for some real projects. I have already developed small tools in Haskell. In spite of my strong interest for FP, I find it difficult to understand why functional programming constructs are being added to languages like C#, Java, C++, and so on. As a developer interested in FP, I find it more natural to use, say, Scala or Haskell, instead of waiting for the next FP feature to be added to my favourite non-FP language. In other words, why would I want to have only some FP in my originally non-FP language instead of looking for a language that has a better support for FP? For example, why should I be interested to have lambdas in Java if I can switch to Scala where I have much more FP concepts and access all the Java libraries anyway? Similarly: why do some FP in C# instead of using F# (to my knowledge, C# and F# can work together)? Java was designed to be OO. Fine. I can do OOP in Java (and I would like to keep using Java in that way). Scala was designed to support OOP + FP. Fine: I can use a mix of OOP and FP in Scala. Haskell was designed for FP: I can do FP in Haskell. If I need to tune the performance of a particular module, I can interface Haskell with some external routines in C. But why would I want to do OOP with just some basic FP in Java? So, my main point is: why are non-functional programming languages being extended with some functional concept? Shouldn't it be more comfortable (interesting, exciting, productive) to program in a language that has been designed from the very beginning to be functional or multi-paradigm? Don't different programming paradigms integrate better in a language that was designed for it than in a language in which one paradigm was only added later? The first explanation I could think of is that, since FP is a new concept (it isn't new at all, but it is new for many developers), it needs to be introduced gradually. However, I remember my switch from imperative to OOP: when I started to program in C++ (coming from Pascal and C) I really had to rethink the way in which I was coding, and to do it pretty fast. It was not gradual. So, this does not seem to be a good explanation to me. Also, I asked myself if my impression is just plainly wrong due to lack of knowledge. E.g., do C# and C++11 support FP as extensively as, say, Scala or Caml do? In this case, my question would be simply non-existent. Or can it be that many non-FP programmers are not really interested in using functional programming, but they find it practically convenient to adopt certain FP-idioms in their non-FP language? IMPORTANT NOTE Just in case (because I have seen several language wars on this site): I mentioned the languages I know better, this question is in no way meant to start comparisons between different programming languages to decide which is better / worse. Also, I am not interested in a comparison of OOP versus FP (pros and cons). The point I am interested in is to understand why FP is being introduced one bit at a time into existing languages that were not designed for it even though there exist languages that were / are specifically designed to support FP.

    Read the article

  • Have Your Cake and Eat it Too: Industry Best Practices + Flexibility

    - by Oracle Accelerate for Midsize Companies
    By Richard Garraputa, VP of Sales & Marketing, brij Richard joined brij in 1996 after graduating from the University of North Carolina at Greensboro with degrees in Information Systems and Accounting. He directs brij’s overall strategies of both the business development and marketing departments. Companies looking for new ERP systems spend so much time comparing features and functions of software products but too often short change the value of their own processes.  Company managers I meet often claim that they are implementing a new ERP system so they can perform better and faster.  When asked how, the answer is often “by implementing best practices”.  But the term ‘best practices’ is frequently used to mean ‘doing things the way everyone else does them’ rather than a starting point or benchmark to build upon by adding your own value. Of course, implementing standardized processes across an enterprise is an important step in improving operational efficiencies.  But not all companies are alike.  Do you ever tell your customers “We are just like our competition and have no competitive differentiation”?  Probably not.  So why should the implementation of your business processes be just like your competitor’s?  Even within the same industry, companies differentiate themselves by leveraging their unique expertise and approach to business.  These unique aspects—the competitive differentiators that companies use to thrive in a crowded marketplace—can and should be supported by the implementation of business systems like ERP. Modern ERP systems like Oracle’s JD Edwards EnterpriseOne have a broad and deep functional footprint designed to integrate a company’s core operations.  But how can a company take advantage of this footprint without blowing up their implementation budget?  Some ERP vendors claim to solve this challenge by stating that their systems come pre-configured with ‘best practices’.  Too often what they are really saying is that you will have to abandon your key operational differentiators to fit a vendor’s template for your business—or extend your implementation and postpone the realization of any benefits. Thankfully for midsize companies, there is an alternative to the undesirable options of extended implementation projects or abandoning their competitive differentiators.  Oracle Accelerate Solutions speed the time it takes to implement JD Edwards EnterpriseOne solution based on your unique business characteristics, getting your new ERP system up and running faster without forcing your business to fit a cookie-cutter solution. We’ve been a JD Edwards implementation partner since 1986 and we now leverage Oracle Business Accelerators—cloud based rapid implementation tools built and maintained by Oracle. Oracle Business Accelerators deliver the benefits of embedded industry best practices without forcing every customer in to one set of processes like many template or “clone and go” approaches do. You retain the ability to reconfigure your applications—without customization—as your business changes. Wielded by Oracle partners with industry-specific domain expertise, Oracle Accelerate Solution implementations powered by Oracle Business Accelerators help automate the application configuration to fit your business better, faster. For example, on a recent project at a manufacturing company, the project manager told me that Oracle Business Accelerators helped get them to Conference Room Pilot 20% faster than with a traditional approach. Time savings equal cost savings. And if ‘better and faster’ is your goal for your business performance, shouldn’t it be the goal for your ERP implementation as well? Established in 1986, brij has been dedicated solely to helping its customers implement Oracle’s JD Edwards solutions and to maximize the value of those customers’ IT investments. They are a Gold level member in Oracle PartnerNetwork and an Oracle Accelerate Solution provider.

    Read the article

  • OPN Specialized Latest News (15th November)

    - by swalker
    HELPING YOU TO SPECIALIZE WebCenter Implementation Specialist Exam Preparation Webcasts: WebCenter Content And WebCenter Portal Oracle Partner Network would like to invite you to Refresh Courses for WebCenter Content and WebCenter Portal, to help partners to prepare for the WebCenter Implementation Specialist EXAMS. This is a 3 hours intensive refresher partner-only training session, providing attendees with an overview of WebCenter Content and WebCenter Portal functions and related topics. After the refresher part you will be able to take the relevant Implementation Specialist EXAM depending on your personal focus. NOTE: This is only suitable for experienced WebCenter Content or WebCenter Portal practitioners Who should attend? Partner Consultants who want to become an Oracle WebCenter Content or a WebCenter Portal Certified Implementation Specialist or both, that will help them to differentiate themselves in front of customers and support their Companies to become Specialized. Webcast Details: Click here to read more... Specialized Partners Only! New Service to Promote Your Events The Partner Event Publisher has just been made available to all specialized partners in EMEA.  Partners now have the opportunity to publish their events to the Oracle.com/events site and spread the word on their upcoming live in-person and/or live webcast events. Click here to read more information and watch a short video demo. VADs Get Specialized Effective November 1, 2011 , VADs, with a valid Value Added Distributor Agreement will no longer be required to meet customer reference requirements outlined in the business criteria section in order to become specialized. VADs must continue meet all other business and competency criteria set forth in the applicable Knowledge Zone prior to specialization approval. New Certification Pillar Axiom 600 Storage System Your opportunity to take the Pillar Axiom 600 Storage System Essentials (1Z0-581) Exam is vailable now in beta. Pass the exam so you can become a Pillar Axiom 600 Storage Systems Implementation Specialist! Free vouchers are available for Oracle Partners! If you would like to receive a free Beta exam voucher, please send your request to [email protected] and include your name, business email address, company, and the Exam name Pillar Axiom 600 Storage System Essentials Beta exam. New Certification Available: Oracle Utilities Customer Care and Billing Oracle Utilities Customer Care and Billing 2 Essentials (1Z0-562) is a solution designed to help you meet market windows and regulatory deadlines while enjoying a low total cost of ownership and a high return on investment. Take the exam now to become an  Oracle Utilities Customer Care and Billing 2 Essentials Implementation Specialists. MEASURING YOUR SUCCESS We had 1674 Specialized Partners covering 5364 Specializations. Please note that due to OPN contract renewals at any given point in time there are valid Specialized Partners and Specializations which are temporarily not captured in the total statistics. An incremental 1961 individuals were accredited as Implementation Specialists giving an EMEA cumulative total of 9598 Implementation Specialists 26 ISVs obtained one or more Ready's, for a total of 53 Ready's Don't forget! You can submit your own press releases to Oracle! Every time you achieve specialization we'd like to support you getting the message out! Press guidelines and a submission link can be found on the OPN Portal here.

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Code Metrics: Number of IL Instructions

    - by DigiMortal
    In my previous posting about code metrics I introduced how to measure LoC (Lines of Code) in .NET applications. Now let’s take a step further and let’s take a look how to measure compiled code. This way we can somehow have a picture about what compiler produces. In this posting I will introduce you code metric called number of IL instructions. NB! Number of IL instructions is not something you can use to measure productivity of your team. If you want to get better idea about the context of this metric and LoC then please read my first posting about LoC. What are IL instructions? When code written in some .NET Framework language is compiled then compiler produces assemblies that contain byte code. These assemblies are executed later by Common Language Runtime (CLR) that is code execution engine of .NET Framework. The byte code is called Intermediate Language (IL) – this is more common language than C# and VB.NET by example. You can use ILDasm tool to convert assemblies to IL assembler so you can read them. As IL instructions are building blocks of all .NET Framework binary code these instructions are smaller and highly general – we don’t want very rich low level language because it executes slower than more general language. For every method or property call in some .NET Framework language corresponds set of IL instructions. There is no 1:1 relationship between line in high level language and line in IL assembler. There are more IL instructions than lines in C# code by example. How much instructions there are? I have no common answer because it really depends on your code. Here you can see some metrics from my current community project that is developed on SharePoint Server 2007. As average I have about 7 IL instructions per line of code. This is not metric you should use, it is just illustrative example so you can see the differences between numbers of lines and IL instructions. Why should I measure the number of IL instructions? Just take a look at chart above. Compiler does something that you cannot see – it compiles your code to IL. This is not intuitive process because you usually cannot say what is exactly the end result. You know it at greater plain but you don’t know it exactly. Therefore we can expect some surprises and that’s why we should measure the number of IL instructions. By example, you may find better solution for some method in your source code. It looks nice, it works nice and everything seems to be okay. But on server under load your fix may be way slower than previous code. Although you minimized the number of lines of code it ended up with increasing the number of IL instructions. How to measure the number of IL instructions? My choice is NDepend because Visual Studio is not able to measure this metric. Steps to make are easy. Open your NDepend project or create new and add all your application assemblies to project (you can also add Visual Studio solution to project). Run project analysis and wait until it is done. You can see over-all stats form global summary window. This is the same window I used to read the LoC and the number of IL instructions metrics for my chart. Meanwhile I made some changes to my code (enabled advanced caching for events and event registrations module) and then I ran code analysis again to get results for this section of this posting. NDepend is also able to tell you exactly what parts of code have problematically much IL instructions. The code quality section of CQL Query Explorer shows you how much problems there are with members in analyzed code. If you click on the line Methods too big (NbILInstructions) you can see all the problematic members of classes in CQL Explorer shown in image on right. In my case if have 10 methods that are too big and two of them have horrible number of IL instructions – just take a look at first two methods in this TOP10. Also note the query box. NDepend has easy and SQL-like query language to query code analysis results. You can modify these queries if you like and also you can define your own ones if default set is not enough for you. What is good result? As you can see from query window then the number of IL instructions per member should have maximally 200 IL instructions. Of course, like always, the less instructions you have, the better performing code you have. I don’t mean here little differences but big ones. By example, take a look at my first method in warnings list. The number of IL instructions it has is huge. And believe me – this method looks awful. Conclusion The number of IL instructions is useful metric when optimizing your code. For analyzing code at general level to find out too long methods you can use the number of LoC metric because it is more intuitive for you and you can therefore handle the situation more easily. Also you can use NDepend as code metrics tool because it has a lot of metrics to offer.

    Read the article

  • Programming Language? - To create a application (eLearning course) that will work on PC, Mac, iPhone, iPad, Touch etc?

    - by Josh
    Hi Currently at work I'm helping put together and create eLearning courses within Flash. Our senior programmers have knowledge of how to do this, Although - I would like to know how you could go from converting a eLearning course from Flash into a application for Mac and PC, looking similar to Garageband's music lessons? What programming language was used to create Garageband on Mac? What is the best way to create a application that will work on PC, Mac, iPhone, iPad, Touch etc, Rather then using flash and Actionscript to create online based applications, that will only work in a browser on Mac and PC? Any further tips? Thanks Josh

    Read the article

  • Could not resolve <fx:Script> to a component implementation.

    - by seref
    Hi, i created project with flexmojos maven archtype..i used flexmojos:flexbuilder and compile/run with FlashBuilder 4 everything is okay but when i try to compile project with flexmojos i got following error: [ERROR] Z:....\src\main\flex\Main.mxml:[6,-1] Could not resolve < fx:Script to a component implementation. [INFO] BUILD FAILURE my mxml: <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="http://ns.adobe.com/mxml/2009" xmlns:s="library://ns.adobe.com/flex/spark" xmlns:mx="library://ns.adobe.com/flex/mx" width="100%" height="100%" creationComplete="application1_creationCompleteHandler(event)"> <fx:Script> <![CDATA[ import mx.controls.Alert; import mx.events.FlexEvent; protected function application1_creationCompleteHandler(event:FlexEvent):void { Alert.show("success!!!!") } ]]></fx:Script> </s:Application> pom.xml like: ...... <packaging>swf</packaging> ...... <properties> <flex-sdk.version>4.1.0.16076</flex-sdk.version> <flexmojos.version>3.8</flexmojos.version> </properties> ...... <build> <sourceDirectory>src/main/flex</sourceDirectory> <testSourceDirectory>src/test/flex</testSourceDirectory> <plugins> <plugin> <groupId>org.sonatype.flexmojos</groupId> <artifactId>flexmojos-maven-plugin</artifactId> <version>${flexmojos.version}</version> <extensions>true</extensions> <dependencies> <dependency> <groupId>com.adobe.flex</groupId> <artifactId>compiler</artifactId> <version>${flex-sdk.version}</version> <type>pom</type> </dependency> </dependencies> <configuration> <compiledLocales> <locale>en_US</locale> </compiledLocales> <mergeResourceBundle>true</mergeResourceBundle> <accessible>true</accessible> <optimize>true</optimize> <targetPlayer>10.0.0</targetPlayer> <showWarnings>true</showWarnings> <linkReport>true</linkReport> </configuration> </plugin> </plugins> </build> <dependencies> <!-- Flex framework resource bundles --> <dependency> <groupId>com.adobe.flex.framework</groupId> <artifactId>flex-framework</artifactId> <version>${flex-sdk.version}</version> <type>pom</type> </dependency> <!-- Include unit test dependencies. --> <dependency> <groupId>com.adobe.flexunit</groupId> <artifactId>flexunit</artifactId> <version>4.0-rc-1</version> <type>swc</type> <scope>test</scope> </dependency> </dependencies> ....... maven output compiler config : INFO] Flex compiler configurations: -compiler.external-library-path C:\...\.m2\repository\com\adobe\flex \framework\playerglobal\4.1.0.16076\10.0\playerglobal.swc -compiler.include-libraries= -compiler.library-path C:\...\.m2\repository\com\adobe\flex\framework \datavisualization\4.1.0.16076\datavisualization-4.1.0.16076.swc C:\... \.m2\repository\com\adobe\flex\framework\flash-integration \4.1.0.16076\flash-integration-4.1.0.16076.swc C:\...\.m2\repository \com\adobe\flex\framework\flex\4.1.0.16076\flex-4.1.0.16076.swc C:\... \.m2\repository\com\adobe\flex\framework\framework \4.1.0.16076\framework-4.1.0.16076.swc C:\...\.m2\repository\com\adobe \flex\framework\osmf\4.1.0.16076\osmf-4.1.0.16076.swc C:\... \.m2\repository\com\adobe\flex\framework\rpc \4.1.0.16076\rpc-4.1.0.16076.swc C:\...\.m2\repository\com\adobe\flex \framework\spark\4.1.0.16076\spark-4.1.0.16076.swc C:\... \.m2\repository\com\adobe\flex\framework\sparkskins \4.1.0.16076\sparkskins-4.1.0.16076.swc C:\...\.m2\repository\com\adobe \flex\framework\textLayout\4.1.0.16076\textLayout-4.1.0.16076.swc C: \...\.m2\repository\com\adobe\flex\framework\utilities \4.1.0.16076\utilities-4.1.0.16076.swc C:\...\.m2\repository\com\adobe \flex\framework\datavisualization \4.1.0.16076\datavisualization-4.1.0.16076-en_US.rb.swc C:\... \.m2\repository\com\adobe\flex\framework\framework \4.1.0.16076\framework-4.1.0.16076-en_US.rb.swc C:\...\.m2\repository \com\adobe\flex\framework\osmf\4.1.0.16076\osmf-4.1.0.16076- en_US.rb.swc C:\...\.m2\repository\com\adobe\flex\framework\rpc \4.1.0.16076\rpc-4.1.0.16076-en_US.rb.swc C:\...\.m2\repository\com \adobe\flex\framework\spark\4.1.0.16076\spark-4.1.0.16076-en_US.rb.swc C:\...\.m2\repository\com\adobe\flex\framework\textLayout \4.1.0.16076\textLayout-4.1.0.16076-en_US.rb.swc C:\...\.m2\repository \com\adobe\flex\framework\flash-integration\4.1.0.16076\flash- integration-4.1.0.16076-en_US.rb.swc C:\...\.m2\repository\com\adobe \flex\framework\playerglobal\4.1.0.16076\playerglobal-4.1.0.16076- en_US.rb.swc -compiler.theme Z:\.....\target\classes\configs\themes\Spark \spark.css -compiler.accessible=true -compiler.allow-source-path-overlap=false -compiler.as3=true -compiler.debug=false -compiler.es=false -compiler.fonts.managers flash.fonts.JREFontManager flash.fonts.BatikFontManager flash.fonts.AFEFontManager flash.fonts.CFFFontManager -compiler.fonts.local-fonts-snapshot Z:\.....\target\classes \fonts.ser -compiler.keep-generated-actionscript=false -licenses.license flashbuilder4 952309948800588759250406 -licenses.license flexbuilder4.displayedStartPageAtLeastOneTime true -compiler.locale en_US -compiler.optimize=true -compiler.source-path Z:\.....\src\main\flex -compiler.strict=true -use-network=true -compiler.verbose-stacktraces=false -compiler.actionscript-file-encoding UTF-8 -target-player 10.0.0 -default-background-color 8821927 -default-frame-rate 24 -default-script-limits 1000 60 -default-size 500 375 -compiler.headless-server=false -compiler.keep-all-type-selectors=false -compiler.use-resource-bundle-metadata=true -metadata.date Fri Mar 04 14:04:37 EET 2011 -metadata.localized-title Main x-default -verify-digests=true -compiler.namespaces.namespace+=http://ns.adobe.com/mxml/2009,Z:\..... \target\classes\config-4.1.0.16076\mxml-2009-manifest.xml -compiler.namespaces.namespace+=library://ns.adobe.com/flex/spark,Z: \.....\target\classes\config-4.1.0.16076\spark-manifest.xml -compiler.namespaces.namespace+=library://ns.adobe.com/flex/mx,Z:\..... \target\classes\config-4.1.0.16076\mx-manifest.xml -compiler.namespaces.namespace+=http://www.adobe.com/2006/mxml,Z:\..... \PozitronUI\target\classes\config-4.1.0.16076\mxml-manifest.xml - static-link-runtime-shared-libraries=false -load-config= -metadata.language+=en_US any help... regards,

    Read the article

  • Will these optimizations to my Ruby implementation of diff improve performance in a Rails app?

    - by grg-n-sox
    <tl;dr> In source version control diff patch generation, would it be worth it to use the optimizations listed at the very bottom of this writing (see <optimizations>) in my Ruby implementation of diff for making diff patches? </tl;dr> <introduction> I am programming something I have never done before and there might already be tools out there to do the exact thing I am programming but at this point I am having too much fun to care so I am still going to do it from scratch, even if there is a tool for this. So anyways, I am working on a Ruby on Rails app and need a certain feature. Basically I want each entry in a table of mine, let's say for example a table of video games, to have a stored chunk of text that represents a review or something of the sort for that table entry. However, I want this text to be both editable by any registered user and also keep track of different submissions in a version control system. The simplest solution I could think of is just implement a solution that keeps track of the text body and the diff patch history of different versions of the text body as objects in Ruby and then serialize it, preferably in human readable form (so I'll most likely use YAML for this) for editing if needed due to corruption by a software bug or a mistake is made by an admin doing some version editing. So at first I just tried to dive in head first into this feature to find that the problem of generating a diff patch is more difficult that I thought to do efficiently. So I did some research and came across some ideas. Some I have implemented already and some I have not. However, it all pretty much revolves around the longest common subsequence problem, as you would already know if you have already done anything with diff or diff-like features, and optimization the function that solves it. Currently I have it so it truncates the compared versions of the text body from the beginning and end until non-matching lines are found. Then it solves the problem using a comparison matrix, but instead of incrementing the value stored in a cell when it finds a matching line like in most longest common subsequence algorithms I have seen examples of, I increment when I have a non-matching line so as to calculate edit distance instead of longest common subsequence. Although as far as I can tell between the two approaches, they are essentially two sides of the same coin so either could be used to derive an answer. It then back-traces through the comparison matrix and notes when there was an incrementation and in which adjacent cell (West, Northwest, or North) to determine that line's diff entry and assumes all other lines to be unchanged. Normally I would leave it at that, but since this is going into a Rails environment and not just some stand-alone Ruby script, I started getting worried about needing to optimize at least enough so if a spammer that somehow knew how I implemented the version control system and knew my worst case scenario entry still wouldn't be able to hit the server that bad. After some searching and reading of research papers and articles through the internet, I've come across several that seem decent but all seem to have pros and cons and I am having a hard time deciding how well in this situation that the pros and cons balance out. So are the ones listed here worth it? I have listed them with known pros and cons. </introduction> <optimizations> Chop the compared sequences into multiple chucks of subsequences by splitting where lines are unchanged, and then truncating each section of unchanged lines at the beginning and end of each section. Then solve the edit distance of each subsequence. Pro: Changes the time increase as the changed area gets bigger from a quadratic increase to something more similar to a linear increase. Con: Figuring out where to split already seems like you have to solve edit distance except now you don't care how it is changed. Would be fine if this was solvable by a process closer to solving hamming distance but a single insertion would throw this off. Use a cryptographic hash function to both convert all sequence elements into integers and ensure uniqueness. Then solve the edit distance comparing the hash integers instead of the sequence elements themselves. Pro: The operation of comparing two integers is faster than the operation of comparing two strings, so a slight performance gain is received after every comparison, which can be a lot overall. Con: Using a cryptographic hash function takes time to convert all the sequence elements and may end up costing more time to do the conversion that you gain back from the integer comparisons. You could use the built in hash function for a string but that will not guarantee uniqueness. Use lazy evaluation to only calculate the three center-most diagonals of the comparison matrix and then only calculate additional diagonals as needed. And then also use this approach to possibly remove the need on some comparisons to compare all three adjacent cells as desribed here. Pro: Can turn an algorithm that always takes O(n * m) time and make it so only worst case scenario is that time, best case becomes practically linear, and average case is somewhere between the two. Con: It is an algorithm I've only seen implemented in functional programming languages and I am having a difficult time comprehending how to convert this into Ruby based on how it is described at the site linked to above. Make a C module and do the hard work at the native level in C and just make a Ruby wrapper for it so Ruby can make all the calls to it that it needs. Pro: I have to imagine that evaluating something like this in could be a LOT faster. Con: I have no idea how Rails handles apps with ruby code that has C extensions and it hurts the portability of the app. This is an optimization for after the solving of edit distance, but idea is to store additional combined diffs with the ones produced by each version to make a delta-tree data structure with the most recently made diff as the root node of the tree so getting to any version takes worst case time of O(log n) instead of O(n). Pro: Would make going back to an old version a lot faster. Con: It would mean every new commit, the delta-tree would get a new root node that will cost time to reorganize the delta-tree for an operation that will be carried out a lot more often than going back a version, not to mention the unlikelihood it will be an old version. </optimizations> So are these things worth the effort?

    Read the article

  • Why does C qicksort function implementation works much slower (tape comparations, tape swapping) than bobble sort function?

    - by Artur Mustafin
    I'm going to implement a toy tape "mainframe" for a students, showing the quickness of "quicksort" class functions (recursive or not, does not really matters, due to the slow hardware, and well known stack reversal techniques) comparatively to the "bubblesort" function class, so, while I'm clear about the hardware implementation ans controllers, i guessed that quicksort function is much faster that other ones in terms of sequence, order and comparation distance (it is much faster to rewind the tape from the middle than from the very end, because of different speed of rewind). Unfortunately, this is not the true, this simple "bubble" code shows great improvements comparatively to the "quicksort" functions in terms of comparison distances, direction and number of comparisons and writes. So I have 3 questions: Does I have mistaken in my implememtation of quicksort function? Does I have mistaken in my implememtation of bubblesoft function? If not, why the "bubblesort" function is works much faster in (comparison and write operations) than "quicksort" function? I already have a "quicksort" function: void quicksort(float *a, long l, long r, const compare_function& compare) { long i=l, j=r, temp, m=(l+r)/2; if (l == r) return; if (l == r-1) { if (compare(a, l, r)) { swap(a, l, r); } return; } if (l < r-1) { while (1) { i = l; j = r; while (i < m && !compare(a, i, m)) i++; while (m < j && !compare(a, m, j)) j--; if (i >= j) { break; } swap(a, i, j); } if (l < m) quicksort(a, l, m, compare); if (m < r) quicksort(a, m, r, compare); return; } } and the kind of my own implememtation of the "bubblesort" function: void bubblesort(float *a, long l, long r, const compare_function& compare) { long i, j, k; if (l == r) { return; } if (l == r-1) { if (compare(a, l, r)) { swap(a, l, r); } return; } if (l < r-1) { while(l < r) { i = l; j = l; while (i < r) { i++; if (!compare(a, j, i)) { continue; } j = i; } if (l < j) { swap(a, l, j); } l++; i = r; k = r; while(l < i) { i--; if (!compare(a, i, k)) { continue; } k = i; } if (k < r) { swap(a, k, r); } r--; } return; } } I have used this sort functions in a test sample code, like this: #include <stdio.h> #include <stdlib.h> #include <math.h> #include <conio.h> long swap_count; long compare_count; typedef long (*compare_function)(float *, long, long ); typedef void (*sort_function)(float *, long , long , const compare_function& ); void init(float *, long ); void print(float *, long ); void sort(float *, long, const sort_function& ); void swap(float *a, long l, long r); long less(float *a, long l, long r); long greater(float *a, long l, long r); void bubblesort(float *, long , long , const compare_function& ); void quicksort(float *, long , long , const compare_function& ); void main() { int n; printf("n="); scanf("%d",&n); printf("\r\n"); long i; float *a = (float *)malloc(n*n*sizeof(float)); sort(a, n, &bubblesort); print(a, n); sort(a, n, &quicksort); print(a, n); free(a); } long less(float *a, long l, long r) { compare_count++; return *(a+l) < *(a+r) ? 1 : 0; } long greater(float *a, long l, long r) { compare_count++; return *(a+l) > *(a+r) ? 1 : 0; } void swap(float *a, long l, long r) { swap_count++; float temp; temp = *(a+l); *(a+l) = *(a+r); *(a+r) = temp; } float tg(float x) { return tan(x); } float ctg(float x) { return 1.0/tan(x); } void init(float *m,long n) { long i,j; for (i = 0; i < n; i++) { for (j=0; j< n; j++) { m[i + j*n] = tg(0.2*(i+1)) + ctg(0.3*(j+1)); } } } void print(float *m, long n) { long i, j; for(i = 0; i < n; i++) { for(j = 0; j < n; j++) { printf(" %5.1f", m[i + j*n]); } printf("\r\n"); } printf("\r\n"); } void sort(float *a, long n, const sort_function& sort) { long i, sort_compare = 0, sort_swap = 0; init(a,n); for(i = 0; i < n*n; i+=n) { if (fmod (i / n, 2) == 0) { compare_count = 0; swap_count = 0; sort(a, i, i+n-1, &less); if (swap_count == 0) { compare_count = 0; sort(a, i, i+n-1, &greater); } sort_compare += compare_count; sort_swap += swap_count; } } printf("compare=%ld\r\n", sort_compare); printf("swap=%ld\r\n", sort_swap); printf("\r\n"); }

    Read the article

  • PHP4 including file during session

    - by Matherw
    I am trying to put second language on my webpage. I decided to use different files for different languages told apart by path - language/pl/projects.ln contains Polish text, language/en/projects.ln - English. Those extensions are just to tell language files from other, the content is simple php: $lang["desc"]["fabrics"]["title"] = "MATERIALY"; $lang["desc"]["fabrics"]["short_text"] = "Jakis tam tekst na temat materialów"; $lang["desc"]["services"]["title"] = "USLUGI"; $lang["desc"]["services"]["short_text"] = "Jakis tam tekst na temat uslóg"; And then on the index page I use it like so: session_start(); if (isset($_SESSION["lang"])) { $language = $_SESSION["lang"]; } else { $language = "pl"; } include_once("language/$language/projects.ln"); print $lang["desc"]["fabrics"]["title"]; The problem is that if the session variable is not set everything works fine and array item content is displayed but once I change and set $_SESSION["lang"] nothing is displayed. I tested if the include itself works as it should by putting print "sth"; at the beginning of projects.ln file and that works all right both with $_SESSION["lang"] set and unset. Please help.

    Read the article

  • Internationalized strings in Eclipse plugin.xml file are not found when installed in Eclipse applica

    - by Ed
    Hi, I have created 2 plugins, implementing an ODA driver plugin and its UI plugin for the BIRT extension to Eclipse. My plugins both work as expected when eclipse starts up another eclipse application where I can then test the plugins I am developing. However, when I install my plugins into an Eclipse application and then start it from a Windows shortcut, the plugins work but and language keys specified in the plugin.xml files are not found. For example, in my plugin.xml file for the ODA Driver plugin I set the attributes 'id' to '%oda.data.source.id' and the data source 'defaultDisplayName' to '%data.source.name'. I then, in a file 'language.properties', have defined the values for both of these keys (where the keys don't have the preceeding % character). When running the plugins that have been installed into the dropins/plugins directory of an Eclipse application, the wizard for creating my ODA data source names is as '%data.source.name' and saves the data source in the rptdesign (XML) file with an ID of '%oda.data.source.id'. Since 'language' is not the default name for the properties file I went into the manifest for both plugins and changed the 'Bundle-Localization' attribute to 'language'. The language file is located in the root directory of both of my plugins. The properties file is definitely found, since I use the two language files to store other strings used by the plugins, looked up using a java ResourceBundle. The strings are always found whether the plugins are run from Eclipse application loading another, or when properly installed in the dropins/plugins directory of an Eclipse application. Why are the installed plugins not finding language keys reference in the plugin.xml files? There are not errors in the logs and the language.properties files are clearly accessible... Thanks in advance.

    Read the article

  • List of rich web application technologies

    - by Michal Czardybon
    I am trying to get myself acquainted with the world of rich web application. There are some comparison tables of available technologies on the Wikipedia, but I still find it unclear what are the options for rich application development. Could you please verify and complete the information I gathered below? What are the key pros and cons of each option? Which is the best choice for big and very rich web application? Option 1: ASP.NET/ASP.NET MVC Vendor: Microsoft Environment: Visual Studio Language: C# Output: HTML+JavaScript+AJAX Example: www.stackoverflow.com Option 2: Silverlight Vendor: Microsoft Environment: Visual Studio Language: C# Output: .NET executable? Example: ? Option 3: Google Web Toolkit Vendor: Google Environment: Eclipse Language: Java Output: HTML+JavaScript+AJAX Example: http://www.projectkaiser.com:8080/pk/ Option 4: Flex Vendor: Adobe Environment: ? Language: ? Output: Flash (.swf file) Example: http://listen.grooveshark.com/ Option 5: Adobe AIR Vendor: Adobe Environment: ? Language: ? Output: AIR Example: http://www.colabolo.com/en/download.html Option 5: Ruby on Rails Vendor: Rails Core Team Envirnoment: ? Language: Ruby Output: HTML+JavaScript+AJAX? Example: ? Option 6: Java Applets Vendor: Sun Environment: Eclipse Language: Java Output: Java Applet Option 7: OpenLeszlo Vendor: ? Environment: ? Language: ? Output: ? Example: ? Option 8: Python? ??? Option 9: XUL ???

    Read the article

  • called function A(args) calls a function B() which then calls a function A(args), How to do that?

    - by Ken
    See example: <!DOCTYPE html> <html> <head> <title>language</title> <script type="text/javascript" src="http://www.google.com/jsapi"> </script> </head> <body> <div id="language"></div> <script type="text/javascript"> var loaded = false; function load_api() { google.load("language", "1", { "nocss": true, "callback": function() { loaded = true; callback_to_caller(with_caller_agruments); // how to call a function (with the same arguments) which called load_api() ??? // case 1 should be: detect_language('testing'); // case 2 should be: translate('some text'); } }); } function detect_language(text) { if (!loaded) { load_api(); } else { // let's continue... believe that google.language is loaded & ready to use google.language.detect(text, function(result) { if (!result.error && result.language) { document.getElementById('language').innerHTML = result.language; } }); } } function translate(text) { if (!loaded) { load_api(); } else { // let's continue... } } detect_language('testing'); // case 1 translate('some text'); // case 2 </script> </body> </html>

    Read the article

  • Which is the better C# class design for dealing with read+write versus readonly

    - by DanM
    I'm contemplating two different class designs for handling a situation where some repositories are read-only while others are read-write. (I don't foresee any need to a write-only repository.) Class Design 1 -- provide all functionality in a base class, then expose applicable functionality publicly in sub classes public abstract class RepositoryBase { protected virtual void SelectBase() { // implementation... } protected virtual void InsertBase() { // implementation... } protected virtual void UpdateBase() { // implementation... } protected virtual void DeleteBase() { // implementation... } } public class ReadOnlyRepository : RepositoryBase { public void Select() { SelectBase(); } } public class ReadWriteRepository : RepositoryBase { public void Select() { SelectBase(); } public void Insert() { InsertBase(); } public void Update() { UpdateBase(); } public void Delete() { DeleteBase(); } } Class Design 2 - read-write class inherits from read-only class public class ReadOnlyRepository { public void Select() { // implementation... } } public class ReadWriteRepository : ReadOnlyRepository { public void Insert() { // implementation... } public void Update() { // implementation... } public void Delete() { // implementation... } } Is one of these designs clearly stronger than the other? If so, which one and why? P.S. If this sounds like a homework question, it's not, but feel free to use it as one if you want :)

    Read the article

< Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >