Search Results

Search found 5332 results on 214 pages for 'font bold'.

Page 162/214 | < Previous Page | 158 159 160 161 162 163 164 165 166 167 168 169  | Next Page >

  • won't repaint a different Month after pressing button in my calendar

    - by DarkStar123
    I'm trying to build a Calendar in Java as a little project I thought of, But I can't seem to change the name of the Month every time I click the Next button. here's my code! package drawing; import javax.swing.*; import java.awt.*; import java.awt.event.*; public class Drawing_something extends JPanel{ int[] calender_squares = {1, 2, 3, 4, 5, 6, 7}; String[] Month = {"January", "February", "March", "April","May","June","July", "August","September","October","November","December"}; int i = 0; Graphics c; @Override public void paintComponent(Graphics c){ super.paintComponent(c); this.setBackground(Color.WHITE); int WIDTH = 55, HEIGHT = 65; for (int in: calender_squares) { for (int counter = 0; counter < 7; counter++){ c.drawRect(50, 50, 100, 100); c.drawRect(50, 50, 700, 500); c.copyArea(50, 50, 600, 500, 100, 0); c.copyArea(50, 50, 600, 400, 0, 100); } } for (int date = 1; date <= 30; date++) { String s = String.valueOf(date); c.drawString(s, WIDTH, HEIGHT); if (date <= 6){ WIDTH += 100; } else if (date == 7){ WIDTH = 55; HEIGHT = 165; }else if (date <= 13){ WIDTH += 100; }else if (date == 14){ WIDTH = 55; HEIGHT = 265; }else if (date <= 20){ WIDTH += 100; }else if (date == 21){ WIDTH = 55; HEIGHT = 365; }else if (date <= 27){ WIDTH += 100; }else if (date == 28){ WIDTH = 55; HEIGHT = 465; }else if (date <= 30){ WIDTH += 100; } } c.setFont(new Font("default", Font.BOLD, 40)); c.drawString(Month[i], 320, 45); } public Drawing_something(){ setLayout(new BorderLayout()); JButton N = new JButton("NEXT"); JButton B = new JButton("BACK"); JPanel P = new JPanel(); P.add(B); P.add(N); add(P, BorderLayout.SOUTH); B.addActionListener(new HandlerClass()); N.addActionListener(new NextClass()); } public class HandlerClass implements ActionListener{ public void actionPerformed(ActionEvent e){ } } public class NextClass implements ActionListener{ public void actionPerformed(ActionEvent e){ if (i == 11){ i = 0; } i = i + 1; c.drawString(Month[i], 320, 45); } } public static void main(String[] args){ JFrame mainFrame = new JFrame("Calender"); mainFrame.add(new Drawing_something()); mainFrame.setSize(850, 650); mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); mainFrame.setVisible(true); } } if anyone could help that would be much appreciated!! Thanks in advance!!

    Read the article

  • PHP $_GET and $_POST are returning empty arrays--trying to paginate SQL data

    - by George88
    I have set up the following: Database class ($db) Pagination class ($paginator) I am attempting to write a basic system to let me administrate pages. I have a page "page_manager.php" in which I include both my database class (database.php) and my pagination class (paginate.php). In my pagination class I have a function which echoes my SQL data. I've come up with a way to echo an HTML < select element with the necessary IDs, which allows me to successfully echo the corresponding results (10 per page), based on the value of the < select element. So, "1" will echo the first 10 results in the database, "2" will echo from 11-20, "3" will echo from 21-30, etc., etc.. I have added an onChange event to the < select element which will copy its value (using "this.value") to a hidden form field. I then submit this form using document.getElementById().submit(); This will then add the $_GET variable to the URL, so the URL becomes ".../?pagenumber_form=X". However, when I try to grab this value back from the URL, the $_GET['pagenumber_form'] is empty. Some code: <span style='font-family: tahoma; font-size: 10pt;'>Page #</span> <select id="page_number_selection" onchange='javascript: document.getElementById("pagenumber_form").value = this.value; document.getElementById("pagenumber").submit();'> <?php for($i = 1; $i <= $this->num_pages; $i++) echo"<option id='" . $i . "'>" . $i . "</option>"; ?> </select> <form name="pagenumber" id="pagenumber" action="" method="get"> <input type="text" name="pagenumber_form" id="pagenumber_form" /> </form> So, I've tried using $_POST as well, but the same thing happens. I want to use $_GET, for a couple of reasons: it's easier to see what is happening with my values and the data I'm using doesn't need to be secure. To recap: the $_GET variable is being added to the URL when I change the < select element, and the corresponding value gets added to the URL as: ".../?pagenumber_form=X", but when I try to use the value in PHP, for example... $page_number = $_GET['pagenumber_form']; ... I get a NULL value. :-( Can anybody help me out please? Thank you. EDIT: I've just made a discovery. If I move my print_r($_GET) to my main index page, then the superglobals are returning as expected. My site structure is like this: index.php - JavaScript buttons use AJAX HTTP requests to include the "responseText" as the .innerHTML of my main < div . The "responseText" is the contents the page itself, in this case page_manager.php, which in turn includes pagination.php. So in other words, my site is built from PHP includes, which doesn't seem to be compatible with HTTP superglobals. Any idea how I can get around this problem? Thank you :-).

    Read the article

  • Local traffic through VPN, global traffic through WAN

    - by ikonoma
    I have an issue with my internet connection. I am using VPN (Aventail Client) to access the local resources. When connected to VPN the Internet traffic passes through it, not through my LAN or Wi-Fi network. I would like to change the routing table to use the Wi-Fi adapter of the PC for WAN traffic. I have routing file, which works very well and routes the traffic in this way, but only when I am physically connected to the local network through LAN. But I can't set it to work with the VPN connection, because I have no gateway when I am connected to it. Etc this in bold is missing. What to do? route change 0.0.0.0 mask 0.0.0.0 172.16.76.1 metric 200 if 12 route change 0.0.0.0 mask 0.0.0.0 10.44.2.1 metric 400 if 11 route add 150.251.0.0 mask 255.255.0.0 10.44.2.1 metric 100 if 11 route add 10.0.0.0 mask 255.0.0.0 10.44.2.1 metric 100 if 11 pause

    Read the article

  • Resolution is Being Stupid. Help me?

    - by One Terrorist
    I'm having trouble with a new computer I bought a few days ago. I have come to the conclusion that the resolution of the screen is too small, at the moment it is 1024x768 and I think it should be 1280x960, due to a message given at the resolution tab of the control panel. It states: (!) If your resolution is below 1280x960, some items on the screen may not fit on the screen. The computer is an Asus A54H and runs 64-bit operating system with Windows 7 Home Premium. This link has a screenshot of the screen at the moment, the icons and font are too big and are a little stretched. Thank you in advance!

    Read the article

  • What is a good replacement for StumbleUpon's Share feature?

    - by Mofoo
    I've been using Firefox + StumbleUpon's Share feature with my friends for years now. It is a perfect way of sharing links directly with your friends. You first need to be Following each other and then on the SU toolbar, you can "Share" with your list of friends. You can even include a personal message. The friend will receive a notification with # of pending shares in their toolbar (bold & red). They click the stumble button and it will navigate to the site plus show a yellow bar with your message. I literally use it daily. But then Chrome came along and beat the tar out of Firefox (and other browsers) in terms of usability and performance. But it doesn't (and never will according to Google) allow toolbars. StumbleUpon's solution in Chrome is a fake toolbar (html) that gets injected into the page you're viewing. It's buggy and performance is low. Overall it's not an acceptable solution. I'm looking for a replacement with something that is just as easy to send/receive links. I was thinking of Twitter DM's and using a bookmarklet, but I wanted to survey the collective for other options Thanks in advance for your input!

    Read the article

  • Color in Cygwin terminal

    - by ForbesLindesay
    I've installed cygwin because I'm a bit fed up with the Windows terminal not being great. The only problem I'm having is the lack of colours. You can see the problem in the following 2 screenshots that display the same command: All I want is something which has a nice font, resizes properly (including proper behaviour when maximised) and support for colours. Ideally I'd like tabs too. This seems like a silly reason to end up buying a mac, so I'm hoping I can get all these things on windows somehow.

    Read the article

  • Linux virtualized screen resolution

    - by vladev
    Hopefully there is a positive answer to this question: I have a 15.4" laptop with native screen resolution of 1920x1200. You can imagine that everything is completely unreadable by default. If I increase the font size it becomes readable, but ugly. Is it possible to set the "real" resolution to 1920x1200 so it plays nice with the monitor, but set some "virtual" resolution of 1440x900 so that everything starts looking nice. Note: If I just change the resolution to 1440x900 everything becomes blurry, since this is not the monitor's default resolution. I know that having a small monitor with high resolution is not very optimal - not my choice. (Using nvidia GF8400M)

    Read the article

  • Radio Button Validation u

    - by Sirojan Gnanaretnam
    I am trying validate the radio button using Javascript . But I couldn't get it. Can any one please help me to fix this Issue. I Have attached My Code Below. Thanks. <form action="submitAd.php" method="POST" enctype="multipart/form-data" name="packages" onsubmit="return checkForm()"> <div id="plans_pay"> <input type="radio" name="group1" id="r1" value="Office" onchange="click_Pay_Office()" style="float:left;margin-top:20px;font-size:72px;"> <label style="float:left; margin-top:20px;" for="pay_office">At Our Office</label> <img style="float:left;margin-bottom:10px;" src="images/Pay-at-office.png" /> </div> <div id="plans_pay"> <input style="float:left;margin-top:20px;font-size:72px;" type="radio" name="group1" id="r2" value="HNB" onchange="click_Pay_Hnb()"> <label style="float:left; margin-top:20px;" for="pay_hnb">At Any HNB Branch</label> <img style="float:left;margin-bottom:10px;" src="images/HNB.png" /> </div> </form> Javascript function checkForm(){ if( document.packages.pso.checked == false && document.packages.pso1.checked == false && document.packages.ph.checked == false && document.packages.ph2.checked == false && document.packages.ph3.checked == false && document.packages.pl.checked == false && document.packages.p3.checked == false && document.packages.p4.checked == false && document.packages.p5.checked == false && document.packages.p6.checked == false ){ alert('Please Select At Least One Package'); return false; } if( document.packages.pso.checked == false && document.packages.pso1.checked == false && document.packages.ph.checked == false && document.packages.ph.checked == false && document.packages.ph2.checked == false && document.packages.ph3.checked == false && document.packages.pl.checked == false && document.packages.p3.checked == false && document.packages.p4.checked == false && document.packages.p5.checked == false && document.packages.p6.checked == false){ alert('Please Select At Least One with the Advertise online option in premium package'); return false; } if(document.getElementById('words').value==''){ alert("Please Enter the Texts"); return false; } if(document.getElementById('r1').checked==false && document.getElementById('r2').checked==false){ alert("Please Select a Payment Method"); return false; } }

    Read the article

  • Javascript auto calculating

    - by Josh
    I have page that automatically calculates a Total by entering digits into the fields or pressing the Plus or Minus buttons. I need to add a second input after the Total that automatically divides the total by 25. Here is the working code with no JavaScript value for the division part of the code: <html> <head> <script language="text/javascript"> function Calc(className){ var elements = document.getElementsByClassName(className); var total = 0; for(var i = 0; i < elements.length; ++i){ total += parseFloat(elements[i].value); } document.form0.total.value = total; } function addone(field) { field.value = Number(field.value) + 1; Calc('add'); } function subtractone(field) { field.value = Number(field.value) - 1; Calc('add'); } </script> </head> <body> <form name="form0" id="form0"> 1: <input type="text" name="box1" id="box1" class="add" value="0" onKeyUp="Calc('add')" onChange="updatesum()" onClick="this.focus();this.select();" /> <input type="button" value=" + " onclick="addone(box1);"> <input type="button" value=" - " onclick="subtractone(box1);"> <br /> 2: <input type="text" name="box2" id="box2" class="add" value="0" onKeyUp="Calc('add')" onClick="this.focus();this.select();" /> <input type="button" value=" + " onclick="addone(box2);"> <input type="button" value=" - " onclick="subtractone(box2);"> <br /> 3: <input type="text" name="box3" id="box3" class="add" value="0" onKeyUp="Calc('add')" onClick="this.focus();this.select();" /> <input type="button" value=" + " onclick="addone(box3);"> <input type="button" value=" - " onclick="subtractone(box3);"> <br /> <br /> Total: <input readonly style="border:0px; font-size:14; color:red;" id="total" name="total"> <br /> Totaly Divided by 25: <input readonly style="border:0px; font-size:14; color:red;" id="divided" name="divided"> </form> </body></html> I have the right details but the formulas I am trying completely break other aspects of the code. I cant figure out how to make the auto adding and auto dividing work at the same time

    Read the article

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 9, Configuration in PLINQ and TPL

    - by Reed
    Parallel LINQ and the Task Parallel Library contain many options for configuration.  Although the default configuration options are often ideal, there are times when customizing the behavior is desirable.  Both frameworks provide full configuration support. When working with Data Parallelism, there is one primary configuration option we often need to control – the number of threads we want the system to use when parallelizing our routine.  By default, PLINQ and the TPL both use the ThreadPool to schedule tasks.  Given the major improvements in the ThreadPool in CLR 4, this default behavior is often ideal.  However, there are times that the default behavior is not appropriate.  For example, if you are working on multiple threads simultaneously, and want to schedule parallel operations from within both threads, you might want to consider restricting each parallel operation to using a subset of the processing cores of the system.  Not doing this might over-parallelize your routine, which leads to inefficiencies from having too many context switches. In the Task Parallel Library, configuration is handled via the ParallelOptions class.  All of the methods of the Parallel class have an overload which accepts a ParallelOptions argument. We configure the Parallel class by setting the ParallelOptions.MaxDegreeOfParallelism property.  For example, let’s revisit one of the simple data parallel examples from Part 2: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re looping through an image, and calling a method on each pixel in the image.  If this was being done on a separate thread, and we knew another thread within our system was going to be doing a similar operation, we likely would want to restrict this to using half of the cores on the system.  This could be accomplished easily by doing: var options = new ParallelOptions(); options.MaxDegreeOfParallelism = Math.Max(Environment.ProcessorCount / 2, 1); Parallel.For(0, pixelData.GetUpperBound(0), options, row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Now, we’re restricting this routine to using no more than half the cores in our system.  Note that I included a check to prevent a single core system from supplying zero; without this check, we’d potentially cause an exception.  I also did not hard code a specific value for the MaxDegreeOfParallelism property.  One of our goals when parallelizing a routine is allowing it to scale on better hardware.  Specifying a hard-coded value would contradict that goal. Parallel LINQ also supports configuration, and in fact, has quite a few more options for configuring the system.  The main configuration option we most often need is the same as our TPL option: we need to supply the maximum number of processing threads.  In PLINQ, this is done via a new extension method on ParallelQuery<T>: ParallelEnumerable.WithDegreeOfParallelism. Let’s revisit our declarative data parallelism sample from Part 6: double min = collection.AsParallel().Min(item => item.PerformComputation()); Here, we’re performing a computation on each element in the collection, and saving the minimum value of this operation.  If we wanted to restrict this to a limited number of threads, we would add our new extension method: int maxThreads = Math.Max(Environment.ProcessorCount / 2, 1); double min = collection .AsParallel() .WithDegreeOfParallelism(maxThreads) .Min(item => item.PerformComputation()); This automatically restricts the PLINQ query to half of the threads on the system. PLINQ provides some additional configuration options.  By default, PLINQ will occasionally revert to processing a query in parallel.  This occurs because many queries, if parallelized, typically actually cause an overall slowdown compared to a serial processing equivalent.  By analyzing the “shape” of the query, PLINQ often decides to run a query serially instead of in parallel.  This can occur for (taken from MSDN): Queries that contain a Select, indexed Where, indexed SelectMany, or ElementAt clause after an ordering or filtering operator that has removed or rearranged original indices. Queries that contain a Take, TakeWhile, Skip, SkipWhile operator and where indices in the source sequence are not in the original order. Queries that contain Zip or SequenceEquals, unless one of the data sources has an originally ordered index and the other data source is indexable (i.e. an array or IList(T)). Queries that contain Concat, unless it is applied to indexable data sources. Queries that contain Reverse, unless applied to an indexable data source. If the specific query follows these rules, PLINQ will run the query on a single thread.  However, none of these rules look at the specific work being done in the delegates, only at the “shape” of the query.  There are cases where running in parallel may still be beneficial, even if the shape is one where it typically parallelizes poorly.  In these cases, you can override the default behavior by using the WithExecutionMode extension method.  This would be done like so: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .Select(i => i.PerformComputation()) .Reverse(); Here, the default behavior would be to not parallelize the query unless collection implemented IList<T>.  We can force this to run in parallel by adding the WithExecutionMode extension method in the method chain. Finally, PLINQ has the ability to configure how results are returned.  When a query is filtering or selecting an input collection, the results will need to be streamed back into a single IEnumerable<T> result.  For example, the method above returns a new, reversed collection.  In this case, the processing of the collection will be done in parallel, but the results need to be streamed back to the caller serially, so they can be enumerated on a single thread. This streaming introduces overhead.  IEnumerable<T> isn’t designed with thread safety in mind, so the system needs to handle merging the parallel processes back into a single stream, which introduces synchronization issues.  There are two extremes of how this could be accomplished, but both extremes have disadvantages. The system could watch each thread, and whenever a thread produces a result, take that result and send it back to the caller.  This would mean that the calling thread would have access to the data as soon as data is available, which is the benefit of this approach.  However, it also means that every item is introducing synchronization overhead, since each item needs to be merged individually. On the other extreme, the system could wait until all of the results from all of the threads were ready, then push all of the results back to the calling thread in one shot.  The advantage here is that the least amount of synchronization is added to the system, which means the query will, on a whole, run the fastest.  However, the calling thread will have to wait for all elements to be processed, so this could introduce a long delay between when a parallel query begins and when results are returned. The default behavior in PLINQ is actually between these two extremes.  By default, PLINQ maintains an internal buffer, and chooses an optimal buffer size to maintain.  Query results are accumulated into the buffer, then returned in the IEnumerable<T> result in chunks.  This provides reasonably fast access to the results, as well as good overall throughput, in most scenarios. However, if we know the nature of our algorithm, we may decide we would prefer one of the other extremes.  This can be done by using the WithMergeOptions extension method.  For example, if we know that our PerformComputation() routine is very slow, but also variable in runtime, we may want to retrieve results as they are available, with no bufferring.  This can be done by changing our above routine to: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.NotBuffered) .Select(i => i.PerformComputation()) .Reverse(); On the other hand, if are already on a background thread, and we want to allow the system to maximize its speed, we might want to allow the system to fully buffer the results: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.FullyBuffered) .Select(i => i.PerformComputation()) .Reverse(); Notice, also, that you can specify multiple configuration options in a parallel query.  By chaining these extension methods together, we generate a query that will always run in parallel, and will always complete before making the results available in our IEnumerable<T>.

    Read the article

  • OpenGL extension vs OpenGL core

    - by user209347
    I was doubting: I'm writing a cross-platform engine OpenGL C++, I figured out windows forces the developers to access OpenGL features above 1.1 through extensions. Now the thing is, on Linux, I know that I can directly access functions if the version supports it through glext.h and opengl version. The problem is that if on Linux, the core doesn't support it, is it possible there is an extensions that supports the same functionality, in my case vertex buffer objects? I'm doing something like this: Windows: (hashdeck) define glFunction functionpointer_to_the_extension (apparently the layout changes font size if I use #) Linux: Since glext already defined glFunction, I can write in client code glFunction, and compile it both on Windows AND Linux without changing a single line in my client code using the engine (my goal). Now the thing is, I saw a tutorial use only the extension on Linux, and not checking for the opengl implementation version. If the functionality is available in the core, is it also available as extension (VBO's e.g.)? Or is an extension something you never know is available? I want to write an engine that gets all the possibilities on hardware, so I need to check (on Linux) for extensions as well as core version for possible functionality implementation.

    Read the article

  • Parallelism in .NET – Part 2, Simple Imperative Data Parallelism

    - by Reed
    In my discussion of Decomposition of the problem space, I mentioned that Data Decomposition is often the simplest abstraction to use when trying to parallelize a routine.  If a problem can be decomposed based off the data, we will often want to use what MSDN refers to as Data Parallelism as our strategy for implementing our routine.  The Task Parallel Library in .NET 4 makes implementing Data Parallelism, for most cases, very simple. Data Parallelism is the main technique we use to parallelize a routine which can be decomposed based off data.  Data Parallelism refers to taking a single collection of data, and having a single operation be performed concurrently on elements in the collection.  One side note here: Data Parallelism is also sometimes referred to as the Loop Parallelism Pattern or Loop-level Parallelism.  In general, for this series, I will try to use the terminology used in the MSDN Documentation for the Task Parallel Library.  This should make it easier to investigate these topics in more detail. Once we’ve determined we have a problem that, potentially, can be decomposed based on data, implementation using Data Parallelism in the TPL is quite simple.  Let’s take our example from the Data Decomposition discussion – a simple contrast stretching filter.  Here, we have a collection of data (pixels), and we need to run a simple operation on each element of the pixel.  Once we know the minimum and maximum values, we most likely would have some simple code like the following: for (int row=0; row < pixelData.GetUpperBound(0); ++row) { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This simple routine loops through a two dimensional array of pixelData, and calls the AdjustContrast routine on each pixel. As I mentioned, when you’re decomposing a problem space, most iteration statements are potentially candidates for data decomposition.  Here, we’re using two for loops – one looping through rows in the image, and a second nested loop iterating through the columns.  We then perform one, independent operation on each element based on those loop positions. This is a prime candidate – we have no shared data, no dependencies on anything but the pixel which we want to change.  Since we’re using a for loop, we can easily parallelize this using the Parallel.For method in the TPL: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Here, by simply changing our first for loop to a call to Parallel.For, we can parallelize this portion of our routine.  Parallel.For works, as do many methods in the TPL, by creating a delegate and using it as an argument to a method.  In this case, our for loop iteration block becomes a delegate creating via a lambda expression.  This lets you write code that, superficially, looks similar to the familiar for loop, but functions quite differently at runtime. We could easily do this to our second for loop as well, but that may not be a good idea.  There is a balance to be struck when writing parallel code.  We want to have enough work items to keep all of our processors busy, but the more we partition our data, the more overhead we introduce.  In this case, we have an image of data – most likely hundreds of pixels in both dimensions.  By just parallelizing our first loop, each row of pixels can be run as a single task.  With hundreds of rows of data, we are providing fine enough granularity to keep all of our processors busy. If we parallelize both loops, we’re potentially creating millions of independent tasks.  This introduces extra overhead with no extra gain, and will actually reduce our overall performance.  This leads to my first guideline when writing parallel code: Partition your problem into enough tasks to keep each processor busy throughout the operation, but not more than necessary to keep each processor busy. Also note that I parallelized the outer loop.  I could have just as easily partitioned the inner loop.  However, partitioning the inner loop would have led to many more discrete work items, each with a smaller amount of work (operate on one pixel instead of one row of pixels).  My second guideline when writing parallel code reflects this: Partition your problem in a way to place the most work possible into each task. This typically means, in practice, that you will want to parallelize the routine at the “highest” point possible in the routine, typically the outermost loop.  If you’re looking at parallelizing methods which call other methods, you’ll want to try to partition your work high up in the stack – as you get into lower level methods, the performance impact of parallelizing your routines may not overcome the overhead introduced. Parallel.For works great for situations where we know the number of elements we’re going to process in advance.  If we’re iterating through an IList<T> or an array, this is a typical approach.  However, there are other iteration statements common in C#.  In many situations, we’ll use foreach instead of a for loop.  This can be more understandable and easier to read, but also has the advantage of working with collections which only implement IEnumerable<T>, where we do not know the number of elements involved in advance. As an example, lets take the following situation.  Say we have a collection of Customers, and we want to iterate through each customer, check some information about the customer, and if a certain case is met, send an email to the customer and update our instance to reflect this change.  Normally, this might look something like: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } } Here, we’re doing a fair amount of work for each customer in our collection, but we don’t know how many customers exist.  If we assume that theStore.GetLastContact(customer) and theStore.EmailCustomer(customer) are both side-effect free, thread safe operations, we could parallelize this using Parallel.ForEach: Parallel.ForEach(customers, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); Just like Parallel.For, we rework our loop into a method call accepting a delegate created via a lambda expression.  This keeps our new code very similar to our original iteration statement, however, this will now execute in parallel.  The same guidelines apply with Parallel.ForEach as with Parallel.For. The other iteration statements, do and while, do not have direct equivalents in the Task Parallel Library.  These, however, are very easy to implement using Parallel.ForEach and the yield keyword. Most applications can benefit from implementing some form of Data Parallelism.  Iterating through collections and performing “work” is a very common pattern in nearly every application.  When the problem can be decomposed by data, we often can parallelize the workload by merely changing foreach statements to Parallel.ForEach method calls, and for loops to Parallel.For method calls.  Any time your program operates on a collection, and does a set of work on each item in the collection where that work is not dependent on other information, you very likely have an opportunity to parallelize your routine.

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • Turn Photos and Home Videos into Movies with Windows Live Movie Maker

    - by DigitalGeekery
    Are you looking for an easy way to take your digital photos and videos and turn them into a movie or slideshow? Today we’ll take a detailed look at how to do use Windows Live Movie Maker. Installation Windows Live Movie Maker comes bundled as part of the Windows Live Essentials suite (link below). However, you don’t have to install any of the programs you may not want. Take notice of the You’re almost done screen. Before clicking Continue, be sure to uncheck the boxes to set your search provider and homepage. Adding Pictures and Videos Open Windows Live Movie Maker. You can add videos or photos by simply dragging and dropping them onto the storyboard area. You can also click on the storyboard area or on the Add videos and photos button on the Home tab to browse for videos and photos. Windows Live Movie Maker supports most video, image, and audio file types. Select your files and add click Open to add them to Windows Live Movie Maker. By default WLMM doesn’t allow you to add files from network locations…so check out our article on how to add network support to Windows Live MovieMaker if the files you want to add are on a network drive. Layout All of your added clips will appear in the storyboard area on the right, while the currently selected clip will appear in the preview window on the left. You can adjust the size of the two areas by clicking and dragging the dividing line in the middle.    Make the clips on the storyboard bigger or smaller by clicking on the thumbnail size icon. The slider at the lower right adjusts the zoom time scale.   Previewing your Movie At any time, you can playback your movie and preview how it will look in the Preview window by clicking the space bar, or by pushing the play button under the preview window. You can also manually move the preview bar slider across the storyboard to view the clips as the video progresses. Adjusting Clips on the Storyboard You can click and drag clips on the storyboard to change the order in which the photos and videos appear.   Adding Music Nothing brings a movie to life quite like music. Selecting Add music will add your music to the beginning of the movie. Select Add music at the current point to include it in the movie to the current location of your preview bar slider, then browse for your music clip. WLMM supports many common audio files such as WAV, MP3, M4A, WMA, AIFF, and ASF. The music clip will appear above the video / photos clips on the storyboard.   You can change the location of music clips by clicking and dragging them to a different location on the storyboard. Add Titles, Captions, and Credits To add a Title screen to your movie, click the Title button on the Home tab. Type your title directly into the text box on the preview screen. The title will be placed at the location of the preview slider on the storyboard. However, you can change the location by clicking and dragging title to other areas of the storyboard. On the Format tab, there are a handful of text settings. You can change the font, color, size, alignment,  and transparency. The Adjust group allows you to change the background color, edit the text, and set the length of time the Title will appear in the movie.   The Effects group on the Format tab allows you to select an effect for your title screen. By hovering your cursor over each option, you will get a live preview of how each effect will appear in the preview window. Click to apply any of the effects. For captions, select where you want your caption to appear with the preview slider on the storyboard, then click the captions button on the Home tab. Just like the title, you type your caption directly into the text box on the preview screen, and you can make any adjustments by using the Font and Paragraph, Adjust, and Effects groups above. Credits are done the same as titles and captions, except they are automatically placed at the end of the movie.   Transitions Go to the Animation tab on the ribbon to apply transitions. Select a clip from the storyboard and hover over one of the transition to see it in the preview window. Click on the transition to apply it to the clip. You can apply transitions separately to clips or hold down Ctrl button while clicking to select multiple clips to which to apply the same transition. Pan and zoom effects are also located on the Animations tab, but can be applied to photos only. Like transition, you can apply them individually to a clip or hold down Ctrl button while clicking to select multiple clips to which to apply the same pan and zoom effect. Once applied, you can adjust the duration of the transitions and pan and zoom effects. You can also click the dropdown for additional transitions or effects. Visual Effects Similar to Pan and Zoom and Transitions, you can apply a variety of Visual Effects to individual or multiple clips. Editing Video and Music Note: This does not actually edit the original video you imported into your Windows Live Movie Maker project, only how it appears in your WLMM project. There are some very basic editing tools located on the Home tab. The Rotate left and Rotate right button will adjust any clip that may be oriented incorrectly. The Fit to music button will automatically adjust the duration of the photos (if you have any in your project) to fit the length of the music in your movie. Audio mix allows you to change the volume level   You can also do some slightly more advanced editing from the Edit tab. Select the video clip on the storyboard and click the Trim tool to edit or remove portions of a video clip. Next, click and drag the sliders in the preview windows to select the are you wish to keep. For example, the area outside the sliders is the area trimmed from the movie. The area inside is the section that is kept in the movie. You can also adjust the Start and End points manually on the ribbon.   When you are finished, click Save trim. You can also split your video clips. Move the preview slider to the location in the video clip where you’d like to split it, and select Split. Your video will be split into separate sections. Now you can apply different effects or move them to different locations on the storyboard. Editing Music Clips Select the music clip on the storyboard and then the Options tab on the ribbon. You can adjust the music volume by moving the slider right and left.   You can also choose to have your music clip fade in or out at the beginning and end of your movie. From the Fade in and Fade out dropdowns, select None, Slow, Medium, or Fast. To adjust the sound of your audio clips, click on the Edit tab, select the Video volume button, and adjust the slider. Move it all the way to the left to mute any background noise in your video clips.   AutoMovie As you have seen, Windows Live Movie Maker allows you to add effects, transitions, titles, and more. If you don’t want to do any of that stuff yourself, AutoMovie will automatically add title, credits, cross fade transitions between items, pan and zoom effects to photos, and fit your project to the music. Just select the AutoMovie button on the Home tab. You can go from zero to movie in literally a couple minutes.   Uploading to YouTube You can share your video on YouTube directly from Windows Live Movie Maker. Click on the YouTube icon in the Sharing group on the Home tab. You’ll be prompted for your YouTube username and password. Fill in the details about your movie and click Publish. The movie will be converted to WMV before being uploaded to YouTube. As soon as the YouTube conversion is complete, you’re new movie is live and ready to be viewed. Saving your Movie as a Video File Select the icon at the top left, then select Save movie. As you hover your mouse over each of the options, you will see the output display size, aspect ratio, and estimated file size per minute of video. All of these settings will output your movie as a WMV file. (Unfortunately, the only option is to save a movie as a WMV file.) The only difference is how they are encoded based on preset common settings. The Burn to DVD option also outputs a WMV file, but then opens Windows DVD Maker and walks you through the process of creating and burning a DVD.   If you choose the Burn to DVD option, close this window when the WMV file conversion is complete and the Windows DVD Maker will prompt you to begin. When your movie is finished, it’s time to relax and enjoy.   Conclusion Windows Live Movie Maker makes it easy for the average person to quickly churn out nice looking movies and slideshows from there own pictures and videos. However, long time users of previous editions (formerly called Windows Movie Maker) will likely be disappointed by some features missing in Windows Live Movie Maker that existed in earlier editions. Looking for details on burning your new project to DVD, check out our article on how to create and author DVDs with Windows DVD Maker. Download Windows Live Movie Maker Similar Articles Productive Geek Tips Family Fun: Share Photos with Photo Gallery and Windows Live SpacesCreate and Author DVDs in Windows 7Rotate a Video 90 degrees with VLC or Windows Live Movie MakerInstall Windows Live Essentials In Windows 7How to Make/Edit a movie with Windows Movie Maker in Windows Vista TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 Acronis Online Backup Windows Firewall with Advanced Security – How To Guides Sculptris 1.0, 3D Drawing app AceStock, a Tiny Desktop Quote Monitor Gmail Button Addon (Firefox) Hyperwords addon (Firefox) Backup Outlook 2010

    Read the article

  • Parallelism in .NET – Part 11, Divide and Conquer via Parallel.Invoke

    - by Reed
    Many algorithms are easily written to work via recursion.  For example, most data-oriented tasks where a tree of data must be processed are much more easily handled by starting at the root, and recursively “walking” the tree.  Some algorithms work this way on flat data structures, such as arrays, as well.  This is a form of divide and conquer: an algorithm design which is based around breaking up a set of work recursively, “dividing” the total work in each recursive step, and “conquering” the work when the remaining work is small enough to be solved easily. Recursive algorithms, especially ones based on a form of divide and conquer, are often a very good candidate for parallelization. This is apparent from a common sense standpoint.  Since we’re dividing up the total work in the algorithm, we have an obvious, built-in partitioning scheme.  Once partitioned, the data can be worked upon independently, so there is good, clean isolation of data. Implementing this type of algorithm is fairly simple.  The Parallel class in .NET 4 includes a method suited for this type of operation: Parallel.Invoke.  This method works by taking any number of delegates defined as an Action, and operating them all in parallel.  The method returns when every delegate has completed: Parallel.Invoke( () => { Console.WriteLine("Action 1 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 2 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 3 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); } ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Running this simple example demonstrates the ease of using this method.  For example, on my system, I get three separate thread IDs when running the above code.  By allowing any number of delegates to be executed directly, concurrently, the Parallel.Invoke method provides us an easy way to parallelize any algorithm based on divide and conquer.  We can divide our work in each step, and execute each task in parallel, recursively. For example, suppose we wanted to implement our own quicksort routine.  The quicksort algorithm can be designed based on divide and conquer.  In each iteration, we pick a pivot point, and use that to partition the total array.  We swap the elements around the pivot, then recursively sort the lists on each side of the pivot.  For example, let’s look at this simple, sequential implementation of quicksort: public static void QuickSort<T>(T[] array) where T : IComparable<T> { QuickSortInternal(array, 0, array.Length - 1); } private static void QuickSortInternal<T>(T[] array, int left, int right) where T : IComparable<T> { if (left >= right) { return; } SwapElements(array, left, (left + right) / 2); int last = left; for (int current = left + 1; current <= right; ++current) { if (array[current].CompareTo(array[left]) < 0) { ++last; SwapElements(array, last, current); } } SwapElements(array, left, last); QuickSortInternal(array, left, last - 1); QuickSortInternal(array, last + 1, right); } static void SwapElements<T>(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } Here, we implement the quicksort algorithm in a very common, divide and conquer approach.  Running this against the built-in Array.Sort routine shows that we get the exact same answers (although the framework’s sort routine is slightly faster).  On my system, for example, I can use framework’s sort to sort ten million random doubles in about 7.3s, and this implementation takes about 9.3s on average. Looking at this routine, though, there is a clear opportunity to parallelize.  At the end of QuickSortInternal, we recursively call into QuickSortInternal with each partition of the array after the pivot is chosen.  This can be rewritten to use Parallel.Invoke by simply changing it to: // Code above is unchanged... SwapElements(array, left, last); Parallel.Invoke( () => QuickSortInternal(array, left, last - 1), () => QuickSortInternal(array, last + 1, right) ); } This routine will now run in parallel.  When executing, we now see the CPU usage across all cores spike while it executes.  However, there is a significant problem here – by parallelizing this routine, we took it from an execution time of 9.3s to an execution time of approximately 14 seconds!  We’re using more resources as seen in the CPU usage, but the overall result is a dramatic slowdown in overall processing time. This occurs because parallelization adds overhead.  Each time we split this array, we spawn two new tasks to parallelize this algorithm!  This is far, far too many tasks for our cores to operate upon at a single time.  In effect, we’re “over-parallelizing” this routine.  This is a common problem when working with divide and conquer algorithms, and leads to an important observation: When parallelizing a recursive routine, take special care not to add more tasks than necessary to fully utilize your system. This can be done with a few different approaches, in this case.  Typically, the way to handle this is to stop parallelizing the routine at a certain point, and revert back to the serial approach.  Since the first few recursions will all still be parallelized, our “deeper” recursive tasks will be running in parallel, and can take full advantage of the machine.  This also dramatically reduces the overhead added by parallelizing, since we’re only adding overhead for the first few recursive calls.  There are two basic approaches we can take here.  The first approach would be to look at the total work size, and if it’s smaller than a specific threshold, revert to our serial implementation.  In this case, we could just check right-left, and if it’s under a threshold, call the methods directly instead of using Parallel.Invoke. The second approach is to track how “deep” in the “tree” we are currently at, and if we are below some number of levels, stop parallelizing.  This approach is a more general-purpose approach, since it works on routines which parse trees as well as routines working off of a single array, but may not work as well if a poor partitioning strategy is chosen or the tree is not balanced evenly. This can be written very easily.  If we pass a maxDepth parameter into our internal routine, we can restrict the amount of times we parallelize by changing the recursive call to: // Code above is unchanged... SwapElements(array, left, last); if (maxDepth < 1) { QuickSortInternal(array, left, last - 1, maxDepth); QuickSortInternal(array, last + 1, right, maxDepth); } else { --maxDepth; Parallel.Invoke( () => QuickSortInternal(array, left, last - 1, maxDepth), () => QuickSortInternal(array, last + 1, right, maxDepth)); } We no longer allow this to parallelize indefinitely – only to a specific depth, at which time we revert to a serial implementation.  By starting the routine with a maxDepth equal to Environment.ProcessorCount, we can restrict the total amount of parallel operations significantly, but still provide adequate work for each processing core. With this final change, my timings are much better.  On average, I get the following timings: Framework via Array.Sort: 7.3 seconds Serial Quicksort Implementation: 9.3 seconds Naive Parallel Implementation: 14 seconds Parallel Implementation Restricting Depth: 4.7 seconds Finally, we are now faster than the framework’s Array.Sort implementation.

    Read the article

  • Building and Deploying Windows Azure Web Sites using Git and GitHub for Windows

    - by shiju
    Microsoft Windows Azure team has released a new version of Windows Azure which is providing many excellent features. The new Windows Azure provides Web Sites which allows you to deploy up to 10 web sites  for free in a multitenant shared environment and you can easily upgrade this web site to a private, dedicated virtual server when the traffic is grows. The Meet Windows Azure Fact Sheet provides the following information about a Windows Azure Web Site: Windows Azure Web Sites enable developers to easily build and deploy websites with support for multiple frameworks and popular open source applications, including ASP.NET, PHP and Node.js. With just a few clicks, developers can take advantage of Windows Azure’s global scale without having to worry about operations, servers or infrastructure. It is easy to deploy existing sites, if they run on Internet Information Services (IIS) 7, or to build new sites, with a free offer of 10 websites upon signup, with the ability to scale up as needed with reserved instances. Windows Azure Web Sites includes support for the following: Multiple frameworks including ASP.NET, PHP and Node.js Popular open source software apps including WordPress, Joomla!, Drupal, Umbraco and DotNetNuke Windows Azure SQL Database and MySQL databases Multiple types of developer tools and protocols including Visual Studio, Git, FTP, Visual Studio Team Foundation Services and Microsoft WebMatrix Signup to Windows and Enable Azure Web Sites You can signup for a 90 days free trial account in Windows Azure from here. After creating an account in Windows Azure, go to https://account.windowsazure.com/ , and select to preview features to view the available previews. In the Web Sites section of the preview features, click “try it now” which will enables the web sites feature Create Web Site in Windows Azure To create a web sites, login to the Windows Azure portal, and select Web Sites from and click New icon from the left corner  Click WEB SITE, QUICK CREATE and put values for URL and REGION dropdown. You can see the all web sites from the dashboard of the Windows Azure portal Set up Git Publishing Select your web site from the dashboard, and select Set up Git publishing To enable Git publishing , you must give user name and password which will initialize a Git repository Clone Git Repository We can use GitHub for Windows to publish apps to non-GitHub repositories which is well explained by Phil Haack on his blog post. Here we are going to deploy the web site using GitHub for Windows. Let’s clone a Git repository using the Git Url which will be getting from the Windows Azure portal. Let’s copy the Git url and execute the “git clone” with the git url. You can use the Git Shell provided by GitHub for Windows. To get it, right on the GitHub for Windows, and select open shell here as shown in the below picture. When executing the Git Clone command, it will ask for a password where you have to give password which specified in the Windows Azure portal. After cloning the GIT repository, you can drag and drop the local Git repository folder to GitHub for Windows GUI. This will automatically add the Windows Azure Web Site repository onto GitHub for Windows where you can commit your changes and publish your web sites to Windows Azure. Publish the Web Site using GitHub for Windows We can add multiple framework level files including ASP.NET, PHP and Node.js, to the local repository folder can easily publish to Windows Azure from GitHub for Windows GUI. For this demo, let me just add a simple Node.js file named Server.js which handles few request handlers. 1: var http = require('http'); 2: var port=process.env.PORT; 3: var querystring = require('querystring'); 4: var utils = require('util'); 5: var url = require("url"); 6:   7: var server = http.createServer(function(req, res) { 8: switch (req.url) { //checking the request url 9: case '/': 10: homePageHandler (req, res); //handler for home page 11: break; 12: case '/register': 13: registerFormHandler (req, res);//hamdler for register 14: break; 15: default: 16: nofoundHandler (req, res);// handler for 404 not found 17: break; 18: } 19: }); 20: server.listen(port); 21: //function to display the html form 22: function homePageHandler (req, res) { 23: console.log('Request handler home was called.'); 24: res.writeHead(200, {'Content-Type': 'text/html'}); 25: var body = '<html>'+ 26: '<head>'+ 27: '<meta http-equiv="Content-Type" content="text/html; '+ 28: 'charset=UTF-8" />'+ 29: '</head>'+ 30: '<body>'+ 31: '<form action="/register" method="post">'+ 32: 'Name:<input type=text value="" name="name" size=15></br>'+ 33: 'Email:<input type=text value="" name="email" size=15></br>'+ 34: '<input type="submit" value="Submit" />'+ 35: '</form>'+ 36: '</body>'+ 37: '</html>'; 38: //response content 39: res.end(body); 40: } 41: //handler for Post request 42: function registerFormHandler (req, res) { 43: console.log('Request handler register was called.'); 44: var pathname = url.parse(req.url).pathname; 45: console.log("Request for " + pathname + " received."); 46: var postData = ""; 47: req.on('data', function(chunk) { 48: // append the current chunk of data to the postData variable 49: postData += chunk.toString(); 50: }); 51: req.on('end', function() { 52: // doing something with the posted data 53: res.writeHead(200, "OK", {'Content-Type': 'text/html'}); 54: // parse the posted data 55: var decodedBody = querystring.parse(postData); 56: // output the decoded data to the HTTP response 57: res.write('<html><head><title>Post data</title></head><body><pre>'); 58: res.write(utils.inspect(decodedBody)); 59: res.write('</pre></body></html>'); 60: res.end(); 61: }); 62: } 63: //Error handler for 404 no found 64: function nofoundHandler(req, res) { 65: console.log('Request handler nofound was called.'); 66: res.writeHead(404, {'Content-Type': 'text/plain'}); 67: res.end('404 Error - Request handler not found'); 68: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If there is any change in the local repository folder, GitHub for Windows will automatically detect the changes. In the above step, we have just added a Server.js file so that GitHub for Windows will detect the changes. Let’s commit the changes to the local repository before publishing the web site to Windows Azure. After committed the all changes, you can click publish button which will publish the all changes to Windows Azure repository. The following screen shot shows deployment history from the Windows Azure portal.   GitHub for Windows is providing a sync button which can use for synchronizing between local repository and Windows Azure repository after making any commit on the local repository after any changes. Our web site is running after the deployment using Git Summary Windows Azure Web Sites lets the developers to easily build and deploy websites with support for multiple framework including ASP.NET, PHP and Node.js and can easily deploy the Web Sites using Visual Studio, Git, FTP, Visual Studio Team Foundation Services and Microsoft WebMatrix. In this demo, we have deployed a Node.js Web Site to Windows Azure using Git. We can use GitHub for Windows to publish apps to non-GitHub repositories and can use to publish Web SItes to Windows Azure.

    Read the article

  • Google Translation API Integration in .NET

    - by Jalpesh P. Vadgama
    This blog has been quite for some time because i was very busy at professional font but now I have decided to post on this blog too. I am constantly posting my article on my personal blog at http://jalpesh.blogspot.com. But now this blog will also have same blog post so i can reach to more community. Language localization is one of important thing of site of application nowadays. If you want your site or application more popular then other then it should support more then language. Some time it becomes difficult to translate all the sites into other languages so for i have found a great solution. Now you can use Google Translation API to translate your site or application dynamically. Here are steps you required to follow to integrate Google Translation API into Microsoft.NET Applications. First you need download class library dlls from the following site. http://code.google.com/p/google-language-api-for-dotnet/ Go this site and download GoogleTranslateAPI_0.1.zip. Then once you have done that you need to add reference GoogleTranslateAPI.dll like following. Now you are ready to use the translation API from Google. Here is the code for that. string Text = "This is a string to translate"; Console.WriteLine("Before Translation:{0}", Text); Text=Google.API.Translate.Translator.Translate(Text,Google.API.Translate.Language.English,Google.API.Translate.Language.French); Console.WriteLine("Before Translation:{0}", Text); That’s it it will return the string translated from English to French. But make you are connected to internet :)… Happy Programming Technorati Tags: GoogleAPI,Translate

    Read the article

  • Box 2d basic questions

    - by philipp
    I am a bit new to box2d and I am developing an game with type and letters. I am using an svg font and generate the box2d bodies direct from the glyphs path definition, using the convex hull of them. I also have an decomposition routine the decomposes this hull if necessary. All this it is more or less working, except that I got some strange errors which definitely are caused by the scale factors. The problem is caused by two factors: first: the world scale of box2d, second: the the precision of curve-approximation of the glyph vectors. So through scaling down the input vertices for box2d, it happens that they become equal caused by numerical precision, what causes errors in box2d. Through scaling the my glyphs a bit up, this goes away. I also goes away if I chose a different world scale factor, but this slows down the whole animation quite much! So if my view port is about 990px * 600px and i want to animate Glyphs in box2d which should have a size from about 50px * 50px up to 300px * 300px, which scale factor of the b2world should i choose? How small should the smallest distance from on vertex to another be, while approximating the glyph vectors? Thanks for help greetings philipp EDIT:: I continued reading the docs of box2d and after rethinking of the units system, which is designed to handle object from 0.1 up to 10 meters, I calculated a scale factor of 75. So Objects 600px width will are 8 meters wide in box2d and even small objects of about 20px width will become 0.26 meters width in box2d. I will go on trying with this values, but if there is somebody out there who could give me a clever advice i would be happy!

    Read the article

  • Friends Don’t Let Friends Play with Portal Guns [Video]

    - by Jason Fitzpatrick
    Many Portal fan films are sci-fi stories in their own right; this humorous video is simply focused on what happens when three guys get their hands on a portal gun. Jason Craft, the video’s director, explains: My interpretation of what a real POrtal gun would be like if one existed. Based on the video game, POrtal. I tried to match the game as close as possible. This was the most challenging project I have ever undertaken, consisting of 3D tracking, seamless camera cuts and 3D camera projection. ENJOY! We certainly wish our goofing around with friends videos came off this polished. For those of you wondering how he got such an awesome Portal Gun prop, it’s all CGI (you can check out his model here). [via Boing Boing] HTG Explains: What Is Windows RT & What Does It Mean To Me? HTG Explains: How Windows 8′s Secure Boot Feature Works & What It Means for Linux Hack Your Kindle for Easy Font Customization

    Read the article

  • The Best Tips and Tweaks for Getting the Most Out of Internet Explorer 9

    - by Lori Kaufman
    If you use Internet Explorer 9, we have many tips and tricks for you to improve your web surfing experience, from customizing the interface to using the many features, and to make your time online more secure with IE9’s many security and privacy enhancements. Surf or Search Using the One Box (Address Bar) In IE versions prior to 9, the address bar and search bar were separate. They are now combined into the One Box in IE9, allowing you to navigate to websites or start a search from a single place. According to Microsoft, if you enter a single word that represents a valid URL, such as “microsoft” or “howtogeek,” the word will be evaluated as a URL and you can click on the URL or press Shift + Enter to load that site. The One Box also provides inline autocomplete functionality, so you only have to type a few letters to quickly get to your favorite sites. IE9 autocompletes what you are typing with popular websites, as well as with items from your Favorites and History lists. HTG Explains: What Is Windows RT and What Does It Mean To Me? HTG Explains: How Windows 8′s Secure Boot Feature Works & What It Means for Linux Hack Your Kindle for Easy Font Customization

    Read the article

  • Create nice animation on your ASP.NET Menu control using jQuery

    - by hajan
    In this blog post, I will show how you can apply some nice animation effects on your ASP.NET Menu control. ASP.NET Menu control offers many possibilities, but together with jQuery, you can make very rich, interactive menu accompanied with animations and effects. Lets start with an example: - Create new ASP.NET Web Application and give it a name - Open your Default.aspx page (or any other .aspx page where you will create the menu) - Our page ASPX code is: <form id="form1" runat="server"> <div id="menu">     <asp:Menu ID="Menu1" runat="server" Orientation="Horizontal" RenderingMode="List">                     <Items>             <asp:MenuItem NavigateUrl="~/Default.aspx" ImageUrl="~/Images/Home.png" Text="Home" Value="Home"  />             <asp:MenuItem NavigateUrl="~/About.aspx" ImageUrl="~/Images/Friends.png" Text="About Us" Value="AboutUs" />             <asp:MenuItem NavigateUrl="~/Products.aspx" ImageUrl="~/Images/Box.png" Text="Products" Value="Products" />             <asp:MenuItem NavigateUrl="~/Contact.aspx" ImageUrl="~/Images/Chat.png" Text="Contact Us" Value="ContactUs" />         </Items>     </asp:Menu> </div> </form> As you can see, we have ASP.NET Menu with Horizontal orientation and RenderMode=”List”. It has four Menu Items where for each I have specified NavigateUrl, ImageUrl, Text and Value properties. All images are in Images folder in the root directory of this web application. The images I’m using for this demo are from Free Web Icons. - Next, lets create CSS for the LI and A tags (place this code inside head tag) <style type="text/css">     li     {         border:1px solid black;         padding:20px 20px 20px 20px;         width:110px;         background-color:Gray;         color:White;         cursor:pointer;     }     a { color:White; font-family:Tahoma; } </style> This is nothing very important and you can change the style as you want. - Now, lets reference the jQuery core library directly from Microsoft CDN. <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.min.js"></script> - And we get to the most interesting part, applying the animations with jQuery Before we move on writing jQuery code, lets see what is the HTML code that our ASP.NET Menu control generates in the client browser.   <ul class="level1">     <li><a class="level1" href="Default.aspx"><img src="Images/Home.png" alt="" title="" class="icon" />Home</a></li>     <li><a class="level1" href="About.aspx"><img src="Images/Friends.png" alt="" title="" class="icon" />About Us</a></li>     <li><a class="level1" href="Products.aspx"><img src="Images/Box.png" alt="" title="" class="icon" />Products</a></li>     <li><a class="level1" href="Contact.aspx"><img src="Images/Chat.png" alt="" title="" class="icon" />Contact Us</a></li> </ul>   So, it generates unordered list which has class level1 and for each item creates li element with an anchor with image + menu text inside it. If we want to access the list element only from our menu (not other list element sin the page), we need to use the following jQuery selector: “ul.level1 li”, which will find all li elements which have parent element ul with class level1. Hence, the jQuery code is:   <script type="text/javascript">     $(function () {         $("ul.level1 li").hover(function () {             $(this).stop().animate({ opacity: 0.7, width: "170px" }, "slow");         }, function () {             $(this).stop().animate({ opacity: 1, width: "110px" }, "slow");         });     }); </script>   I’m using hover, so that the animation will occur once we go over the menu item. The two different functions are one for the over, the other for the out effect. The following line $(this).stop().animate({ opacity: 0.7, width: "170px" }, "slow");     does the real job. So, this will first stop any previous animations (if any) that are in progress and will animate the menu item by giving to it opacity of 0.7 and changing the width to 170px (the default width is 110px as in the defined CSS style for li tag). This happens on mouse over. The second function on mouse out reverts the opacity and width properties to the default ones. The last parameter “slow” is the speed of the animation. The end result is:   The complete ASPX code: <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>ASP.NET Menu + jQuery</title>     <style type="text/css">         li         {             border:1px solid black;             padding:20px 20px 20px 20px;             width:110px;             background-color:Gray;             color:White;             cursor:pointer;         }         a { color:White; font-family:Tahoma; }     </style>     <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.min.js"></script>     <script type="text/javascript">         $(function () {             $("ul.level1 li").hover(function () {                 $(this).stop().animate({ opacity: 0.7, width: "170px" }, "slow");             }, function () {                 $(this).stop().animate({ opacity: 1, width: "110px" }, "slow");             });         });     </script> </head> <body>     <form id="form1" runat="server">     <div id="menu">         <asp:Menu ID="Menu1" runat="server" Orientation="Horizontal" RenderingMode="List">                         <Items>                 <asp:MenuItem NavigateUrl="~/Default.aspx" ImageUrl="~/Images/Home.png" Text="Home" Value="Home"  />                 <asp:MenuItem NavigateUrl="~/About.aspx" ImageUrl="~/Images/Friends.png" Text="About Us" Value="AboutUs" />                 <asp:MenuItem NavigateUrl="~/Products.aspx" ImageUrl="~/Images/Box.png" Text="Products" Value="Products" />                 <asp:MenuItem NavigateUrl="~/Contact.aspx" ImageUrl="~/Images/Chat.png" Text="Contact Us" Value="ContactUs" />             </Items>         </asp:Menu>     </div>     </form> </body> </html> Hope this was useful. Regards, Hajan

    Read the article

  • Visual Studio Talk Show #118 is now online - Command-Query Responsibility Separation (French)

    - by guybarrette
    http://www.visualstudiotalkshow.com Erik Renaud: La séparation des responsabilités entre les commandes et les requêtes Nous discutons avec Erik Renaud de la séparation des responsabilités entre les commandes et les requêtes (Command-Query Responsibility Separation - CQRS). La plupart des applications lisent les données beaucoup plus fréquemment qu'ils font des écritures. Sur la base de cette déclaration, une bonne idée consiste à séparer le code qui est responsable de l’écriture des données du code qui est responsable des requêtes (lecture). Erik Renaud est un coach .NET et co-fondateur de nVentive, une société conseil qui aide les équipes de développement logiciel au moyen de « coaching » et de « guidance ». Ses mandats courants se concentrent dans les grandes institutions financières en créant de nouvelles équipes qui supportent directement leurs activités primaires. Erik cumule plus de 10 ans d’expérience en développement logiciel, en faisant du coaching pour des équipes pour des besoins en architecture, modélisation et analyse. Pour la seconde année, il a reçu de Microsoft la reconnaissance MVP. Il est un ScrumMaster certifié, ce qui l’aide à guider les équipes vers le succès, et offre souvent des formations pour les technologies orientées objet. Il peut être rejoint au [email protected], ou vu tout partout où le kendo est pratiqué. var addthis_pub="guybarrette";

    Read the article

  • Two 12.04 machines have the same display settings but different results

    - by durron597
    I have one machine that has a relatively fresh install of 12.04 and one that I inherited. The terminal window in the inherited machine has a really weird font, and the regular one is what I would expect. Especially the behavior of the "m" character is messed up. Note: both of these machines are on the same KVM switch. Here is what I've tried: MyUnity on both machines seem the same .bashrc on both machines seem similar in all the ways that would matter for this issue The terminal profiles on both machines are the default Here are the xrandr outputs: Good xrandr: Screen 0: minimum 320 x 200, current 1280 x 1024, maximum 4096 x 4096 VGA1 connected 1280x1024+0+0 (normal left inverted right x axis y axis) 376mm x 301mm 1280x1024 60.0 + 76.0 75.0* 72.0 70.0 1152x864 75.0 1024x768 75.1 70.1 60.0 832x624 74.6 800x600 72.2 75.0 60.3 640x480 72.8 75.0 66.7 60.0 720x400 70.1 Bad xrandr: Screen 0: minimum 8 x 8, current 1280 x 1024, maximum 8192 x 8192 DP-0 disconnected (normal left inverted right x axis y axis) DP-1 disconnected (normal left inverted right x axis y axis) DP-2 disconnected (normal left inverted right x axis y axis) DP-3 connected 1280x1024+0+0 (normal left inverted right x axis y axis) 376mm x 301mm 1280x1024 60.0*+ 76.0 75.0 72.0 70.0 1152x864 75.0 1024x768 75.0 70.1 60.0 800x600 75.0 72.2 60.3 640x480 75.0 72.8 59.9 Finally here are screenshots of both machines, it seems to really only be Terminal, I have askubuntu behind the terminal window for comparison: Good screenshot: Bad Screenshot: Any thoughts as to what this might be?

    Read the article

< Previous Page | 158 159 160 161 162 163 164 165 166 167 168 169  | Next Page >