Search Results

Search found 105845 results on 4234 pages for 'asp net dynamic data'.

Page 164/4234 | < Previous Page | 160 161 162 163 164 165 166 167 168 169 170 171  | Next Page >

  • With ASP.NET MVC, what is the preferred way to Ajaxify a simple form?

    - by Swoop
    I am trying to add a simple comments/message box to a web page. When the user enters the comment and hits submit, I would like to save this message to the database and add the comment to the list displayed on the page, without refreshing the entire page. However, I am not sure of the best way to do that these days. I am using ASP.NET MVC 2. I have been trying to read up on using JQuery for this type of functionality, but I am having problems getting a full picture of the correct approach that isn't also out of date (i.e. it is using an preview version of MVC 1 or older version of JQuery). I can either find snippets of different pieces without the information of how they work together, or the information appears to be quite dated and no longer valid. Can someone point me in the right direction for something like this? Ideally, I am looking for a simple example of the JQuery code, a snippet of any key differences in an HTML form from a normal post method, and the basic method used in the MVC Controller. I need something to help the lightbulb of understanding to turn on. :) Any help would be greatly appreciated!!

    Read the article

  • c#: storing lots of data in my.settings

    - by every_answer_gets_a_point
    i will need to store 3 tables of data instead of implementing an entire database backend, i just want to store the record for these tables in application.settings has anyone done this before? i dont care about security is it advisable to do it with application settings? how else would you do it? perhaps storing a matrix in application.settings would be OK?

    Read the article

  • ASP.net PreInit() Vs Init()

    - by ASP.netBeginner
    From local forum i understood that PreInit can be used to handle the following PreInit() >Master pages can be called dynamically >Themes can be set dynamically >Programatically add controls to controls collection and i read Init() is for Init() In this event, we can read the controls properties (set at design time). We cannot read control values changed by the user because that changed value will get loaded after LoadPostData() event fires. Question I am not getting the point "We cannot read control values changed by the user".Where do users change the value of control?.Example would help me to understand the point.

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • LLBLGen Pro v3.0 with Entity Framework v4.0 (12m video)

    - by FransBouma
    Today I recorded a video in which I illustrate some of the database-first functionality available in LLBLGen Pro v3.0. LLBLGen Pro v3.0 also supports model-first functionality, which I hope to illustrate in an upcoming video. LLBLGen Pro v3.0 is currently in beta and is scheduled to RTM some time in May 2010. It supports the following frameworks out of the box, with more scheduled to follow in the coming year: LLBLGen Pro RTL (our own o/r mapper framework), Linq to Sql, NHibernate and Entity Framework (v1 and v4). The video I linked to below illustrates the creation of an entity model for Entity Framework v4, by reverse engineering the SQL Server 2008 example database 'AdventureWorks'. The following topics (among others) are included in the video: Abbreviation support (example: convert 'Qty' into 'Quantity' during name construction) Flexible, framework specific settings Attribute definitions for various elements (so no requirement for buddy-classes or messing with generated code or templates) Retrieval of relational model data from a database Reverse engineering of tables into entities, automatically placed in groups Auto-creation of inheritance hierarchies Refactoring of entity fields into Value Type Definitions (DDD) Mapping a Typed view onto a stored procedure resultset Creation of a Typed list (definition of a query with a projection) on a set of related entities Validation and correction of found inconsistencies and errors Generating code using one of the pre-defined presets Illustration of the code in vs.net 2010 It also gives a good overview of what it takes with LLBLGen Pro v3.0 to start from a new project, point it to a database, get an entity model, perform tweaks and validation and generate code which is ready to run. I am no video recording expert so there's no audio and some mouse movements might be a little too quickly. If that's the case, please pause the video. It's rather big (52MB). Click here to open the HTML page with the video (Flash). Opens in a new window. LLBLGen Pro v3.0 is currently in beta (available for v2.x customers) and scheduled to be released somewhere in May 2010.

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • Weekend Entity Framework Class in Dallas...

    - by [email protected]
    Zeeshan Nirani, MVP in the Data Programability Group, co-author of the upcoming Entity Framework Recipies book, is teaching a 6 week class on Entity Framework 4.0 at Collin Community College, beginning May 22nd. The class will meet each Saturday morning from 9 am to 1. There is probably nobody in the Metroplex area that knows the Entity Framework as initimately as Zeeshan. Go and sign-up for this course NOW and consider yourself lucky to have the opportunity to attend. You WILL learn the Entity Framework which will be CRITICAL to your success in Microsoft development, as MSFT has made this framework one of their core pieces moving forward.   Contact Zeeshan at [email protected] for more details.      

    Read the article

  • Implicit and Explicit implementations for Multiple Interface inheritance

    Following C#.NET demo explains you all the scenarios for implementation of Interface methods to classes. There are two ways you can implement a interface method to a class. 1. Implicit Implementation 2. Explicit Implementation. Please go though the sample. using System;   namespace ImpExpTest { class Program { static void Main(string[] args) { C o3 = new C(); Console.WriteLine(o3.fu());   I1 o1 = new C(); Console.WriteLine(o1.fu());   I2 o2 = new C(); Console.WriteLine(o2.fu());   var o4 = new C(); //var is considered as C Console.WriteLine(o4.fu());   var o5 = (I1)new C(); //var is considered as I1 Console.WriteLine(o5.fu());   var o6 = (I2)new C(); //var is considered as I2 Console.WriteLine(o6.fu());   D o7 = new D(); Console.WriteLine(o7.fu());   I1 o8 = new D(); Console.WriteLine(o8.fu());   I2 o9 = new D(); Console.WriteLine(o9.fu()); } }   interface I1 { string fu(); }   interface I2 { string fu(); }   class C : I1, I2 { #region Imicitly Defined I1 Members public string fu() { return "Hello C"; } #endregion Imicitly Defined I1 Members   #region Explicitly Defined I1 Members   string I1.fu() { return "Hello from I1"; }   #endregion Explicitly Defined I1 Members   #region Explicitly Defined I2 Members   string I2.fu() { return "Hello from I2"; }   #endregion Explicitly Defined I2 Members }   class D : C { #region Imicitly Defined I1 Members public string fu() { return "Hello from D"; } #endregion Imicitly Defined I1 Members } }.csharpcode, .csharpcode pre{ font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/}.csharpcode pre { margin: 0em; }.csharpcode .rem { color: #008000; }.csharpcode .kwrd { color: #0000ff; }.csharpcode .str { color: #006080; }.csharpcode .op { color: #0000c0; }.csharpcode .preproc { color: #cc6633; }.csharpcode .asp { background-color: #ffff00; }.csharpcode .html { color: #800000; }.csharpcode .attr { color: #ff0000; }.csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em;}.csharpcode .lnum { color: #606060; }Output:-Hello C Hello from I1 Hello from I2 Hello C Hello from I1 Hello from I2 Hello from D Hello from I1 Hello from I2 span.fullpost {display:none;}

    Read the article

  • Microsoft Terminology: .NET C++ vs. traditional C++

    - by Mike Clark
    I've recently been working with a team that's using both .NET C++ and pre-.NET C++. I fully understand the technical differences between the two technologies. However, I sometimes feel like I'm floundering when it comes to the terminology used to differentiate the two. Example: Say we have two projects: ProjectA contains "C++" code that builds a .NET assembly DLL. ProjectB contains Visual C++ code that builds a traditional native Windows DLL. What is the best way to succinctly and terminologically draw a distinction between the two projects? Again, I'm not asking for an in-depth technical description of the differences between the two technologies. I'm just looking for names and labels. This is how, today, I might try to make the distinction when talking to someone: "ProjectA is a managed .NET C++ project" and "ProjectB is an unmanaged native C++ DLL project." However I am not at all certain that this terminology is ideal, or even correct. Please describe what you feel the ideal language to use in this situation (or similar situations) might be. Feel free to motivate your answer.

    Read the article

  • Terminology: .NET C++ vs. traditional C++

    - by Mike Clark
    Hello. I've recently been working with a team that's using both .NET C++ and pre-.NET C++. I fully understand the technical differences between the two technologies. However, I sometimes feel like I'm floundering when it comes to the terminology used to differentiate the two. Example: Say we have two projects: ProjectA contains "C++" code that builds a .NET assembly DLL. ProjectB contains Visual C++ code that builds a traditional native Windows DLL. What is the best way to succinctly and terminologically draw a distinction between the two projects? Again, I'm not asking for an in-depth technical description of the differences between the two technologies. I'm just looking for names and labels. This is how I might try to make the distinction when talking to someone about Project A and Project B: "ProjectA is a managed .NET C++ project" and ProjectB is an unmanaged Visual C++ DLL project." However I am not at all certain that this terminology is ideal, or even correct. Please describe what you feel the ideal language to use in this situation (or similar situations) might be. Feel free to motivate your answer.

    Read the article

  • Career opportunities for mid-20 .Net developer

    - by Valera Kolupaev
    Recently, I have moved to Toronto and started exploring career opportunities here. My first impressions about .net developer/architect career are really controversial. Here options that comes to my mind right now: Grow as a developer, lead and solution architect in large and well-known company, like Logitech or IBM. Doing .net development medium size (10-30) software shops Joining some start-up guys First one, seems very bureaucratic with kills all programming fun, that is such valuable to me. And there is not a lot of start ups, that are based on MS technology stack. Good mid-size company seems like a best fit to me, since I can have a lot of fun, doing new projects. Previously I have been working at large (5000+) outsourcing provider as a .Net developer. I was kind of a 'vanilla' time, because our team were always doing massive scale projects from scratch, on latest .Net stack. I would really appreciate if you share pros and cons of path, that you have chosen and what you value most in your current project. I'll start: Pros for Mid-size You are really close to business and application consumers, without all bureaucratic papers Cons It seems, that career oportunities of vertical growth is rather limited, once I have to switch to my own company or join development team of some big players.

    Read the article

  • Minimizing data sent over a webservice call on expensive connection

    - by aceinthehole
    I am working on a system that has many remote laptops all connected to the internet through cellular data connections. The application will synchronize periodically to a central database. The problem is, due to factors outside our control, the cost to move data across the cellular networks are spectacularly expensive. Currently the we are sending a compressed XML file across the wire where it is being processed and various things are done with (mainly stuffing it into a database). My first couple of thoughts were to convert that XML doc to json, just prior to transmission and convert back to XML just after receipt on the other end, and get some extra compression for free without changing much. Another thought was to test various other compression algorithms to determine the smallest one possible. Although, I am not entirely sure how much difference json vs xml would make once it is compressed. I thought that their must be resources available that address this problem from an information theory perspective. Does anyone know of any such resources or suggestions on what direction to go in. This developed on the MS .net stack on windows for reference.

    Read the article

  • Small-scale database options for .NET

    - by raney
    I have a .NET 4.0/WPF based application I've developed and maintain for my company that acts as a friendly GUI central-point-of-information, combining information pulled from a couple of SQL databases, as well as CSV exports from a few other applications. I would like to build out my own database to support the entirety of the information that the application accesses, so that I could have a service running on my server that would read in necessary remote SQL info and file exports, to provide the user's application with a single database to connect to, as well as to remove all of the file handling currently involved in the program (copying new CSV resources from network location, reading them into memory each launch.) I have complete control and flexibility here as long as the user's experience isn't affected, and this is as much a learning experience as it is tidying up. Caveat being, I don't have much in the way of a budget. Right now I recognize my options to be: SQL Express - I'm comfortable with the server setup, I like ADO.NET and LINQ to SQL. I feel that I have the least to learn here, but it would let me focus on SQL in a familiar environment. Perhaps in conjunction with Entity Framework? MongoDB - I don't know a whole lot about, but I've heard the name enough to make me curious. Brief research seems friendly enough, and there is .NET support. I like working with open source projects. My questions are: What's popular and extensible right now? I'm not far from starting to job-hunt, and I'd like this project to be relevant going forward. What am I missing? Pros, cons? Other options? What plays well with .NET? What are the things I should be considering, the questions I should be asking, when making a decision like this? Thanks for your time.

    Read the article

  • Implementing a ILogger interface to log data

    - by Jon
    I have a need to write data to file in one of my classes. Obviously I will pass an interface into my class to decouple it. I was thinking this interface will be used for testing and also in other projects. This is my interface: //This could be used by filesystem, webservice public interface ILogger { List<string> PreviousLogRecords {get;set;} void Log(string Data); } public interface IFileLogger : ILogger { string FilePath; bool ValidFileName; } public class MyClassUnderTest { public MyClassUnderTest(IFileLogger logger) {....} } [Test] public void TestLogger() { var mock = new Mock<IFileLogger>(); mock.Setup(x => x.Log(Is.Any<string>).AddsDataToList()); //Is this possible?? var myClass = new MyClassUnderTest(mock.Object); myClass.DoSomethingThatWillSplitThisAndLog3Times("1,2,3"); Assert.AreEqual(3,mock.PreviousLogRecords.Count); } This won't work I don't believe as nothing is storing the items so is this possible using Moq and also what do you think of the design of the interface?

    Read the article

  • Java and .NET cost of use [on hold]

    - by 1110
    I work with .NET technology stack for about 4 years. I am learning and enjoy working with ASP MVC framework and I never did anything serious in other languages. This is not the question like what is better (I read all similar questions). What interest me is the cost of switching. For example: If you are about to start a start-up company today and you are in my situation not too much money, some good idea that you think others will use and have a knowledge of .NET. In my head I have a few questions that I can't answer and I know that somebody with experience can: 1) Java & .NET hosting. Suppose shared hosting is not good enough anymore, your site has grown and you need more resources. How much Java services is cheaper compared to .NET? 2) I didn't follow hype about ORACLE will kill java long time. Does oracle show interest in investing in java. I mean is is safe to bet on java as a technology when starting start-up (basically did oracle show some will to destroy java platform)? 3) I am not sure what I am asking here. When you use Java you can use JEEE stack or Java with third party stack (spring, hibernate, maven etc.). I saw a lot of project that work with second option if web application is not enterprise level but social networking site for example which stack is best pick? Summary of this question is is it safe to jump in to Java learn it and build product based on it. It's not too hard for me to learn it. But how much can I get from it.

    Read the article

  • What strategy should be employed to access Facebook data offline?

    - by user686021
    I'm working on a project similar to Klout which provides detail about how you influence other people and who influenced you. We'll be fetching data from few social networking sites (i.e linked in, facebook, twitter etc) to analyze how users interacts with one another. For that we need to parse the data and store it in db and have to analyze it so that strength of relation of two user can be decided. We'll be accessing data offline as well to provide them with accurate results. If we consider facebook activities, we need to have access to Facebook users' news feed, wall data which includes likes,comments,shares etc. To decide how one user influence other, we'll store all the data and analyze it. I need suggestions on what steps need to be taken for great performance. We'll be using ASP.Net(C#) Web forms, SQL Server, jQuery. Main concern is parsing of data, it's storage and retrieval with least overhead. For that I've summarized few points as below : Should we switch over to document-oriented database, like MongoDB or RavenDB for the whole app or part of it even though none of team member have experience with them? Should we use SQL Server Analysis service? Is there any other library than Json.NET for parsing data? Is it advisable to use any C# library over FQL + GET Request ? I've tried to provide as much info as possible. Please share your views for the same.

    Read the article

  • Moving from VB.NET to C#

    - by w0051977
    I have worked with the VB.NET programming language for the last five years. I want to move to C# as I believe skills are more valued plus it is more similar to other object oriented languages like Java. I was offered a job today working primarily with C#. I explained at the interview that I am a VB.NET Developer and I did the test in VB.NET (though they would of preferred C#). If I decide to accept the position then I will be starting at at the top end of the salary bracket (only very slightly more than I earn now). I will have to help more junior staff in the future who probably have more experience using C# than I do (1-2 years). I used Java and C++ at university. I want to move towards C# in the future as I believe C# skills are more valued based on job advertisements I have seen recently. Has anyone else done this and did it work? i.e. move to a new organisation as a C# Developer at quite a senior level with experience primarily using VB.NET.

    Read the article

  • .Net Intermittent System.Web.Services.Protocols.SoapHeaderException

    - by ScottE
    We have a .net 3.5 web app that consumes third party web services. The proxy was created by adding a web reference to their wsdl. This proxy is not compiled. Our error logging is picking up frequent but intermittent exceptions: An exception of type 'System.Web.Services.Protocols.SoapHeaderException' occurred and was caught If I follow the url to the page that generated the exception, I can't recreate it. Edit: Here is most of the exception - where it bubbled up from Message : Internal Error Type : System.Web.Services.Protocols.SoapHeaderException, System.Web.Services, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Source : System.Web.Services Help link : Actor : Code : http://schemas.xmlsoap.org/soap/envelope/:Client Detail : Lang : Node : Role : SubCode : Data : System.Collections.ListDictionaryInternal TargetSite : System.Object[] ReadResponse(System.Web.Services.Protocols.SoapClientMessage, System.Net.WebResponse, System.IO.Stream, Boolean) Stack Trace : at System.Web.Services.Protocols.SoapHttpClientProtocol.ReadResponse(SoapClientMessage message, WebResponse response, Stream responseStream, Boolean asyncCall) at System.Web.Services.Protocols.SoapHttpClientProtocol.Invoke(String methodName, Object[] parameters) at Vendor.getSearch(getSearchRequest getSearchRequest) in c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\root\be43c34e\b09edc7e\App_WebReferences.pww-cf-q.0.cs:line 73 Edit 2: Inner exceptions: I sometimes get the following inner exceptions logged: Message : Unable to read data from the transport connection: An existing connection was forcibly closed by the remote host. Type : System.IO.IOException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Source : System Help link : Data : System.Collections.ListDictionaryInternal TargetSite : Int32 Read(Byte[], Int32, Int32) Stack Trace : at System.Net.Sockets.NetworkStream.Read(Byte[] buffer, Int32 offset, Int32 size) at System.Net.FixedSizeReader.ReadPacket(Byte[] buffer, Int32 offset, Int32 count) at System.Net.Security.SslState.StartReceiveBlob(Byte[] buffer, AsyncProtocolRequest asyncRequest) at System.Net.Security.SslState.CheckCompletionBeforeNextReceive(ProtocolToken message, AsyncProtocolRequest asyncRequest) at System.Net.Security.SslState.StartSendBlob(Byte[] incoming, Int32 count, AsyncProtocolRequest asyncRequest) at System.Net.Security.SslState.ForceAuthentication(Boolean receiveFirst, Byte[] buffer, AsyncProtocolRequest asyncRequest) at System.Net.Security.SslState.ProcessAuthentication(LazyAsyncResult lazyResult) at System.Net.TlsStream.CallProcessAuthentication(Object state) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Net.TlsStream.ProcessAuthentication(LazyAsyncResult result) at System.Net.TlsStream.Write(Byte[] buffer, Int32 offset, Int32 size) at System.Net.PooledStream.Write(Byte[] buffer, Int32 offset, Int32 size) at System.Net.ConnectStream.WriteHeaders(Boolean async) And/Or: Message : An existing connection was forcibly closed by the remote host Type : System.Net.Sockets.SocketException, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Source : System Help link : ErrorCode : 10054 SocketErrorCode : ConnectionReset NativeErrorCode : 10054 Data : System.Collections.ListDictionaryInternal TargetSite : Int32 Receive(Byte[], Int32, Int32, System.Net.Sockets.SocketFlags) Stack Trace : at System.Net.Sockets.Socket.Receive(Byte[] buffer, Int32 offset, Int32 size, SocketFlags socketFlags) at System.Net.Sockets.NetworkStream.Read(Byte[] buffer, Int32 offset, Int32 size) Update We're still working on it. Originally there was a route issue, which was resolved. We're still getting the inner exception with socket errors. We had MS support involved today, and they looked at some traces and network captures. The web service host does round-robin DNS, and they may be responding on a different IP address for the syn syn/ack from one ip, and the next from a different ip. This is not good. This is likely quite specific to our situation, but perhaps it applies to others as well. Microsoft Network Monitor and an application trace got us the information we needed.

    Read the article

  • Bogus InvalidOperationException (in a DataServiceRequestException)

    - by Andrei Rinea
    I am having a hard time with ADO.NET Data Services (formerly code-named Astoria) as it gives me a bogus exception when I try to insert a new entity from the silverlight client and trying in a clean project (the same code) doesn't. In both cases, however, data is correctly inserted into the database. Using Fiddler (an HTTP debugger I could see that there is no problem in the HTTP communication as I will show later in this question. The code : var ctx = new MyProject123Entities(new Uri("http://andreiri/MyProject.Data/Data.svc")); var i = new Zone() { Data = DateTime.Now, IdElement = 1 }; ctx.AddToZone(i); i.StareZone = new StareZone() { IdStareZone = 1 }; ctx.AttachTo("StareZone", i.StareZone); ctx.SetLink(i, "StareZone", i.StareZone); i.TipZone = new TipZone() { IdTipZone = 1 }; ctx.AttachTo("TipZone", i.TipZone); ctx.SetLink(i, "TipZone", i.TipZone); i.User = new User() { IdUser = 2 }; ctx.AttachTo("User", i.User); ctx.SetLink(i, "User", i.User); ctx.BeginSaveChanges(r =] ctx.EndSaveChanges(r), null); when run the last line (ctx.EndSaveChanges(r)) will throw the following exception : System.Data.Services.Client.DataServiceRequestException was unhandled by user code Message="An error occurred while processing this request." StackTrace: at System.Data.Services.Client.DataServiceContext.SaveAsyncResult.HandleBatchResponse() at System.Data.Services.Client.DataServiceContext.SaveAsyncResult.EndRequest() at System.Data.Services.Client.DataServiceContext.EndSaveChanges(IAsyncResult asyncResult) at MyProject.MainPage.[]c__DisplayClassd6.[]c__DisplayClassd8.[dashboard_PostZoneCurent]b__d5(IAsyncResult r) at System.Data.Services.Client.BaseAsyncResult.HandleCompleted() at System.Data.Services.Client.DataServiceContext.SaveAsyncResult.HandleCompleted(PerRequest pereq) at System.Data.Services.Client.DataServiceContext.SaveAsyncResult.AsyncEndRead(IAsyncResult asyncResult) at System.IO.Stream.BeginRead(Byte[] buffer, Int32 offset, Int32 count, AsyncCallback callback, Object state) at System.Data.Services.Client.DataServiceContext.SaveAsyncResult.AsyncEndGetResponse(IAsyncResult asyncResult) InnerException: System.InvalidOperationException Message="The context is already tracking a different entity with the same resource Uri." StackTrace: at System.Data.Services.Client.DataServiceContext.AttachTo(Uri identity, Uri editLink, String etag, Object entity, Boolean fail) at System.Data.Services.Client.MaterializeAtom.MoveNext() at System.Data.Services.Client.DataServiceContext.HandleResponsePost(ResourceBox entry, MaterializeAtom materializer, Uri editLink, String etag) at System.Data.Services.Client.DataServiceContext.SaveAsyncResult.[HandleBatchResponse]d__1d.MoveNext() InnerException: (there is no further information regarding the exception although the ADo.NET Data Service is configured to return detailed informations) However the row is inserted correctly and completely in the database. Using fiddler I can see that the request : <?xml version="1.0" encoding="utf-8" standalone="yes"?> <entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <category scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" term="MyProject123Model.Zone" /> <title /> <updated>2009-09-11T13:36:46.917157Z</updated> <author> <name /> </author> <id /> <link href="http://andreiri/MyProject.Data/Data.svc/StareZone(1)" rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/StareZone" type="application/atom+xml;type=entry" /> <link href="http://andreiri/MyProject.Data/Data.svc/TipZone(4)" rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/TipZone" type="application/atom+xml;type=entry" /> <link href="http://andreiri/MyProject.Data/Data.svc/User(4)" rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/User" type="application/atom+xml;type=entry" /> <content type="application/xml"> <m:properties> <d:Data m:type="Edm.DateTime">2009-09-11T16:36:40.588951+03:00</d:Data> <d:Detalii>aslkdfjasldkfj</d:Detalii> <d:IdElement m:type="Edm.Int32">1</d:IdElement> <d:IdZone m:type="Edm.Int32">0</d:IdZone> <d:X_Post m:type="Edm.Decimal">587647.4705</d:X_Post> <d:X_Repost m:type="Edm.Decimal" m:null="true" /> <d:Y_Post m:type="Edm.Decimal">325783.077599999</d:Y_Post> <d:Y_Repost m:type="Edm.Decimal" m:null="true" /> </m:properties> </content> </entry> is well accepted and a successful response is returned : HTTP/1.1 201 Created Date: Fri, 11 Sep 2009 13:36:47 GMT Server: Microsoft-IIS/6.0 X-Powered-By: ASP.NET X-AspNet-Version: 2.0.50727 DataServiceVersion: 1.0; Location: http://andreiri/MyProject.Data/Data.svc/Zone(75) Cache-Control: no-cache Content-Type: application/atom+xml;charset=utf-8 Content-Length: 2213 <?xml version="1.0" encoding="utf-8" standalone="yes"?> <entry xml:base="http://andreiri/MyProject.Data/Data.svc/" xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <id>http://andreiri/MyProject.Data/Data.svc/Zone(75)</id> <title type="text"></title> <updated>2009-09-11T13:36:47Z</updated> <author> <name /> </author> <link rel="edit" title="Zone" href="Zone(75)" /> <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/CenterZone" type="application/atom+xml;type=feed" title="CenterZone" href="Zone(75)/CenterZone" /> <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/ZoneMobil" type="application/atom+xml;type=feed" title="ZoneMobil" href="Zone(75)/ZoneMobil" /> <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/StareZone" type="application/atom+xml;type=entry" title="StareZone" href="Zone(75)/StareZone" /> <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/TipZone" type="application/atom+xml;type=entry" title="TipZone" href="Zone(75)/TipZone" /> <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/User" type="application/atom+xml;type=entry" title="User" href="Zone(75)/User" /> <category term="MyProject123Model.Zone" scheme="http://schemas.microsoft.com ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:IdZone m:type="Edm.Int32">75</d:IdZone> <d:X_Post m:type="Edm.Decimal">587647.4705</d:X_Post> <d:Y_Post m:type="Edm.Decimal">325783.077599999</d:Y_Post> <d:X_Repost m:type="Edm.Decimal" m:null="true" /> <d:Y_Repost m:type="Edm.Decimal" m:null="true" /> <d:Data m:type="Edm.DateTime">2009-09-11T16:36:40.588951+03:00</d:Data> <d:Detalii>aslkdfjasldkfj</d:Detalii> <d:IdElement m:type="Edm.Int32">1</d:IdElement> </m:properties> </content> </entry> Why do I get an exception? And, using this in a clean project does not throw the exception..

    Read the article

  • System.Web.HttpException on asp:gridview pagination

    - by Carlos Muñoz
    I have the following <asp:gridview> with one one TemplateField. En each cell there is an image with a link and a text with a link. It has AllowPaging=True This is the gridview: <asp:GridView ID="gvExperiencias" runat="server" AllowPaging="True" GridLines="None" ShowHeader="False" AutoGenerateColumns="False" Width="650px" PageSize="4" OnDataBinding="gvExperiencias_DataBinding" OnPageIndexChanging="gvExperiencias_PageIndexChanging"> <PagerSettings Mode="NumericFirstLast" FirstPageImageUrl="~/images/fle_pag_izq.gif" LastPageImageUrl="~/images/fle_pag_der.gif" NextPageImageUrl="~/images/fle_pag_der.gif" PreviousPageImageUrl="~/images/fle_pag_izq.gif" Position="TopAndBottom" PageButtonCount="4" FirstPageText="" LastPageText="" NextPageText="" PreviousPageText=""></PagerSettings> <Columns> <asp:TemplateField> <ItemTemplate> <div id="it_0" class="new_solo_exp_ini"> <asp:HyperLink ID="a_0" runat="server" NavigateUrl='<%# "experiencia.aspx?cod_cod=" + Eval("tttb_articulo_relacion_0.ARTCOD_ARTREL") + "&pag=" + pag + "&grp=" + Eval("idiocod_cod_idi_0") + "&cod="+cod %>' Visible='<%# Eval("NotEmpty_0") %>'> <asp:Image ID="Image_0" runat="server" Height="88px" ImageUrl='<%# Eval("arigls_nom_img_0","~/ArchivosUsuario/1/1/Articulos/{0}") %>' Width="88px" CssClass="new_image_exp_ini" /> </asp:HyperLink> <div class="new_vineta_tit_exp_ini"> <asp:HyperLink ID="HyperLink_0" runat="server" NavigateUrl='<%# "experiencia.aspx?cod_cod=" + Eval("tttb_articulo_relacion_0.ARTCOD_ARTREL") + "&pag=" + pag + "&grp=" + Eval("idiocod_cod_idi_0") + "&cod="+cod %>' Text='<%# Bind("arigls_tit_0") %>'> </asp:HyperLink> </div> </div> </ItemTemplate> </asp:TemplateField> </Columns> <PagerStyle CssClass="new_pag_bajo_exp_ini" /> <RowStyle CssClass="new_fila_exp_ini" /> </asp:GridView> When I click the last button or the ... it goes to the corresponding page but when i click on a previous page i get the following errror: An Error Has Occurred Because A Control With Id $ContentPlaceHolder1$gvExperiencias$ctl01$ctl01' Could Not Be Located Or A Different Control Is assigned to the same ID after postback. If the ID is not assigned, explicitly set the ID property of controls that raise postback events to avoid this error. So the pager does not work correctly. I think it's because of the Image's Id that has to be generated dinamically but i don't know how to do it. Can someone help me?

    Read the article

  • How to create Data Entry User Interfaces in asp.net?

    - by Wael Dalloul
    Suppose that you have a big Data Entry Web Application Like Microsoft CRM, what is the strategies and technologies that you follow to build a website like it? I don't want to use any Dynamic Web Page Generation software, because it have a lot of limitations.. Also I don't want to design every page and repeat everything what's the best approach? Any Ideas or Head lines on this issue? Thanks in Advance...

    Read the article

  • Programação paralela no .NET Framework 4 – Parte I

    - by anobre
    Introdução O avanço de tecnologia nos últimos anos forneceu, a baixo custo, acesso  a workstations com inúmeros CPUs. Facilmente encontramos hoje máquinas clientes com 2, 4 e até 8 núcleos, sem considerar os “super-servidores” com até 36 processadores :) Da wikipedia: A Unidade central de processamento (CPU, de acordo com as iniciais em inglês) ou o processador é a parte de um sistema de computador que executa as instruções de um programa de computador, e é o elemento primordial na execução das funções de um computador. Este termo tem sido usado na indústria de computadores pelo menos desde o início dos anos 1960[1]. A forma, desenho e implementação de CPUs têm mudado dramaticamente desde os primeiros exemplos, mas o seu funcionamento fundamental permanece o mesmo. Fazendo uma analogia, seria muito interessante delegarmos tarefas no mundo real que podem ser executadas independentemente a pessoas diferentes, atingindo desta forma uma  maior performance / produtividade na sua execução. A computação paralela se baseia na idéia que um problema maior pode ser dividido em problemas menores, sendo resolvidos de forma paralela. Este pensamento é utilizado há algum tempo por HPC (High-performance computing), e através das facilidades dos últimos anos, assim como a preocupação com consumo de energia, tornaram esta idéia mais atrativa e de fácil acesso a qualquer ambiente. No .NET Framework A plataforma .NET apresenta um runtime, bibliotecas e ferramentas para fornecer uma base de acesso fácil e rápido à programação paralela, sem trabalhar diretamente com threads e thread pool. Esta série de posts irá apresentar todos os recursos disponíveis, iniciando os estudos pela TPL, ou Task Parallel Library. Task Parallel Library A TPL é um conjunto de tipos localizados no namespace System.Threading e System.Threading.Tasks, a partir da versão 4 do framework. A partir da versão 4 do framework, o TPL é a maneira recomendada para escrever código paralelo e multithreaded. http://msdn.microsoft.com/en-us/library/dd460717(v=VS.100).aspx Task Parallelism O termo “task parallelism”, ou em uma tradução live paralelismo de tarefas, se refere a uma ou mais tarefas sendo executadas de forma simultanea. Considere uma tarefa como um método. A maneira mais fácil de executar tarefas de forma paralela é o código abaixo: Parallel.Invoke(() => TrabalhoInicial(), () => TrabalhoSeguinte()); O que acontece de verdade? Por trás nos panos, esta instrução instancia de forma implícita objetos do tipo Task, responsável por representar uma operação assíncrona, não exatamente paralela: public class Task : IAsyncResult, IDisposable É possível instanciar Tasks de forma explícita, sendo uma alternativa mais complexa ao Parallel.Invoke. var task = new Task(() => TrabalhoInicial()); task.Start(); Outra opção de instanciar uma Task e já executar sua tarefa é: var t = Task<int>.Factory.StartNew(() => TrabalhoInicialComValor());var t2 = Task<int>.Factory.StartNew(() => TrabalhoSeguinteComValor()); A diferença básica entre as duas abordagens é que a primeira tem início conhecido, mais utilizado quando não queremos que a instanciação e o agendamento da execução ocorra em uma só operação, como na segunda abordagem. Data Parallelism Ainda parte da TPL, o Data Parallelism se refere a cenários onde a mesma operação deva ser executada paralelamente em elementos de uma coleção ou array, através de instruções paralelas For e ForEach. A idéia básica é pegar cada elemento da coleção (ou array) e trabalhar com diversas threads concomitantemente. A classe-chave para este cenário é a System.Threading.Tasks.Parallel // Sequential version foreach (var item in sourceCollection) { Process(item); } // Parallel equivalent Parallel.ForEach(sourceCollection, item => Process(item)); Complicado né? :) Demonstração Acesse aqui um vídeo com exemplos (screencast). Cuidado! Apesar da imensa vontade de sair codificando, tome cuidado com alguns problemas básicos de paralelismo. Neste link é possível conhecer algumas situações. Abraços.

    Read the article

  • URL Routing in ASP.NET 4.0

    In the .NET Framework 3.5 SP1, Microsoft introduced ASP.NET Routing, which decouples the URL of a resource from the physical file on the web server. With ASP.NET Routing you, the developer, define routing rules map route patterns to a class that generates the content. For example, you might indicate that the URL Categories/CategoryName maps to a class that takes the CategoryName and generates HTML that lists that category's products in a grid. With such a mapping, users could view products for the Beverages category by visiting www.yoursite.com/Categories/Beverages. In .NET 3.5 SP1, ASP.NET Routing was primarily designed for ASP.NET MVC applications, although as discussed in Using ASP.NET Routing Without ASP.NET MVC it is possible to implement ASP.NET Routing in a Web Forms application, as well. However, implementing ASP.NET Routing in a Web Forms application involves a bit of seemingly excessive legwork. In a Web Forms scenario we typically want to map a routing pattern to an actual ASP.NET page. To do so we need to create a route handler class that is invoked when the routing URL is requested and, in a sense, dispatches the request to the appropriate ASP.NET page. For instance, to map a route to a physical file, such as mapping Categories/CategoryName to ShowProductsByCategory.aspx - requires three steps: (1) Define the mapping in Global.asax, which maps a route pattern to a route handler class; (2) Create the route handler class, which is responsible for parsing the URL, storing any route parameters into some location that is accessible to the target page (such as HttpContext.Items), and returning an instance of the target page or HTTP Handler that handles the requested route; and (3) writing code in the target page to grab the route parameters and use them in rendering its content. Given how much effort it took to just read the preceding sentence (let alone write it) you can imagine that implementing ASP.NET Routing in a Web Forms application is not necessarily the most straightforward task. The good news is that ASP.NET 4.0 has greatly simplified ASP.NET Routing for Web Form applications by adding a number of classes and helper methods that can be used to encapsulate the aforementioned complexity. With ASP.NET 4.0 it's easier to define the routing rules and there's no need to create a custom route handling class. This article details these enhancements. Read on to learn more! Read More >

    Read the article

  • URL Routing in ASP.NET 4.0

    In the .NET Framework 3.5 SP1, Microsoft introduced ASP.NET Routing, which decouples the URL of a resource from the physical file on the web server. With ASP.NET Routing you, the developer, define routing rules map route patterns to a class that generates the content. For example, you might indicate that the URL Categories/CategoryName maps to a class that takes the CategoryName and generates HTML that lists that category's products in a grid. With such a mapping, users could view products for the Beverages category by visiting www.yoursite.com/Categories/Beverages. In .NET 3.5 SP1, ASP.NET Routing was primarily designed for ASP.NET MVC applications, although as discussed in Using ASP.NET Routing Without ASP.NET MVC it is possible to implement ASP.NET Routing in a Web Forms application, as well. However, implementing ASP.NET Routing in a Web Forms application involves a bit of seemingly excessive legwork. In a Web Forms scenario we typically want to map a routing pattern to an actual ASP.NET page. To do so we need to create a route handler class that is invoked when the routing URL is requested and, in a sense, dispatches the request to the appropriate ASP.NET page. For instance, to map a route to a physical file, such as mapping Categories/CategoryName to ShowProductsByCategory.aspx - requires three steps: (1) Define the mapping in Global.asax, which maps a route pattern to a route handler class; (2) Create the route handler class, which is responsible for parsing the URL, storing any route parameters into some location that is accessible to the target page (such as HttpContext.Items), and returning an instance of the target page or HTTP Handler that handles the requested route; and (3) writing code in the target page to grab the route parameters and use them in rendering its content. Given how much effort it took to just read the preceding sentence (let alone write it) you can imagine that implementing ASP.NET Routing in a Web Forms application is not necessarily the most straightforward task. The good news is that ASP.NET 4.0 has greatly simplified ASP.NET Routing for Web Form applications by adding a number of classes and helper methods that can be used to encapsulate the aforementioned complexity. With ASP.NET 4.0 it's easier to define the routing rules and there's no need to create a custom route handling class. This article details these enhancements. Read on to learn more! Read More >

    Read the article

  • dynamic naming of UIButtons within a loop - objective-c, iphone sdk

    - by von steiner
    Dear Members, Scholars. As it may seem obvious I am not armed with Objective C knowledge. Levering on other more simple computer languages I am trying to set a dynamic name for a list of buttons generated by a simple loop (as the following code suggest). Simply putting it, I would like to have several UIButtons generated dynamically (within a loop) naming them dynamically, as well as other related functions. button1,button2,button3 etc.. After googling and searching Stackoverlow, I haven't arrived to a clear simple answer, thus my question. - (void)viewDidLoad { // This is not Dynamic, Obviously UIButton *button0 = [UIButton buttonWithType:UIButtonTypeRoundedRect]; [button0 setTitle:@"Button0" forState:UIControlStateNormal]; button0.tag = 0; button0.frame = CGRectMake(0.0, 0.0, 100.0, 100.0); button0.center = CGPointMake(160.0,50.0); [self.view addSubview:button0]; // I can duplication the lines manually in terms of copy them over and over, changing the name and other related functions, but it seems wrong. (I actually know its bad Karma) // The question at hand: // I would like to generate that within a loop // (The following code is wrong) float startPointY = 150.0; // for (int buttonsLoop = 1;buttonsLoop < 11;buttonsLoop++){ NSString *tempButtonName = [NSString stringWithFormat:@"button%i",buttonsLoop]; UIButton tempButtonName = [UIButton buttonWithType:UIButtonTypeRoundedRect]; [tempButtonName setTitle:tempButtonName forState:UIControlStateNormal]; tempButtonName.tag = tempButtonName; tempButtonName.frame = CGRectMake(0.0, 0.0, 100.0, 100.0); tempButtonName.center = CGPointMake(160.0,50.0+startPointY); [self.view addSubview:tempButtonName]; startPointY += 100; } }

    Read the article

< Previous Page | 160 161 162 163 164 165 166 167 168 169 170 171  | Next Page >