Search Results

Search found 45925 results on 1837 pages for 'process start'.

Page 164/1837 | < Previous Page | 160 161 162 163 164 165 166 167 168 169 170 171  | Next Page >

  • Taming Hopping Windows

    - by Roman Schindlauer
    At first glance, hopping windows seem fairly innocuous and obvious. They organize events into windows with a simple periodic definition: the windows have some duration d (e.g. a window covers 5 second time intervals), an interval or period p (e.g. a new window starts every 2 seconds) and an alignment a (e.g. one of those windows starts at 12:00 PM on March 15, 2012 UTC). var wins = xs     .HoppingWindow(TimeSpan.FromSeconds(5),                    TimeSpan.FromSeconds(2),                    new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc)); Logically, there is a window with start time a + np and end time a + np + d for every integer n. That’s a lot of windows. So why doesn’t the following query (always) blow up? var query = wins.Select(win => win.Count()); A few users have asked why StreamInsight doesn’t produce output for empty windows. Primarily it’s because there is an infinite number of empty windows! (Actually, StreamInsight uses DateTimeOffset.MaxValue to approximate “the end of time” and DateTimeOffset.MinValue to approximate “the beginning of time”, so the number of windows is lower in practice.) That was the good news. Now the bad news. Events also have duration. Consider the following simple input: var xs = this.Application                 .DefineEnumerable(() => new[]                     { EdgeEvent.CreateStart(DateTimeOffset.UtcNow, 0) })                 .ToStreamable(AdvanceTimeSettings.IncreasingStartTime); Because the event has no explicit end edge, it lasts until the end of time. So there are lots of non-empty windows if we apply a hopping window to that single event! For this reason, we need to be careful with hopping window queries in StreamInsight. Or we can switch to a custom implementation of hopping windows that doesn’t suffer from this shortcoming. The alternate window implementation produces output only when the input changes. We start by breaking up the timeline into non-overlapping intervals assigned to each window. In figure 1, six hopping windows (“Windows”) are assigned to six intervals (“Assignments”) in the timeline. Next we take input events (“Events”) and alter their lifetimes (“Altered Events”) so that they cover the intervals of the windows they intersect. In figure 1, you can see that the first event e1 intersects windows w1 and w2 so it is adjusted to cover assignments a1 and a2. Finally, we can use snapshot windows (“Snapshots”) to produce output for the hopping windows. Notice however that instead of having six windows generating output, we have only four. The first and second snapshots correspond to the first and second hopping windows. The remaining snapshots however cover two hopping windows each! While in this example we saved only two events, the savings can be more significant when the ratio of event duration to window duration is higher. Figure 1: Timeline The implementation of this strategy is straightforward. We need to set the start times of events to the start time of the interval assigned to the earliest window including the start time. Similarly, we need to modify the end times of events to the end time of the interval assigned to the latest window including the end time. The following snap-to-boundary function that rounds a timestamp value t down to the nearest value t' <= t such that t' is a + np for some integer n will be useful. For convenience, we will represent both DateTime and TimeSpan values using long ticks: static long SnapToBoundary(long t, long a, long p) {     return t - ((t - a) % p) - (t > a ? 0L : p); } How do we find the earliest window including the start time for an event? It’s the window following the last window that does not include the start time assuming that there are no gaps in the windows (i.e. duration < interval), and limitation of this solution. To find the end time of that antecedent window, we need to know the alignment of window ends: long e = a + (d % p); Using the window end alignment, we are finally ready to describe the start time selector: static long AdjustStartTime(long t, long e, long p) {     return SnapToBoundary(t, e, p) + p; } To find the latest window including the end time for an event, we look for the last window start time (non-inclusive): public static long AdjustEndTime(long t, long a, long d, long p) {     return SnapToBoundary(t - 1, a, p) + p + d; } Bringing it together, we can define the translation from events to ‘altered events’ as in Figure 1: public static IQStreamable<T> SnapToWindowIntervals<T>(IQStreamable<T> source, TimeSpan duration, TimeSpan interval, DateTime alignment) {     if (source == null) throw new ArgumentNullException("source");     // reason about DateTime and TimeSpan in ticks     long d = Math.Min(DateTime.MaxValue.Ticks, duration.Ticks);     long p = Math.Min(DateTime.MaxValue.Ticks, Math.Abs(interval.Ticks));     // set alignment to earliest possible window     var a = alignment.ToUniversalTime().Ticks % p;     // verify constraints of this solution     if (d <= 0L) { throw new ArgumentOutOfRangeException("duration"); }     if (p == 0L || p > d) { throw new ArgumentOutOfRangeException("interval"); }     // find the alignment of window ends     long e = a + (d % p);     return source.AlterEventLifetime(         evt => ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p)),         evt => ToDateTime(AdjustEndTime(evt.EndTime.ToUniversalTime().Ticks, a, d, p)) -             ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p))); } public static DateTime ToDateTime(long ticks) {     // just snap to min or max value rather than under/overflowing     return ticks < DateTime.MinValue.Ticks         ? new DateTime(DateTime.MinValue.Ticks, DateTimeKind.Utc)         : ticks > DateTime.MaxValue.Ticks         ? new DateTime(DateTime.MaxValue.Ticks, DateTimeKind.Utc)         : new DateTime(ticks, DateTimeKind.Utc); } Finally, we can describe our custom hopping window operator: public static IQWindowedStreamable<T> HoppingWindow2<T>(     IQStreamable<T> source,     TimeSpan duration,     TimeSpan interval,     DateTime alignment) {     if (source == null) { throw new ArgumentNullException("source"); }     return SnapToWindowIntervals(source, duration, interval, alignment).SnapshotWindow(); } By switching from HoppingWindow to HoppingWindow2 in the following example, the query returns quickly rather than gobbling resources and ultimately failing! public void Main() {     var start = new DateTimeOffset(new DateTime(2012, 6, 28), TimeSpan.Zero);     var duration = TimeSpan.FromSeconds(5);     var interval = TimeSpan.FromSeconds(2);     var alignment = new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc);     var events = this.Application.DefineEnumerable(() => new[]     {         EdgeEvent.CreateStart(start.AddSeconds(0), "e0"),         EdgeEvent.CreateStart(start.AddSeconds(1), "e1"),         EdgeEvent.CreateEnd(start.AddSeconds(1), start.AddSeconds(2), "e1"),         EdgeEvent.CreateStart(start.AddSeconds(3), "e2"),         EdgeEvent.CreateStart(start.AddSeconds(9), "e3"),         EdgeEvent.CreateEnd(start.AddSeconds(3), start.AddSeconds(10), "e2"),         EdgeEvent.CreateEnd(start.AddSeconds(9), start.AddSeconds(10), "e3"),     }).ToStreamable(AdvanceTimeSettings.IncreasingStartTime);     var adjustedEvents = SnapToWindowIntervals(events, duration, interval, alignment);     var query = from win in HoppingWindow2(events, duration, interval, alignment)                 select win.Count();     DisplayResults(adjustedEvents, "Adjusted Events");     DisplayResults(query, "Query"); } As you can see, instead of producing a massive number of windows for the open start edge e0, a single window is emitted from 12:00:15 AM until the end of time: Adjusted Events StartTime EndTime Payload 6/28/2012 12:00:01 AM 12/31/9999 11:59:59 PM e0 6/28/2012 12:00:03 AM 6/28/2012 12:00:07 AM e1 6/28/2012 12:00:05 AM 6/28/2012 12:00:15 AM e2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM e3 Query StartTime EndTime Payload 6/28/2012 12:00:01 AM 6/28/2012 12:00:03 AM 1 6/28/2012 12:00:03 AM 6/28/2012 12:00:05 AM 2 6/28/2012 12:00:05 AM 6/28/2012 12:00:07 AM 3 6/28/2012 12:00:07 AM 6/28/2012 12:00:11 AM 2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM 3 6/28/2012 12:00:15 AM 12/31/9999 11:59:59 PM 1 Regards, The StreamInsight Team

    Read the article

  • Taming Hopping Windows

    - by Roman Schindlauer
    At first glance, hopping windows seem fairly innocuous and obvious. They organize events into windows with a simple periodic definition: the windows have some duration d (e.g. a window covers 5 second time intervals), an interval or period p (e.g. a new window starts every 2 seconds) and an alignment a (e.g. one of those windows starts at 12:00 PM on March 15, 2012 UTC). var wins = xs     .HoppingWindow(TimeSpan.FromSeconds(5),                    TimeSpan.FromSeconds(2),                    new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc)); Logically, there is a window with start time a + np and end time a + np + d for every integer n. That’s a lot of windows. So why doesn’t the following query (always) blow up? var query = wins.Select(win => win.Count()); A few users have asked why StreamInsight doesn’t produce output for empty windows. Primarily it’s because there is an infinite number of empty windows! (Actually, StreamInsight uses DateTimeOffset.MaxValue to approximate “the end of time” and DateTimeOffset.MinValue to approximate “the beginning of time”, so the number of windows is lower in practice.) That was the good news. Now the bad news. Events also have duration. Consider the following simple input: var xs = this.Application                 .DefineEnumerable(() => new[]                     { EdgeEvent.CreateStart(DateTimeOffset.UtcNow, 0) })                 .ToStreamable(AdvanceTimeSettings.IncreasingStartTime); Because the event has no explicit end edge, it lasts until the end of time. So there are lots of non-empty windows if we apply a hopping window to that single event! For this reason, we need to be careful with hopping window queries in StreamInsight. Or we can switch to a custom implementation of hopping windows that doesn’t suffer from this shortcoming. The alternate window implementation produces output only when the input changes. We start by breaking up the timeline into non-overlapping intervals assigned to each window. In figure 1, six hopping windows (“Windows”) are assigned to six intervals (“Assignments”) in the timeline. Next we take input events (“Events”) and alter their lifetimes (“Altered Events”) so that they cover the intervals of the windows they intersect. In figure 1, you can see that the first event e1 intersects windows w1 and w2 so it is adjusted to cover assignments a1 and a2. Finally, we can use snapshot windows (“Snapshots”) to produce output for the hopping windows. Notice however that instead of having six windows generating output, we have only four. The first and second snapshots correspond to the first and second hopping windows. The remaining snapshots however cover two hopping windows each! While in this example we saved only two events, the savings can be more significant when the ratio of event duration to window duration is higher. Figure 1: Timeline The implementation of this strategy is straightforward. We need to set the start times of events to the start time of the interval assigned to the earliest window including the start time. Similarly, we need to modify the end times of events to the end time of the interval assigned to the latest window including the end time. The following snap-to-boundary function that rounds a timestamp value t down to the nearest value t' <= t such that t' is a + np for some integer n will be useful. For convenience, we will represent both DateTime and TimeSpan values using long ticks: static long SnapToBoundary(long t, long a, long p) {     return t - ((t - a) % p) - (t > a ? 0L : p); } How do we find the earliest window including the start time for an event? It’s the window following the last window that does not include the start time assuming that there are no gaps in the windows (i.e. duration < interval), and limitation of this solution. To find the end time of that antecedent window, we need to know the alignment of window ends: long e = a + (d % p); Using the window end alignment, we are finally ready to describe the start time selector: static long AdjustStartTime(long t, long e, long p) {     return SnapToBoundary(t, e, p) + p; } To find the latest window including the end time for an event, we look for the last window start time (non-inclusive): public static long AdjustEndTime(long t, long a, long d, long p) {     return SnapToBoundary(t - 1, a, p) + p + d; } Bringing it together, we can define the translation from events to ‘altered events’ as in Figure 1: public static IQStreamable<T> SnapToWindowIntervals<T>(IQStreamable<T> source, TimeSpan duration, TimeSpan interval, DateTime alignment) {     if (source == null) throw new ArgumentNullException("source");     // reason about DateTime and TimeSpan in ticks     long d = Math.Min(DateTime.MaxValue.Ticks, duration.Ticks);     long p = Math.Min(DateTime.MaxValue.Ticks, Math.Abs(interval.Ticks));     // set alignment to earliest possible window     var a = alignment.ToUniversalTime().Ticks % p;     // verify constraints of this solution     if (d <= 0L) { throw new ArgumentOutOfRangeException("duration"); }     if (p == 0L || p > d) { throw new ArgumentOutOfRangeException("interval"); }     // find the alignment of window ends     long e = a + (d % p);     return source.AlterEventLifetime(         evt => ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p)),         evt => ToDateTime(AdjustEndTime(evt.EndTime.ToUniversalTime().Ticks, a, d, p)) -             ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p))); } public static DateTime ToDateTime(long ticks) {     // just snap to min or max value rather than under/overflowing     return ticks < DateTime.MinValue.Ticks         ? new DateTime(DateTime.MinValue.Ticks, DateTimeKind.Utc)         : ticks > DateTime.MaxValue.Ticks         ? new DateTime(DateTime.MaxValue.Ticks, DateTimeKind.Utc)         : new DateTime(ticks, DateTimeKind.Utc); } Finally, we can describe our custom hopping window operator: public static IQWindowedStreamable<T> HoppingWindow2<T>(     IQStreamable<T> source,     TimeSpan duration,     TimeSpan interval,     DateTime alignment) {     if (source == null) { throw new ArgumentNullException("source"); }     return SnapToWindowIntervals(source, duration, interval, alignment).SnapshotWindow(); } By switching from HoppingWindow to HoppingWindow2 in the following example, the query returns quickly rather than gobbling resources and ultimately failing! public void Main() {     var start = new DateTimeOffset(new DateTime(2012, 6, 28), TimeSpan.Zero);     var duration = TimeSpan.FromSeconds(5);     var interval = TimeSpan.FromSeconds(2);     var alignment = new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc);     var events = this.Application.DefineEnumerable(() => new[]     {         EdgeEvent.CreateStart(start.AddSeconds(0), "e0"),         EdgeEvent.CreateStart(start.AddSeconds(1), "e1"),         EdgeEvent.CreateEnd(start.AddSeconds(1), start.AddSeconds(2), "e1"),         EdgeEvent.CreateStart(start.AddSeconds(3), "e2"),         EdgeEvent.CreateStart(start.AddSeconds(9), "e3"),         EdgeEvent.CreateEnd(start.AddSeconds(3), start.AddSeconds(10), "e2"),         EdgeEvent.CreateEnd(start.AddSeconds(9), start.AddSeconds(10), "e3"),     }).ToStreamable(AdvanceTimeSettings.IncreasingStartTime);     var adjustedEvents = SnapToWindowIntervals(events, duration, interval, alignment);     var query = from win in HoppingWindow2(events, duration, interval, alignment)                 select win.Count();     DisplayResults(adjustedEvents, "Adjusted Events");     DisplayResults(query, "Query"); } As you can see, instead of producing a massive number of windows for the open start edge e0, a single window is emitted from 12:00:15 AM until the end of time: Adjusted Events StartTime EndTime Payload 6/28/2012 12:00:01 AM 12/31/9999 11:59:59 PM e0 6/28/2012 12:00:03 AM 6/28/2012 12:00:07 AM e1 6/28/2012 12:00:05 AM 6/28/2012 12:00:15 AM e2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM e3 Query StartTime EndTime Payload 6/28/2012 12:00:01 AM 6/28/2012 12:00:03 AM 1 6/28/2012 12:00:03 AM 6/28/2012 12:00:05 AM 2 6/28/2012 12:00:05 AM 6/28/2012 12:00:07 AM 3 6/28/2012 12:00:07 AM 6/28/2012 12:00:11 AM 2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM 3 6/28/2012 12:00:15 AM 12/31/9999 11:59:59 PM 1 Regards, The StreamInsight Team

    Read the article

  • ??11.2 RAC??OCR?Votedisk??ASM Diskgroup?????

    - by Liu Maclean(???)
    ????????Oracle Allstarts??????????ocr?votedisk?ASM diskgroup??11gR2 RAC cluster?????????,????«?11gR2 RAC???ASM DISK Path????»??????,??????CRS??????11.2??ASM???????, ????????????”crsctl start crs -excl -nocrs “; ?????????,??ASM????ocr?????votedisk?????,??11.2????ocr?votedisk???ASM?,?ASM???????ocr?votedisk,?????ocr?votedisk????????cluter??????;???????????CRS????,?????diskgroup??????????,?????????????????? ??:?????????????????ASM LUN DISK,???OCR?????,????????4??????????,???????$GI_HOME,?????????;????votedisk?? ????: ??dd????ocr?votedisk??diskgroup header,??diskgroup corruption: 1. ??votedisk? ocr?? [root@vrh1 ~]# crsctl query css votedisk ## STATE File Universal Id File Name Disk group -- ----- ----------------- --------- --------- 1. ONLINE a853d6204bbc4feabfd8c73d4c3b3001 (/dev/asm-diskh) [SYSTEMDG] 2. ONLINE a5b37704c3574f0fbf21d1d9f58c4a6b (/dev/asm-diskg) [SYSTEMDG] 3. ONLINE 36e5c51ff0294fc3bf2a042266650331 (/dev/asm-diski) [SYSTEMDG] 4. ONLINE af337d1512824fe4bf6ad45283517aaa (/dev/asm-diskj) [SYSTEMDG] 5. ONLINE 3c4a349e2e304ff6bf64b2b1c9d9cf5d (/dev/asm-diskk) [SYSTEMDG] Located 5 voting disk(s). su - grid [grid@vrh1 ~]$ ocrconfig -showbackup PROT-26: Oracle Cluster Registry backup locations were retrieved from a local copy vrh1 2012/08/09 01:59:56 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup00.ocr vrh1 2012/08/08 21:59:56 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup01.ocr vrh1 2012/08/08 17:59:55 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup02.ocr vrh1 2012/08/08 05:59:54 /g01/11.2.0/grid/cdata/vrh-cluster/day.ocr vrh1 2012/08/08 05:59:54 /g01/11.2.0/grid/cdata/vrh-cluster/week.ocr PROT-25: Manual backups for the Oracle Cluster Registry are not available 2. ??????????clusterware ,OHASD crsctl stop has -f 3. GetAsmDH.sh ==> GetAsmDH.sh?ASM disk header????? ????????,????????asm header [grid@vrh1 ~]$ ./GetAsmDH.sh ############################################ 1) Collecting Information About the Disks: ############################################ SQL*Plus: Release 11.2.0.3.0 Production on Thu Aug 9 03:28:13 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. SQL> Connected. SQL> SQL> SQL> SQL> SQL> SQL> SQL> 1 0 /dev/asm-diske 1 1 /dev/asm-diskd 2 0 /dev/asm-diskb 2 1 /dev/asm-diskc 2 2 /dev/asm-diskf 3 0 /dev/asm-diskh 3 1 /dev/asm-diskg 3 2 /dev/asm-diski 3 3 /dev/asm-diskj 3 4 /dev/asm-diskk SQL> SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Real Application Clusters and Automatic Storage Management options -rw-r--r-- 1 grid oinstall 1048 Aug 9 03:28 /tmp/HC/asmdisks.lst ############################################ 2) Generating asm_diskh.sh script. ############################################ -rwx------ 1 grid oinstall 666 Aug 9 03:28 /tmp/HC/asm_diskh.sh ############################################ 3) Executing asm_diskh.sh script to generate dd dumps. ############################################ -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_1_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_1_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_2.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_2.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_3.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_4.dd ############################################ 4) Compressing dd dumps in the next format: (asm_dd_header_all_.tar) ############################################ /tmp/HC/dsk_1_0.dd /tmp/HC/dsk_1_1.dd /tmp/HC/dsk_2_0.dd /tmp/HC/dsk_2_1.dd /tmp/HC/dsk_2_2.dd /tmp/HC/dsk_3_0.dd /tmp/HC/dsk_3_1.dd /tmp/HC/dsk_3_2.dd /tmp/HC/dsk_3_3.dd /tmp/HC/dsk_3_4.dd ./GetAsmDH.sh: line 81: compress: command not found ls: /tmp/HC/*.Z: No such file or directory [grid@vrh1 ~]$ 4. ??dd ?? ??ocr?votedisk??diskgroup [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskh bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00423853 seconds, 247 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskg bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.0045179 seconds, 232 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diski bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00469976 seconds, 223 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskj bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00344262 seconds, 305 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskk bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.0053518 seconds, 196 MB/s 5. ????????????HAS [root@vrh1 ~]# crsctl start has CRS-4123: Oracle High Availability Services has been started. ????ocr?votedisk??diskgroup??,??CSS???????,???????: alertvrh1.log [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:35:41.207 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:35:56.240 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:11.284 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:26.305 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:41.328 ocssd.log 2012-08-09 03:40:26.662: [ CSSD][1078700352]clssnmReadDiscoveryProfile: voting file discovery string(/dev/asm*) 2012-08-09 03:40:26.662: [ CSSD][1078700352]clssnmvDDiscThread: using discovery string /dev/asm* for initial discovery 2012-08-09 03:40:26.662: [ SKGFD][1078700352]Discovery with str:/dev/asm*: 2012-08-09 03:40:26.662: [ SKGFD][1078700352]UFS discovery with :/dev/asm*: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskf: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskb: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskj: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskh: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskc: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskd: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diske: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskg: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diski: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskk: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]OSS discovery with :/dev/asm*: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Handle 0xdf22a0 from lib :UFS:: for disk :/dev/asm-diskf: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Handle 0xf412a0 from lib :UFS:: for disk :/dev/asm-diskb: 2012-08-09 03:40:26.666: [ SKGFD][1078700352]Handle 0xf3a680 from lib :UFS:: for disk :/dev/asm-diskj: 2012-08-09 03:40:26.666: [ SKGFD][1078700352]Handle 0xf93da0 from lib :UFS:: for disk :/dev/asm-diskh: 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmvDiskVerify: Successful discovery of 0 disks 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmCompleteInitVFDiscovery: Completing initial voting file discovery 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmvFindInitialConfigs: No voting files found 2012-08-09 03:40:26.667: [ CSSD][1078700352](:CSSNM00070:)clssnmCompleteInitVFDiscovery: Voting file not found. Retrying discovery in 15 seconds ?????ocr?votedisk??diskgroup?????: 1. ?-excl -nocrs ????cluster,??????ASM?? ????CRS [root@vrh1 vrh1]# crsctl start crs -excl -nocrs CRS-4123: Oracle High Availability Services has been started. CRS-2672: Attempting to start 'ora.mdnsd' on 'vrh1' CRS-2676: Start of 'ora.mdnsd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.gpnpd' on 'vrh1' CRS-2676: Start of 'ora.gpnpd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cssdmonitor' on 'vrh1' CRS-2672: Attempting to start 'ora.gipcd' on 'vrh1' CRS-2676: Start of 'ora.cssdmonitor' on 'vrh1' succeeded CRS-2676: Start of 'ora.gipcd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cssd' on 'vrh1' CRS-2672: Attempting to start 'ora.diskmon' on 'vrh1' CRS-2676: Start of 'ora.diskmon' on 'vrh1' succeeded CRS-2676: Start of 'ora.cssd' on 'vrh1' succeeded CRS-2679: Attempting to clean 'ora.cluster_interconnect.haip' on 'vrh1' CRS-2672: Attempting to start 'ora.ctssd' on 'vrh1' CRS-2681: Clean of 'ora.cluster_interconnect.haip' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cluster_interconnect.haip' on 'vrh1' CRS-2676: Start of 'ora.ctssd' on 'vrh1' succeeded CRS-2676: Start of 'ora.cluster_interconnect.haip' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.asm' on 'vrh1' CRS-2676: Start of 'ora.asm' on 'vrh1' succeeded 2.???ocr?votedisk??diskgroup,??compatible.asm???11.2: [root@vrh1 vrh1]# su - grid [grid@vrh1 ~]$ sqlplus / as sysasm SQL*Plus: Release 11.2.0.3.0 Production on Thu Aug 9 04:16:58 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Real Application Clusters and Automatic Storage Management options SQL> create diskgroup systemdg high redundancy disk '/dev/asm-diskh','/dev/asm-diskg','/dev/asm-diski','/dev/asm-diskj','/dev/asm-diskk' ATTRIBUTE 'compatible.rdbms' = '11.2', 'compatible.asm' = '11.2'; 3.?ocr backup???ocr??ocrcheck??: [root@vrh1 ~]# ocrconfig -restore /g01/11.2.0/grid/cdata/vrh-cluster/backup00.ocr [root@vrh1 ~]# ocrcheck Status of Oracle Cluster Registry is as follows : Version : 3 Total space (kbytes) : 262120 Used space (kbytes) : 3180 Available space (kbytes) : 258940 ID : 1238458014 Device/File Name : +systemdg Device/File integrity check succeeded Device/File not configured Device/File not configured Device/File not configured Device/File not configured Cluster registry integrity check succeeded Logical corruption check succeeded 4. ????votedisk ,??????????: [grid@vrh1 ~]$ crsctl replace votedisk +SYSTEMDG CRS-4602: Failed 27 to add voting file 2e4e0fe285924f86bf5473d00dcc0388. CRS-4602: Failed 27 to add voting file 4fa54bb0cc5c4fafbf1a9be5479bf389. CRS-4602: Failed 27 to add voting file a109ead9ea4e4f28bfe233188623616a. CRS-4602: Failed 27 to add voting file 042c9fbd71b54f5abfcd3ab3408f3cf3. CRS-4602: Failed 27 to add voting file 7b5a8cd24f954fafbf835ad78615763f. Failed to replace voting disk group with +SYSTEMDG. CRS-4000: Command Replace failed, or completed with errors. ????????ASM???,???ASM: SQL> alter system set asm_diskstring='/dev/asm*'; System altered. SQL> create spfile from memory; File created. SQL> startup force mount; ORA-32004: obsolete or deprecated parameter(s) specified for ASM instance ASM instance started Total System Global Area 283930624 bytes Fixed Size 2227664 bytes Variable Size 256537136 bytes ASM Cache 25165824 bytes ASM diskgroups mounted SQL> show parameter spfile NAME TYPE VALUE ------------------------------------ ----------- ------------------------------ spfile string /g01/11.2.0/grid/dbs/spfile+AS M1.ora [grid@vrh1 trace]$ crsctl replace votedisk +SYSTEMDG CRS-4256: Updating the profile Successful addition of voting disk 85edc0e82d274f78bfc58cdc73b8c68a. Successful addition of voting disk 201ffffc8ba44faabfe2efec2aa75840. Successful addition of voting disk 6f2a25c589964faabf6980f7c5f621ce. Successful addition of voting disk 93eb315648454f25bf3717df1a2c73d5. Successful addition of voting disk 3737240678964f88bfbfbd31d8b3829f. Successfully replaced voting disk group with +SYSTEMDG. CRS-4256: Updating the profile CRS-4266: Voting file(s) successfully replaced 5. ??has??,??cluster????: [root@vrh1 ~]# crsctl check crs CRS-4638: Oracle High Availability Services is online CRS-4537: Cluster Ready Services is online CRS-4529: Cluster Synchronization Services is online CRS-4533: Event Manager is online [root@vrh1 ~]# crsctl query css votedisk ## STATE File Universal Id File Name Disk group -- ----- ----------------- --------- --------- 1. ONLINE 85edc0e82d274f78bfc58cdc73b8c68a (/dev/asm-diskh) [SYSTEMDG] 2. ONLINE 201ffffc8ba44faabfe2efec2aa75840 (/dev/asm-diskg) [SYSTEMDG] 3. ONLINE 6f2a25c589964faabf6980f7c5f621ce (/dev/asm-diski) [SYSTEMDG] 4. ONLINE 93eb315648454f25bf3717df1a2c73d5 (/dev/asm-diskj) [SYSTEMDG] 5. ONLINE 3737240678964f88bfbfbd31d8b3829f (/dev/asm-diskk) [SYSTEMDG] Located 5 voting disk(s). [root@vrh1 ~]# crsctl stat res -t -------------------------------------------------------------------------------- NAME TARGET STATE SERVER STATE_DETAILS -------------------------------------------------------------------------------- Local Resources -------------------------------------------------------------------------------- ora.BACKUPDG.dg ONLINE ONLINE vrh1 ora.DATA.dg ONLINE ONLINE vrh1 ora.LISTENER.lsnr ONLINE ONLINE vrh1 ora.LSN_MACLEAN.lsnr ONLINE ONLINE vrh1 ora.SYSTEMDG.dg ONLINE ONLINE vrh1 ora.asm ONLINE ONLINE vrh1 Started ora.gsd OFFLINE OFFLINE vrh1 ora.net1.network ONLINE ONLINE vrh1 ora.ons ONLINE ONLINE vrh1 -------------------------------------------------------------------------------- Cluster Resources -------------------------------------------------------------------------------- ora.LISTENER_SCAN1.lsnr http://www.askmaclean.com 1 ONLINE ONLINE vrh1 ora.cvu 1 OFFLINE OFFLINE ora.oc4j 1 OFFLINE OFFLINE ora.scan1.vip 1 ONLINE ONLINE vrh1 ora.vprod.db 1 ONLINE OFFLINE 2 ONLINE OFFLINE ora.vrh1.vip 1 ONLINE ONLINE vrh1 ora.vrh2.vip 1 ONLINE INTERMEDIATE vrh1 FAILED OVER

    Read the article

  • ??11.2 RAC??OCR?Votedisk??ASM Diskgroup?????

    - by Liu Maclean(???)
    ????????Oracle Allstarts??????????ocr?votedisk?ASM diskgroup??11gR2 RAC cluster?????????,????«?11gR2 RAC???ASM DISK Path????»??????,??????CRS??????11.2??ASM???????, ????????????”crsctl start crs -excl -nocrs “; ?????????,??ASM????ocr?????votedisk?????,??11.2????ocr?votedisk???ASM?,?ASM???????ocr?votedisk,?????ocr?votedisk????????cluter??????;???????????CRS????,?????diskgroup??????????,?????????????????? ??:?????????????????ASM LUN DISK,???OCR?????,????????4??????????,???????$GI_HOME,?????????;????votedisk?? ????: ??dd????ocr?votedisk??diskgroup header,??diskgroup corruption: 1. ??votedisk? ocr?? [root@vrh1 ~]# crsctl query css votedisk ## STATE File Universal Id File Name Disk group -- ----- ----------------- --------- --------- 1. ONLINE a853d6204bbc4feabfd8c73d4c3b3001 (/dev/asm-diskh) [SYSTEMDG] 2. ONLINE a5b37704c3574f0fbf21d1d9f58c4a6b (/dev/asm-diskg) [SYSTEMDG] 3. ONLINE 36e5c51ff0294fc3bf2a042266650331 (/dev/asm-diski) [SYSTEMDG] 4. ONLINE af337d1512824fe4bf6ad45283517aaa (/dev/asm-diskj) [SYSTEMDG] 5. ONLINE 3c4a349e2e304ff6bf64b2b1c9d9cf5d (/dev/asm-diskk) [SYSTEMDG] Located 5 voting disk(s). su - grid [grid@vrh1 ~]$ ocrconfig -showbackup PROT-26: Oracle Cluster Registry backup locations were retrieved from a local copy vrh1 2012/08/09 01:59:56 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup00.ocr vrh1 2012/08/08 21:59:56 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup01.ocr vrh1 2012/08/08 17:59:55 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup02.ocr vrh1 2012/08/08 05:59:54 /g01/11.2.0/grid/cdata/vrh-cluster/day.ocr vrh1 2012/08/08 05:59:54 /g01/11.2.0/grid/cdata/vrh-cluster/week.ocr PROT-25: Manual backups for the Oracle Cluster Registry are not available 2. ??????????clusterware ,OHASD crsctl stop has -f 3. GetAsmDH.sh ==> GetAsmDH.sh?ASM disk header????? ????????,????????asm header [grid@vrh1 ~]$ ./GetAsmDH.sh ############################################ 1) Collecting Information About the Disks: ############################################ SQL*Plus: Release 11.2.0.3.0 Production on Thu Aug 9 03:28:13 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. SQL> Connected. SQL> SQL> SQL> SQL> SQL> SQL> SQL> 1 0 /dev/asm-diske 1 1 /dev/asm-diskd 2 0 /dev/asm-diskb 2 1 /dev/asm-diskc 2 2 /dev/asm-diskf 3 0 /dev/asm-diskh 3 1 /dev/asm-diskg 3 2 /dev/asm-diski 3 3 /dev/asm-diskj 3 4 /dev/asm-diskk SQL> SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Real Application Clusters and Automatic Storage Management options -rw-r--r-- 1 grid oinstall 1048 Aug 9 03:28 /tmp/HC/asmdisks.lst ############################################ 2) Generating asm_diskh.sh script. ############################################ -rwx------ 1 grid oinstall 666 Aug 9 03:28 /tmp/HC/asm_diskh.sh ############################################ 3) Executing asm_diskh.sh script to generate dd dumps. ############################################ -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_1_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_1_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_2.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_2.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_3.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_4.dd ############################################ 4) Compressing dd dumps in the next format: (asm_dd_header_all_.tar) ############################################ /tmp/HC/dsk_1_0.dd /tmp/HC/dsk_1_1.dd /tmp/HC/dsk_2_0.dd /tmp/HC/dsk_2_1.dd /tmp/HC/dsk_2_2.dd /tmp/HC/dsk_3_0.dd /tmp/HC/dsk_3_1.dd /tmp/HC/dsk_3_2.dd /tmp/HC/dsk_3_3.dd /tmp/HC/dsk_3_4.dd ./GetAsmDH.sh: line 81: compress: command not found ls: /tmp/HC/*.Z: No such file or directory [grid@vrh1 ~]$ 4. ??dd ?? ??ocr?votedisk??diskgroup [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskh bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00423853 seconds, 247 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskg bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.0045179 seconds, 232 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diski bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00469976 seconds, 223 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskj bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00344262 seconds, 305 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskk bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.0053518 seconds, 196 MB/s 5. ????????????HAS [root@vrh1 ~]# crsctl start has CRS-4123: Oracle High Availability Services has been started. ????ocr?votedisk??diskgroup??,??CSS???????,???????: alertvrh1.log [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:35:41.207 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:35:56.240 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:11.284 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:26.305 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:41.328 ocssd.log 2012-08-09 03:40:26.662: [ CSSD][1078700352]clssnmReadDiscoveryProfile: voting file discovery string(/dev/asm*) 2012-08-09 03:40:26.662: [ CSSD][1078700352]clssnmvDDiscThread: using discovery string /dev/asm* for initial discovery 2012-08-09 03:40:26.662: [ SKGFD][1078700352]Discovery with str:/dev/asm*: 2012-08-09 03:40:26.662: [ SKGFD][1078700352]UFS discovery with :/dev/asm*: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskf: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskb: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskj: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskh: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskc: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskd: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diske: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskg: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diski: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskk: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]OSS discovery with :/dev/asm*: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Handle 0xdf22a0 from lib :UFS:: for disk :/dev/asm-diskf: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Handle 0xf412a0 from lib :UFS:: for disk :/dev/asm-diskb: 2012-08-09 03:40:26.666: [ SKGFD][1078700352]Handle 0xf3a680 from lib :UFS:: for disk :/dev/asm-diskj: 2012-08-09 03:40:26.666: [ SKGFD][1078700352]Handle 0xf93da0 from lib :UFS:: for disk :/dev/asm-diskh: 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmvDiskVerify: Successful discovery of 0 disks 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmCompleteInitVFDiscovery: Completing initial voting file discovery 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmvFindInitialConfigs: No voting files found 2012-08-09 03:40:26.667: [ CSSD][1078700352](:CSSNM00070:)clssnmCompleteInitVFDiscovery: Voting file not found. Retrying discovery in 15 seconds ?????ocr?votedisk??diskgroup?????: 1. ?-excl -nocrs ????cluster,??????ASM?? ????CRS [root@vrh1 vrh1]# crsctl start crs -excl -nocrs CRS-4123: Oracle High Availability Services has been started. CRS-2672: Attempting to start 'ora.mdnsd' on 'vrh1' CRS-2676: Start of 'ora.mdnsd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.gpnpd' on 'vrh1' CRS-2676: Start of 'ora.gpnpd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cssdmonitor' on 'vrh1' CRS-2672: Attempting to start 'ora.gipcd' on 'vrh1' CRS-2676: Start of 'ora.cssdmonitor' on 'vrh1' succeeded CRS-2676: Start of 'ora.gipcd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cssd' on 'vrh1' CRS-2672: Attempting to start 'ora.diskmon' on 'vrh1' CRS-2676: Start of 'ora.diskmon' on 'vrh1' succeeded CRS-2676: Start of 'ora.cssd' on 'vrh1' succeeded CRS-2679: Attempting to clean 'ora.cluster_interconnect.haip' on 'vrh1' CRS-2672: Attempting to start 'ora.ctssd' on 'vrh1' CRS-2681: Clean of 'ora.cluster_interconnect.haip' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cluster_interconnect.haip' on 'vrh1' CRS-2676: Start of 'ora.ctssd' on 'vrh1' succeeded CRS-2676: Start of 'ora.cluster_interconnect.haip' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.asm' on 'vrh1' CRS-2676: Start of 'ora.asm' on 'vrh1' succeeded 2.???ocr?votedisk??diskgroup,??compatible.asm???11.2: [root@vrh1 vrh1]# su - grid [grid@vrh1 ~]$ sqlplus / as sysasm SQL*Plus: Release 11.2.0.3.0 Production on Thu Aug 9 04:16:58 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Real Application Clusters and Automatic Storage Management options SQL> create diskgroup systemdg high redundancy disk '/dev/asm-diskh','/dev/asm-diskg','/dev/asm-diski','/dev/asm-diskj','/dev/asm-diskk' ATTRIBUTE 'compatible.rdbms' = '11.2', 'compatible.asm' = '11.2'; 3.?ocr backup???ocr??ocrcheck??: [root@vrh1 ~]# ocrconfig -restore /g01/11.2.0/grid/cdata/vrh-cluster/backup00.ocr [root@vrh1 ~]# ocrcheck Status of Oracle Cluster Registry is as follows : Version : 3 Total space (kbytes) : 262120 Used space (kbytes) : 3180 Available space (kbytes) : 258940 ID : 1238458014 Device/File Name : +systemdg Device/File integrity check succeeded Device/File not configured Device/File not configured Device/File not configured Device/File not configured Cluster registry integrity check succeeded Logical corruption check succeeded 4. ????votedisk ,??????????: [grid@vrh1 ~]$ crsctl replace votedisk +SYSTEMDG CRS-4602: Failed 27 to add voting file 2e4e0fe285924f86bf5473d00dcc0388. CRS-4602: Failed 27 to add voting file 4fa54bb0cc5c4fafbf1a9be5479bf389. CRS-4602: Failed 27 to add voting file a109ead9ea4e4f28bfe233188623616a. CRS-4602: Failed 27 to add voting file 042c9fbd71b54f5abfcd3ab3408f3cf3. CRS-4602: Failed 27 to add voting file 7b5a8cd24f954fafbf835ad78615763f. Failed to replace voting disk group with +SYSTEMDG. CRS-4000: Command Replace failed, or completed with errors. ????????ASM???,???ASM: SQL> alter system set asm_diskstring='/dev/asm*'; System altered. SQL> create spfile from memory; File created. SQL> startup force mount; ORA-32004: obsolete or deprecated parameter(s) specified for ASM instance ASM instance started Total System Global Area 283930624 bytes Fixed Size 2227664 bytes Variable Size 256537136 bytes ASM Cache 25165824 bytes ASM diskgroups mounted SQL> show parameter spfile NAME TYPE VALUE ------------------------------------ ----------- ------------------------------ spfile string /g01/11.2.0/grid/dbs/spfile+AS M1.ora [grid@vrh1 trace]$ crsctl replace votedisk +SYSTEMDG CRS-4256: Updating the profile Successful addition of voting disk 85edc0e82d274f78bfc58cdc73b8c68a. Successful addition of voting disk 201ffffc8ba44faabfe2efec2aa75840. Successful addition of voting disk 6f2a25c589964faabf6980f7c5f621ce. Successful addition of voting disk 93eb315648454f25bf3717df1a2c73d5. Successful addition of voting disk 3737240678964f88bfbfbd31d8b3829f. Successfully replaced voting disk group with +SYSTEMDG. CRS-4256: Updating the profile CRS-4266: Voting file(s) successfully replaced 5. ??has??,??cluster????: [root@vrh1 ~]# crsctl check crs CRS-4638: Oracle High Availability Services is online CRS-4537: Cluster Ready Services is online CRS-4529: Cluster Synchronization Services is online CRS-4533: Event Manager is online [root@vrh1 ~]# crsctl query css votedisk ## STATE File Universal Id File Name Disk group -- ----- ----------------- --------- --------- 1. ONLINE 85edc0e82d274f78bfc58cdc73b8c68a (/dev/asm-diskh) [SYSTEMDG] 2. ONLINE 201ffffc8ba44faabfe2efec2aa75840 (/dev/asm-diskg) [SYSTEMDG] 3. ONLINE 6f2a25c589964faabf6980f7c5f621ce (/dev/asm-diski) [SYSTEMDG] 4. ONLINE 93eb315648454f25bf3717df1a2c73d5 (/dev/asm-diskj) [SYSTEMDG] 5. ONLINE 3737240678964f88bfbfbd31d8b3829f (/dev/asm-diskk) [SYSTEMDG] Located 5 voting disk(s). [root@vrh1 ~]# crsctl stat res -t -------------------------------------------------------------------------------- NAME TARGET STATE SERVER STATE_DETAILS -------------------------------------------------------------------------------- Local Resources -------------------------------------------------------------------------------- ora.BACKUPDG.dg ONLINE ONLINE vrh1 ora.DATA.dg ONLINE ONLINE vrh1 ora.LISTENER.lsnr ONLINE ONLINE vrh1 ora.LSN_MACLEAN.lsnr ONLINE ONLINE vrh1 ora.SYSTEMDG.dg ONLINE ONLINE vrh1 ora.asm ONLINE ONLINE vrh1 Started ora.gsd OFFLINE OFFLINE vrh1 ora.net1.network ONLINE ONLINE vrh1 ora.ons ONLINE ONLINE vrh1 -------------------------------------------------------------------------------- Cluster Resources -------------------------------------------------------------------------------- ora.LISTENER_SCAN1.lsnr http://www.askmaclean.com 1 ONLINE ONLINE vrh1 ora.cvu 1 OFFLINE OFFLINE ora.oc4j 1 OFFLINE OFFLINE ora.scan1.vip 1 ONLINE ONLINE vrh1 ora.vprod.db 1 ONLINE OFFLINE 2 ONLINE OFFLINE ora.vrh1.vip 1 ONLINE ONLINE vrh1 ora.vrh2.vip 1 ONLINE INTERMEDIATE vrh1 FAILED OVER

    Read the article

  • System crashes/lockups + compiz/cairo/gnome-panel crashing due to cached ram, please help?

    - by Kristian Thomson
    Can someone help me to troubleshoot system crashes and lockups which result in compiz/cairo dock and gnome-panel crashing? I also get no window borders after the crash and a lot of kernel memory errors. Logs are telling me that apps were killed due to not enough memory, but the system is caching like 14GB of my ram so I'm a bit stuck on what/how to stop it. I'm running Ubuntu 12.10 on a 2011 Mac Mini with 16 GB ram. Here's some of the logs that look like they could be causing trouble. I woke up this morning to find chrome/skype/cairo dock and a few others had been killed and here is what the log said. Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9310.959890] Out of memory: Kill process 12247 (chromium-browse) score 101 or sacrifice child Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9310.959893] Killed process 12247 (chromium-browse) total-vm:238948kB, anon-rss:17064kB, file-rss:20008kB Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9310.972283] Out of memory: Kill process 10976 (dropbox) score 3 or sacrifice child Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9310.972288] Killed process 10976 (dropbox) total-vm:316392kB, anon-rss:115484kB, file-rss:16504kB Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9310.975890] Out of memory: Kill process 10887 (rhythmbox) score 3 or sacrifice child Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9310.975895] Killed process 11515 (tray_icon_worke) total-vm:63336kB, anon-rss:15960kB, file-rss:11436kB Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9311.281535] Out of memory: Kill process 10887 (rhythmbox) score 3 or sacrifice child Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9311.281539] Killed process 10887 (rhythmbox) total-vm:528980kB, anon-rss:92272kB, file-rss:36520kB Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9311.283110] Out of memory: Kill process 10889 (skype) score 3 or sacrifice child Nov 5 04:00:45 linkandzelda-Macmini kernel: [ 9311.283113] Killed process 10889 (skype) total-vm:415056kB, anon-rss:84880kB, file-rss:22160kB I went to look deeper into things and saw that the whole time I'm having these kernel errors with out of memory and something mentioning radeon. I have a Radeon HD 6600M graphics card using the open source driver, not the proprietary one. I was wondering if perhaps using the proprietary one would solve the problem. Also, while writing this in Chrome rhythmbox and chrome just got killed while typing this, due to out of memory errors or so it reports, though I have 7 GB of free RAM at the time with 7 GB cached as well. Here is a full copy of my logs that happened in kern.log simply from when I began typing this question. http://pastebin.com/cdxxDktG Thanks in advance, Kris

    Read the article

  • Different types of Session state management options available with ASP.NET

    - by Aamir Hasan
    ASP.NET provides In-Process and Out-of-Process state management.In-Process stores the session in memory on the web server.This requires the a "sticky-server" (or no load-balancing) so that the user is always reconnected to the same web server.Out-of-Process Session state management stores data in an external data source.The external data source may be either a SQL Server or a State Server service.Out-of-Process state management requires that all objects stored in session are serializable.Linkhttp://msdn.microsoft.com/en-us/library/ms178586%28VS.80%29.aspx

    Read the article

  • General monitoring for SQL Server Analysis Services using Performance Monitor

    - by Testas
    A recent customer engagement required a setup of a monitoring solution for SSAS, due to the time restrictions placed upon this, native Windows Performance Monitor (Perfmon) and SQL Server Profiler Monitoring Tools was used as using a third party tool would have meant the customer providing an additional monitoring server that was not available.I wanted to outline the performance monitoring counters that was used to monitor the system on which SSAS was running. Due to the slow query performance that was occurring during certain scenarios, perfmon was used to establish if any pressure was being placed on the Disk, CPU or Memory subsystem when concurrent connections access the same query, and Profiler to pinpoint how the query was being managed within SSAS, profiler I will leave for another blogThis guide is not designed to provide a definitive list of what should be used when monitoring SSAS, different situations may require the addition or removal of counters as presented by the situation. However I hope that it serves as a good basis for starting your monitoring of SSAS. I would also like to acknowledge Chris Webb’s awesome chapters from “Expert Cube Development” that also helped shape my monitoring strategy:http://cwebbbi.spaces.live.com/blog/cns!7B84B0F2C239489A!6657.entrySimulating ConnectionsTo simulate the additional connections to the SSAS server whilst monitoring, I used ascmd to simulate multiple connections to the typical and worse performing queries that were identified by the customer. A similar sript can be downloaded from codeplex at http://www.codeplex.com/SQLSrvAnalysisSrvcs.     File name: ASCMD_StressTestingScripts.zip. Performance MonitorWithin performance monitor,  a counter log was created that contained the list of counters below. The important point to note when running the counter log is that the RUN AS property within the counter log properties should be changed to an account that has rights to the SSAS instance when monitoring MSAS counters. Failure to do so means that the counter log runs under the system account, no errors or warning are given while running the counter log, and it is not until you need to view the MSAS counters that they will not be displayed if run under the default account that has no right to SSAS. If your connection simulation takes hours, this could prove quite frustrating if not done beforehand JThe counters used……  Object Counter Instance Justification System Processor Queue legnth N/A Indicates how many threads are waiting for execution against the processor. If this counter is consistently higher than around 5 when processor utilization approaches 100%, then this is a good indication that there is more work (active threads) available (ready for execution) than the machine's processors are able to handle. System Context Switches/sec N/A Measures how frequently the processor has to switch from user- to kernel-mode to handle a request from a thread running in user mode. The heavier the workload running on your machine, the higher this counter will generally be, but over long term the value of this counter should remain fairly constant. If this counter suddenly starts increasing however, it may be an indicating of a malfunctioning device, especially if the Processor\Interrupts/sec\(_Total) counter on your machine shows a similar unexplained increase Process % Processor Time sqlservr Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process % Processor Time msmdsrv Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process Working Set sqlservr If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Process Working Set msmdsrv If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Processor % Processor Time _Total and individual cores measures the total utilization of your processor by all running processes. If multi-proc then be mindful only an average is provided Processor % Privileged Time _Total To see how the OS is handling basic IO requests. If kernel mode utilization is high, your machine is likely underpowered as it's too busy handling basic OS housekeeping functions to be able to effectively run other applications. Processor % User Time _Total To see how the applications is interacting from a processor perspective, a high percentage utilisation determine that the server is dealing with too many apps and may require increasing thje hardware or scaling out Processor Interrupts/sec _Total  The average rate, in incidents per second, at which the processor received and serviced hardware interrupts. Shoulr be consistant over time but a sudden unexplained increase could indicate a device malfunction which can be confirmed using the System\Context Switches/sec counter Memory Pages/sec N/A Indicates the rate at which pages are read from or written to disk to resolve hard page faults. This counter is a primary indicator of the kinds of faults that cause system-wide delays, this is the primary counter to watch for indication of possible insufficient RAM to meet your server's needs. A good idea here is to configure a perfmon alert that triggers when the number of pages per second exceeds 50 per paging disk on your system. May also want to see the configuration of the page file on the Server Memory Available Mbytes N/A is the amount of physical memory, in bytes, available to processes running on the computer. if this counter is greater than 10% of the actual RAM in your machine then you probably have more than enough RAM. monitor it regularly to see if any downward trend develops, and set an alert to trigger if it drops below 2% of the installed RAM. Physical Disk Disk Transfers/sec for each physical disk If it goes above 10 disk I/Os per second then you've got poor response time for your disk. Physical Disk Idle Time _total If Disk Transfers/sec is above  25 disk I/Os per second use this counter. which measures the percent time that your hard disk is idle during the measurement interval, and if you see this counter fall below 20% then you've likely got read/write requests queuing up for your disk which is unable to service these requests in a timely fashion. Physical Disk Disk queue legnth For the OLAP and SQL physical disk A value that is consistently less than 2 means that the disk system is handling the IO requests against the physical disk Network Interface Bytes Total/sec For the NIC Should be monitored over a period of time to see if there is anb increase/decrease in network utilisation Network Interface Current Bandwidth For the NIC is an estimate of the current bandwidth of the network interface in bits per second (BPS). MSAS 2005: Memory Memory Limit High KB N/A Shows (as a percentage) the high memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Limit Low KB N/A Shows (as a percentage) the low memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Usage KB N/A Displays the memory usage of the server process. MSAS 2005: Memory File Store KB N/A Displays the amount of memory that is reserved for the Cache. Note if total memory limit in the msmdsrv.ini is set to 0, no memory is reserved for the cache MSAS 2005: Storage Engine Query Queries from Cache Direct / sec N/A Displays the rate of queries answered from the cache directly MSAS 2005: Storage Engine Query Queries from Cache Filtered / Sec N/A Displays the Rate of queries answered by filtering existing cache entry. MSAS 2005: Storage Engine Query Queries from File / Sec N/A Displays the Rate of queries answered from files. MSAS 2005: Storage Engine Query Average time /query N/A Displays the average time of a query MSAS 2005: Connection Current connections N/A Displays the number of connections against the SSAS instance MSAS 2005: Connection Requests / sec N/A Displays the rate of query requests per second MSAS 2005: Locks Current Lock Waits N/A Displays thhe number of connections waiting on a lock MSAS 2005: Threads Query Pool job queue Length N/A The number of queries in the job queue MSAS 2005:Proc Aggregations Temp file bytes written/sec N/A Shows the number of bytes of data processed in a temporary file MSAS 2005:Proc Aggregations Temp file rows written/sec N/A Shows the number of bytes of data processed in a temporary file 

    Read the article

  • JCP.Next - Early Adopters of JCP 2.8

    - by Heather VanCura
    JCP.Next is a series of three JSRs (JSR 348, JSR 355 and JSR 358), to be defined through the JCP process itself, with the JCP Executive Committee serving as the Expert Group. The proposed JSRs will modify the JCP's processes  - the Process Document and Java Specification Participation Agreement (JSPA) and will apply to all new JSRs for all Java platforms.   The first - JCP.next.1, or more formally JSR 348, Towards a new version of the Java Community Process - was completed and put into effect in October 2011 as JCP 2.8. This focused on a small number of simple but important changes to make our process more transparent and to enable broader participation. We're already seeing the benefits of these changes as new and existing JSRs adopt the new requirements. The second - JSR 355, Executive Committee Merge, is also Final. You can read the JCP 2.9 Process Document .  As part of the JSR 355 Final Release, the JCP Executive Committee published revisions to the JCP Process Document (version 2.9) and the EC Standing Rules (version 2.2).  The changes went into effect following the 2012 EC Elections in November. The third JSR 358, A major revision of the Java Community Process was submitted in June 2012.  This JSR will modify the Java Specification Participation Agreement (JSPA) as well as the Process Document, and will tackle a large number of complex issues, many of them postponed from JSR 348. For these reasons, the JCP EC (acting as the Expert Group for this JSR), expects to spend a considerable amount of time working on. The JSPA is defined by the JCP as "a one-year, renewable agreement between the Member and Oracle. The success of the Java community depends upon an open and transparent JCP program.  JSR 358, A major revision of the Java Community Process, is now in process and can be followed on java.net. The following JSRs and Spec Leads were the early adopters of JCP 2.8, who voluntarily migrated their JSRs from JCP 2.x to JCP 2.8 or above.  More candidates for 2012 JCP Star Spec Leads! JSR 236, Concurrency Utilities for Java EE (Anthony Lai/Oracle), migrated April 2012 JSR 308, Annotations on Java Types (Michael Ernst, Alex Buckley/Oracle), migrated September 2012 JSR 335, Lambda Expressions for the Java Programming Language (Brian Goetz/Oracle), migrated October 2012 JSR 337, Java SE 8 Release Contents (Mark Reinhold/Oracle) – EG Formation, migrated September 2012 JSR 338, Java Persistence 2.1 (Linda DeMichiel/Oracle), migrated January 2012 JSR 339, JAX-RS 2.0: The Java API for RESTful Web Services (Santiago Pericas-Geertsen, Marek Potociar/Oracle), migrated July 2012 JSR 340, Java Servlet 3.1 Specification (Shing Wai Chan, Rajiv Mordani/Oracle), migrated August 2012 JSR 341, Expression Language 3.0 (Kin-man Chung/Oracle), migrated August 2012 JSR 343, Java Message Service 2.0 (Nigel Deakin/Oracle), migrated March 2012 JSR 344, JavaServer Faces 2.2 (Ed Burns/Oracle), migrated September 2012 JSR 345, Enterprise JavaBeans 3.2 (Marina Vatkina/Oracle), migrated February 2012 JSR 346, Contexts and Dependency Injection for Java EE 1.1 (Pete Muir/RedHat) – migrated December 2011

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • Customer Experience and BPM – From Efficiency to Engagement

    - by Ajay Khanna
    Over the last few years, focus of BPM has been mainly to improve the businesses efficiency. To create more efficient processes, to remove bottlenecks, to automate processes. That still holds true and why not? Isn’t BPM all about continuous improvement? BPM facilitates and requires business and IT collaboration. But business also requires working with customer. Do we not want to get close to and collaborate with our customers? This is where Social BPM takes BPM a step further. It not only allows people within an organization to collaborate to design exceptional processes, not only lets them collaborate on resolving a case but also let them engage with the customers. Engaging with customer means, first of all, connecting with them on their terms and turf. Take a new account opening process. Can a customer call you and initiate the process? Can a customer email you, or go to the website and initiate the process? Can they tweet you and initiate the process? Can they check the status of process via any channel they like? Can they take a picture of damaged package delivery and kick-off a returns process from their mobile device, with GIS data? Yes, these are various aspects to consider during process design if the goal is better customer experience and engagement. Of course, we want to be efficient and agile, but the focus here needs to be the customer. Now when the customer is tweeting about your products, posting on Facebook and Yelp about their experience with your company (and your process), you need to seek out that information. You need to gather and analyze the customer’s feedback on the social media and use that information to improve the processes and products. This is an excellent source of product and process ideation. So BPM is no longer only about improving back-office process efficiency, it is moving into a new and exciting phase of improving frontline customer facing processes, customer experience and engagement. Let me know how you think BPM can enhance customer experience.

    Read the article

  • nginx does not use variables set in /etc/environment on system reboot, but does when restarted from shell

    - by Dave Nolan
    I have a Rails app running on nginx/passenger. It restarts happily in a shell using sudo /etc/init.d/nginx stop|start|restart. But Passenger throws an error when the system is rebooted: "Missing the Rails #{version} gem". But GEM_HOME and GEM_PATH are both set in /etc/environment so surely they would be available to all processes during reboot? /etc/environment PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/bin/X11:/usr/games" GEM_HOME=/var/lib/gems/1.8 GEM_PATH=/var/lib/gems/1.8 /etc/init.d/nginx #! /bin/sh ### BEGIN INIT INFO # Provides: nginx # Required-Start: $all # Required-Stop: $all # Default-Start: 2 3 4 5 # Default-Stop: 0 1 6 # Short-Description: starts the nginx web server # Description: starts nginx using start-stop-daemon ### END INIT INFO PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin DAEMON=/opt/nginx/sbin/nginx NAME=nginx DESC=nginx test -x $DAEMON || exit 0 # Include nginx defaults if available if [ -f /etc/default/nginx ] ; then . /etc/default/nginx fi set -e case "$1" in start) echo -n "Starting $DESC: " start-stop-daemon --start --quiet --pidfile /var/log/nginx/$NAME.pid \ --exec $DAEMON -- $DAEMON_OPTS echo "$NAME." ;; stop) echo -n "Stopping $DESC: " start-stop-daemon --stop --quiet --pidfile /var/log/nginx/$NAME.pid \ --exec $DAEMON echo "$NAME." ;; restart|force-reload) echo -n "Restarting $DESC: " start-stop-daemon --stop --quiet --pidfile \ /var/log/nginx/$NAME.pid --exec $DAEMON sleep 1 start-stop-daemon --start --quiet --pidfile \ /var/log/nginx/$NAME.pid --exec $DAEMON -- $DAEMON_OPTS echo "$NAME." ;; reload) echo -n "Reloading $DESC configuration: " start-stop-daemon --stop --signal HUP --quiet --pidfile /var/log/nginx/$NAME.pid \ --exec $DAEMON echo "$NAME." ;; *) N=/etc/init.d/$NAME echo "Usage: $N {start|stop|restart|force-reload}" >&2 exit 1 ;; esac exit 0 $ opt/nginx/sbin/nginx -v nginx version: nginx/0.7.67 Ubuntu lucid

    Read the article

  • How to fix IE starting when I try to start Opera?

    - by Scott Leis
    I have a problem that started today, where trying to run any of the 3 versions of Opera I have installed causes Internet Explorer to start instead. The Opera versions I have installed are 9.64, 10.10, and 10.63. My OS is Windows Vista with the latest critical/important updates. The behaviour is the same regardless of whether I double-click a shortcut to Opera, double-click on Opera.exe in one of the install directories, or run Opera.exe with the full path from Start-Run. The only work-around I've found is to right-click Opera.exe or a shortcut, and click "Run as administrator". This starts Opera, and it appears to work normally. Opera seems to be the only program so affected. I've checked Firefox and a few other (non-browser) programs, and they work normally. When IE starts instead of Opera, there are always two instances of iexplore.exe started, and they both crash before I can do anything else. IE also crashes if I try to start it from its own shortcut, but I don't know if that only started today, since I hadn't used IE for a few weeks. Does anyone know what might cause this and how to fix it? It's possible my PC has a virus, but BitDefender (for which I have automatic updates enabled) hasn't detected anything.

    Read the article

  • I can't get my PC to start up by a normal way.

    - by ssice
    I couldn't write a more accurate title. I am just unable to start the computer by pressing the Power On button. I checked the Power Supply and it seems to give good voltage values in every pin. And this is not a BIOS malfunction because of bad overclocking or anything that may come to your mind. And I will tell you why. It happens that EPS (or any ATX-based) power supply has the ability to be powered-on by the Motherboard by jumping the 13th pin of the 24-pin-ATX-connector to COM/GND. I did it, after pushing the power on button (without any visual response) and, pwhaa! The machine turned on. I was able to read (and even write, if I wanted) BIOS values and then start any OS installed. Machine starts, so it's not any kind of misconfiguration. It seems some hardware related. I am able to power the machine on only if I already pushed the power on button. Though pushing it without jumping the 13th pin to ground for a second does not power the machine. Of course, jumping the pin without pushing the power on button does not tell the motherboard anything, so the computer would not start up either. It's as if the logic that connects the power button with the 13th pin derivation to GND was unable to be activated. What can be the issue? How can I solve it? My configuration is as follows: CPU: AMD Phenom 9850 X4 Black Edition MB: ASUS Formula II AM2 RAM: 2x2GB Corsair Dominator 5-5-5-15 2T @ 1066MHz DDR2 Tested also with only 1 module GPU: 2x XFX nVIDIA GeForce 9600 GT XxX Alpha Dog Edition @ Core: 540Mhz [SLi] Power Supply: Xilence 700W (ATX 12V 2.3 / EPS 12V 2.92 compatible) PS: I know the machine is like 2 years old. I hardly use it now, but my parents do.

    Read the article

  • How do I get Tomcat 7 to start up faster in Linux CentOS kernel version 2.6.18?

    - by user1786833
    I am experiencing a problem with slow start up times for Tomcat 7. I have done some testing by tweaking configuration parameters both on Linux CentOS kernel version 2.6.18 and on Windows 7 using this link as my primary guide: http://wiki.apache.org/tomcat/HowTo/FasterStartUp and managed only a modest improvement. The improvements seemed to result when I added metadata-complete="true" attribute to the element of my WEB-INF/web.xml file and when I added the names of almost all the jars we use for our application to the tomcat.util.scan.DefaultJarScanner.jarsToSkip property in conf/catalina.properties file. I've also used this JAVA_OPTS in the setenv.sh file: JAVA_OPTS="$JAVA_OPTS -server -Xms1536m -Xmx1536m -XX:MaxPermSize=256m -XX:NewRatio=2 -XX:+UseParallelGC -XX:ParallelGCThreads=2 -Dsun.rmi.dgc.client.gcInterval=1800000 -Dsun.rmi.dgc.server.gcInterval=1800000 -Dorg.apache.jasper.runtime.BodyContentImpl.LIMIT_BUFFER=true " but actually saw my start up times increase slightly. Our QA and production environments are on Linux CentOS so I'm hoping to get more information on improving Tomcat 7 start up times in that environment. My primary role is java developer and I don't have much system administration experience so I appreciate any input. Thank you for your time and suggestions.

    Read the article

  • How do I free SQLServerCE's COM instance from the current running process?

    - by David Thornley
    It's been a while since I touched COM so be nice ;) This is under WindowsCE 5.0 with SQLServerCE 2.0. After calling this to load SQLServerCE 2.0 : - IDBInitialize *pIDBInitialize = NULL; CoCreateInstance(CLSID_SQLSERVERCE_2_0, NULL, CLSCTX_INPROC_SERVER, IID_IDBInitialize, (void**)&pIDBInitialize); Module load occurs for SSCE20.dll which obviously loads the SQLServerCE engine into the process space. What I don't understand is if I do this immediately after :- pIDBInitialize->Release(); I don't see a dll module unload, so that SSCE20.dll (and friends) are still loaded into my process. Now I tried CoFreeUnusedLibraries() which I figure forces COM to purge any unused libraries, but it doesn't seem to do the trick. At runtime I want to be able to completely unload the SQLServerCE 2.0 dll from the process to streamline an upgrade to 3.5SP1. I suspect this has something to do with the shared dll model that Microsoft use under WindowsCE... but, I might be wrong :) Thanks in advance, David.

    Read the article

  • Creating a process in a non-zero session from a service in windows-2008-server?

    - by Itay Levin
    Hi, I was wondering if there is a simple way for a service to create a process in user session? My service is running as a user(administrator) account and not as a LocalSystem acount, therefore i can't use the WTSQueryUserToken function. i have tried calling OpenProcessToken(GetCurrentProcess,TOKEN_ALL_ACCESS,TokenHandle); but when i use this token to run CreateProcessAsUser(TokenHandle,.....) my process is still running in session 0. how can i resolve this issue? I'm using an Ole automation so i don't really care on which session the process will be running on, as long it is not the session 0 - because the Ole from some reason doesn't create its processes (winword.exe for instance) in session 0, but rather it creates them in other user sessions. Any suggestions will be welcome. Thanks in advance.

    Read the article

  • Why does PowerShell fail to build my .net solutions? ("file is being used by another process")

    - by urig
    I've written a PowerShell script to build several .net solutions one after the other. It simply makes several calls to csc.exe to build the .sln files. Almost every time I run the script one of the solutions fails to build and CSC.exe reports: error CS1606: Assembly signing failed; output may not be signed -- The process cannot access the file because it is being used by another process. This happens even though I've closed all instances of Visual Studio holding these solutions and I've none of their exes running on mu machine. A similar batch file that I've written works just fine. It's only PowerShell that complains about the file being used by another process. How can avoid having this happen? Are there any better examples out there of building .net solutions through PowerShell?

    Read the article

  • How can I find which process has opened a specific file?

    - by Hosam Aly
    How can I find which processes have a specific file opened, and their open, access and share modes? Additionally, is it possible to change these values for a process? Or is it even possible to open a file for reading if it is already opened for exclusive access by another process? Please note that I don't want to invalidate the handle of the process having the file opened. I just want to be able to access the file (if possible). (I'm mainly asking about Windows, but solutions for other platforms are welcome, since they contribute to the community's knowledge.) Edit: I found some answers for my first question here and there. Edit 2: Thanks everybody for the tools you mentioned, but I am mainly looking for programmatical techniques (e.g. using Win32 APIs).

    Read the article

  • How to find all the file handles by a process programmatically?

    - by kumar
    I have a process "x" which uses "system" C function to start ntpd daemon. I observed that ntpd are passed the open file descriptors of "x". ntpd holds on to the file descriptors even after original file is deleted. for ex: Some log files used by "x" are rotated out after sometime, but "ntpd" has file handle opened for these deleted files. Will it cause any problem? Alternatively I thought of setting "FD_CLOEXEC" flag for all the file descriptors before calling "system" function. But as we are running as an extension library to third process "x"( "x" loads our library based on some condition), there is no easy way to know about all the file descriptors process has opened. One way is to read /proc//fd and set "FD_CLOEXEC" for each file handle and reset it back after "system" function returns. I'm using Linux 2.16. Is there any other easy way to find all the file handlers? Thanks,

    Read the article

  • How do I get the output of Win32::Process command in Perl?

    - by rockyurock
    I am using use Win32::Process for my application run as below. It runs fine, but I did not get any way to get the output to a .txt file. I used NORMAL_PRIORITY_CLASS rather than CREATE_NEW_CONSOLE to get the output on the same terminal itself, but I don't know how to redirect it to a txt file. /rocky #!/usr/bin/perl use strict; use warnings; use Win32::Process; Win32::Process::Create(my $ProcessObj, "iperf.exe", "iperf.exe -u -s -p 5001", 0, NORMAL_PRIORITY_CLASS, ".") || die ErrorReport(); my @command_output; push @command_output,$ProcessObj; open FILE, ">zz.txt" or die $!; print FILE @command_output; close FILE; sleep 10; $ProcessObj->Kill(0); sub ErrorReport{ print Win32::FormatMessage( Win32::GetLastError() ); }

    Read the article

  • How to easily pass a very long string to a worker process under Windows?

    - by sharptooth
    My native C++ Win32 program spawns a worker process and needs to pass a huge configuration string to it. Currently it just passes the string as a command line to CreateProcess(). The problem is the string is getting longer and now it doesn't fit into the 32K characters limitation imposed by Windows. Of course I could do something like complicating the worker process start - I use the RPC server in it anyway and I could introduce an RPC request for passing the configuration string, but this will require a lot of changes and make the solution not so reliable. Saving the data into a file for passing is also not very elegant - the file could be left on the filesystem and become garbage. What other simple ways are there for passing long strings to a worker process started by my program on Windows?

    Read the article

  • Scriptom (groovy) leaves Excel process running - am I doing something wrong?

    - by Alex Stoddard
    I am using the Scriptom extension to Groovy 1.7.0 to automate some processing using Excel 2007 under Windows XP. This always seems to leave an Excel process running despite my calling quit on the excel activeX object. (There is a passing reference to this phenomenon in the Scriptom example documentation too.) Code looks like: import org.codehaus.groovy.scriptom.ActiveXObject; def xls = new ActiveXObject("Excel.Application") xls.Visible = true // do xls stuff xls.Quit() The visible excel window does disappear but an EXCEL process is left in the task manager (and more processes pile up with each run of the script). There are no error message or exceptions. Can anyone explain why the Excel process is left behind and is there any way to prevent it from happening?

    Read the article

  • Can I prevent a user from using windows taskmanager to end a process?

    - by Russ
    I have a c# 4.0 application that I hear grumblings and rumors about problems with. Now, this application has a global unhandled exception handler that reports back to me with errors. I also know that it works because SOME people fill it in, and submit it. It seems though; that a large number of people do NOT fill it in, but instead, use the Windows Taskmanager to end the process. Is it possible to prevent a user from using the Windows Taskmanager to end a specific process? My goal would be that if the application crashes, the form that the user is presented with prevents the process from being ended. I'll also accept steps that would prevent the Windows Taskmanager from being launched.

    Read the article

  • How do I propagate an exception thrown by croak in forked child to parent/foreground process?

    - by Pedro Silva
    Throwing an exception via croak in a forked child process seems to print the error as a background process would. That is, it clobbers the shell prompt. If I die instead of croak, the the error message pops up as a foreground process. I've trying to find out why that is in the Carp documentation without any luck. Here's what I mean. The croak version: $ perl Wrapper.pm $ error: ... does not exist at Wrapper.pm line 624 The die version: $ perl Wrapper.pm error: ... does not exist at Wrapper.pm line 515. I tried trapping the fork and printing $@ to STDERR and exiting, but that didn't have an effect. Any ideas? I'd like to be able to use croak in this particular case.

    Read the article

< Previous Page | 160 161 162 163 164 165 166 167 168 169 170 171  | Next Page >