Search Results

Search found 19458 results on 779 pages for 'interface implementation'.

Page 165/779 | < Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >

  • Question on design of current pagination implementations

    - by Freshblood
    I have checked pagination implementations on asp.net mvc specifically and i really feel that there is something less efficient in implementations. First of all all implementations use pagination values like below. public ActionResult MostPopulars(int pageIndex,int pageSize) { } The thing that i feel wrong is pageIndex and pageSize totally should be member of Pagination class otherwise this way looks so much functional way. Also it simplify unnecesary paramater pass in tiers of application. Second thing is that they use below interface. public interface IPagedList<T> : IList<T> { int PageCount { get; } int TotalItemCount { get; } int PageIndex { get; } int PageNumber { get; } int PageSize { get; } bool HasPreviousPage { get; } bool HasNextPage { get; } bool IsFirstPage { get; } bool IsLastPage { get; } } If i want to routing my pagination to different action so i have to create new view model for encapsulate action name in it or even controller name. Another solution can be that sending this interfaced model to view then specify action and controller hard coded in pager method as parameter but i am losing totally re-usability of my view because it is strictly depends on just one action. Another thing is that they use below code in view Html.Pager(Model.PageSize, Model.PageNumber, Model.TotalItemCount) If the model is IPagedList why they don't provide an overload method like @Html.Pager(Model) or even better one is @Html.Pager(). You know that we know model type in this way. Before i was doing mistake because i was using Model.PageIndex instead of Model.PageNumber. Another big issue is they strongly rely on IQueryable interface. How they know that i use IQueryable in my data layer ? I would expected that they work simply with collections that is keep pagination implementation persistence ignorant. What is wrong about my improvement ideas over their pagination implementations ? What is their reason to not implement their paginations in this way ?

    Read the article

  • Oracle CRM is ready for the Apple iPad!

    - by divya.malik
    Here is some exciting news to report from the Oracle headquarters today. For all you Apple and Oracle CRM fans, we just announced Oracle CRM support for the Apple iPad. This is great news for anyone seeking richer CRM user experience with the Apple iPad. Oracle’s Siebel CRM can support a rich graphical user interface on Apple’s iPad using the recently released Oracle’s server –based REST ( Representational State Transfer and is a simple way of providing APIs over HTTP) interface and get access to the Siebel metadata. In the words of SVP, Anthony Lye “Siebel CRM support for the Apple iPad is yet another example of Oracle’s dedication to give customers the cutting-edge CRM options on the latest devices so they can grow their business and increase productivity.” For more details on this integration, please read the press release Here is a demo created by Oracle CRM Principal Product Manager, Raj Aggarwal

    Read the article

  • JDK bug migration: components and subcomponents

    - by darcy
    One subtask of the JDK migration from the legacy bug tracking system to JIRA was reclassifying bugs from a three-level taxonomy in the legacy system, (product, category, subcategory), to a fundamentally two-level scheme in our customized JIRA instance, (component, subcomponent). In the JDK JIRA system, there is technically a third project-level classification, but by design a large majority of JDK-related bugs were migrated into a single "JDK" project. In the end, over 450 legacy subcategories were simplified into about 120 subcomponents in JIRA. The 120 subcomponents are distributed among 17 components. A rule of thumb used was that a subcategory had to have at least 50 bugs in it for it to be retained. Below is a listing the component / subcomponent classification of the JDK JIRA project along with some notes and guidance on which OpenJDK email addresses cover different areas. Eventually, a separate incidents project to host new issues filed at bugs.sun.com will use a slightly simplified version of this scheme. The preponderance of bugs and subcomponents for the JDK are in library-related areas, with components named foo-libs and subcomponents primarily named after packages. While there was an overall condensation of subcomponents in the migration, in some cases long-standing informal divisions in core libraries based on naming conventions in the description were promoted to formal subcomponents. For example, hundreds of bugs in the java.util subcomponent whose descriptions started with "(coll)" were moved into java.util:collections. Likewise, java.lang bugs starting with "(reflect)" and "(proxy)" were moved into java.lang:reflect. client-libs (Predominantly discussed on 2d-dev and awt-dev and swing-dev.) 2d demo java.awt java.awt:i18n java.beans (See beans-dev.) javax.accessibility javax.imageio javax.sound (See sound-dev.) javax.swing core-libs (See core-libs-dev.) java.io java.io:serialization java.lang java.lang.invoke java.lang:class_loading java.lang:reflect java.math java.net java.nio (Discussed on nio-dev.) java.nio.charsets java.rmi java.sql java.sql:bridge java.text java.util java.util.concurrent java.util.jar java.util.logging java.util.regex java.util:collections java.util:i18n javax.annotation.processing javax.lang.model javax.naming (JNDI) javax.script javax.script:javascript javax.sql org.openjdk.jigsaw (See jigsaw-dev.) security-libs (See security-dev.) java.security javax.crypto (JCE: includes SunJCE/MSCAPI/UCRYPTO/ECC) javax.crypto:pkcs11 (JCE: PKCS11 only) javax.net.ssl (JSSE, includes javax.security.cert) javax.security javax.smartcardio javax.xml.crypto org.ietf.jgss org.ietf.jgss:krb5 other-libs corba corba:idl corba:orb corba:rmi-iiop javadb other (When no other subcomponent is more appropriate; use judiciously.) Most of the subcomponents in the xml component are related to jaxp. xml jax-ws jaxb javax.xml.parsers (JAXP) javax.xml.stream (JAXP) javax.xml.transform (JAXP) javax.xml.validation (JAXP) javax.xml.xpath (JAXP) jaxp (JAXP) org.w3c.dom (JAXP) org.xml.sax (JAXP) For OpenJDK, most JVM-related bugs are connected to the HotSpot Java virtual machine. hotspot (See hotspot-dev.) build compiler (See hotspot-compiler-dev.) gc (garbage collection, see hotspot-gc-dev.) jfr (Java Flight Recorder) jni (Java Native Interface) jvmti (JVM Tool Interface) mvm (Multi-Tasking Virtual Machine) runtime (See hotspot-runtime-dev.) svc (Servicability) test core-svc (See serviceability-dev.) debugger java.lang.instrument java.lang.management javax.management tools The full JDK bug database contains entries related to legacy virtual machines that predate HotSpot as well as retired APIs. vm-legacy jit (Sun Exact VM) jit_symantec (Symantec VM, before Exact VM) jvmdi (JVM Debug Interface ) jvmpi (JVM Profiler Interface ) runtime (Exact VM Runtime) Notable command line tools in the $JDK/bin directory have corresponding subcomponents. tools appletviewer apt (See compiler-dev.) hprof jar javac (See compiler-dev.) javadoc(tool) (See compiler-dev.) javah (See compiler-dev.) javap (See compiler-dev.) jconsole launcher updaters (Timezone updaters, etc.) visualvm Some aspects of JDK infrastructure directly affect JDK Hg repositories, but other do not. infrastructure build (See build-dev and build-infra-dev.) licensing (Covers updates to the third party readme, licenses, and similar files.) release_eng (Release engineering) staging (Staging of web pages related to JDK releases.) The specification subcomponent encompasses the formal language and virtual machine specifications. specification language (The Java Language Specification) vm (The Java Virtual Machine Specification) The code for the deploy and install areas is not currently included in OpenJDK. deploy deployment_toolkit plugin webstart install auto_update install servicetags In the JDK, there are a number of cross-cutting concerns whose organization is essentially orthogonal to other areas. Since these areas generally have dedicated teams working on them, it is easier to find bugs of interest if these bugs are grouped first by their cross-cutting component rather than by the affected technology. docs doclet guides hotspot release_notes tools tutorial embedded build hotspot libraries globalization locale-data translation performance hotspot libraries The list of subcomponents will no doubt grow over time, but my inclination is to resist that growth since the addition of each subcomponent makes the system as a whole more complicated and harder to use. When the system gets closer to being externalized, I plan to post more blog entries describing recommended use of various custom fields in the JDK project.

    Read the article

  • Routing Manager for WCF4

    This article describes a design, implementation and usage of the Custom Routing Manager for managing messages via Routing Service built-in .Net 4 Technology.

    Read the article

  • Oracle R Enterprise Tutorial Series on Oracle Learning Library

    - by mhornick
    Oracle Server Technologies Curriculum has just released the Oracle R Enterprise Tutorial Series, which is publicly available on Oracle Learning Library (OLL). This 8 part interactive lecture series with review sessions covers Oracle R Enterprise 1.1 and an introduction to Oracle R Connector for Hadoop 1.1: Introducing Oracle R Enterprise Getting Started with ORE R Language Basics Producing Graphs in R The ORE Transparency Layer ORE Embedded R Scripts: R Interface ORE Embedded R Scripts: SQL Interface Using the Oracle R Connector for Hadoop We encourage you to download Oracle software for evaluation from the Oracle Technology Network. See these links for R-related software: Oracle R Distribution, Oracle R Enterprise, ROracle, Oracle R Connector for Hadoop.  As always, we welcome comments and questions on the Oracle R Forum.

    Read the article

  • Constant game speed independent of variable FPS in OpenGL with GLUT?

    - by Nazgulled
    I've been reading Koen Witters detailed article about different game loop solutions but I'm having some problems implementing the last one with GLUT, which is the recommended one. After reading a couple of articles, tutorials and code from other people on how to achieve a constant game speed, I think that what I currently have implemented (I'll post the code below) is what Koen Witters called Game Speed dependent on Variable FPS, the second on his article. First, through my searching experience, there's a couple of people that probably have the knowledge to help out on this but don't know what GLUT is and I'm going to try and explain (feel free to correct me) the relevant functions for my problem of this OpenGL toolkit. Skip this section if you know what GLUT is and how to play with it. GLUT Toolkit: GLUT is an OpenGL toolkit and helps with common tasks in OpenGL. The glutDisplayFunc(renderScene) takes a pointer to a renderScene() function callback, which will be responsible for rendering everything. The renderScene() function will only be called once after the callback registration. The glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0) takes the number of milliseconds to pass before calling the callback processAnimationTimer(). The last argument is just a value to pass to the timer callback. The processAnimationTimer() will not be called each TIMER_MILLISECONDS but just once. The glutPostRedisplay() function requests GLUT to render a new frame so we need call this every time we change something in the scene. The glutIdleFunc(renderScene) could be used to register a callback to renderScene() (this does not make glutDisplayFunc() irrelevant) but this function should be avoided because the idle callback is continuously called when events are not being received, increasing the CPU load. The glutGet(GLUT_ELAPSED_TIME) function returns the number of milliseconds since glutInit was called (or first call to glutGet(GLUT_ELAPSED_TIME)). That's the timer we have with GLUT. I know there are better alternatives for high resolution timers, but let's keep with this one for now. I think this is enough information on how GLUT renders frames so people that didn't know about it could also pitch in this question to try and help if they fell like it. Current Implementation: Now, I'm not sure I have correctly implemented the second solution proposed by Koen, Game Speed dependent on Variable FPS. The relevant code for that goes like this: #define TICKS_PER_SECOND 30 #define MOVEMENT_SPEED 2.0f const int TIMER_MILLISECONDS = 1000 / TICKS_PER_SECOND; int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void processAnimationTimer(int value) { // setups the timer to be called again glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Requests to render a new frame (this will call my renderScene() once) glutPostRedisplay(); } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) // Setup the timer to be called one first time glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Read the current time since glutInit was called currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } This implementation doesn't fell right. It works in the sense that helps the game speed to be constant dependent on the FPS. So that moving from point A to point B takes the same time no matter the high/low framerate. However, I believe I'm limiting the game framerate with this approach. Each frame will only be rendered when the time callback is called, that means the framerate will be roughly around TICKS_PER_SECOND frames per second. This doesn't feel right, you shouldn't limit your powerful hardware, it's wrong. It's my understanding though, that I still need to calculate the elapsedTime. Just because I'm telling GLUT to call the timer callback every TIMER_MILLISECONDS, it doesn't mean it will always do that on time. I'm not sure how can I fix this and to be completely honest, I have no idea what is the game loop in GLUT, you know, the while( game_is_running ) loop in Koen's article. But it's my understanding that GLUT is event-driven and that game loop starts when I call glutMainLoop() (which never returns), yes? I thought I could register an idle callback with glutIdleFunc() and use that as replacement of glutTimerFunc(), only rendering when necessary (instead of all the time as usual) but when I tested this with an empty callback (like void gameLoop() {}) and it was basically doing nothing, only a black screen, the CPU spiked to 25% and remained there until I killed the game and it went back to normal. So I don't think that's the path to follow. Using glutTimerFunc() is definitely not a good approach to perform all movements/animations based on that, as I'm limiting my game to a constant FPS, not cool. Or maybe I'm using it wrong and my implementation is not right? How exactly can I have a constant game speed with variable FPS? More exactly, how do I correctly implement Koen's Constant Game Speed with Maximum FPS solution (the fourth one on his article) with GLUT? Maybe this is not possible at all with GLUT? If not, what are my alternatives? What is the best approach to this problem (constant game speed) with GLUT? I originally posted this question on Stack Overflow before being pointed out about this site. The following is a different approach I tried after creating the question in SO, so I'm posting it here too. Another Approach: I've been experimenting and here's what I was able to achieve now. Instead of calculating the elapsed time on a timed function (which limits my game's framerate) I'm now doing it in renderScene(). Whenever changes to the scene happen I call glutPostRedisplay() (ie: camera moving, some object animation, etc...) which will make a call to renderScene(). I can use the elapsed time in this function to move my camera for instance. My code has now turned into this: int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void renderScene(void) { (...) // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Setup the camera position and looking point SceneCamera.LookAt(); // All drawing code goes inside this function drawCompleteScene(); glutSwapBuffers(); /* Redraw the frame ONLY if the user is moving the camera (similar code will be needed to redraw the frame for other events) */ if(!IsTupleEmpty(cameraDirection)) { glutPostRedisplay(); } } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } Conclusion, it's working, or so it seems. If I don't move the camera, the CPU usage is low, nothing is being rendered (for testing purposes I only have a grid extending for 4000.0f, while zFar is set to 1000.0f). When I start moving the camera the scene starts redrawing itself. If I keep pressing the move keys, the CPU usage will increase; this is normal behavior. It drops back when I stop moving. Unless I'm missing something, it seems like a good approach for now. I did find this interesting article on iDevGames and this implementation is probably affected by the problem described on that article. What's your thoughts on that? Please note that I'm just doing this for fun, I have no intentions of creating some game to distribute or something like that, not in the near future at least. If I did, I would probably go with something else besides GLUT. But since I'm using GLUT, and other than the problem described on iDevGames, do you think this latest implementation is sufficient for GLUT? The only real issue I can think of right now is that I'll need to keep calling glutPostRedisplay() every time the scene changes something and keep calling it until there's nothing new to redraw. A little complexity added to the code for a better cause, I think. What do you think?

    Read the article

  • UPK Breakfast Event: "Getting It Done Right" - Independence, Ohio - November 8th

    - by Karen Rihs
    Join us for a UPK “Getting It Done Right” Breakfast Briefing Come for Breakfast. Leave Full of Knowledge. Join Oracle and Synaptis for a breakfast briefing event before you begin your day, and leave full with knowledge on how to reduce risk and increase user productivity. Oracle’s User Productivity Kit (UPK) can provide your organization with a single tool to provide learning and best practices for each area of the business and help ensure you’re “Getting It Done Right.”Learn from Deb Brown, Senior Solutions Consultant, Oracle, as she shows the UPK tool that can save project teams thousands of hours through automation as well as provide greater visibility into application rollouts and business processes. Also hear from a UPK Customer as they share their company’s success with Oracle UPK.  Learn how UPK insures rapid user adoption; significantly lowers development, system testing, and user enablement time and costs; and mitigates project risk. Finally, Pat Tierney, Oracle Practice Director - Synaptis and Jordan Collard, VP Sales - Synaptis, will conclude with an outline of their success as a UPK implementation partner. Register Now Thursday,November 8, 20127:30 a.m. – 10:00 a.m.Embassy Suites Cleveland – Rockside5800 Rockside Woods BoulevardIndependence, OH 44131Directions Agenda 7:30 a.m. Event Arrival / Registration. Breakfast Served. 8:00 a.m. Deb Brown, Senior Solutions Consultant, Oracle Oracle UPK – A Closer Look at Getting It Done, Right. Ensure End User Adoption. 8:40 a.m. UPK Customer Success Story 9:30 a.m. Pat Tierney, Oracle Practice Director - Synaptis and Jordan Collard, VP Sales - Synaptis – Implementation Partner - Using Oracle UPK Before, During and After Application Rollouts 9:50 a.m. Wrap Up   Don’t miss this special Breakfast Briefing and get a jump start on Oracle UPK technology. Please call 1.800.820.5592 ext. 11030 or Click here to RSVP for this exclusive event! Sponsored bySynaptisSynaptis is an Oracle Gold Partner, providing UPK training, implementation, content creation and post go-live support for organizations since 1999.     If you are an employee or official of a government organization, please click here for important ethics information regarding this event.  

    Read the article

  • How do I change my resolution to 1600*900 for a wide screen monitor?

    - by Madhu
    How do I change my resolution to 1600*900 for a wide screen monitor in Oneiric? My Hardware configuration is as below: madhu@madhu-Home:~$ lspci 00:00.0 Host bridge: Silicon Integrated Systems [SiS] 671MX 00:01.0 PCI bridge: Silicon Integrated Systems [SiS] AGP Port (virtual PCI-to-PCI bridge) 00:02.0 ISA bridge: Silicon Integrated Systems [SiS] SiS968 [MuTIOL Media IO] (rev 01) 00:02.5 IDE interface: Silicon Integrated Systems [SiS] 5513 [IDE] (rev 01) 00:03.0 USB Controller: Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) 00:03.1 USB Controller: Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) 00:03.3 USB Controller: Silicon Integrated Systems [SiS] USB 2.0 Controller 00:04.0 Ethernet controller: Silicon Integrated Systems [SiS] 191 Gigabit Ethernet Adapter (rev 02) 00:05.0 IDE interface: Silicon Integrated Systems [SiS] SATA Controller / IDE mode (rev 03) 00:06.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 00:07.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 00:0f.0 Audio device: Silicon Integrated Systems [SiS] Azalia Audio Controller 00:1f.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 01:00.0 VGA compatible controller: Silicon Integrated Systems [SiS] 771/671 PCIE VGA Display Adapter (rev 10) madhu@madhu-Home:~$ cat /etc/X11/xorg.conf

    Read the article

  • Oracle University Neue Kurse (Week 10)

    - by swalker
    In der letzten Woche wurden von Oracle University folgende neue Kurse (bzw. Versionen davon) veröffentlicht: Database RAC & Grid Infrastructure for Oracle Solaris System Administration (1 day) Oracle Database 11g: Performance Tuning (Training On Demand) Development Tools Oracle Database: Program with PL/SQL (Training On Demand) MySQL MySQL for Database Administrators (Training On Demand) Fusion Middleware Oracle WebCenter Portal 11g: Build Portals With Spaces (3 days) Oracle WebCenter Content 11g: Site Studio Essentials (5 days) Oracle BPM 11g Modeling (3 days) Business Intelligence & Datawarehousing Oracle BI Applications 7.9.6: Implementation for Oracle EBS (4 days) Oracle BI Applications 7.9.6: Implementation for Siebel CRM (4 days) Oracle BI 11g R1: Build Repositories (Training on Demand) Fusion Applications Fusion Applications: Extend Applications with ADF (5 days) E-Business Suite R12.x Extend Oracle Applications: Building OA Framework Applications (Training On Demand) PeopleSoft PeopleSoft Integration Tools Rel 8.50 (Training On Demand) Wenn Sie weitere Einzelheiten erfahren oder sich über Kurstermine informieren möchten, wenden Sie sich einfach an Ihr lokales Oracle University-Team in.

    Read the article

  • Finite state machine in C++

    - by Electro
    So, I've read a lot about using FSMs to do game state management, things like what and FSM is, and using a stack or set of states for building one. I've gone through all that. But I'm stuck at writing an actual, well-designed implementation of an FSM for that purpose. Specifically, how does one cleanly resolve the problem of transitioning between states, (how) should a state be able to use data from other states, and so on. Does anyone have any tips on designing and writing a implementation in C++, or better yet, code examples?

    Read the article

  • Fighting Cancer With Knowledge and Community: Oracle WebCenter at CPAC

    - by Brian Dirking
    There was a great article on CIO Magazine sometime back about how Cancer Treatment Centers of America are improving patient care with technology. And it is comforting to know you are getting state of the art care for you or your loved one when battling cancer. When patients and families take matters into their own hands, they often don't know where to turn to for information. The Canadian Partnership Against Cancer provides a one-stop shop that brings together the best information available in an easy to use website. Beyond finding information, CPAC provides an online community that can help extend knowledge, share experiences, and let people know they are not alone. You can hear more about this implementation from Mike Matthews of Deloitte in our upcoming online event, Transform Your Business by Connecting People, Processes, and Content. Mike is a partner at Deloitte and had first-hand experience in the CPAC implementation of Oracle WebCenter, which provides website publishing, search, and social community tools.

    Read the article

  • Database-as-a-Service on Exadata Cloud

    - by Gagan Chawla
    Note – Oracle Enterprise Manager 12c DBaaS is platform agnostic and is designed to work on Exadata/non-Exadata, physical/virtual, Oracle/non Oracle platforms and it’s not a mandatory requirement to use Exadata as the base platform. Database-as-a-Service (DBaaS) is an important trend these days and the top business drivers motivating customers towards private database cloud model include constant pressure to reduce IT Costs and Complexity, and also to be able to improve Agility and Quality of Service. The first step many enterprises take in their journey towards cloud computing is to move to a consolidated and standardized environment and Exadata being already a proven best-in-class popular consolidation platform, we are seeing now more and more customers starting to evolve from Exadata based platform into an agile self service driven private database cloud using Oracle Enterprise Manager 12c. Together Exadata Database Machine and Enterprise Manager 12c provides industry’s most comprehensive and integrated solution to transform from a typical silo’ed environment into enterprise class database cloud with self service, rapid elasticity and pay-per-use capabilities.   In today’s post, I’ll list down the important steps to enable DBaaS on Exadata using Enterprise Manager 12c. These steps are chalked down based on a recent DBaaS implementation from a real customer engagement - Project Planning - First step involves defining the scope of implementation, mapping functional requirements and objectives to use cases, defining high availability, network, security requirements, and delivering the project plan. In a Cloud project you plan around technology, business and processes all together so ensure you engage your actual end users and stakeholders early on in the project right from the scoping and planning stage. Setup your EM 12c Cloud Control Site – Once the project plan approval and sign off from stakeholders is achieved, refer to EM 12c Install guide and these are some important tips to follow during the site setup phase - Review the new EM 12c Sizing paper before you get started with install Cloud, Chargeback and Trending, Exadata plug ins should be selected to deploy during install Refer to EM 12c Administrator’s guide for High Availability, Security, Network/Firewall best practices and options Your management and managed infrastructure should not be combined i.e. EM 12c repository should not be hosted on same Exadata where target Database Cloud is to be setup Setup Roles and Users – Cloud Administrator (EM_CLOUD_ADMINISTRATOR), Self Service Administrator (EM_SSA_ADMINISTRATOR), Self Service User (EM_SSA_USER) are the important roles required for cloud lifecycle management. Roles and users are managed by Super Administrator via Setup menu –> Security option. For Self Service/SSA users custom role(s) based on EM_SSA_USER should be created and EM_USER, PUBLIC roles should be revoked during SSA user account creation. Configure Software Library – Cloud Administrator logs in and in this step configures software library via Enterprise menu –> provisioning and patching option and the storage location is OMS shared filesystem. Software Library is the centralized repository that stores all software entities and is often termed as ‘local store’. Setup Self Update – Self Update is one of the most innovative and cool new features in EM 12c framework. Self update can be accessed via Setup -> Extensibility option by Super Administrator and is the unified delivery mechanism to get all new and updated entities (Agent software, plug ins, connectors, gold images, provisioning bundles etc) in EM 12c. Deploy Agents on all Compute nodes, and discover Exadata targets – Refer to Exadata discovery cookbook for detailed walkthrough to ensure successful discovery of Exadata targets. Configure Privilege Delegation Settings – This step involves deployment of privilege setting template on all the nodes by Super Administrator via Setup menu -> Security option with the option to define whether to use sudo or powerbroker for all provisioning and patching operations. Provision Grid Infrastructure with RAC Database on Compute Nodes – Software is provisioned in this step via a provisioning profile using EM 12c database provisioning. In case of Exadata, Grid Infrastructure and RAC Database software is already deployed on compute nodes via OneCommand from Oracle, so SSA Administrator just needs to discover Oracle Homes and Listener as EM targets. Databases will be created as and when users request for databases from cloud. Customize Create Database Deployment Procedure – the actual database creation steps are "templatized" in this step by Self Service Administrator and the newly saved deployment procedure will be used during service template creation in next step. This is an important step and make sure you have locked all the required variables marked as locked as ‘Y’ in this table. Setup Self Service Portal – This step involves setting up of zones, user quotas, service templates, chargeback plan. The SSA portal is setup by Self Service Administrator via Setup menu -> Cloud -> Database option and following guided workflow. Refer to DBaaS cookbook for details. You also have an option to customize SSA login page via steps documented in EM 12c Cloud Administrator’s guide Final Checks – Define and document process guidelines for SSA users and administrators. Get your SSA users trained on Self Service Portal features and overall DBaaS model and SSA administrators should be familiar with Self Service Portal setup pieces, EM 12c database lifecycle management capabilities and overall EM 12c monitoring framework. GO LIVE – Announce rollout of Database-as-a-Service to your SSA users. Users can login to the Self Service Portal and request/monitor/view their databases in Exadata based database cloud. Congratulations! You just delivered a successful database cloud implementation project! In future posts, we will cover these additional useful topics around database cloud – DBaaS Implementation tips and tricks – right from setup to self service to managing the cloud lifecycle ‘How to’ enable real production databases copies in DBaaS with rapid provisioning in database cloud Case study of a customer who recently achieved success with their transformational journey from traditional silo’ed environment on to Exadata based database cloud using Enterprise Manager 12c. More Information – Podcast on Database as a Service using Oracle Enterprise Manager 12c Oracle Enterprise Manager 12c Installation and Administration guide, Cloud Administration guide DBaaS Cookbook Exadata Discovery Cookbook Screenwatch: Private Database Cloud: Set Up the Cloud Self-Service Portal Screenwatch: Private Database Cloud: Use the Cloud Self-Service Portal Stay Connected: Twitter |  Face book |  You Tube |  Linked in |  Newsletter

    Read the article

  • New A-Team Web Site Launched

    - by .raja
    The A-Team has launched a new web site – the A-Team Chronicles which aggregates and organizes content produced by The A-Team members (including your humble blogger). The A-Team is a central, outbound, highly technical team comprised of Enterprise Architects, Solution Specialists and Software Engineers within the Fusion Middleware Product Development Organization that works with customers and partners, world wide, providing guidance on implementation best practices, architecture, troubleshooting and how best to use Oracle products to solve customer business needs. This content captures best practices, tips and tricks and guidance that the A-Team members gain from real-world experiences, working with customers and partners on implementation projects, through Architecture reviews, issue resolution and more. A-Team Chronicles makes this content available, through short and to the point articles to all our customers and partners in a consistent, easy to find and organized way. If you like the articles we post here, you might find even more interesting articles at the new A-Team Chronicles site, covering a wider range of Fusion Middleware topics. We will be decommissioning this site shortly in favor of A-Team Chronicles site and all new contents will be posted there.

    Read the article

  • Breaking through the class sealing

    - by Jason Crease
    Do you understand 'sealing' in C#?  Somewhat?  Anyway, here's the lowdown. I've done this article from a C# perspective, but I've occasionally referenced .NET when appropriate. What is sealing a class? By sealing a class in C#, you ensure that you ensure that no class can be derived from that class.  You do this by simply adding the word 'sealed' to a class definition: public sealed class Dog {} Now writing something like " public sealed class Hamster: Dog {} " you'll get a compile error like this: 'Hamster: cannot derive from sealed type 'Dog' If you look in an IL disassembler, you'll see a definition like this: .class public auto ansi sealed beforefieldinit Dog extends [mscorlib]System.Object Note the addition of the word 'sealed'. What about sealing methods? You can also seal overriding methods.  By adding the word 'sealed', you ensure that the method cannot be overridden in a derived class.  Consider the following code: public class Dog : Mammal { public sealed override void Go() { } } public class Mammal { public virtual void Go() { } } In this code, the method 'Go' in Dog is sealed.  It cannot be overridden in a subclass.  Writing this would cause a compile error: public class Dachshund : Dog { public override void Go() { } } However, we can 'new' a method with the same name.  This is essentially a new method; distinct from the 'Go' in the subclass: public class Terrier : Dog { public new void Go() { } } Sealing properties? You can also seal seal properties.  You add 'sealed' to the property definition, like so: public sealed override string Name {     get { return m_Name; }     set { m_Name = value; } } In C#, you can only seal a property, not the underlying setters/getters.  This is because C# offers no override syntax for setters or getters.  However, in underlying IL you seal the setter and getter methods individually - a property is just metadata. Why bother sealing? There are a few traditional reasons to seal: Invariance. Other people may want to derive from your class, even though your implementation may make successful derivation near-impossible.  There may be twisted, hacky logic that could never be second-guessed by another developer.  By sealing your class, you're protecting them from wasting their time.  The CLR team has sealed most of the framework classes, and I assume they did this for this reason. Security.  By deriving from your type, an attacker may gain access to functionality that enables him to hack your system.  I consider this a very weak security precaution. Speed.  If a class is sealed, then .NET doesn't need to consult the virtual-function-call table to find the actual type, since it knows that no derived type can exist.  Therefore, it could emit a 'call' instead of 'callvirt' or at least optimise the machine code, thus producing a performance benefit.  But I've done trials, and have been unable to demonstrate this If you have an example, please share! All in all, I'm not convinced that sealing is interesting or important.  Anyway, moving-on... What is automatically sealed? Value types and structs.  If they were not always sealed, all sorts of things would go wrong.  For instance, structs are laid-out inline within a class.  But what if you assigned a substruct to a struct field of that class?  There may be too many fields to fit. Static classes.  Static classes exist in C# but not .NET.  The C# compiler compiles a static class into an 'abstract sealed' class.  So static classes are already sealed in C#. Enumerations.  The CLR does not track the types of enumerations - it treats them as simple value types.  Hence, polymorphism would not work. What cannot be sealed? Interfaces.  Interfaces exist to be implemented, so sealing to prevent implementation is dumb.  But what if you could prevent interfaces from being extended (i.e. ban declarations like "public interface IMyInterface : ISealedInterface")?  There is no good reason to seal an interface like this.  Sealing finalizes behaviour, but interfaces have no intrinsic behaviour to finalize Abstract classes.  In IL you can create an abstract sealed class.  But C# syntax for this already exists - declaring a class as a 'static', so it forces you to declare it as such. Non-override methods.  If a method isn't declared as override it cannot be overridden, so sealing would make no difference.  Note this is stated from a C# perspective - the words are opposite in IL.  In IL, you have four choices in total: no declaration (which actually seals the method), 'virtual' (called 'override' in C#), 'sealed virtual' ('sealed override' in C#) and 'newslot virtual' ('new virtual' or 'virtual' in C#, depending on whether the method already exists in a base class). Methods that implement interface methods.  Methods that implement an interface method must be virtual, so cannot be sealed. Fields.  A field cannot be overridden, only hidden (using the 'new' keyword in C#), so sealing would make no sense.

    Read the article

  • What are the software design essentials? [closed]

    - by Craig Schwarze
    I've decided to create a 1 page "cheat sheet" of essential software design principles for my programmers. It doesn't explain the principles in any great depth, but is simply there as a reference and a reminder. Here's what I've come up with - I would welcome your comments. What have I left out? What have I explained poorly? What is there that shouldn't be? Basic Design Principles The Principle of Least Surprise – your solution should be obvious, predictable and consistent. Keep It Simple Stupid (KISS) - the simplest solution is usually the best one. You Ain’t Gonna Need It (YAGNI) - create a solution for the current problem rather than what might happen in the future. Don’t Repeat Yourself (DRY) - rigorously remove duplication from your design and code. Advanced Design Principles Program to an interface, not an implementation – Don’t declare variables to be of a particular concrete class. Rather, declare them to an interface, and instantiate them using a creational pattern. Favour composition over inheritance – Don’t overuse inheritance. In most cases, rich behaviour is best added by instantiating objects, rather than inheriting from classes. Strive for loosely coupled designs – Minimise the interdependencies between objects. They should be able to interact with minimal knowledge of each other via small, tightly defined interfaces. Principle of Least Knowledge – Also called the “Law of Demeter”, and is colloquially summarised as “Only talk to your friends”. Specifically, a method in an object should only invoke methods on the object itself, objects passed as a parameter to the method, any object the method creates, any components of the object. SOLID Design Principles Single Responsibility Principle – Each class should have one well defined purpose, and only one reason to change. This reduces the fragility of your code, and makes it much more maintainable. Open/Close Principle – A class should be open to extension, but closed to modification. In practice, this means extracting the code that is most likely to change to another class, and then injecting it as required via an appropriate pattern. Liskov Substitution Principle – Subtypes must be substitutable for their base types. Essentially, get your inheritance right. In the classic example, type square should not inherit from type rectangle, as they have different properties (you can independently set the sides of a rectangle). Instead, both should inherit from type shape. Interface Segregation Principle – Clients should not be forced to depend upon methods they do not use. Don’t have fat interfaces, rather split them up into smaller, behaviour centric interfaces. Dependency Inversion Principle – There are two parts to this principle: High-level modules should not depend on low-level modules. Both should depend on abstractions. Abstractions should not depend on details. Details should depend on abstractions. In modern development, this is often handled by an IoC (Inversion of Control) container.

    Read the article

  • How to optimize collision detection

    - by Niklas
    I am developing a 2D Java Game with LibGDX. This is what it kinda looks like (simplified): The big black circle is the player, which you can move by tilting the smartphone. The red circles and blue rectangles are enemies, which will move from the right of the screen to the left. The player has to avoid crashing into them. Right now I am checking in the Game Loop every enemy against the player, whether they collide or not. This seems kinda inefficient to me, but I don't know how to improve it. I have tried the Quadtree approach, but it did not really work. The player could easily glitch through enemies and the collision was not detected. Unfortunately, I have destroyed the Quadtree implementation. I used this [tutorial/blog] as my Quadtree implementation(http://gamedevelopment.tutsplus.com/tutorials/quick-tip-use-quadtrees-to-detect-likely-collisions-in-2d-space--gamedev-374).

    Read the article

  • Oracle University Nuevos cursos (Week 10)

    - by swalker
    Oracle University ha publicado recientemenete las siguentes formaciones (o versiones) nuevos: Database RAC & Grid Infrastructure for Oracle Solaris System Administration (1 day) Oracle Database 11g: Performance Tuning (Training On Demand) Development Tools Oracle Database: Program with PL/SQL (Training On Demand) MySQL MySQL for Database Administrators (Training On Demand) Fusion Middleware Oracle WebCenter Portal 11g: Build Portals With Spaces (3 days) Oracle WebCenter Content 11g: Site Studio Essentials (5 days) Oracle BPM 11g Modeling (3 days) Business Intelligence & Datawarehousing Oracle BI Applications 7.9.6: Implementation for Oracle EBS (4 days) Oracle BI Applications 7.9.6: Implementation for Siebel CRM (4 days) Oracle BI 11g R1: Build Repositories (Training on Demand) Fusion Applications Fusion Applications: Extend Applications with ADF (5 days) E-Business Suite R12.x Extend Oracle Applications: Building OA Framework Applications (Training On Demand) PeopleSoft PeopleSoft Integration Tools Rel 8.50 (Training On Demand) Póngase en contacto con el equipo local de Oracle University para conocer las fechas y otros detalles de los cursos.

    Read the article

  • Is Java free/open source or it isn't?

    - by user1598390
    On November 13, 2006, Sun released much of Java as free and open source software, (FOSS), under the terms of the GNU General Public License (GPL). On May 8, 2007, Sun finished the process, making all of Java's core code available under free software/open-source distribution terms, aside from a small portion of code to which Sun did not hold the copyright. OpenJDK (Open Java Development Kit) is a free and open source implementation of the Java programming language. It is the result of an effort Sun Microsystems began in 2006. The implementation is licensed under the GNU General Public License (GNU GPL) with a linking exception. Why there are still people that say Java is not open source or free as in free speech ? Am I missing something? Is Java still privative ?

    Read the article

  • A Look Inside JSR 360 - CLDC 8

    - by Roger Brinkley
    If you didn't notice during JavaOne the Java Micro Edition took a major step forward in its consolidation with Java Standard Edition when JSR 360 was proposed to the JCP community. Over the last couple of years there has been a focus to move Java ME back in line with it's big brother Java SE. We see evidence of this in JCP itself which just recently merged the ME and SE/EE Executive Committees into a single Java Executive Committee. But just before that occurred JSR 360 was proposed and approved for development on October 29. So let's take a look at what changes are now being proposed. In a way JSR 360 is returning back to the original roots of Java ME when it was first introduced. It was indeed a subset of the JDK 4 language, but as Java progressed many of the language changes were not implemented in the Java ME. Back then the tradeoff was still a functionality, footprint trade off but the major market was feature phones. Today the market has changed and CLDC, while it will still target feature phones, will have it primary emphasis on embedded devices like wireless modules, smart meters, health care monitoring and other M2M devices. The major changes will come in three areas: language feature changes, library changes, and consolidating the Generic Connection Framework.  There have been three Java SE versions that have been implemented since JavaME was first developed so the language feature changes can be divided into changes that came in JDK 5 and those in JDK 7, which mostly consist of the project Coin changes. There were no language changes in JDK 6 but the changes from JDK 5 are: Assertions - Assertions enable you to test your assumptions about your program. For example, if you write a method that calculates the speed of a particle, you might assert that the calculated speed is less than the speed of light. In the example code below if the interval isn't between 0 and and 1,00 the an error of "Invalid value?" would be thrown. private void setInterval(int interval) { assert interval > 0 && interval <= 1000 : "Invalid value?" } Generics - Generics add stability to your code by making more of your bugs detectable at compile time. Code that uses generics has many benefits over non-generic code with: Stronger type checks at compile time. Elimination of casts. Enabling programming to implement generic algorithms. Enhanced for Loop - the enhanced for loop allows you to iterate through a collection without having to create an Iterator or without having to calculate beginning and end conditions for a counter variable. The enhanced for loop is the easiest of the new features to immediately incorporate in your code. In this tip you will see how the enhanced for loop replaces more traditional ways of sequentially accessing elements in a collection. void processList(Vector<string> list) { for (String item : list) { ... Autoboxing/Unboxing - This facility eliminates the drudgery of manual conversion between primitive types, such as int and wrapper types, such as Integer.  Hashtable<Integer, string=""> data = new Hashtable<>(); void add(int id, String value) { data.put(id, value); } Enumeration - Prior to JDK 5 enumerations were not typesafe, had no namespace, were brittle because they were compile time constants, and provided no informative print values. JDK 5 added support for enumerated types as a full-fledged class (dubbed an enum type). In addition to solving all the problems mentioned above, it allows you to add arbitrary methods and fields to an enum type, to implement arbitrary interfaces, and more. Enum types provide high-quality implementations of all the Object methods. They are Comparable and Serializable, and the serial form is designed to withstand arbitrary changes in the enum type. enum Season {WINTER, SPRING, SUMMER, FALL}; } private Season season; void setSeason(Season newSeason) { season = newSeason; } Varargs - Varargs eliminates the need for manually boxing up argument lists into an array when invoking methods that accept variable-length argument lists. The three periods after the final parameter's type indicate that the final argument may be passed as an array or as a sequence of arguments. Varargs can be used only in the final argument position. void warning(String format, String... parameters) { .. for(String p : parameters) { ...process(p);... } ... } Static Imports -The static import construct allows unqualified access to static members without inheriting from the type containing the static members. Instead, the program imports the members either individually or en masse. Once the static members have been imported, they may be used without qualification. The static import declaration is analogous to the normal import declaration. Where the normal import declaration imports classes from packages, allowing them to be used without package qualification, the static import declaration imports static members from classes, allowing them to be used without class qualification. import static data.Constants.RATIO; ... double r = Math.cos(RATIO * theta); Annotations - Annotations provide data about a program that is not part of the program itself. They have no direct effect on the operation of the code they annotate. There are a number of uses for annotations including information for the compiler, compiler-time and deployment-time processing, and run-time processing. They can be applied to a program's declarations of classes, fields, methods, and other program elements. @Deprecated public void clear(); The language changes from JDK 7 are little more familiar as they are mostly the changes from Project Coin: String in switch - Hey it only took us 18 years but the String class can be used in the expression of a switch statement. Fortunately for us it won't take that long for JavaME to adopt it. switch (arg) { case "-data": ... case "-out": ... Binary integral literals and underscores in numeric literals - Largely for readability, the integral types (byte, short, int, and long) can also be expressed using the binary number system. and any number of underscore characters (_) can appear anywhere between digits in a numerical literal. byte flags = 0b01001111; long mask = 0xfff0_ff08_4fff_0fffl; Multi-catch and more precise rethrow - A single catch block can handle more than one type of exception. In addition, the compiler performs more precise analysis of rethrown exceptions than earlier releases of Java SE. This enables you to specify more specific exception types in the throws clause of a method declaration. catch (IOException | InterruptedException ex) { logger.log(ex); throw ex; } Type Inference for Generic Instance Creation - Otherwise known as the diamond operator, the type arguments required to invoke the constructor of a generic class can be replaced with an empty set of type parameters (<>) as long as the compiler can infer the type arguments from the context.  map = new Hashtable<>(); Try-with-resource statement - The try-with-resources statement is a try statement that declares one or more resources. A resource is an object that must be closed after the program is finished with it. The try-with-resources statement ensures that each resource is closed at the end of the statement.  try (DataInputStream is = new DataInputStream(...)) { return is.readDouble(); } Simplified varargs method invocation - The Java compiler generates a warning at the declaration site of a varargs method or constructor with a non-reifiable varargs formal parameter. Java SE 7 introduced a compiler option -Xlint:varargs and the annotations @SafeVarargs and @SuppressWarnings({"unchecked", "varargs"}) to supress these warnings. On the library side there are new features that will be added to satisfy the language requirements above and some to improve the currently available set of APIs.  The library changes include: Collections update - New Collection, List, Set and Map, Iterable and Iteratator as well as implementations including Hashtable and Vector. Most of the work is too support generics String - New StringBuilder and CharSequence as well as a Stirng formatter. The javac compiler  now uses the the StringBuilder instead of String Buffer. Since StringBuilder is synchronized there is a performance increase which has necessitated the wahat String constructor works. Comparable interface - The comparable interface works with Collections, making it easier to reuse. Try with resources - Closeable and AutoCloseable Annotations - While support for Annotations is provided it will only be a compile time support. SuppressWarnings, Deprecated, Override NIO - There is a subset of NIO Buffer that have been in use on the of the graphics packages and needs to be pulled in and also support for NIO File IO subset. Platform extensibility via Service Providers (ServiceLoader) - ServiceLoader interface dos late bindings of interface to existing implementations. It helpe to package an interface and behavior of the implementation at a later point in time.Provider classes must have a zero-argument constructor so that they can be instantiated during loading. They are located and instantiated on demand and are identified via a provider-configuration file in the METAINF/services resource directory. This is a mechansim from Java SE. import com.XYZ.ServiceA; ServiceLoader<ServiceA> sl1= new ServiceLoader(ServiceA.class); Resources: META-INF/services/com.XYZ.ServiceA: ServiceAProvider1 ServiceAProvider2 ServiceAProvider3 META-INF/services/ServiceB: ServiceBProvider1 ServiceBProvider2 From JSR - I would rather use this list I think The Generic Connection Framework (GCF) was previously specified in a number of different JSRs including CLDC, MIDP, CDC 1.2, and JSR 197. JSR 360 represents a rare opportunity to consolidated and reintegrate parts that were duplicated in other specifications into a single specification, upgrade the APIs as well provide new functionality. The proposal is to specify a combined GCF specification that can be used with Java ME or Java SE and be backwards compatible with previous implementations. Because of size limitations as well as the complexity of the some features like InvokeDynamic and Unicode 6 will not be included. Additionally, any language or library changes in JDK 8 will be not be included. On the upside, with all the changes being made, backwards compatibility will still be maintained. JSR 360 is a major step forward for Java ME in terms of platform modernization, language alignment, and embedded support. If you're interested in following the progress of this JSR see the JSR's java.net project for details of the email lists, discussions groups.

    Read the article

  • How to mock a dynamic object

    - by Daniel Cazzulino
    Someone asked me how to mock a dynamic object with Moq, which might be non-obvious. Given the following interface definition: public interface IProject { string Name { get; } dynamic Data { get; } } When you try to setup the mock for the dynamic property values, you get:   What’s important to realize is that a dynamic object is just a plain object, whose properties happen to be resolved at runtime. Kinda like reflection, if you will: all public properties of whatever object happens to be the instance, will be resolved just fine at runtime. Therefore, one way to mock this dynamic is to just create an anonymous type with the properties we want, and set the dynamic property to return that:...Read full article

    Read the article

  • Producing a smooth mesh from density cloud and marching cubes

    - by Wardy
    Based on my results from this question I decided to build myself a 3D noise map containing float values in place of my existing boolean point values. The effect I'm trying to produce is something like this, rather than typical rolling hills; which should explain the "missing cubes" in the image below. If I render my density map in normal "minecraft mode" (1 block per point in the density map) varying the size of the cube based on the value in my density map (floats in the range 0 to 1) I get something like this: I'm now happy that I can produce a density map for the marching cubes algorithm (which will need a little tweaking) but for some reason when I run it through my implementation it's not producing what I expect. My problem is that I'm getting something like the first image in this answer to my previous question, when I want to achieve the effect in the second image. Upon further investigation I can't see how marching cubes does the "move vertex along the edge" type logic (i.e. the difference between the two images on my previous link). I see that it does do some interpolation, but I'm not convinced I have the correct understanding of what I think it should do, because the code in question appears to give the same result regardless of whether I use boolean or float values. I took the code from here which is a C# implementation of marching cubes, but instead of using the MarchingCubesPrimitive I modified it to accept an object of type IDrawable, containing lists for the various collections (vertices, normals, UVs, indices), the logic was otherwise untouched. My understanding is that given a very low isovalue the accuracy level of the surface being rendered should increase, so in short "less 45 degree slows more rolling hills" type mesh output. However this isn't what I'm seeing. Have I missed something or is the implementation flawed and need to be fixed? EDIT: A little more detail on what I am seeing when I "marching cube" the data. Ok so firstly, ignore the fact that the meshes created by the chunks don't "connect" (i'll probably raise another question about this later). Then look at the shaping of the island, it's too ... square, from the voxels rendered as boxes you get the impression there's a clean soft gradual hill and yet from the image there are sharp falling edges even in the most central areas where the gradient in the first image looks the most smooth. The data is "regenerated" each time I run this so no 2 islands come out the same, and it's purely random so not based on noise, but still, how can it look so smooth in 1 image and so not smooth in the other?

    Read the article

< Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >