Search Results

Search found 18576 results on 744 pages for 'lock screen'.

Page 165/744 | < Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >

  • Broken Package on Update Manager

    - by Widy Graycloud
    I dont know what's wrong with my update manager.. It says that the softwares that I installed was broken. Maybe because I force shutdown my laptop, because Ubuntu wont shutdown,showing up desktop wallpaper but not title bar and launcher, but It won't shut down (+that's another bug). I've just update the broken softwares. the size is 60 to 70 MB.. But It doesn't work. Now I cannot update or install any software from Update Manager or Ubuntu Software Center. Can anybody tellme what's wrong? This is what appears when I use Update Manager I use Ubuntu Software Center, and this message appeared I chose repair and when it update the broken softwares using Ubuntu Software Center. It failed. And show up this message. The problem is I can't update or install any program from Ubuntu Software Center and Device Manager anymore. (I closed allprograms include ubuntu software center,and device manager in this case). Some one helpme? I tried to use apt-get install -f in terminal but it shows message like this: E: Could not open lock file /var/lib/dpkg/lock - open (13: Permission denied) E: Unable to lock the administration directory (/var/lib/dpkg/), are you root?

    Read the article

  • Touchpad and Keyboard both stop working after long uptime

    - by Sepero
    I have an Asus N53SM laptop that I leave running for several weeks at a time. I never put it in hibernate or suspend, I only close the lid when I'm not using it. After a few days or weeks of running, the touchpad and keyboard will Both lock up (at the same time) for no apparent reason. I could be just surfing the internet when it happens. The touchpad and keyboard seem to only lock up when I'm actively using the laptop (not when idle), which may mean it's related to something I press, but I'm not sure? The touchpad never locks or unlocks when Pressing FN and the designated touchpad lock key (it does not seem to work on Linux). While the touchpad and keyboard are locked, I am able to plug in my USB mouse and successfully use it to control the screen cursor. I can also remotely get into the system with vnc and ssh, everything seems to run fine there as well. No processes appear out of control. It's just the laptops physical touchpad and keyboard that are locking up. How might I go about diagnosing this problem? What system logs to look at? (anything specific to look for in them?) Perhaps I should try reloading some modules? Any thing else I should inspect?

    Read the article

  • ????????????3?????

    - by Feng
    ?? ??blog?????oracle????????????,??????????????,??????: ?????????. ???????: ??????????,????????; ????????????,?” ???”??. 1. OS swapping/paging ??????concurrency??????? Oracle?????????, ??latch/mutex???????”?”,??????????????/???(????????????,??????????????????). ????OS??????swapping/paging????,???????????,??latch/mutex???????,????????????hung/slow???. ??swapping/paging??????: a). ???? b). ??????; ?????, ?????????????? c). ?????/????? ????????????????? ???????: Lock SGA, ??SGA(???latch/mutex)???pin???????swapping???. ???SGA??????,????large page(hugepage)??,??latch/mutex??/?????. 2. SGA resizing?????????? ?AMM/ASMM??????????, shared pool?buffer cache?????component????????????,??ora-4031???.??????????,???????resize????????????(?latch/mutex?????)?????, ?????????latch/mutex??. ????shared pool?resize??????,??latch/mutex???????. ?????????:  ?????bug; ???????????,??resize???????????????,???????????. ??bug?fix??????????impact, ???????????. ???????: 1). ??buffer cache?shared pool??(???????????,?????????) 2). ??resize???????16?? alter system set "_memory_broker_stat_interval"=999; Disable AMM/ASMM?????????,?????: ??ora-4031????????????. 3. DDL?????????? ??????????????????. ???????????DDL (??grant, ?????, ????????),???????????SQL?????invalidate?;????????SQL????????????,?????????hard parse ? SQL??????. ??????? “hardparse storm”, latch/mutex????????, ??library cache lock/row cache lock????; ??????????slow/hung. ???????: ???????????DDL ??????????,???????????,?? “????????????3?????"?

    Read the article

  • CentOS 5.7 keeps rebooting after fresh installation

    - by Wagner Maestrelli
    I have just installed CentOS 5.7 x86_64 on a new computer. The installation went on without any issues. But, after it finnished, the machine started to show an awkward behaviour: it restarts every time it tries to boot. It happens after all the services have been started. The screen just goes black and it shows an error message from the monitor: Input not supported. And then it reboots. I took a look at the logs, but I couldn't manage to find anything. Any help? Update Before doing the hardware diagnosis, as pointed out, I decided to make some tests. First, I changed the runlevel to 3, adding the 3 parameter at the end of the kernel command. Then, after logging in in text mode, I checked the xorg.conf file out for some problems regarding the screen resolution. There was nothing unexpected set. Well, if there had to be a problem with it, I couldn't start the X server at the command line, right? So, I typed startx and Gnome started! So, probably, it's not an issue with the screen resolution, I suppose. Then I selected the Log Out root... Gnome menu option and something odd happened: the screen went black, the Input not supported monitor error message was displayed and the system rebooted. Yes, the same problem I was having while trying to boot! After that, I decided to try yet another test: I removed the rhgb quiet parameters from the kernel command to see if some error would show up. Well, to my surprise, the boot went on without problems! The Gnome login screen showed up, I logged in and the session started. But then I selected the Shut Down... menu option and guess what? Same problem: black screen, same monitor error and the system rebooted. Yes, it rebooted, it did not shut down. I repeated both of the tests and the behaviours were the same. I really don't know what's going on. It seems to be an issue regarding the changing of the screen mode or something like that. Any ideas? Could this be a hardware problem? Or does it seem to be something regarding the system configuration?

    Read the article

  • Ubuntu 10.04 not detecting multiple monitors

    - by user28837
    I have 2 graphics cards, the output from the lspci: 01:00.0 VGA compatible controller: ATI Technologies Inc RV770 [Radeon HD 4850] 02:00.0 VGA compatible controller: ATI Technologies Inc RV710 [Radeon HD 4350] I have one monitor connected to the 4850 and 2 connected to the 4350. However when I go into System Preferences Monitors the only monitor shown is the one connected to the 4850. Is there something I need to enable for it to be able to use the other card? How do I get this to work. Thanks. As per request: X.Org X Server 1.7.6 Release Date: 2010-03-17 X Protocol Version 11, Revision 0 Build Operating System: Linux 2.6.24-25-server i686 Ubuntu Current Operating System: Linux jeff-desktop 2.6.32-22-generic-pae #33-Ubuntu SMP Wed Apr 28 14:57:29 UTC 2010 i686 Kernel command line: BOOT_IMAGE=/boot/vmlinuz-2.6.32-22-generic-pae root=UUID=852e1013-4ed6-40fd-a462-c29087888383 ro quiet splash Build Date: 23 April 2010 05:11:50PM xorg-server 2:1.7.6-2ubuntu7 (Bryce Harrington <[email protected]>) Current version of pixman: 0.16.4 Before reporting problems, check http://wiki.x.org to make sure that you have the latest version. Markers: (--) probed, (**) from config file, (==) default setting, (++) from command line, (!!) notice, (II) informational, (WW) warning, (EE) error, (NI) not implemented, (??) unknown. (==) Log file: "/var/log/Xorg.0.log", Time: Tue May 11 08:24:52 2010 (==) Using config file: "/etc/X11/xorg.conf" (==) Using config directory: "/usr/lib/X11/xorg.conf.d" (==) No Layout section. Using the first Screen section. (**) |-->Screen "Default Screen" (0) (**) | |-->Monitor "<default monitor>" (==) No device specified for screen "Default Screen". Using the first device section listed. (**) | |-->Device "Default Device" (==) No monitor specified for screen "Default Screen". Using a default monitor configuration. (==) Automatically adding devices (==) Automatically enabling devices (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. Entry deleted from font path. (==) FontPath set to: /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/75dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, /usr/share/fonts/X11/75dpi, /var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType, built-ins (==) ModulePath set to "/usr/lib/xorg/extra-modules,/usr/lib/xorg/modules" (II) The server relies on udev to provide the list of input devices. If no devices become available, reconfigure udev or disable AutoAddDevices. (II) Loader magic: 0x81f0e80 (II) Module ABI versions: X.Org ANSI C Emulation: 0.4 X.Org Video Driver: 6.0 X.Org XInput driver : 7.0 X.Org Server Extension : 2.0 (++) using VT number 7 (--) PCI:*(0:1:0:0) 1002:9442:174b:e104 ATI Technologies Inc RV770 [Radeon HD 4850] rev 0, Mem @ 0xc0000000/268435456, 0xfe7e0000/65536, I/O @ 0x0000a000/256, BIOS @ 0x????????/131072 (--) PCI: (0:2:0:0) 1002:954f:1462:1618 ATI Technologies Inc RV710 [Radeon HD 4350] rev 0, Mem @ 0xd0000000/268435456, 0xfe8e0000/65536, I/O @ 0x0000b000/256, BIOS @ 0x????????/131072 (WW) Open ACPI failed (/var/run/acpid.socket) (No such file or directory) (II) "extmod" will be loaded by default. (II) "dbe" will be loaded by default. (II) "glx" will be loaded. This was enabled by default and also specified in the config file. (II) "record" will be loaded by default. (II) "dri" will be loaded by default. (II) "dri2" will be loaded by default. (II) LoadModule: "glx" (II) Loading /usr/lib/xorg/extra-modules/modules/extensions/libglx.so (II) Module glx: vendor="FireGL - ATI Technologies Inc." compiled for 7.5.0, module version = 1.0.0 (II) Loading extension GLX (II) LoadModule: "extmod" (II) Loading /usr/lib/xorg/modules/extensions/libextmod.so (II) Module extmod: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.0.0 Module class: X.Org Server Extension ABI class: X.Org Server Extension, version 2.0 (II) Loading extension MIT-SCREEN-SAVER (II) Loading extension XFree86-VidModeExtension (II) Loading extension XFree86-DGA (II) Loading extension DPMS (II) Loading extension XVideo (II) Loading extension XVideo-MotionCompensation (II) Loading extension X-Resource (II) LoadModule: "dbe" (II) Loading /usr/lib/xorg/modules/extensions/libdbe.so (II) Module dbe: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.0.0 Module class: X.Org Server Extension ABI class: X.Org Server Extension, version 2.0 (II) Loading extension DOUBLE-BUFFER (II) LoadModule: "record" (II) Loading /usr/lib/xorg/modules/extensions/librecord.so (II) Module record: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.13.0 Module class: X.Org Server Extension ABI class: X.Org Server Extension, version 2.0 (II) Loading extension RECORD (II) LoadModule: "dri" (II) Loading /usr/lib/xorg/modules/extensions/libdri.so (II) Module dri: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.0.0 ABI class: X.Org Server Extension, version 2.0 (II) Loading extension XFree86-DRI (II) LoadModule: "dri2" (II) Loading /usr/lib/xorg/modules/extensions/libdri2.so (II) Module dri2: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.1.0 ABI class: X.Org Server Extension, version 2.0 (II) Loading extension DRI2 (II) LoadModule: "fglrx" (II) Loading /usr/lib/xorg/extra-modules/modules/drivers/fglrx_drv.so (II) Module fglrx: vendor="FireGL - ATI Technologies Inc." compiled for 1.7.1, module version = 8.72.11 Module class: X.Org Video Driver (II) Loading sub module "fglrxdrm" (II) LoadModule: "fglrxdrm" (II) Loading /usr/lib/xorg/extra-modules/modules/linux/libfglrxdrm.so (II) Module fglrxdrm: vendor="FireGL - ATI Technologies Inc." compiled for 1.7.1, module version = 8.72.11 (II) ATI Proprietary Linux Driver Version Identifier:8.72.11 (II) ATI Proprietary Linux Driver Release Identifier: 8.723.1 (II) ATI Proprietary Linux Driver Build Date: Apr 8 2010 21:40:29 (II) Primary Device is: PCI 01@00:00:0 (WW) Falling back to old probe method for fglrx (II) Loading PCS database from /etc/ati/amdpcsdb (--) Assigning device section with no busID to primary device (WW) fglrx: No matching Device section for instance (BusID PCI:0@2:0:0) found (--) Chipset Supported AMD Graphics Processor (0x9442) found (WW) fglrx: No matching Device section for instance (BusID PCI:0@1:0:1) found (WW) fglrx: No matching Device section for instance (BusID PCI:0@2:0:1) found (**) ChipID override: 0x954F (**) Chipset Supported AMD Graphics Processor (0x954F) found (II) AMD Video driver is running on a device belonging to a group targeted for this release (II) AMD Video driver is signed (II) fglrx(0): pEnt->device->identifier=0x9428aa0 (II) pEnt->device->identifier=(nil) (II) fglrx(0): === [atiddxPreInit] === begin (II) Loading sub module "vgahw" (II) LoadModule: "vgahw" (II) Loading /usr/lib/xorg/modules/libvgahw.so (II) Module vgahw: vendor="X.Org Foundation" compiled for 1.7.6, module version = 0.1.0 ABI class: X.Org Video Driver, version 6.0 (II) fglrx(0): Creating default Display subsection in Screen section "Default Screen" for depth/fbbpp 24/32 (**) fglrx(0): Depth 24, (--) framebuffer bpp 32 (II) fglrx(0): Pixel depth = 24 bits stored in 4 bytes (32 bpp pixmaps) (==) fglrx(0): Default visual is TrueColor (==) fglrx(0): RGB weight 888 (II) fglrx(0): Using 8 bits per RGB (==) fglrx(0): Buffer Tiling is ON (II) Loading sub module "fglrxdrm" (II) LoadModule: "fglrxdrm" (II) Reloading /usr/lib/xorg/extra-modules/modules/linux/libfglrxdrm.so ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiOpenByBusid: Searching for BusID PCI:1:0:0 ukiOpenDevice: node name is /dev/ati/card0 ukiOpenDevice: open result is 10, (OK) ukiOpenByBusid: ukiOpenMinor returns 10 ukiOpenByBusid: ukiGetBusid reports PCI:2:0:0 ukiOpenDevice: node name is /dev/ati/card1 ukiOpenDevice: open result is 10, (OK) ukiOpenByBusid: ukiOpenMinor returns 10 ukiOpenByBusid: ukiGetBusid reports PCI:1:0:0 ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiOpenByBusid: Searching for BusID PCI:2:0:0 ukiOpenDevice: node name is /dev/ati/card0 ukiOpenDevice: open result is 11, (OK) ukiOpenByBusid: ukiOpenMinor returns 11 ukiOpenByBusid: ukiGetBusid reports PCI:2:0:0 (--) fglrx(0): Chipset: "ATI Radeon HD 4800 Series" (Chipset = 0x9442) (--) fglrx(0): (PciSubVendor = 0x174b, PciSubDevice = 0xe104) (==) fglrx(0): board vendor info: third party graphics adapter - NOT original ATI (--) fglrx(0): Linear framebuffer (phys) at 0xc0000000 (--) fglrx(0): MMIO registers at 0xfe7e0000 (--) fglrx(0): I/O port at 0x0000a000 (==) fglrx(0): ROM-BIOS at 0x000c0000 (II) fglrx(0): AC Adapter is used (II) fglrx(0): Primary V_BIOS segment is: 0xc000 (II) Loading sub module "vbe" (II) LoadModule: "vbe" (II) Loading /usr/lib/xorg/modules/libvbe.so (II) Module vbe: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.1.0 ABI class: X.Org Video Driver, version 6.0 (II) fglrx(0): VESA BIOS detected (II) fglrx(0): VESA VBE Version 3.0 (II) fglrx(0): VESA VBE Total Mem: 16384 kB (II) fglrx(0): VESA VBE OEM: ATI ATOMBIOS (II) fglrx(0): VESA VBE OEM Software Rev: 11.13 (II) fglrx(0): VESA VBE OEM Vendor: (C) 1988-2005, ATI Technologies Inc. (II) fglrx(0): VESA VBE OEM Product: RV770 (II) fglrx(0): VESA VBE OEM Product Rev: 01.00 (II) fglrx(0): ATI Video BIOS revision 9 or later detected (--) fglrx(0): Video RAM: 524288 kByte, Type: GDDR3 (II) fglrx(0): PCIE card detected (--) fglrx(0): Using per-process page tables (PPPT) as GART. (WW) fglrx(0): board is an unknown third party board, chipset is supported (--) fglrx(0): Chipset: "ATI Radeon HD 4300/4500 Series" (Chipset = 0x954f) (--) fglrx(0): (PciSubVendor = 0x1462, PciSubDevice = 0x1618) (==) fglrx(0): board vendor info: third party graphics adapter - NOT original ATI (--) fglrx(0): Linear framebuffer (phys) at 0xd0000000 (--) fglrx(0): MMIO registers at 0xfe8e0000 (--) fglrx(0): I/O port at 0x0000b000 (==) fglrx(0): ROM-BIOS at 0x000c0000 (II) fglrx(0): AC Adapter is used (II) fglrx(0): Invalid ATI BIOS from int10, the adapter is not VGA-enabled (II) fglrx(0): ATI Video BIOS revision 9 or later detected (--) fglrx(0): Video RAM: 524288 kByte, Type: DDR2 (II) fglrx(0): PCIE card detected (--) fglrx(0): Using per-process page tables (PPPT) as GART. (WW) fglrx(0): board is an unknown third party board, chipset is supported (II) fglrx(0): Using adapter: 1:0.0. (II) fglrx(0): [FB] MC range(MCFBBase = 0xf00000000, MCFBSize = 0x20000000) (II) fglrx(0): Interrupt handler installed at IRQ 31. (II) fglrx(0): Using adapter: 2:0.0. (II) fglrx(0): [FB] MC range(MCFBBase = 0xf00000000, MCFBSize = 0x20000000) (II) fglrx(0): RandR 1.2 support is enabled! (II) fglrx(0): RandR 1.2 rotation support is enabled! (==) fglrx(0): Center Mode is disabled (II) Loading sub module "fb" (II) LoadModule: "fb" (II) Loading /usr/lib/xorg/modules/libfb.so (II) Module fb: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.0.0 ABI class: X.Org ANSI C Emulation, version 0.4 (II) Loading sub module "ddc" (II) LoadModule: "ddc" (II) Module "ddc" already built-in (II) fglrx(0): Finished Initialize PPLIB! (II) Loading sub module "ddc" (II) LoadModule: "ddc" (II) Module "ddc" already built-in (II) fglrx(0): Connected Display0: DFP on external TMDS [tmds2] (II) fglrx(0): Display0 EDID data --------------------------- (II) fglrx(0): Manufacturer: DEL Model: a038 Serial#: 810829397 (II) fglrx(0): Year: 2008 Week: 51 (II) fglrx(0): EDID Version: 1.3 (II) fglrx(0): Digital Display Input (II) fglrx(0): Max Image Size [cm]: horiz.: 53 vert.: 30 (II) fglrx(0): Gamma: 2.20 (II) fglrx(0): DPMS capabilities: StandBy Suspend Off (II) fglrx(0): Supported color encodings: RGB 4:4:4 YCrCb 4:4:4 (II) fglrx(0): Default color space is primary color space (II) fglrx(0): First detailed timing is preferred mode (II) fglrx(0): redX: 0.640 redY: 0.330 greenX: 0.300 greenY: 0.600 (II) fglrx(0): blueX: 0.150 blueY: 0.060 whiteX: 0.312 whiteY: 0.329 (II) fglrx(0): Supported established timings: (II) fglrx(0): 720x400@70Hz (II) fglrx(0): 640x480@60Hz (II) fglrx(0): 640x480@75Hz (II) fglrx(0): 800x600@60Hz (II) fglrx(0): 800x600@75Hz (II) fglrx(0): 1024x768@60Hz (II) fglrx(0): 1024x768@75Hz (II) fglrx(0): 1280x1024@75Hz (II) fglrx(0): Manufacturer's mask: 0 (II) fglrx(0): Supported standard timings: (II) fglrx(0): #0: hsize: 1152 vsize 864 refresh: 75 vid: 20337 (II) fglrx(0): #1: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 (II) fglrx(0): #2: hsize: 1920 vsize 1080 refresh: 60 vid: 49361 (II) fglrx(0): Supported detailed timing: (II) fglrx(0): clock: 148.5 MHz Image Size: 531 x 298 mm (II) fglrx(0): h_active: 1920 h_sync: 2008 h_sync_end 2052 h_blank_end 2200 h_border: 0 (II) fglrx(0): v_active: 1080 v_sync: 1084 v_sync_end 1089 v_blanking: 1125 v_border: 0 (II) fglrx(0): Serial No: Y183D8CF0TFU (II) fglrx(0): Monitor name: DELL S2409W (II) fglrx(0): Ranges: V min: 50 V max: 76 Hz, H min: 30 H max: 83 kHz, PixClock max 170 MHz (II) fglrx(0): EDID (in hex): (II) fglrx(0): 00ffffffffffff0010ac38a055465430 (II) fglrx(0): 3312010380351e78eeee91a3544c9926 (II) fglrx(0): 0f5054a54b00714f8180d1c001010101 (II) fglrx(0): 010101010101023a801871382d40582c (II) fglrx(0): 4500132a2100001e000000ff00593138 (II) fglrx(0): 3344384346305446550a000000fc0044 (II) fglrx(0): 454c4c205332343039570a20000000fd (II) fglrx(0): 00324c1e5311000a2020202020200059 (II) fglrx(0): End of Display0 EDID data -------------------- (II) fglrx(0): Output DFP2 has no monitor section (II) fglrx(0): Output DFP_EXTTMDS has no monitor section (II) fglrx(0): Output CRT1 has no monitor section (II) fglrx(0): Output CRT2 has no monitor section (II) fglrx(0): Output DFP2 disconnected (II) fglrx(0): Output DFP_EXTTMDS connected (II) fglrx(0): Output CRT1 disconnected (II) fglrx(0): Output CRT2 disconnected (II) fglrx(0): Using exact sizes for initial modes (II) fglrx(0): Output DFP_EXTTMDS using initial mode 1920x1080 (II) fglrx(0): DPI set to (96, 96) (II) fglrx(0): Adapter ATI Radeon HD 4800 Series has 2 configurable heads and 1 displays connected. (==) fglrx(0): QBS disabled (==) fglrx(0): PseudoColor visuals disabled (II) Loading sub module "ramdac" (II) LoadModule: "ramdac" (II) Module "ramdac" already built-in (==) fglrx(0): NoAccel = NO (==) fglrx(0): NoDRI = NO (==) fglrx(0): Capabilities: 0x00000000 (==) fglrx(0): CapabilitiesEx: 0x00000000 (==) fglrx(0): OpenGL ClientDriverName: "fglrx_dri.so" (==) fglrx(0): UseFastTLS=0 (==) fglrx(0): BlockSignalsOnLock=1 (--) Depth 24 pixmap format is 32 bpp (II) Loading extension ATIFGLRXDRI (II) fglrx(0): doing swlDriScreenInit (II) fglrx(0): swlDriScreenInit for fglrx driver ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiOpenByBusid: Searching for BusID PCI:1:0:0 ukiOpenDevice: node name is /dev/ati/card0 ukiOpenDevice: open result is 17, (OK) ukiOpenByBusid: ukiOpenMinor returns 17 ukiOpenByBusid: ukiGetBusid reports PCI:2:0:0 ukiOpenDevice: node name is /dev/ati/card1 ukiOpenDevice: open result is 17, (OK) ukiOpenByBusid: ukiOpenMinor returns 17 ukiOpenByBusid: ukiGetBusid reports PCI:1:0:0 (II) fglrx(0): [uki] DRM interface version 1.0 (II) fglrx(0): [uki] created "fglrx" driver at busid "PCI:1:0:0" (II) fglrx(0): [uki] added 8192 byte SAREA at 0x2000 (II) fglrx(0): [uki] mapped SAREA 0x2000 to 0xb6996000 (II) fglrx(0): [uki] framebuffer handle = 0x3000 (II) fglrx(0): [uki] added 1 reserved context for kernel (II) fglrx(0): swlDriScreenInit done (II) fglrx(0): Kernel Module Version Information: (II) fglrx(0): Name: fglrx (II) fglrx(0): Version: 8.72.11 (II) fglrx(0): Date: Apr 8 2010 (II) fglrx(0): Desc: ATI FireGL DRM kernel module (II) fglrx(0): Kernel Module version matches driver. (II) fglrx(0): Kernel Module Build Time Information: (II) fglrx(0): Build-Kernel UTS_RELEASE: 2.6.32-22-generic-pae (II) fglrx(0): Build-Kernel MODVERSIONS: yes (II) fglrx(0): Build-Kernel __SMP__: yes (II) fglrx(0): Build-Kernel PAGE_SIZE: 0x1000 (II) fglrx(0): [uki] register handle = 0x00004000 (II) fglrx(0): DRI initialization successfull! (II) fglrx(0): FBADPhys: 0xf00000000 FBMappedSize: 0x01068000 (II) fglrx(0): FBMM initialized for area (0,0)-(1920,2240) (II) fglrx(0): FBMM auto alloc for area (0,0)-(1920,1920) (front color buffer - assumption) (II) fglrx(0): Largest offscreen area available: 1920 x 320 (==) fglrx(0): Backing store disabled (II) Loading extension FGLRXEXTENSION (==) fglrx(0): DPMS enabled (II) fglrx(0): Initialized in-driver Xinerama extension (**) fglrx(0): Textured Video is enabled. (II) LoadModule: "glesx" (II) Loading /usr/lib/xorg/extra-modules/modules/glesx.so (II) Module glesx: vendor="X.Org Foundation" compiled for 1.7.1, module version = 1.0.0 (II) Loading extension GLESX (II) Loading sub module "xaa" (II) LoadModule: "xaa" (II) Loading /usr/lib/xorg/modules/libxaa.so (II) Module xaa: vendor="X.Org Foundation" compiled for 1.7.6, module version = 1.2.1 ABI class: X.Org Video Driver, version 6.0 (II) fglrx(0): GLESX enableFlags = 94 (II) fglrx(0): Using XFree86 Acceleration Architecture (XAA) Screen to screen bit blits Solid filled rectangles Solid Horizontal and Vertical Lines Driver provided ScreenToScreenBitBlt replacement Driver provided FillSolidRects replacement (II) fglrx(0): GLESX is enabled (II) LoadModule: "amdxmm" (II) Loading /usr/lib/xorg/extra-modules/modules/amdxmm.so (II) Module amdxmm: vendor="X.Org Foundation" compiled for 1.7.1, module version = 1.0.0 (II) Loading extension AMDXVOPL (II) fglrx(0): UVD2 feature is available (II) fglrx(0): Enable composite support successfully (II) fglrx(0): X context handle = 0x1 (II) fglrx(0): [DRI] installation complete (==) fglrx(0): Silken mouse enabled (==) fglrx(0): Using HW cursor of display infrastructure! (II) fglrx(0): Disabling in-server RandR and enabling in-driver RandR 1.2. (--) RandR disabled (II) Found 2 VGA devices: arbiter wrapping enabled (II) Initializing built-in extension Generic Event Extension (II) Initializing built-in extension SHAPE (II) Initializing built-in extension MIT-SHM (II) Initializing built-in extension XInputExtension (II) Initializing built-in extension XTEST (II) Initializing built-in extension BIG-REQUESTS (II) Initializing built-in extension SYNC (II) Initializing built-in extension XKEYBOARD (II) Initializing built-in extension XC-MISC (II) Initializing built-in extension SECURITY (II) Initializing built-in extension XINERAMA (II) Initializing built-in extension XFIXES (II) Initializing built-in extension RENDER (II) Initializing built-in extension RANDR (II) Initializing built-in extension COMPOSITE (II) Initializing built-in extension DAMAGE ukiDynamicMajor: found major device number 251 ukiDynamicMajor: found major device number 251 ukiOpenByBusid: Searching for BusID PCI:1:0:0 ukiOpenDevice: node name is /dev/ati/card0 ukiOpenDevice: open result is 18, (OK) ukiOpenByBusid: ukiOpenMinor returns 18 ukiOpenByBusid: ukiGetBusid reports PCI:2:0:0 ukiOpenDevice: node name is /dev/ati/card1 ukiOpenDevice: open result is 18, (OK) ukiOpenByBusid: ukiOpenMinor returns 18 ukiOpenByBusid: ukiGetBusid reports PCI:1:0:0 (II) AIGLX: Loaded and initialized /usr/lib/dri/fglrx_dri.so (II) GLX: Initialized DRI GL provider for screen 0 (II) fglrx(0): Enable the clock gating! (II) fglrx(0): Setting screen physical size to 507 x 285 (II) XKB: reuse xkmfile /var/lib/xkb/server-B20D7FC79C7F597315E3E501AEF10E0D866E8E92.xkm (II) config/udev: Adding input device Power Button (/dev/input/event1) (**) Power Button: Applying InputClass "evdev keyboard catchall" (II) LoadModule: "evdev" (II) Loading /usr/lib/xorg/modules/input/evdev_drv.so (II) Module evdev: vendor="X.Org Foundation" compiled for 1.7.6, module version = 2.3.2 Module class: X.Org XInput Driver ABI class: X.Org XInput driver, version 7.0 (**) Power Button: always reports core events (**) Power Button: Device: "/dev/input/event1" (II) Power Button: Found keys (II) Power Button: Configuring as keyboard (II) XINPUT: Adding extended input device "Power Button" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device Power Button (/dev/input/event0) (**) Power Button: Applying InputClass "evdev keyboard catchall" (**) Power Button: always reports core events (**) Power Button: Device: "/dev/input/event0" (II) Power Button: Found keys (II) Power Button: Configuring as keyboard (II) XINPUT: Adding extended input device "Power Button" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device Logitech USB-PS/2 Optical Mouse (/dev/input/event3) (**) Logitech USB-PS/2 Optical Mouse: Applying InputClass "evdev pointer catchall" (**) Logitech USB-PS/2 Optical Mouse: always reports core events (**) Logitech USB-PS/2 Optical Mouse: Device: "/dev/input/event3" (II) Logitech USB-PS/2 Optical Mouse: Found 12 mouse buttons (II) Logitech USB-PS/2 Optical Mouse: Found scroll wheel(s) (II) Logitech USB-PS/2 Optical Mouse: Found relative axes (II) Logitech USB-PS/2 Optical Mouse: Found x and y relative axes (II) Logitech USB-PS/2 Optical Mouse: Configuring as mouse (**) Logitech USB-PS/2 Optical Mouse: YAxisMapping: buttons 4 and 5 (**) Logitech USB-PS/2 Optical Mouse: EmulateWheelButton: 4, EmulateWheelInertia: 10, EmulateWheelTimeout: 200 (II) XINPUT: Adding extended input device "Logitech USB-PS/2 Optical Mouse" (type: MOUSE) (II) Logitech USB-PS/2 Optical Mouse: initialized for relative axes. (II) config/udev: Adding input device Logitech USB-PS/2 Optical Mouse (/dev/input/mouse1) (II) No input driver/identifier specified (ignoring) (II) config/udev: Adding input device Logitech USB Multimedia Keyboard (/dev/input/event4) (**) Logitech USB Multimedia Keyboard: Applying InputClass "evdev keyboard catchall" (**) Logitech USB Multimedia Keyboard: always reports core events (**) Logitech USB Multimedia Keyboard: Device: "/dev/input/event4" (II) Logitech USB Multimedia Keyboard: Found keys (II) Logitech USB Multimedia Keyboard: Configuring as keyboard (II) XINPUT: Adding extended input device "Logitech USB Multimedia Keyboard" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device Logitech USB Multimedia Keyboard (/dev/input/event5) (**) Logitech USB Multimedia Keyboard: Applying InputClass "evdev keyboard catchall" (**) Logitech USB Multimedia Keyboard: always reports core events (**) Logitech USB Multimedia Keyboard: Device: "/dev/input/event5" (II) Logitech USB Multimedia Keyboard: Found keys (II) Logitech USB Multimedia Keyboard: Configuring as keyboard (II) XINPUT: Adding extended input device "Logitech USB Multimedia Keyboard" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device KEYBOARD (/dev/input/event6) (**) KEYBOARD: Applying InputClass "evdev keyboard catchall" (**) KEYBOARD: always reports core events (**) KEYBOARD: Device: "/dev/input/event6" (II) KEYBOARD: Found keys (II) KEYBOARD: Configuring as keyboard (II) XINPUT: Adding extended input device "KEYBOARD" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (II) config/udev: Adding input device KEYBOARD (/dev/input/event7) (**) KEYBOARD: Applying InputClass "evdev keyboard catchall" (**) KEYBOARD: always reports core events (**) KEYBOARD: Device: "/dev/input/event7" (II) KEYBOARD: Found 14 mouse buttons (II) KEYBOARD: Found scroll wheel(s) (II) KEYBOARD: Found relative axes (II) KEYBOARD: Found keys (II) KEYBOARD: Configuring as mouse (II) KEYBOARD: Configuring as keyboard (**) KEYBOARD: YAxisMapping: buttons 4 and 5 (**) KEYBOARD: EmulateWheelButton: 4, EmulateWheelInertia: 10, EmulateWheelTimeout: 200 (II) XINPUT: Adding extended input device "KEYBOARD" (type: KEYBOARD) (**) Option "xkb_rules" "evdev" (**) Option "xkb_model" "pc105" (**) Option "xkb_layout" "us" (EE) KEYBOARD: failed to initialize for relative axes. (II) config/udev: Adding input device KEYBOARD (/dev/input/mouse2) (II) No input driver/identifier specified (ignoring) (II) config/udev: Adding input device Macintosh mouse button emulation (/dev/input/event2) (**) Macintosh mouse button emulation: Applying InputClass "evdev pointer catchall" (**) Macintosh mouse button emulation: always reports core events (**) Macintosh mouse button emulation: Device: "/dev/input/event2" (II) Macintosh mouse button emulation: Found 3 mouse buttons (II) Macintosh mouse button emulation: Found relative axes (II) Macintosh mouse button emulation: Found x and y relative axes (II) Macintosh mouse button emulation: Configuring as mouse (**) Macintosh mouse button emulation: YAxisMapping: buttons 4 and 5 (**) Macintosh mouse button emulation: EmulateWheelButton: 4, EmulateWheelInertia: 10, EmulateWheelTimeout: 200 (II) XINPUT: Adding extended input device "Macintosh mouse button emulation" (type: MOUSE) (II) Macintosh mouse button emulation: initialized for relative axes. (II) config/udev: Adding input device Macintosh mouse button emulation (/dev/input/mouse0) (II) No input driver/identifier specified (ignoring) (II) fglrx(0): Restoring Recent Mode via PCS is not supported in RANDR 1.2 capable environments

    Read the article

  • Python: nonblocking read from stdout of threaded subprocess

    - by sberry2A
    I have a script (worker.py) that prints unbuffered output in the form... 1 2 3 . . . n where n is some constant number of iterations a loop in this script will make. In another script (service_controller.py) I start a number of threads, each of which starts a subprocess using subprocess.Popen(stdout=subprocess.PIPE, ...); Now, in my main thread (service_controller.py) I want to read the output of each thread's worker.py subprocess and use it to calculate an estimate for the time remaining till completion. I have all of the logic working that reads the stdout from worker.py and determines the last printed number. The problem is that I can not figure out how to do this in a non-blocking way. If I read a constant bufsize then each read will end up waiting for the same data from each of the workers. I have tried numerous ways including using fcntl, select + os.read, etc. What is my best option here? I can post my source if needed, but I figured the explanation describes the problem well enough. Thanks for any help here. EDIT Adding sample code I have a worker that starts a subprocess. class WorkerThread(threading.Thread): def __init__(self): self.completed = 0 self.process = None self.lock = threading.RLock() threading.Thread.__init__(self) def run(self): cmd = ["/path/to/script", "arg1", "arg2"] self.process = subprocess.Popen(cmd, stdout=subprocess.PIPE, bufsize=1, shell=False) #flags = fcntl.fcntl(self.process.stdout, fcntl.F_GETFL) #fcntl.fcntl(self.process.stdout.fileno(), fcntl.F_SETFL, flags | os.O_NONBLOCK) def get_completed(self): self.lock.acquire(); fd = select.select([self.process.stdout.fileno()], [], [], 5)[0] if fd: self.data += os.read(fd, 1) try: self.completed = int(self.data.split("\n")[-2]) except IndexError: pass self.lock.release() return self.completed I then have a ThreadManager. class ThreadManager(): def __init__(self): self.pool = [] self.running = [] self.lock = threading.Lock() def clean_pool(self, pool): for worker in [x for x in pool is not x.isAlive()]: worker.join() pool.remove(worker) del worker return pool def run(self, concurrent=5): while len(self.running) + len(self.pool) > 0: self.clean_pool(self.running) n = min(max(concurrent - len(self.running), 0), len(self.pool)) if n > 0: for worker in self.pool[0:n]: worker.start() self.running.extend(self.pool[0:n]) del self.pool[0:n] time.sleep(.01) for worker in self.running + self.pool: worker.join() and some code to run it. threadManager = ThreadManager() for i in xrange(0, 5): threadManager.pool.append(WorkerThread()) threadManager.run() I have stripped out a log of the other code in hopes to try to pinpoint the issue.

    Read the article

  • OpenGL FrameBuffer Objects weird behavior

    - by Ben Jones
    My algorithm is this: Render the scene to a FBO with shadow mapping from multiple locations Render the scene to the screen with shadow mapping ...black magic that I still have to imlement... Combine the samples from step 1 with the image from step 2 I'm trying to debug steps 1 and 2 and am coming across STRANGE behavior. My algorithm for each shadow mapped pass is: render the scene to a FBO connected to a depth array texture from the POV of each light render the scene from the viewpoint and use vertex/frag shaders to compare the depths When I run my algorithm this way: render from point to FBO render from point to screen glutSwapBuffers() The normal vectors in the screen pass appear to be incorrect (inverted possibly). I'm pretty sure that's the issue because my diffuse lighting calculation is incorrect, but the material colors are correct, and the shadows appear in the correct places. So, it seems like the only thing that could be the culprit is the normals. However if I do render from point to FBO render from point to Screen glutSwapBuffers() //wrong here render from point to Screen glutSwapBuffers() the second pass is correct. I assume there's a problem with my framebuffer calls. Can anyone see what the problem is from the log below? Its from a bugle trace grepped for 'buffer' with a few edits to make it a little more clear. Thanks! [INFO] trace.call: glGenFramebuffersEXT(1, 0xdfeb90 - { 1 }) [INFO] trace.call: glGenFramebuffersEXT(1, 0xdfebac - { 2 }) [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glDrawBuffer(GL_NONE) [INFO] trace.call: glReadBuffer(GL_NONE) [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) //start render to FBO [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 2) [INFO] trace.call: glReadBuffer(GL_NONE) [INFO] trace.call: glFramebufferTexture2DEXT(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 2, 0) [INFO] trace.call: glFramebufferTexture2DEXT(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, 3, 0) [INFO] trace.call: glDrawBuffer(GL_COLOR_ATTACHMENT0) //bind to the FBO attached to a depth tex array for shadows [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry //bind to the FBO I want the shadow mapped image rendered to [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 2) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) //draw geometry //draw to screen pass //again shadow mapping FBO [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry //bind to the screen [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) //finished, swap buffers [INFO] trace.call: glXSwapBuffers(0xd5fc10, 0x05800002) //INCORRECT OUTPUT //second try at render to screen: [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) draw geometry [INFO] trace.call: glXSwapBuffers(0xd5fc10, 0x05800002) //correct output

    Read the article

  • Unlocking a mutex from a different thread (C++)

    - by dan
    I'm using the C++ boost::thread library, which in my case means I'm using pthreads. Officially, a mutex must be unlocked from the same thread which locks it, and I want the effect of being able to lock in one thread and then unlock in another. There are many ways to accomplish this. One possibility would be to write a new mutex class which allows this behavior. For example: class inter_thread_mutex{ bool locked; boost::mutex mx; boost::condition_variable cv; public: void lock(){ boost::unique_lock<boost::mutex> lck(mx); while(locked) cv.wait(lck); locked=true; } void unlock(){ { boost::lock_guard<boost::mutex> lck(mx); if(!locked) error(); locked=false; } cv.notify_one(); } // bool try_lock(); void error(); etc. } I should point out that the above code doesn't guarantee FIFO access, since if one thread calls lock() while another calls unlock(), this first thread may acquire the lock ahead of other threads which are waiting. (Come to think of it, the boost::thread documentation doesn't appear to make any explicit scheduling guarantees for either mutexes or condition variables). But let's just ignore that (and any other bugs) for now. My question is, if I decide to go this route, would I be able to use such a mutex as a model for the boost Lockable concept. For example, would anything go wrong if I use a boost::unique_lock< inter_thread_mutex for RAII-style access, and then pass this lock to boost::condition_variable_any.wait(), etc. On one hand I don't see why not. On the other hand, "I don't see why not" is usually a very bad way of determining whether something will work. The reason I ask is that if it turns out that I have to write wrapper classes for RAII locks and condition variables and whatever else, then I'd rather just find some other way to achieve the same effect.

    Read the article

  • hiding menu on click

    - by rupesh
    Hi all I am using NullField() in one of my screen so that the default focus should not be on any of the button . but when i am clicking on the screen where no field is there , menu screen is being displayed. i dont want that menu screen to be poped up tough it should open when i click menu button. Thanks alot

    Read the article

  • Zero code coverage with cobertura 1.9.2 but tests are working

    - by eraonel
    I run the code coverage target: <junit fork="yes" dir="${basedir}" failureProperty="test.failed"> <!-- Note the classpath order: instrumented classes are before the original (uninstrumented) classes. This is important. --> <classpath path="${instrumented.dir}" /> <classpath path="${classes.dir}" /> <classpath refid="classpath" /> <!-- The instrumented classes reference classes used by the Cobertura runtime, so Cobertura and its dependencies must be on your classpath. --> <classpath refid="cobertura.classpath" /> <formatter type="xml" /> <!--<test name="${testcase}" todir="${reports.xml.dir}" if="testcase" />--> <batchtest fork="yes" todir="${reports.xml.dir}"> <fileset dir="${classes.dir}"> <include name="**/generated/AllTests.class" /> </fileset> </batchtest> </junit> <junitreport todir="${reports.xml.dir}"> <fileset dir="${reports.xml.dir}"> <include name="TEST-*.xml" /> </fileset> <report format="frames" todir="${reports.html.dir}" /> </junitreport> Then I get the following output ( when using fork="true"): java.lang.reflect.InvocationTargetException at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at net.sourceforge.cobertura.util.FileLocker.lock(FileLocker.java:124) at net.sourceforge.cobertura.coveragedata.ProjectData.saveGlobalProjectData(ProjectData.java:331) at net.sourceforge.cobertura.coveragedata.SaveTimer.run(SaveTimer.java:31) at java.lang.Thread.run(Thread.java:595) Caused by: java.io.IOException: No locks available at sun.nio.ch.FileChannelImpl.lock0(Native Method) at sun.nio.ch.FileChannelImpl.lock(FileChannelImpl.java:784) at java.nio.channels.FileChannel.lock(FileChannel.java:865) ... 8 more --------------------------------------- Unable to get lock on /vobs/rnc/rrt/roam2/roamSs/RoamMao_swb/RoamMao_bldu/ant_build/cobertura.ser.lock: null This is known to happen on Linux kernel 2.6.20. Make sure cobertura.jar is in the root classpath of the jvm process running the instrumented code. If the instrumented code is running in a web server, this means cobertura.jar should be in the web server's lib directory. Don't put multiple copies of cobertura.jar in different WEB-INF/lib directories. Only one classloader should load cobertura. It should be the root classloader. I am using Ant 1.7.0 and cobertura 1.9.2. Any ideas why there is no coverage? Test run ok as I see in my target. I have tried to switch java versions ( 1.5.0_06 and 1.6.0_10) but no difference.

    Read the article

  • Any thoughts on how to create a true 'punch-out' area in a Sprite?

    - by rhtx
    I've been working on this for awhile, now. You might also call it a 'reverse mask', or an 'inverse mask'. Basically, I'm creating a view window within a display object. I need to allow objects on the stage that are under the window to be able to interact with the mouse. This is similar to a WPF question: http://stackoverflow.com/questions/740994/use-wpf-object-to-punch-hole-in-another, which has a much shorter write-up. I've got a Class called PunchOutShield, which creates a Sprite that covers the stage (or over some desired area). The Sprite's Graphics object is filled using the color and transparency of Flex's modal screen. The result is a screen that looks like the screen which appears behind a modal PopUp. PunchOutShield has a method called punch, which takes two arguments - the first is a Shape object, which defines the shape of the punch-through area; the second is a Point object, which indicates where to position the punch-through area. It took some experimenting, but I found that I can successfully create a punch-out area (i.e. - the modal screen does not display within the bounds of the given Shape). To do this, I set cacheAsBitmap to true on the Sprite that is used to create the modal screen, and also on the Shape object, which is added to the modal screen Sprite's displayList. If I set the blend mode of the Shape to ERASE, a completely transparent area is created in the modal screen. So far, great. The problem is that Shape does not subclass InteractiveObject, so there is no way to set mouseEnabled = false on it. And so, it prevents interaction between the mouse and any objects that are visible through the punch-out area. On top of that, InteractiveObject isn't available to look at, so I can't see if there is a way to borrow what it's doing to provide the mouseEnabled functionality and apply it to a subclass of Shape. I've tried using another Sprite object, rather than a Shape object, but the blending doesn't work out correctly. I'm not sure why there is a difference, but the Shape object seems to somehow combine with the parenting Sprite, allowing the ERASE blendMode to effect the desired punch-out visual appearance. It wouldn't be the end of the world if I had to draw up the screen with a series of rectangles so that the punch-out area was just simply not drawn, but that approach won't work if the punch-out area is complex. Or round. Any thoughts on this approach, or on an alternative approach?

    Read the article

  • iPhone - nested views & controllers

    - by codemonkey
    Is it possible to have a single iPhone screen with its view loaded from a xib by that screen's UIViewController, but then another UIView within that screen with content loaded from a separate xib file? If so, is it possible to have that nested view's events handled by a separate custom UIViewController subclass from the rest of the screen? If both of these things are possible, are they also advisable?

    Read the article

  • Mobile Friendly Websites with CSS Media Queries

    - by dwahlin
    In a previous post the concept of CSS media queries was introduced and I discussed the fundamentals of how they can be used to target different screen sizes. I showed how they could be used to convert a 3-column wide page into a more vertical view of data that displays better on devices such as an iPhone:     In this post I'll provide an additional look at how CSS media queries can be used to mobile-enable a sample site called "Widget Masters" without having to change any server-side code or HTML code. The site that will be discussed is shown next:     This site has some of the standard items shown in most websites today including a title area, menu bar, and sections where data is displayed. Without including CSS media queries the site is readable but has to be zoomed out to see everything on a mobile device, cuts-off some of the menu items, and requires horizontal scrolling to get to additional content. The following image shows what the site looks like on an iPhone. While the site works on mobile devices it's definitely not optimized for mobile.     Let's take a look at how CSS media queries can be used to override existing styles in the site based on different screen widths. Adding CSS Media Queries into a Site The Widget Masters Website relies on standard CSS combined with HTML5 elements to provide the layout shown earlier. For example, to layout the menu bar shown at the top of the page the nav element is used as shown next. A standard div element could certainly be used as well if desired.   <nav> <ul class="clearfix"> <li><a href="#home">Home</a></li> <li><a href="#products">Products</a></li> <li><a href="#aboutus">About Us</a></li> <li><a href="#contactus">Contact Us</a></li> <li><a href="#store">Store</a></li> </ul> </nav>   This HTML is combined with the CSS shown next to add a CSS3 gradient, handle the horizontal orientation, and add some general hover effects.   nav { width: 100%; } nav ul { border-radius: 6px; height: 40px; width: 100%; margin: 0; padding: 0; background: rgb(125,126,125); /* Old browsers */ background: -moz-linear-gradient(top, rgba(125,126,125,1) 0%, rgba(14,14,14,1) 100%); /* FF3.6+ */ background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,rgba(125,126,125,1)), color-stop(100%,rgba(14,14,14,1))); /* Chrome,Safari4+ */ background: -webkit-linear-gradient(top, rgba(125,126,125,1) 0%, rgba(14,14,14,1) 100%); /* Chrome10+,Safari5.1+ */ background: -o-linear-gradient(top, rgba(125,126,125,1) 0%, rgba(14,14,14,1) 100%); /* Opera 11.10+ */ background: -ms-linear-gradient(top, rgba(125,126,125,1) 0%, rgba(14,14,14,1) 100%); /* IE10+ */ background: linear-gradient(top, rgba(125,126,125,1) 0%, rgba(14,14,14,1) 100%); /* W3C */ filter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#7d7e7d', endColorstr='#0e0e0e',GradientType=0 ); /* IE6-9 */ } nav ul > li { list-style: none; float: left; margin: 0; padding: 0; } nav ul > li:first-child { margin-left: 8px; } nav ul > li > a { color: #ccc; text-decoration: none; line-height: 2.8em; font-size: 0.95em; font-weight: bold; padding: 8px 25px 7px 25px; font-family: Arial, Helvetica, sans-serif; } nav ul > li a:hover { background-color: rgba(0, 0, 0, 0.1); color: #fff; }   When mobile devices hit the site the layout of the menu items needs to be adjusted so that they're all visible without having to swipe left or right to get to them. This type of modification can be accomplished using CSS media queries by targeting specific screen sizes. To start, a media query can be added into the site's CSS file as shown next: @media screen and (max-width:320px) { /* CSS style overrides for this screen width go here */ } This media query targets screens that have a maximum width of 320 pixels. Additional types of queries can also be added – refer to my previous post for more details as well as resources that can be used to test media queries in different devices. In that post I emphasize (and I'll emphasize again) that CSS media queries only modify the overall layout and look and feel of a site. They don't optimize the site as far as the size of the images or content sent to the device which is important to keep in mind. To make the navigation menu more accessible on devices such as an iPhone or Android the CSS shown next can be used. This code changes the height of the menu from 40 pixels to 100%, takes off the li element floats, changes the line-height, and changes the margins.   @media screen and (max-width:320px) { nav ul { height: 100%; } nav ul > li { float: none; } nav ul > li a { line-height: 1.5em; } nav ul > li:first-child { margin-left: 0px; } /* Additional CSS overrides go here */ }   The following image shows an example of what the menu look like when run on a device with a width of 320 pixels:   Mobile devices with a maximum width of 480 pixels need different CSS styles applied since they have 160 additional pixels of width. This can be done by adding a new CSS media query into the stylesheet as shown next. Looking through the CSS you'll see that only a minimal override is added to adjust the padding of anchor tags since the menu fits by default in this screen width.   @media screen and (max-width: 480px) { nav ul > li > a { padding: 8px 10px 7px 10px; } }   Running the site on a device with 480 pixels results in the menu shown next being rendered. Notice that the space between the menu items is much smaller compared to what was shown when the main site loads in a standard browser.     In addition to modifying the menu, the 3 horizontal content sections shown earlier can be changed from a horizontal layout to a vertical layout so that they look good on a variety of smaller mobile devices and are easier to navigate by end users. The HTML5 article and section elements are used as containers for the 3 sections in the site as shown next:   <article class="clearfix"> <section id="info"> <header>Why Choose Us?</header> <br /> <img id="mainImage" src="Images/ArticleImage.png" title="Article Image" /> <p> Post emensos insuperabilis expeditionis eventus languentibus partium animis, quas periculorum varietas fregerat et laborum, nondum tubarum cessante clangore vel milite locato per stationes hibernas. </p> </section> <section id="products"> <header>Products</header> <br /> <img id="gearsImage" src="Images/Gears.png" title="Article Image" /> <p> <ul> <li>Widget 1</li> <li>Widget 2</li> <li>Widget 3</li> <li>Widget 4</li> <li>Widget 5</li> </ul> </p> </section> <section id="FAQ"> <header>FAQ</header> <br /> <img id="faqImage" src="Images/faq.png" title="Article Image" /> <p> <ul> <li>FAQ 1</li> <li>FAQ 2</li> <li>FAQ 3</li> <li>FAQ 4</li> <li>FAQ 5</li> </ul> </p> </section> </article>   To force the sections into a vertical layout for smaller mobile devices the CSS styles shown next can be added into the media queries targeting 320 pixel and 480 pixel widths. Styles to target the display size of the images in each section are also included. It's important to note that the original image is still being downloaded from the server and isn't being optimized in any way for the mobile device. It's certainly possible for the CSS to include URL information for a mobile-optimized image if desired. @media screen and (max-width:320px) { section { float: none; width: 97%; margin: 0px; padding: 5px; } #wrapper { padding: 5px; width: 96%; } #mainImage, #gearsImage, #faqImage { width: 100%; height: 100px; } } @media screen and (max-width: 480px) { section { float: none; width: 98%; margin: 0px 0px 10px 0px; padding: 5px; } article > section:last-child { margin-right: 0px; float: none; } #bottomSection { width: 99%; } #wrapper { padding: 5px; width: 96%; } #mainImage, #gearsImage, #faqImage { width: 100%; height: 100px; } }   The following images show the site rendered on an iPhone with the CSS media queries in place. Each of the sections now displays vertically making it much easier for the user to access them. Images inside of each section also scale appropriately to fit properly.     CSS media queries provide a great way to override default styles in a website and target devices with different resolutions. In this post you've seen how CSS media queries can be used to convert a standard browser-based site into a site that is more accessible to mobile users. Although much more can be done to optimize sites for mobile, CSS media queries provide a nice starting point if you don't have the time or resources to create mobile-specific versions of sites.

    Read the article

  • The HTG Guide to Using a Bluetooth Keyboard with Your Android Device

    - by Matt Klein
    Android devices aren’t usually associated with physical keyboards. But, since Google is now bundling their QuickOffice app with the newly-released Kit-Kat, it appears inevitable that at least some Android tablets (particularly 10-inch models) will take on more productivity roles. In recent years, physical keyboards have been rendered obsolete by swipe style input methods such as Swype and Google Keyboard. Physical keyboards tend to make phones thick and plump, and that won’t fly today when thin (and even flexible and curved) is in vogue. So, you’ll be hard-pressed to find smartphone manufacturers launching new models with physical keyboards, thus rendering sliders to a past chapter in mobile phone evolution. It makes sense to ditch the clunky keyboard phone in favor of a lighter, thinner model. You’re going to carry around in your pocket or purse all day, why have that extra bulk and weight? That said, there is sound logic behind pairing tablets with keyboards. Microsoft continues to plod forward with its Surface models, and while critics continue to lavish praise on the iPad, its functionality is obviously enhanced and extended when you add a physical keyboard. Apple even has an entire page devoted specifically to iPad-compatible keyboards. But an Android tablet and a keyboard? Does such a thing even exist? They do actually. There are docking keyboards and keyboard/case combinations, there’s the Asus Transformer family, Logitech markets a Windows 8 keyboard that speaks “Android”, and these are just to name a few. So we know that keyboard products that are designed to work with Android exist, but what about an everyday Bluetooth keyboard you might use with Windows or OS X? How-To Geek wanted look at how viable it is to use such a keyboard with Android. We conducted some research and examined some lists of Android keyboard shortcuts. Most of what we found was long outdated. Many of the shortcuts don’t even apply anymore, while others just didn’t work. Regardless, after a little experimentation and a dash of customization, it turns out using a keyboard with Android is kind of fun, and who knows, maybe it will catch on. Setting things up Setting up a Bluetooth keyboard with Android is very easy. First, you’ll need a Bluetooth keyboard and of course an Android device, preferably running version 4.1 (Jelly Bean) or higher. For our test, we paired a second-generation Google Nexus 7 running Android 4.3 with a Samsung Series 7 keyboard. In Android, enable Bluetooth if it isn’t already on. We’d like to note that if you don’t normally use Bluetooth accessories and peripherals with your Android device (or any device really), it’s best practice to leave Bluetooth off because, like GPS, it drains the device’s battery more quickly. To enable Bluetooth, simply go to “Settings” -> “Bluetooth” and tap the slider button to “On”. To set up the keyboard, make sure it is on and then tap “Bluetooth” in the Android settings. On the resulting screen, your Android device should automatically search for and hopefully find your keyboard. If you don’t get it right the first time, simply turn the keyboard on again and then tap “Search for Devices” to try again. If it still doesn’t work, make sure you have fresh batteries and the keyboard isn’t paired to another device. If it is, you will need to unpair it before it will work with your Android device (consult your keyboard manufacturer’s documentation or Google if you don’t know how to do this). When Android finds your keyboard, select it under “Available Devices” … … and you should be prompted to type in a code: If successful, you will see that device is now “Connected” and you’re ready to go. If you want to test things out, try pressing the “Windows” key (“Apple” or “Command”) + ESC, and you will be whisked to your Home screen. So, what can you do? Traditional Mac and Windows users know there’s usually a keyboard shortcut for just about everything (and if there isn’t, there’s all kinds of ways to remap keys to do a variety of commands, tasks, and functions). So where does Android fall in terms of baked-in keyboard commands? There answer to that is kind of enough, but not too much. There are definitely established combos you can use to get around, but they aren’t clear and there doesn’t appear to be any one authority on what they are. Still, there is enough keyboard functionality in Android to make it a viable option, if only for those times when you need to get something done (long e-mail or important document) and an on-screen keyboard simply won’t do. It’s important to remember that Android is, and likely always will be a touch-first interface. That said, it does make some concessions to physical keyboards. In other words, you can get around Android fairly well without having to lift your hands off the keys, but you will still have to tap the screen regularly, unless you add a mouse. For example, you can wake your device by tapping a key rather than pressing its power button. However, if your device is slide or pattern-locked, then you’ll have to use the touchscreen to unlock it – a password or PIN however, works seamlessly with a keyboard – other things like widgets and app controls and features, have to be tapped. You get the idea. Keyboard shortcuts and navigation As we said, baked-in keyboard shortcut combos aren’t necessarily abundant nor apparent. The one thing you can always do is search. Any time you want to Google something, start typing from the Home screen and the search screen will automatically open and begin displaying results. Other than that, here is what we were able to figure out: ESC = go back CTRL + ESC = menu CTRL + ALT + DEL = restart (no questions asked) ALT + SPACE = search page (say “OK Google” to voice search) ALT + TAB (ALT + SHIFT + TAB) = switch tasks Also, if you have designated volume function keys, those will probably work too. There’s also some dedicated app shortcuts like calculator, Gmail, and a few others: CMD + A = calculator CMD + C = contacts CMD + E = e-mail CMD + G = Gmail CMD + L = Calendar CMD + P = Play Music CMD + Y = YouTube Overall, it’s not a long comprehensive list and there’s no dedicated keyboard combos for the full array of Google’s products. Granted, it’s hard to imagine getting a lot of mileage out of a keyboard with Maps but with something like Keep, you could type out long, detailed lists on your tablet, and then view them on your smartphone when you go out shopping. You can also use the arrow keys to navigate your Home screen over shortcuts and open the app drawer. When something on the screen is selected, it will be highlighted in blue. Press “Enter” to open your selection. Additionally, if an app has its own set of shortcuts, e.g. Gmail has quite a few unique shortcuts to it, as does Chrome, some – though not many – will work in Android (not for YouTube though). Also, many “universal” shortcuts such as Copy (CTRL + C), Cut (CTRL + X), Paste (CTRL + V), and Select All (CTRL + A) work where needed – such as in instant messaging, e-mail, social media apps, etc. Creating custom application shortcuts What about custom shortcuts? When we were researching this article, we were under the impression that it was possible to assign keyboard combinations to specific apps, such as you could do on older Android versions such as Gingerbread. This no long seems to be the case and nowhere in “Settings” could we find a way to assign hotkey combos to any of our favorite, oft-used apps or functions. If you do want custom keyboard shortcuts, what can you do? Luckily, there’s an app on Google Play that allows you to, among other things, create custom app shortcuts. It is called External Keyboard Helper (EKH) and while there is a free demo version, the pay version is only a few bucks. We decided to give EKH a whirl and through a little experimentation and finally reading the developer’s how-to, we found we could map custom keyboard combos to just about anything. To do this, first open the application and you’ll see the main app screen. Don’t worry about choosing a custom layout or anything like that, you want to go straight to the “Advanced settings”: In the “Advanced settings” select “Application shortcuts” to continue: You can have up to 16 custom application shortcuts. We are going to create a custom shortcut to the Facebook app. We choose “A0”, and from the resulting list, Facebook. You can do this for any number of apps, services, and settings. As you can now see, the Facebook app has now been linked to application-zero (A0): Go back to the “Advanced settings” and choose “Customize keyboard mappings”: You will be prompted to create a custom keyboard layout so we choose “Custom 1”: When you choose to create a custom layout, you can do a great many more things with your keyboard. For example, many keyboards have predefined function (Fn) keys, which you can map to your tablet’s brightness controls, toggle WiFi on/off, and much more. A word of advice, the application automatically remaps certain keys when you create a custom layout. This might mess up some existing keyboard combos. If you simply want to add some functionality to your keyboard, you can go ahead and delete EKH’s default changes and start your custom layout from scratch. To create a new combo, select “Add new key mapping”: For our new shortcut, we are going to assign the Facebook app to open when we key in “ALT + F”. To do this, we press the “F” key while in the “Scancode” field and we see it returns a value of “33”. If we wanted to use a different key, we can press “Change” and scan another key’s numerical value. We now want to assign the “ALT” key to application “A0”, previously designated as the Facebook app. In the “AltGr” field, we enter “A0” and then “Save” our custom combo. And now we see our new application shortcut. Now, as long as we’re using our custom layout, every time we press “ALT + F”, the Facebook app will launch: External Keyboard Helper extends far beyond simple application shortcuts and if you are looking for deeper keyboard customization options, you should definitely check it out. Among other things, EKH also supports dozens of languages, allows you to quickly switch between layouts using a key or combo, add up to 16 custom text shortcuts, and much more! It can be had on Google Play for $2.53 for the full version, but you can try the demo version for free. More extensive documentation on how to use the app is also available. Android? Keyboard? Sure, why not? Unlike traditional desktop operating systems, you don’t need a physical keyboard and mouse to use a mobile operating system. You can buy an iPad or Nexus 10 or Galaxy Note, and never need another accessory or peripheral – they work as intended right out of the box. It’s even possible you can write the next great American novel on one these devices, though that might require a lot of practice and patience. That said, using a keyboard with Android is kind of fun. It’s not revelatory but it does elevate the experience. You don’t even need to add customizations (though they are nice) because there are enough existing keyboard shortcuts in Android to make it usable. Plus, when it comes to inputting text such as in an editor or terminal application, we fully advocate big, physical keyboards. Bottom line, if you’re looking for a way to enhance your Android tablet, give a keyboard a chance. Do you use your Android device for productivity? Is a physical keyboard an important part of your setup? Do you have any shortcuts that we missed? Sound off in the comments and let us know what you think.     

    Read the article

  • Render To Texture Using OpenGL is not working but normal rendering works just fine

    - by Franky Rivera
    things I initialize at the beginning of the program I realize not all of these pertain to my issue I just copy and pasted what I had //overall initialized //things openGL related I initialize earlier on in the project glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClearDepth( 1.0f ); glEnable(GL_ALPHA_TEST); glEnable( GL_STENCIL_TEST ); glEnable(GL_DEPTH_TEST); glDepthFunc( GL_LEQUAL ); glEnable(GL_CULL_FACE); glFrontFace( GL_CCW ); glEnable(GL_COLOR_MATERIAL); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glHint( GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST ); //we also initialize our shader programs //(i added some shader program functions for definitions) //this enum list is else where in code //i figured it would help show you guys more about my //shader compile creation function right under this enum list VVVVVV /*enum eSHADER_ATTRIB_LOCATION { VERTEX_ATTRIB = 0, NORMAL_ATTRIB = 2, COLOR_ATTRIB, COLOR2_ATTRIB, FOG_COORD, TEXTURE_COORD_ATTRIB0 = 8, TEXTURE_COORD_ATTRIB1, TEXTURE_COORD_ATTRIB2, TEXTURE_COORD_ATTRIB3, TEXTURE_COORD_ATTRIB4, TEXTURE_COORD_ATTRIB5, TEXTURE_COORD_ATTRIB6, TEXTURE_COORD_ATTRIB7 }; */ //if we fail making our shader leave if( !testShader.CreateShader( "SimpleShader.vp", "SimpleShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; if( !testScreenShader.CreateShader( "ScreenShader.vp", "ScreenShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; SHADER PROGRAM FUNCTIONS bool CShaderProgram::CreateShader( const char* szVertexShaderName, const char* szFragmentShaderName, ... ) { //here are our handles for the openGL shaders int iGLVertexShaderHandle = -1, iGLFragmentShaderHandle = -1; //get our shader data char *vData = 0, *fData = 0; int vLength = 0, fLength = 0; LoadShaderFile( szVertexShaderName, &vData, &vLength ); LoadShaderFile( szFragmentShaderName, &fData, &fLength ); //data if( !vData ) return false; //data if( !fData ) { delete[] vData; return false; } //create both our shader objects iGLVertexShaderHandle = glCreateShader( GL_VERTEX_SHADER ); iGLFragmentShaderHandle = glCreateShader( GL_FRAGMENT_SHADER ); //well we got this far so we have dynamic data to clean up //load vertex shader glShaderSource( iGLVertexShaderHandle, 1, (const char**)(&vData), &vLength ); //load fragment shader glShaderSource( iGLFragmentShaderHandle, 1, (const char**)(&fData), &fLength ); //we are done with our data delete it delete[] vData; delete[] fData; //compile them both glCompileShader( iGLVertexShaderHandle ); //get shader status int iShaderOk; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLVertexShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLVertexShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szVertexShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLVertexShaderHandle); return false; } glCompileShader( iGLFragmentShaderHandle ); //get shader status glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //lets check to see if the fragment shader compiled int iCompiled = 0; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { //this shader did not compile leave return false; } //lets check to see if the fragment shader compiled glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //make our new shader program m_iShaderProgramHandle = glCreateProgram(); glAttachShader( m_iShaderProgramHandle, iGLVertexShaderHandle ); glAttachShader( m_iShaderProgramHandle, iGLFragmentShaderHandle ); glLinkProgram( m_iShaderProgramHandle ); int iLinked = 0; glGetProgramiv( m_iShaderProgramHandle, GL_LINK_STATUS, &iLinked ); if( !iLinked ) { //we didn't link return false; } //NOW LETS CREATE ALL OUR HANDLES TO OUR PROPER LIKING //start from this parameter va_list parseList; va_start( parseList, szFragmentShaderName ); //read in number of variables if any unsigned uiNum = 0; uiNum = va_arg( parseList, unsigned ); //for loop through our attribute pairs int enumType = 0; for( unsigned x = 0; x < uiNum; ++x ) { //specify our attribute locations enumType = va_arg( parseList, int ); char* name = va_arg( parseList, char* ); glBindAttribLocation( m_iShaderProgramHandle, enumType, name ); } //end our list parsing va_end( parseList ); //relink specify //we have custom specified our attribute locations glLinkProgram( m_iShaderProgramHandle ); //fill our handles InitializeHandles( ); //everything went great return true; } void CShaderProgram::InitializeHandles( void ) { m_uihMVP = glGetUniformLocation( m_iShaderProgramHandle, "mMVP" ); m_uihWorld = glGetUniformLocation( m_iShaderProgramHandle, "mWorld" ); m_uihView = glGetUniformLocation( m_iShaderProgramHandle, "mView" ); m_uihProjection = glGetUniformLocation( m_iShaderProgramHandle, "mProjection" ); ///////////////////////////////////////////////////////////////////////////////// //texture handles m_uihDiffuseMap = glGetUniformLocation( m_iShaderProgramHandle, "diffuseMap" ); if( m_uihDiffuseMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihDiffuseMap, RM_DIFFUSE+GL_TEXTURE0 ); (0)+ } m_uihNormalMap = glGetUniformLocation( m_iShaderProgramHandle, "normalMap" ); if( m_uihNormalMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihNormalMap, RM_NORMAL+GL_TEXTURE0 ); (1)+ } } void CShaderProgram::SetDiffuseMap( const unsigned& uihDiffuseMap ) { (0)+ glActiveTexture( RM_DIFFUSE+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihDiffuseMap ); } void CShaderProgram::SetNormalMap( const unsigned& uihNormalMap ) { (1)+ glActiveTexture( RM_NORMAL+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihNormalMap ); } //MY 2 TEST SHADERS also my math order is correct it pertains to my matrix ordering in my math library once again i've tested the basic rendering. rendering to the screen works fine ----------------------------------------SIMPLE SHADER------------------------------------- //vertex shader looks like this #version 330 in vec3 vVertexPos; in vec3 vNormal; in vec2 vTexCoord; uniform mat4 mWorld; // Model Matrix uniform mat4 mView; // Camera View Matrix uniform mat4 mProjection;// Camera Projection Matrix out vec2 vTexCoordVary; // Texture coord to the fragment program out vec3 vNormalColor; void main( void ) { //pass the texture coordinate vTexCoordVary = vTexCoord; vNormalColor = vNormal; //calculate our model view projection matrix mat4 mMVP = (( mWorld * mView ) * mProjection ); //result our position gl_Position = vec4( vVertexPos, 1 ) * mMVP; } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; in vec3 vNormalColor; uniform sampler2D diffuseMap; uniform sampler2D normalMap; out vec4 fragColor[2]; void main( void ) { //CORRECT fragColor[0] = texture( normalMap, vTexCoordVary ); fragColor[1] = vec4( vNormalColor, 1.0 ); }; ----------------------------------------SCREEN SHADER------------------------------------- //vertext shader looks like this #version 330 in vec3 vVertexPos; // This is the position of the vertex coming in in vec2 vTexCoord; // This is the texture coordinate.... out vec2 vTexCoordVary; // Texture coord to the fragment program void main( void ) { vTexCoordVary = vTexCoord; //set our position gl_Position = vec4( vVertexPos.xyz, 1.0f ); } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; // Incoming "varying" texture coordinate uniform sampler2D diffuseMap;//the tile detail texture uniform sampler2D normalMap; //the normal map from earlier out vec4 vTheColorOfThePixel; void main( void ) { //CORRECT vTheColorOfThePixel = texture( normalMap, vTexCoordVary ); }; .Class RenderTarget Main Functions //here is my render targets create function bool CRenderTarget::Create( const unsigned uiNumTextures, unsigned uiWidth, unsigned uiHeight, int iInternalFormat, bool bDepthWanted ) { if( uiNumTextures <= 0 ) return false; //generate our variables glGenFramebuffers(1, &m_uifboHandle); // Initialize FBO glBindFramebuffer(GL_FRAMEBUFFER, m_uifboHandle); m_uiNumTextures = uiNumTextures; if( bDepthWanted ) m_uiNumTextures += 1; m_uiTextureHandle = new unsigned int[uiNumTextures]; glGenTextures( uiNumTextures, m_uiTextureHandle ); for( unsigned x = 0; x < uiNumTextures-1; ++x ) { glBindTexture( GL_TEXTURE_2D, m_uiTextureHandle[x]); // Reserve space for our 2D render target glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, iInternalFormat, uiWidth, uiHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + x, GL_TEXTURE_2D, m_uiTextureHandle[x], 0); } //if we need one for depth testing if( bDepthWanted ) { glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0); glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0);*/ // Must attach texture to framebuffer. Has Stencil and depth glBindRenderbuffer(GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glRenderbufferStorage(GL_RENDERBUFFER, /*GL_DEPTH_STENCIL*/GL_DEPTH24_STENCIL8, TEXTURE_WIDTH, TEXTURE_HEIGHT ); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); } glBindFramebuffer(GL_FRAMEBUFFER, 0); //everything went fine return true; } void CRenderTarget::Bind( const int& iTargetAttachmentLoc, const unsigned& uiWhichTexture, const bool bBindFrameBuffer ) { if( bBindFrameBuffer ) glBindFramebuffer( GL_FRAMEBUFFER, m_uifboHandle ); if( uiWhichTexture < m_uiNumTextures ) glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + iTargetAttachmentLoc, m_uiTextureHandle[uiWhichTexture], 0); } void CRenderTarget::UnBind( void ) { //default our binding glBindFramebuffer( GL_FRAMEBUFFER, 0 ); } //this is all in a test project so here's my straight forward rendering function for testing this render function does basic rendering steps keep in mind i have already tested my textures i have already tested my box thats being rendered all basic rendering works fine its just when i try to render to a texture then display it in a render surface that it does not work. Also I have tested my render surface it is bound exactly to the screen coordinate space void TestRenderSteps( void ) { //Clear the color and the depth glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //bind the shader program glUseProgram( testShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().GetBufferHandle() ); //2) how our stream will be split here ( 4 bytes position, ..ext ) CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //send the needed information into the shader testShader.SetWorldMatrix( boxPosition ); testShader.SetViewMatrix( Static_Camera.GetView( ) ); testShader.SetProjectionMatrix( Static_Camera.GetProjection( ) ); testShader.SetDiffuseMap( iTextureID ); testShader.SetNormalMap( iTextureID2 ); GLenum buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 }; glDrawBuffers(2, buffers); //bind to our render target //RM_DIFFUSE, RM_NORMAL are enums (0 && 1) renderTarget.Bind( RM_DIFFUSE, 1, true ); renderTarget.Bind( RM_NORMAL, 1, false); //false because buffer is already bound //i clear here just to clear the texture to make it a default value of white //by doing this i can see if what im rendering to my screen is just drawing to the screen //or if its my render target defaulted glClearColor( 1.0f, 1.0f, 1.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //i have this box object which i draw testBox.Draw(); //the draw call looks like this //my normal rendering works just fine so i know this draw is fine // glDrawElementsBaseVertex( m_sides[x].GetPrimitiveType(), // m_sides[x].GetPrimitiveCount() * 3, // GL_UNSIGNED_INT, // BUFFER_OFFSET(sizeof(unsigned int) * m_sides[x].GetStartIndex()), // m_sides[x].GetStartVertex( ) ); //we unbind the target back to default renderTarget.UnBind(); //i stop mapping my vertex format CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().UnMapVertexStride(); //i go back to default in using no shader program glUseProgram( 0 ); //now that everything is drawn to the textures //lets draw our screen surface and pass it our 2 filled out textures //NOW RENDER THE TEXTURES WE COLLECTED TO THE SCREEN QUAD //bind the shader program glUseProgram( testScreenShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionTexBuffer().GetBufferHandle() ); //2) how our stream will be split here CVertexBufferManager::GetInstance()->GetPositionTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //pass our 2 filled out textures (in the shader im just using the diffuse //i wanted to see if i was rendering anything before i started getting into other techniques testScreenShader.SetDiffuseMap( renderTarget.GetTextureHandle(0) ); //SetDiffuseMap definitions in shader program class testScreenShader.SetNormalMap( renderTarget.GetTextureHandle(1) ); //SetNormalMap definitions in shader program class //DO the draw call drawing our screen rectangle glDrawElementsBaseVertex( m_ScreenRect.GetPrimitiveType(), m_ScreenRect.GetPrimitiveCount() * 3, GL_UNSIGNED_INT, BUFFER_OFFSET(sizeof(unsigned int) * m_ScreenRect.GetStartIndex()), m_ScreenRect.GetStartVertex( ) );*/ //unbind our vertex mapping CVertexBufferManager::GetInstance()->GetPositionTexBuffer().UnMapVertexStride(); //default to no shader program glUseProgram( 0 ); } Last words: 1) I can render my box just fine 2) i can render my screen rect just fine 3) I cannot render my box into a texture then display it into my screen rect 4) This entire project is just a test project I made to test different rendering practices. So excuse any "ugly-ish" unclean code. This was made just on a fly run through when I was trying new test cases.

    Read the article

  • C++ thread safety - exchange data between worker and controller

    - by peterchen
    I still feel a bit unsafe about the topic and hope you folks can help me - For passing data (configuration or results) between a worker thread polling something and a controlling thread interested in the most recent data, I've ended up using more or less the following pattern repeatedly: Mutex m; tData * stage; // temporary, accessed concurrently // send data, gives up ownership, receives old stage if any tData * Send(tData * newData) { ScopedLock lock(m); swap(newData, stage); return newData; } // receiving thread fetches latest data here tData * Fetch(tData * prev) { ScopedLock lock(m); if (stage != 0) { // ... release prev prev = stage; stage = 0; } return prev; // now current } Note: This is not supposed to be a full producer-consumer queue, only the msot recent data is relevant. Also, I've skimmed ressource management somewhat here. When necessary I'm using two such stages: one to send config changes to the worker, and for sending back results. Now, my questions assuming that ScopedLock implements a full memory barrier: do stage and/or workerData need to be volatile? is volatile necessary for tData members? can I use smart pointers instead of the raw pointers - say boost::shared_ptr? Anything else that can go wrong? I am basically trying to avoid "volatile infection" spreading into tData, and minimize lock contention (a lock free implementation seems possible, too). However, I'm not sure if this is the easiest solution. ScopedLock acts as a full memory barrier. Since all this is more or less platform dependent, let's say Visual C++ x86 or x64, though differences/notes for other platforms are welcome, too. (a prelimenary "thanks but" for recommending libraries such as Intel TBB - I am trying to understand the platform issues here)

    Read the article

  • SQL deadlock on delete then bulk insert

    - by StarLite
    I have an issue with a deadlock in SQL Server that I haven't been able to resolve. Basically I have a large number of concurrent connections (from many machines) that are executing transactions where they first delete a range of entries and then re-insert entries within the same range with a bulk insert. Essentially, the transaction looks like this BEGIN TRANSACTION T1 DELETE FROM [TableName] WITH( XLOCK HOLDLOCK ) WHERE [Id]=@Id AND [SubId]=@SubId INSERT BULK [TableName] ( [Id] Int , [SubId] Int , [Text] VarChar(max) COLLATE SQL_Latin1_General_CP1_CI_AS ) WITH(CHECK_CONSTRAINTS, FIRE_TRIGGERS) COMMIT TRANSACTION T1 The bulk insert only inserts items matching the Id and SubId of the deletion in the same transaction. Furthermore, these Id and SubId entries should never overlap. When I have enough concurrent transaction of this form, I start to see a significant number of deadlocks between these statements. I added the locking hints XLOCK HOLDLOCK to attempt to deal with the issue, but they don't seem to be helpling. The canonical deadlock graph for this error shows: Connection 1: Holds RangeX-X on PK_TableName Holds IX Page lock on the table Requesting X Page lock on the table Connection 2: Holds IX Page lock on the table Requests RangeX-X lock on the table What do I need to do in order to ensure that these deadlocks don't occur. I have been doing some reading on the RangeX-X locks and I'm not sure I fully understand what is going on with these. Do I have any options short of locking the entire table here?

    Read the article

  • Synchronizing ASP.NET MVC action methods with ReaderWriterLockSlim

    - by James D
    Any obvious issues/problems/gotchas with synchronizing access (in an ASP.NET MVC blogging engine) to a shared object model (NHibernate, but it could be anything) at the Controller/Action level via ReaderWriterLockSlim? (Assume the object model is very large and expensive to build per-request, so we need to share it among requests.) Here's how a typical "Read Post" action would look. Enter the read lock, do some work, exit the read lock. public ActionResult ReadPost(int id) { // ReaderWriterLockSlim allows multiple concurrent writes; this method // only blocks in the unlikely event that some other client is currently // writing to the model, which would only happen if a comment were being // submitted or a new post were being saved. _lock.EnterReadLock(); try { // Access the model, fetch the post with specificied id // Pseudocode, etc. Post p = TheObjectModel.GetPostByID(id); ActionResult ar = View(p); return ar; } finally { // Under all code paths, we must release the read lock _lock.ExitReadLock(); } } Meanwhile, if a user submits a comment or an author authors a new post, they're going to need write access to the model, which is done roughly like so: [AcceptVerbs(HttpVerbs.Post)] public ActionResult SaveComment(/* some posted data */) { // try/finally omitted for brevity _lock.EnterWriteLock(); // Save the comment to the DB, update the model to include the comment, etc. _lock.ExitWriteLock(); } Of course, this could also be done by tagging those action methods with some sort of "synchronized" attribute... but however you do it, my question is is this a bad idea? ps. ReaderWriterLockSlim is optimized for multiple concurrent reads, and only blocks if the write lock is held. Since writes are so infrequent (1000s or 10,000s or 100,000s of reads for every 1 write), and since they're of such a short duration, the effect is that the model is synchronized , and almost nobody ever locks, and if they do, it's not for very long.

    Read the article

  • Lightweight alternative to Manual/AutoResetEvent in C#

    - by sweetlilmre
    Hi, I have written what I hope is a lightweight alternative to using the ManualResetEvent and AutoResetEvent classes in C#/.NET. The reasoning behind this was to have Event like functionality without the weight of using a kernel locking object. Although the code seems to work well in both testing and production, getting this kind of thing right for all possibilities can be a fraught undertaking and I would humbly request any constructive comments and or criticism from the StackOverflow crowd on this. Hopefully (after review) this will be useful to others. Usage should be similar to the Manual/AutoResetEvent classes with Notify() used for Set(). Here goes: using System; using System.Threading; public class Signal { private readonly object _lock = new object(); private readonly bool _autoResetSignal; private bool _notified; public Signal() : this(false, false) { } public Signal(bool initialState, bool autoReset) { _autoResetSignal = autoReset; _notified = initialState; } public virtual void Notify() { lock (_lock) { // first time? if (!_notified) { // set the flag _notified = true; // unblock a thread which is waiting on this signal Monitor.Pulse(_lock); } } } public void Wait() { Wait(Timeout.Infinite); } public virtual bool Wait(int milliseconds) { lock (_lock) { bool ret = true; // this check needs to be inside the lock otherwise you can get nailed // with a race condition where the notify thread sets the flag AFTER // the waiting thread has checked it and acquires the lock and does the // pulse before the Monitor.Wait below - when this happens the caller // will wait forever as he "just missed" the only pulse which is ever // going to happen if (!_notified) { ret = Monitor.Wait(_lock, milliseconds); } if (_autoResetSignal) { _notified = false; } return (ret); } } }

    Read the article

  • In app purchase on iphone.: How to receive your available products *before* someone may be able to b

    - by Thorsten S.
    Currently I am loading my supported products from a plist and after that I send a SKProductsRequest to guarantee that my SKProducts are still valid. So I set up the request, start it and get the response in: (void)productsRequest:(SKProductsRequest *)request didReceiveResponse:(SKProductsResponse *)response Now, so far all functions correctly. Problem: From calling the request until receiving the response it may last several seconds. Until that my app is already loaded and the user may be able to choose and buy a product. But because no products have been received, the available products are not in sync with the validated products - unlikely, but possible error. So my idea is to wait until the data is loaded and only continue when the list is validated. (Just a few seconds waiting...). I have a singleton instance managing all products. + (MyClass *) sharedInstance { if (!sharedInstance) sharedInstance = [MyClass new]; // Now wait until we have our data [condition lock]; while (noEntriesYet) // is yes at begin [condition wait]; [condition unlock]; return sharedInstance; } - productsRequest: didReceiveResponse: { [condition lock]; // I have my data noEntriesYet = false; [condition signal]; [condition unlock]; } Problem: The app freezes. Everything works fine if didReceiveResponse is completed before the sharedInstance is queried. There are different threads, the lock is working if wait is reached during didReceiveResponse, everything fine. But if not, didReceiveResponse is never called even if the request was sent. The lock is released, everything looks ok. I have tried to send the product request in a separate NSThread, with NSOperationQueue...without avail. Why ? What is happening ? How to solve the problem ?

    Read the article

  • How to make a thread that runs at x:00 x:15 x:30 and x:45 do something different at 2:00.

    - by rmarimon
    I have a timer thread that needs to run at a particular moments of the day to do an incremental replication with a database. Right now it runs at the hour, 15 minutes past the hour, 30 minutes past the hour and 45 minutes past the hour. This is the code I have which is working ok: public class TimerRunner implements Runnable { private static final Semaphore lock = new Semaphore(1); private static final ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor(); public static void initialize() { long delay = getDelay(); executor.schedule(new TimerRunner(), delay, TimeUnit.SECONDS); } public static void destroy() { executor.shutdownNow(); } private static long getDelay() { Calendar now = Calendar.getInstance(); long p = 15 * 60; // run at 00, 15, 30 and 45 minutes past the hour long second = now.get(Calendar.MINUTE) * 60 + now.get(Calendar.SECOND); return p - (second % p); } public static void replicate() { if (lock.tryAcquire()) { try { Thread t = new Thread(new Runnable() { public void run() { try { // here is where the magic happens } finally { lock.release(); } } }); t.start(); } catch (Exception e) { lock.release(); } } else { throw new IllegalStateException("already running a replicator"); } } public void run() { try { TimerRunner.replicate(); } finally { long delay = getDelay(); executor.schedule(new TimerRunner(), delay, TimeUnit.SECONDS); } } } This process is started by calling TimerRunner.initialize() when a server starts and calling TimerRunner.destroy(). I have created a full replication process (as opposed to incremental) that I would like to run at a certain moment of the day, say 2:00am. How would change the above code to do this? I think that it should be very simple something like if it is now around 2:00am and it's been a long time since I did the full replication then do it now, but I can't get the if right. Beware that sometimes the replicate process takes way longer to complete. Sometimes beyond the 15 minutes, posing a problem in running at around 2:00am.

    Read the article

  • BASH echo write mysql input

    - by jmituzas
    Have a bash menu where variables write to file for mysql input. heres what I have: echo "CREATE DATABASE '$mysqldbn'; #GRANT ALL PRIVILEGES ON *.* TO '$mysqlu'@'$myhost' IDENTIFIED BY '$mysqlup' WITH GRANT OPTION; GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX, ALTER, CREATE TEMPORARY TABLES, LOCK TABLES ON '$mysqldbn'.* TO '$mysqlu'@'$myhost' IDENTIFIED BY '$mysqlup'; GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX, ALTER, CREATE TEMPORARY TABLES, LOCK TABLES ON '$mysqldbn'.* TO '$mysqlu'@'$myip' IDENTIFIED BY '$mysqlup'; GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX, ALTER, CREATE TEMPORARY TABLES, LOCK TABLES ON '$mysqldbn'.* TO '$mysqlu'@'localhost' IDENTIFIED BY '$mysqlup'; GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX, ALTER, CREATE TEMPORARY TABLES< LOCK TABLES on '$mysqldbn'.* TO '$mysqlu'@'$rip' IDENTIFIED BY '$mysqlup';" > nmysql.db mysql -u root -p$mypass < nmysql.db problem is to get variables to show I had to put them in single quotes, the single quotes show up as I want for instances like '$mysqlu'@'localhost'. But how can I remove the quotes and still get to use the variable in the instance like, CREATE DATABASE '$mysqldbn' ? Double quotes wont work either, I am at a loss. Thanks in advance, Joe

    Read the article

  • ReaderWriterLockSlim and Pulse/Wait

    - by Jono
    Is there an equivalent of Monitor.Pulse and Monitor.Wait that I can use in conjunction with a ReaderWriterLockSlim? I have a class where I've encapsulated multi-threaded access to an underlying queue. To enqueue something, I acquire a lock that protects the underlying queue (and a couple of other objects) then add the item and Monitor.Pulse the locked object to signal that something was added to the queue. public void Enqueue(ITask task) { lock (mutex) { underlying.Enqueue(task); Monitor.Pulse(mutex); } } On the other end of the queue, I have a single background thread that continuously processes messages as they arrive on the queue. It uses Monitor.Wait when there are no items in the queue, to avoid unnecessary polling. (I consider this to be good design, but any flames (within reason) are welcome if they help me learn otherwise.) private void DequeueForProcessing(object state) { while (true) { ITask task; lock (mutex) { while (underlying.Count == 0) { Monitor.Wait(mutex); } task = underlying.Dequeue(); } Process(task); } } As more operations are added to this class (requiring read-only access to the lock protected underlying), someone suggested using ReaderWriterLockSlim. I've never used the class before, and assuming it can offer some performance benefit, I'm not against it, but only if I can keep the Pulse/Wait design.

    Read the article

  • problem with implementing a simple work queue

    - by John Deerikio
    Hi all, I am having troubles with implementing a simple work queue. Doing some analysis, I am facing a subtle problem. The work queue is backed by a regular linked list. The code looks like this (simplified): 0. while (true) 1. while (enabled == true) 2. acquire lock on the list and get the next action to be executed (blocking operation) (store it in a local variable) 3. execute the action (outside the lock on the list on previous line) 4. get lock on this work queue 5. wait until this work queue has been notified (triggered when setEnabled(true) has been callled) The setEnabled(e) operation looks like this (simplified): enabled = e if (enabled == true) acquire lock on this work queue and do notify() Although this works, there is a condition in which a deadlock occurs. It happens in the following rare situation: while an action is being executed, setEnabled(false) is called just before step (4) is entered, setEnabled(true) is called now step (5) keeps waiting forever, because this work queue has already been notified How do I solve this? I have been looking at this for some time, but I cannot come up with a solution. Please note I am fairly new to thread synchronization. Thanks a lot.

    Read the article

  • Is there a better way to write this repetitive event-declaration code in C# when implementing an int

    - by Damien Wildfire
    I have a lot of code like the following, where I explicitly implement some events required by an interface. public class IMicrowaveNotifier { event EventHandler<EventArgs> DoorClosed; event EventHandler<EventArgs> LightbulbOn; // ... } public class Microwave : IMicrowaveNotifier { private EventHandler<EventArgs> _doorClosed; event EventHandler<EventArgs> IMicrowaveNotifier.DoorClosed { add { lock (this) _doorClosed += value; } remove { lock (this) _doorClosed -= value; } } private EventHandler<EventArgs> _lightbulbOn; event EventHandler<EventArgs> IMicrowaveNotifier.LightbulbOn { add { lock (this) _lightbulbOn += value; } remove { lock (this) _lightbulbOn -= value; } } // ... } You can see that much of this is boilerplate. In Ruby I'd be able to do something like this: class Microwave has_events :door_closed, :lightbulb_on, ... end Is there a similar shorter way of removing this boilerplate in C#? Update: I left a very important part out of my example: namely, the events getting implemented are part of an interface, and I want to implement it explicitly. Sorry for not mentioning this earlier!

    Read the article

< Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >