Search Results

Search found 12528 results on 502 pages for 'objects recognition'.

Page 165/502 | < Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >

  • Matrix Multiplication with C++ AMP

    - by Daniel Moth
    As part of our API tour of C++ AMP, we looked recently at parallel_for_each. I ended that post by saying we would revisit parallel_for_each after introducing array and array_view. Now is the time, so this is part 2 of parallel_for_each, and also a post that brings together everything we've seen until now. The code for serial and accelerated Consider a naïve (or brute force) serial implementation of matrix multiplication  0: void MatrixMultiplySerial(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 1: { 2: for (int row = 0; row < M; row++) 3: { 4: for (int col = 0; col < N; col++) 5: { 6: float sum = 0.0f; 7: for(int i = 0; i < W; i++) 8: sum += vA[row * W + i] * vB[i * N + col]; 9: vC[row * N + col] = sum; 10: } 11: } 12: } We notice that each loop iteration is independent from each other and so can be parallelized. If in addition we have really large amounts of data, then this is a good candidate to offload to an accelerator. First, I'll just show you an example of what that code may look like with C++ AMP, and then we'll analyze it. It is assumed that you included at the top of your file #include <amp.h> 13: void MatrixMultiplySimple(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 14: { 15: concurrency::array_view<const float,2> a(M, W, vA); 16: concurrency::array_view<const float,2> b(W, N, vB); 17: concurrency::array_view<concurrency::writeonly<float>,2> c(M, N, vC); 18: concurrency::parallel_for_each(c.grid, 19: [=](concurrency::index<2> idx) restrict(direct3d) { 20: int row = idx[0]; int col = idx[1]; 21: float sum = 0.0f; 22: for(int i = 0; i < W; i++) 23: sum += a(row, i) * b(i, col); 24: c[idx] = sum; 25: }); 26: } First a visual comparison, just for fun: The beginning and end is the same, i.e. lines 0,1,12 are identical to lines 13,14,26. The double nested loop (lines 2,3,4,5 and 10,11) has been transformed into a parallel_for_each call (18,19,20 and 25). The core algorithm (lines 6,7,8,9) is essentially the same (lines 21,22,23,24). We have extra lines in the C++ AMP version (15,16,17). Now let's dig in deeper. Using array_view and extent When we decided to convert this function to run on an accelerator, we knew we couldn't use the std::vector objects in the restrict(direct3d) function. So we had a choice of copying the data to the the concurrency::array<T,N> object, or wrapping the vector container (and hence its data) with a concurrency::array_view<T,N> object from amp.h – here we used the latter (lines 15,16,17). Now we can access the same data through the array_view objects (a and b) instead of the vector objects (vA and vB), and the added benefit is that we can capture the array_view objects in the lambda (lines 19-25) that we pass to the parallel_for_each call (line 18) and the data will get copied on demand for us to the accelerator. Note that line 15 (and ditto for 16 and 17) could have been written as two lines instead of one: extent<2> e(M, W); array_view<const float, 2> a(e, vA); In other words, we could have explicitly created the extent object instead of letting the array_view create it for us under the covers through the constructor overload we chose. The benefit of the extent object in this instance is that we can express that the data is indeed two dimensional, i.e a matrix. When we were using a vector object we could not do that, and instead we had to track via additional unrelated variables the dimensions of the matrix (i.e. with the integers M and W) – aren't you loving C++ AMP already? Note that the const before the float when creating a and b, will result in the underling data only being copied to the accelerator and not be copied back – a nice optimization. A similar thing is happening on line 17 when creating array_view c, where we have indicated that we do not need to copy the data to the accelerator, only copy it back. The kernel dispatch On line 18 we make the call to the C++ AMP entry point (parallel_for_each) to invoke our parallel loop or, as some may say, dispatch our kernel. The first argument we need to pass describes how many threads we want for this computation. For this algorithm we decided that we want exactly the same number of threads as the number of elements in the output matrix, i.e. in array_view c which will eventually update the vector vC. So each thread will compute exactly one result. Since the elements in c are organized in a 2-dimensional manner we can organize our threads in a two-dimensional manner too. We don't have to think too much about how to create the first argument (a grid) since the array_view object helpfully exposes that as a property. Note that instead of c.grid we could have written grid<2>(c.extent) or grid<2>(extent<2>(M, N)) – the result is the same in that we have specified M*N threads to execute our lambda. The second argument is a restrict(direct3d) lambda that accepts an index object. Since we elected to use a two-dimensional extent as the first argument of parallel_for_each, the index will also be two-dimensional and as covered in the previous posts it represents the thread ID, which in our case maps perfectly to the index of each element in the resulting array_view. The kernel itself The lambda body (lines 20-24), or as some may say, the kernel, is the code that will actually execute on the accelerator. It will be called by M*N threads and we can use those threads to index into the two input array_views (a,b) and write results into the output array_view ( c ). The four lines (21-24) are essentially identical to the four lines of the serial algorithm (6-9). The only difference is how we index into a,b,c versus how we index into vA,vB,vC. The code we wrote with C++ AMP is much nicer in its indexing, because the dimensionality is a first class concept, so you don't have to do funny arithmetic calculating the index of where the next row starts, which you have to do when working with vectors directly (since they store all the data in a flat manner). I skipped over describing line 20. Note that we didn't really need to read the two components of the index into temporary local variables. This mostly reflects my personal choice, in some algorithms to break down the index into local variables with names that make sense for the algorithm, i.e. in this case row and col. In other cases it may i,j,k or x,y,z, or M,N or whatever. Also note that we could have written line 24 as: c(idx[0], idx[1])=sum  or  c(row, col)=sum instead of the simpler c[idx]=sum Targeting a specific accelerator Imagine that we had more than one hardware accelerator on a system and we wanted to pick a specific one to execute this parallel loop on. So there would be some code like this anywhere before line 18: vector<accelerator> accs = MyFunctionThatChoosesSuitableAccelerators(); accelerator acc = accs[0]; …and then we would modify line 18 so we would be calling another overload of parallel_for_each that accepts an accelerator_view as the first argument, so it would become: concurrency::parallel_for_each(acc.default_view, c.grid, ...and the rest of your code remains the same… how simple is that? Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • What to Return with Async CRUD methods

    - by RualStorge
    While there is a similar question focused on Java, I've been in debates with utilizing Task objects. What's the best way to handle returns on CRUD methods (and similar)? Common returns we've seen over the years are: Void (no return unless there is an exception) Boolean (True on Success, False on Failure, exception on unhandled failure) Int or GUID (Return the newly created objects Id, 0 or null on failure, exception on unhandled failure) The updated Object (exception on failure) Result Object (Object that houses the manipulated object's ID, Boolean or status field to with success or failure indicated, Exception information if there was one, etc) The concern comes into play as we've started moving over to utilizing C# 5's Async functionality, and this brought the question up of how we should handle CRUD returns large-scale. In our systems we have a little of everything in regards to what we return, we want to make these returns standardized... Now the question is what is the recommended standard? Is there even a recommended standard yet? (I realize we need to decide our standard, but typically we do so by looking at best practices, see if it makes sense for us and go from there, but here we're not finding much to work with)

    Read the article

  • Z-order with Alpha blending in a 3D world

    - by user41765
    I'm working on a game in a 3D world with 2D sprites only (like Don't Starve game). (OpenGL ES2 with C++) Currently, I'm ordering elements back to front before drawing them without batch (so 1 element = 1 drawcall). I would like to implement batching in my framework to decrease draw calls. Here is what I've got for the moment: Order all elements of my scene back to front. Send order list of elements to the Renderer. Renderer look in his batch manager if a batch exist for the given element with his Material. Batch didn't exist: create a new one. Batch exist for element with this Material: Add sprite to the batch. Compute big mesh with all sprite for each batch (1 material type = 1 batch). When all batches are ok, the batch manager compute draw commands for the renderer. Renderer process draw commands (bind shader, bind textures, bind buffers, draw element) Image with my problem here: Explication here But I've got some problems because objects can be behind another objects inside another batch. How can I do something like that? Thanks!

    Read the article

  • More Tables or More Databases?

    - by BuckWoody
    I got an e-mail from someone that has an interesting situation. He has 15,000 customers, and he asks if he should have a database for their data per customer. Without a LOT more data it’s impossible to say, of course, but there are some general concepts to keep in mind. Whenever you’re segmenting data, it’s all about boundary choices. You have not only boundaries around how big the data will get, but things like how many objects (tables, stored procedures and so on) that will be involved, if there are any cross-sections of data (do they share location or product information) and – very important – what are the security requirements? From the answer to these types of questions, you now have the choice of making multiple tables in a single database, or using multiple databases. A database carries some overhead – it needs a certain amount of memory for locking and so on. But it has a very clean boundary – everything from objects to security can be kept apart. Having multiple users in the same database is possible as well, using things like a Schema. But keeping 15,000 schemas can be challenging as well. My recommendation in complex situations like this is similar to a post on decisions that I did earlier – I lay out the choices on a spreadsheet in rows, and then my requirements at the top in the columns. I  give each choice a number based on how well it meets each requirement. At the end, the highest number wins. And many times it’s a mix – perhaps this person could segment customers into larger regions or districts or products, in a database. Within that database might be multiple schemas for the customers. Of course, he needs to query across all customers, that becomes another requirement. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • How to present a stable data model in a public API that allows internal data structures to be changed without breaking the public view of the data?

    - by Max Palmer
    I am in the process of developing an application that allows users to write C# scripts. These scripts allow users to call selected methods and to access and manipulate data in a document. This works well, however, in the development version, scripts access the document's (internal) data structures directly. This means that if we were to change the internal data model/structure, there is a good chance that someone's script will no longer compile. We obviously want to prevent this breaking change from happening, but still want to allow the user to write sensible C# code (whilst not restricting how we develop our internal data model as a result). We therefore need to decouple our scripting API and its data structures from our internal methods and data structures. We've a few ideas as to how we might allow the user to access a what is effectively a stable public version of the document's internal data*, but I wanted to throw the question out there to someone who might have some real experience of this problem. NB our internal document's data structure is quite complex and it could be quite difficult to wrap. We know we want to expose as little as possible in our public API, especially as once it's out there, it's out there for good. Can anyone help? How do scripting languages / APIs decouple their public API and data structures from their internal data structures? Is there no real alternative to having to write a complex interaction layer? If we need to do this, what's a good approach or pattern for wrapping complex data structures that include nested objects, including collections? I've looked at the API facade pattern, which looks like it's trying to address these kinds of issues, but are there alternatives? *One idea is to build a data facade that is kept stable across versions of our application. The facade exposes a set of facade data objects that are used in the script code. These maintain backwards compatibility and wrap access to our internal document's data model.

    Read the article

  • AutoVue for Agile 20.2.2 Now Available!!

    - by Warren Baird
    We are happy to announce that AutoVue for Agile 20.2.2 is now available via the Oracle Software Delivery Cloud.   AutoVue for Agile 20.2.2 is a minor release within the 20.2 product family that is specifically targeted for users of Agile PLM 9. AutoVue 20.2.2 brings a number of improvements, including support for SolidWorks 2013, AutoCAD and Inventor 2014, SolidEdge ST5, and Cadence Allegro 16.6.   It also includes support for Adobe Illustrator CS4 and up.   Another improvement involves bringing our support for Oracle Linux and Java Virtual Machine versions in-line with Agile's support. Please see our previous post (https://blogs.oracle.com/enterprisevisualization/entry/autovue_20_2_2_is) for more details on the specifics introduced in AutoVue 20.2.2. Agile PLM 9.3.3 has also been released, which as part of its many improvements introduces support for associating AutoVue annotations with change request objects in Agile, and a preliminary solution using Augmented Business Visualization to allow the creation of change objects from within AutoVue.   Please see the Agile Transfer of Information sessions in the KM note 1589164.1 for more details. We will provide additional posts over the next couple of weeks providing more details on these improvements.  Until then, if you have any questions, let us know in the comments! 

    Read the article

  • Gathering statistics for an Oracle WebCenter Content Database

    - by Nicolas Montoya
    Have you ever heard: "My Oracle WebCenter Content instance is running slow. I checked the memory and CPU usage of the application server and it has plenty of resources. What could be going wrong?An Oracle WebCenter Content instance runs on an application server and relies on a database server on the back end. If your application server tier is running fine, chances are that your database server tier may host the root of the problem. While many things could cause performance problems, on active Enterprise Content Management systems, keeping database statistics updated is extremely important.The Oracle Database have a set of built-in optimizer utilities that can help make database queries more efficient. It is strongly recommended to update or re-create the statistics about the physical characteristics of a table and the associated indexes in order to maximize the efficiency of optimizers. These physical characteristics include: Number of records Number of pages Average record length The frequency with which you need to update statistics depends on how quickly the data is changing. Typically, statistics should be updated when the number of new items since the last update is greater than ten percent of the number of items when the statistics were last updated. If a large amount of documents are being added or removed from the system, the a post step should be added to gather statistics upon completion of this massive data change. In some cases, you may need to collect statistics in the middle of the data processing to expedite its execution. These proceses include but are not limited to: data migration, bootstrapping of a new system, records management disposition processing (typically at the end of the calendar year), etc. A DOCUMENTS table with a ten million rows will often generate a very different plan than a table with just a thousand.A quick check of the statistics for the WebCenter Content (WCC) Database could be performed via the below query:SELECT OWNER, TABLE_NAME, NUM_ROWS, BLOCKS, AVG_ROW_LEN,TO_CHAR(LAST_ANALYZED, 'MM/DD/YYYY HH24:MI:SS')FROM DBA_TABLESWHERE TABLE_NAME='DOCUMENTS';OWNER                          TABLE_NAME                       NUM_ROWS------------------------------ ------------------------------ ----------    BLOCKS AVG_ROW_LEN TO_CHAR(LAST_ANALYZ---------- ----------- -------------------ATEAM_OCS                      DOCUMENTS                            4172        46          61 04/06/2012 11:17:51This output will return not only the date when the WCC table DOCUMENTS was last analyzed, but also it will return the <DATABASE SCHEMA OWNER> for this table in the form of <PREFIX>_OCS.This database username could later on be used to check on other objects owned by the WCC <DATABASE SCHEMA OWNER> as shown below:SELECT OWNER, TABLE_NAME, NUM_ROWS, BLOCKS, AVG_ROW_LEN,TO_CHAR(LAST_ANALYZED, 'MM/DD/YYYY HH24:MI:SS')FROM DBA_TABLESWHERE OWNER='ATEAM_OCS'ORDER BY NUM_ROWS ASC;...OWNER                          TABLE_NAME                       NUM_ROWS------------------------------ ------------------------------ ----------    BLOCKS AVG_ROW_LEN TO_CHAR(LAST_ANALYZ---------- ----------- -------------------ATEAM_OCS                      REVISIONS                            2051        46         141 04/09/2012 22:00:22ATEAM_OCS                      DOCUMENTS                            4172        46          61 04/06/2012 11:17:51ATEAM_OCS                      ARCHIVEHISTORY                       4908       244         218 04/06/2012 11:17:49OWNER                          TABLE_NAME                       NUM_ROWS------------------------------ ------------------------------ ----------    BLOCKS AVG_ROW_LEN TO_CHAR(LAST_ANALYZ---------- ----------- -------------------ATEAM_OCS                      DOCUMENTHISTORY                      5865       110          72 04/06/2012 11:17:50ATEAM_OCS                      SCHEDULEDJOBSHISTORY                10131       244         131 04/06/2012 11:17:54ATEAM_OCS                      SCTACCESSLOG                        10204       496         268 04/06/2012 11:17:54...The Oracle Database allows to collect statistics of many different kinds as an aid to improving performance. The DBMS_STATS package is concerned with optimizer statistics only. The database sets automatic statistics collection of this kind on by default, DBMS_STATS package is intended for only specialized cases.The following subprograms gather certain classes of optimizer statistics:GATHER_DATABASE_STATS Procedures GATHER_DICTIONARY_STATS Procedure GATHER_FIXED_OBJECTS_STATS Procedure GATHER_INDEX_STATS Procedure GATHER_SCHEMA_STATS Procedures GATHER_SYSTEM_STATS Procedure GATHER_TABLE_STATS ProcedureThe DBMS_STATS.GATHER_SCHEMA_STATS PL/SQL Procedure gathers statistics for all objects in a schema.DBMS_STATS.GATHER_SCHEMA_STATS (    ownname          VARCHAR2,    estimate_percent NUMBER   DEFAULT to_estimate_percent_type                                                 (get_param('ESTIMATE_PERCENT')),    block_sample     BOOLEAN  DEFAULT FALSE,    method_opt       VARCHAR2 DEFAULT get_param('METHOD_OPT'),   degree           NUMBER   DEFAULT to_degree_type(get_param('DEGREE')),    granularity      VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),    cascade          BOOLEAN  DEFAULT to_cascade_type(get_param('CASCADE')),    stattab          VARCHAR2 DEFAULT NULL,    statid           VARCHAR2 DEFAULT NULL,    options          VARCHAR2 DEFAULT 'GATHER',    objlist          OUT      ObjectTab,   statown          VARCHAR2 DEFAULT NULL,    no_invalidate    BOOLEAN  DEFAULT to_no_invalidate_type (                                     get_param('NO_INVALIDATE')),  force             BOOLEAN DEFAULT FALSE);There are several values for the OPTIONS parameter that we need to know about: GATHER reanalyzes the whole schema     GATHER EMPTY only analyzes tables that have no existing statistics GATHER STALE only reanalyzes tables with more than 10 percent modifications (inserts, updates,   deletes) GATHER AUTO will reanalyze objects that currently have no statistics and objects with stale statistics. Using GATHER AUTO is like combining GATHER STALE and GATHER EMPTY. Example:exec dbms_stats.gather_schema_stats( -   ownname          => '<PREFIX>_OCS', -   options          => 'GATHER AUTO' -);

    Read the article

  • What causes player box/world geometry glitches in old games?

    - by Alexander
    I'm looking to understand and find the terminology for what causes - or allows - players to interfere with geometry in old games. Famously, ID's Quake3 gave birth to a whole community of people breaking the physics by jumping, sliding, getting stuck and launching themselves off points in geometry. Some months ago (though I'd be darned if I can find it again!) I saw a conference held by Bungie's Vic DeLeon and a colleague in which Vic briefly discussed the issues he ran into while attempting to wrap 'collision' objects (please correct my terminology) around environment objects so that players could appear as though they were walking on organic surfaces, while not clipping through them or appear to be walking on air at certain points, due to complexities in the modeling. My aim is to compose a case study essay for University in which I can tackle this issue in games, drawing on early exploits and how techniques have changed to address such exploits and to aid in the gameplay itself. I have 3 current day example of where exploits still exist, however specifically targeting ID Software clearly shows they've massively improved their techniques between Q3 and Q4. So in summary, with your help please, I'd like to gain a slightly better understanding of this issue as a whole (its terminology mainly) so I can use terms and ask the right questions within the right contexts. In practical application, I know what it is, I know how to do it, but I don't have the benefit of level design knowledge yet and its technical widgety knick-knack terms =) Many thanks in advance AJ

    Read the article

  • Collision detection, stop gravity

    - by Scott Beeson
    I just started using Gamemaker Studio and so far it seems fairly intuitive. However, I set a room to "Room is Physics World" and set gravity to 10. I then enabled physics on my player object and created a block object to match a platform on my background sprite. I set up a Collision Detection event for the player and the block objects that sets the gravity to 0 (and even sets the vspeed to 0). I also put a notification in the collision event and I don't get that either. I have my key down and key up events working well, moving the player left and right and changing the sprites appropriately, so I think I understand the event system. I must just be missing something simple with the physics. I've tried making both and neither of the objects "solid". Pretty frustrating since it looks so easy. The player starting point is directly above the block object in the grid and the player does fall through the block. I even made the block sprite solid red so I could see it (initially it was invisible, obviously).

    Read the article

  • Detecting collision between ball (circle) and brick(rectangle)?

    - by James Harrison
    Ok so this is for a small uni project. My lecturer provided me with a framework for a simple brickbreaker game. I am currently trying to overcome to problem of detecting a collision between the two game objects. One object is always the ball and the other objects can either be the bricks or the bat. public Collision hitBy( GameObject obj ) { //obj is the bat or the bricks //the current object is the ball // if ball hits top of object if(topX + width >= obj.topX && topX <= obj.topX + obj.width && topY + height >= obj.topY - 2 && topY + height <= obj.topY){ return Collision.HITY; } //if ball hits left hand side else if(topY + height >= obj.topY && topY <= obj.topY + obj.height && topX + width >= obj.topX -2 && topX + width <= obj.topX){ return Collision.HITX; } else return Collision.NO_HIT; } So far I have a method that is used to detect this collision. The the current obj is a ball and the obj passed into the method is the the bricks. At the moment I have only added statement to check for left and top collisions but do not want to continue as I have a few problems. The ball reacts perfectly if it hits the top of the bricks or bat but when it hits the ball often does not change directing. It seems that it is happening toward the top of the left hand edge but I cannot figure out why. I would like to know if there is another way of approaching this or if people know where I'm going wrong. Lastly the collision.HITX calls another method later on the changes the x direction likewise with y.

    Read the article

  • Ray Tracing concers: Efficient Data Structure and Photon Mapping

    - by Grieverheart
    I'm trying to build a simple ray tracer for specific target scenes. An example of such scene can be seen below. I'm concerned as to what accelerating data structure would be most efficient in this case since all objects are touching but on the other hand, the scene is uniform. The objects in my ray tracer are stored as a collection of triangles, thus I also have access to individual triangles. Also, when trying to find the bounding box of the scene, how should infinite planes be handled? Should one instead use the viewing frustum to calculate the bounding box? A few other questions I have are about photon mapping. I've read the original paper by Jensen and many more material. In the compact data structure for the photon they introduce, they store photon power as 4 chars, which from my understanding is 3 chars for color and 1 for flux. But I don't understand how 1 char is enough to store a flux of the order of 1/n, where n is the number of photons (I'm also a bit confused about flux vs power). The other question about photon mapping is, if it would be more efficient in my case to store photons per object (or even per Object's triangle) instead of using a balanced kd-tree. Also, same question about bounding box of the scene but for photon mapping. How should one find a bounding box from the pov of the light when infinite planes are involved?

    Read the article

  • Information Spilling Across Object Boundaries

    - by Winston Ewert
    Many times my business objects tend to have situations where information needs to cross object boundaries too often. When doing OO, we want information to be in one object and as much as possible all code dealing with that information should be in that object. However, business rules do not follow this principle giving me trouble. As an example suppose that we have an Order which has a number of OrderItems which refers to an InventoryItem which has a price. I invoke Order.GetTotal() which sums the result of OrderItem.GetPrice() which multiples a quantity by InventoryItem.GetPrice(). So far so good. But then we find out that some items are sold with a two for one deal. We can handle this by having OrderItem.GetPrice() do something like InventoryItem.GetPrice( quantity ) and letting InventoryItem deal with this. However, then we find out that the two-for-one deal only lasts for a particular time period. This time period needs to be based on the date of the order. Now we change OrderItem.GetPrice() to be InventoryItem.GetPrice( quatity, order.GetDate() ) But then we need to support different prices depending on how long the customer has been in the system: InventoryItem.GetPrice( quantity, order.GetDate(), order.GetCustomer() ) But then it turns out that the two-for-one deals apply not just to buying multiple of the same inventory item but multiple for any item in a InventoryCategory. At this point we throw up our hands and just give the InventoryItem the order item and allow it to travel over the object reference graph via accessors to get the information its needs: InventoryItem.GetPrice( this ) TL;DR I want to have coupling in objects, but business rules often force me to access information from all over the place in order to make particular decisions. Are there good techniques for dealing with this? Do others find the same problem?

    Read the article

  • Switch or a Dictionary when assigning to new object

    - by KChaloux
    Recently, I've come to prefer mapping 1-1 relationships using Dictionaries instead of Switch statements. I find it to be a little faster to write and easier to mentally process. Unfortunately, when mapping to a new instance of an object, I don't want to define it like this: var fooDict = new Dictionary<int, IBigObject>() { { 0, new Foo() }, // Creates an instance of Foo { 1, new Bar() }, // Creates an instance of Bar { 2, new Baz() } // Creates an instance of Baz } var quux = fooDict[0]; // quux references Foo Given that construct, I've wasted CPU cycles and memory creating 3 objects, doing whatever their constructors might contain, and only ended up using one of them. I also believe that mapping other objects to fooDict[0] in this case will cause them to reference the same thing, rather than creating a new instance of Foo as intended. A solution would be to use a lambda instead: var fooDict = new Dictionary<int, Func<IBigObject>>() { { 0, () => new Foo() }, // Returns a new instance of Foo when invoked { 1, () => new Bar() }, // Ditto Bar { 2, () => new Baz() } // Ditto Baz } var quux = fooDict[0](); // equivalent to saying 'var quux = new Foo();' Is this getting to a point where it's too confusing? It's easy to miss that () on the end. Or is mapping to a function/expression a fairly common practice? The alternative would be to use a switch: IBigObject quux; switch(someInt) { case 0: quux = new Foo(); break; case 1: quux = new Bar(); break; case 2: quux = new Baz(); break; } Which invocation is more acceptable? Dictionary, for faster lookups and fewer keywords (case and break) Switch: More commonly found in code, doesn't require the use of a Func< object for indirection.

    Read the article

  • Organizing MVC entities communication

    - by Stefano Borini
    I have the following situation. Imagine you have a MainWindow object who is layouting two different widgets, ListWidget and DisplayWidget. ListWidget is populated with data from the disk. DisplayWidget shows the details of the selection the user performs in the ListWidget. I am planning to do the following: in MainWindow I have the following objects: ListWidget ListView ListModel ListController ListView is initialized passing the ListWidget. ListViewController is initialized passing the View and the Model. Same happens for the DisplayWidget: DisplayWidget DisplayView DisplayModel DisplayController I initialize the DisplayView with the widget, and initialize the Model with the ListController. I do this because the DisplayModel wraps the ListController to get the information about the current selection, and the data to be displayed in the DisplayView. I am very rusty with MVC, being out of UI programming since a while. Is this the expected interaction layout for having different MVC triplets communicate ? In other words, MVC focus on the interaction of three objects. How do you put this interaction as a whole into a larger context of communication with other similar entities, MVC or not ?

    Read the article

  • How do I implement movement in a WPF Adventure game?

    - by ZeroPhase
    I'm working on making a short WPF adventure game. The only major hurdle I have right now is how to animate objects on the screen correctly. I've experimented with DoubleAnimation and ThicknessAnimation both enable movement of the character, but the speed is a bit erratic. The objects I'm trying to move around are labels in a grid, I'm checking the mouse's position in terms of the canvas I have the grid in. Does anyone have any suggestions for coding the movement, while still allowing mouse clicks to pick up items when needed? It would be nice if I could continue using the Visual Studio GUI Editor. By the way, I'm fine with scrapping labels in a grid for a more ideal object to manipulate. Here's my movement code: ThicknessAnimation ta = new ThicknessAnimation(); The event handling movement: private void Hansel_MouseLeftButtonDown(object sender, MouseButtonEventArgs e) { ta.FillBehavior = FillBehavior.HoldEnd; ta.From = Hansel.Margin; double newX = Mouse.GetPosition(PlayArea).X; double newY = Mouse.GetPosition(PlayArea).Y; if (newX < Convert.ToDouble(Hansel.Margin.Left)) { //newX = -1 * newX; ta.To = new Thickness(0, newY, newX, 0); } else if (newY < Convert.ToDouble(Hansel.Margin.Top)) { newY = -1 * newY; } else { ta.To = new Thickness(newX, newY, 0, 0); } ta.Duration = new Duration(TimeSpan.FromSeconds(2)); Hansel.BeginAnimation(Grid.MarginProperty, ta); } ScreenShot with annotations: http://i1118.photobucket.com/albums/k608/sealclubberr/clickToMove_zps9d4a33cc.png ScreenShot with example movement: http://i1118.photobucket.com/albums/k608/sealclubberr/clickToMove_zps51f2359f.jpg

    Read the article

  • Understanding Box2d Restitution & Bouncing

    - by layzrr
    I'm currently trying to implement basketball bouncing into my game using Box2d (jBox2d technically), but I'm a bit confused about restitution. While trying to create the ball in the testbed first, I've run into infinite bouncing, as described in this question, however obviously not using my own implementation. The Box2d manual describes restitution as follows: Restitution is used to make objects bounce. The restitution value is usually set to be between 0 and 1. Consider dropping a ball on a table. A value of zero means the ball won't bounce. This is called an inelastic collision. A value of one means the ball's velocity will be exactly reflected. This is called a perfectly elastic collision. My confusion lies in that I am still getting infinite bouncing with restitution values at 0.75/0.8. The same behavior can be seen in the testbed under Collision Watching - Varying Restitution, on the 6th and 7th balls. I believe the last one has restitution of 1, which makes sense, but I don't understand why the second to last ball bounces infinitely (as is happening with my working basketball I've created). I am looking to understand the restitution concept more fully, as well as look for a solution to infinite bouncing with the Box2d framework. My instinct was to sleep objects that appeared to be moving in very small increments, but this seems like a misuse of the engine. Should I just work with lower restitution values altogether?

    Read the article

  • Does immutability entirely eliminate the need for locks in multi-processor programming?

    - by GlenPeterson
    Part 1 Clearly Immutability minimizes the need for locks in multi-processor programming, but does it eliminate that need, or are there instances where immutability alone is not enough? It seems to me that you can only defer processing and encapsulate state so long before most programs have to actually DO something. If a program performs actions on multiple processors, something needs to collect and aggregate the results. All this involves multi-process communication before, after, and possibly during some transformations. The start and end state of the machines are different. Can this always be done with no locks just by throwing out each object and creating a new one instead of changing the original (a crude view of immutability)? What cases still require locking? I'm interested in both the theoretical/academic answer and the practical/real-world answer. I know a lot of functional programmers like to talk about "no side effect" but in the "real world" everything has a side effect. Every processor click takes time and electricity and machine resources away from other processes. So I understand that there may be more than one perspective to answer this question from. If immutability is safe, given certain bounds or assumptions, I want to know what the borders of the "safety zone" are exactly. Some examples of possible boundaries: I/O Exceptions/errors Interfaces with programs written in other languages Interfaces with other machines (physical, virtual, or theoretical) Special thanks to @JimmaHoffa for his comment which started this question! Part 2 Multi-processor programming is often used as an optimization technique - to make some code run faster. When is it faster to use locks vs. immutable objects? Given the limits set out in Amdahl's Law, when can you achieve better over-all performance (with or without the garbage collector taken into account) with immutable objects vs. locking mutable ones? Summary I'm combining these two questions into one to try to get at where the bounding box is for Immutability as a solution to threading problems.

    Read the article

  • Low-level game engine renderer design

    - by Mark Ingram
    I'm piecing together the beginnings of an extremely basic engine which will let me draw arbitrary objects (SceneObject). I've got to the point where I'm creating a few sensible sounding classes, but as this is my first outing into game engines, I've got the feeling I'm overlooking things. I'm familiar with compartmentalising larger portions of the code so that individual sub-systems don't overly interact with each other, but I'm thinking more of the low-level stuff, starting from vertices working up. So if I have a Vertex class, I can combine that with a list of indices to make a Mesh class. How does the engine determine identical meshes for objects? Or is that left to the level designer? Once we have a Mesh, that can be contained in the SceneObject class. And a list of SceneObject can be placed into the Scene to be drawn. Right now I'm only using OpenGL, but I'm aware that I don't want to be tying OpenGL calls right in to base classes (such as updating the vertices in the Mesh, I don't want to be calling glBufferData etc). Are there any good resources that discuss these issues? Are there any "common" heirachies which should be used?

    Read the article

  • Strange and erratic transformations when using OpenGL VBOs to render scene

    - by janoside
    I have an existing iOS game with fairly simple scenes (all textured quads) and I'm using Apple's "Texture2D" class. I'm trying to convert this class to use VBOs since the vertices of my objects basically never change so I may as well not re-create them for every object every frame. I have the scene rendering using VBOs but the sizes and orientations of all rendered objects are strange and erratic - though locations seem generally correct. I've been toying with this code for a few days now, and I've found something odd: if I re-create all of my VBOs each frame, everything looks correct, even though I'm almost certain my vertices are not changing. Other notes I'm basing my work on this tutorial, and therefore am also using "IBOs" I create my buffers before rendering begins My buffers include vertex and texture data I'm using OpenGL ES 1.1 Fearing some strange effect of the current matrix GL state at the time of buffer creation I've also tried wrapping my buffer-setup code in a "pushMatrix-loadIdentity-popMatrix" block which (as expected) had no effect I'm aware that various articles have been published demonstrating that VBOs may not help performance, but I want to understand this problem and at least have the option to use them. I realize this is a shot in the dark, but has anyone else experienced this type of strange behavior? What might I be doing to result in this behavior? It's rather difficult for me to isolate the problem since I'm working in an existing, moderately complex project, so suggestions about how to approach the problem are also quite welcome.

    Read the article

  • Why do memory-managed languages retain the `new` keyword?

    - by Channel72
    The new keyword in languages like Java, Javascript, and C# creates a new instance of a class. This syntax seems to have been inherited from C++, where new is used specifically to allocate a new instance of a class on the heap, and return a pointer to the new instance. In C++, this is not the only way to construct an object. You can also construct an object on the stack, without using new - and in fact, this way of constructing objects is much more common in C++. So, coming from a C++ background, the new keyword in languages like Java, Javascript, and C# seemed natural and obvious to me. Then I started to learn Python, which doesn't have the new keyword. In Python, an instance is constructed simply by calling the constructor, like: f = Foo() At first, this seemed a bit off to me, until it occurred to me that there's no reason for Python to have new, because everything is an object so there's no need to disambiguate between various constructor syntaxes. But then I thought - what's really the point of new in Java? Why should we say Object o = new Object();? Why not just Object o = Object();? In C++ there's definitely a need for new, since we need to distinguish between allocating on the heap and allocating on the stack, but in Java all objects are constructed on the heap, so why even have the new keyword? The same question could be asked for Javascript. In C#, which I'm much less familiar with, I think new may have some purpose in terms of distinguishing between object types and value types, but I'm not sure. Regardless, it seems to me that many languages which came after C++ simply "inherited" the new keyword - without really needing it. It's almost like a vestigial keyword. We don't seem to need it for any reason, and yet it's there. Question: Am I correct about this? Or is there some compelling reason that new needs to be in C++-inspired memory-managed languages like Java, Javascript and C#?

    Read the article

  • Scene graphs and spatial partitioning structures: What do you really need?

    - by tapirath
    I've been fiddling with 2D games for awhile and I'm trying to go into 3D game development. I thought I should get my basics right first. From what I read scene graphs hold your game objects/entities and their relation to each other like 'a tire' would be the child of 'a vehicle'. It's mainly used for frustum/occlusion culling and minimizing the collision checks between the objects. Spatial partitioning structures on the other hand are used to divide a big game object (like the map) to smaller parts so that you can gain performance by only drawing the relevant polygons and again minimizing the collision checks to those polygons only. Also a spatial partitioning data structure can be used as a node in a scene graph. But... I've been reading about both subjects and I've seen a lot of "scene graphs are useless" and "BSP performance gain is irrelevant with modern hardware" kind of articles. Also some of the game engines I've checked like gameplay3d and jmonkeyengine are only using a scene graph (That also may be because they don't want to limit the developers). Whereas games like Quake and Half-Life only use spatial partitioning. I'm aware that the usage of these structures very much depend on the type of the game you're developing so for the sake of clarity let's assume the game is a FPS like Counter-Strike with some better outdoor environment capabilities (like a terrain). The obvious question is which one is needed and why (considering the modern hardware capabilities). Thank you.

    Read the article

  • 2D Side scroller collision detection

    - by Shanon Simmonds
    I am trying to do some collision detection between objects and tiles, but the tiles do not have there own x and y position, they are just rendered to the x and y position given, there is an array of integers which has the ids of the tiles to use(which are given from an image and all the different colors are assigned different tiles) int x0 = camera.x / 16; int y0 = camera.y / 16; int x1 = (camera.x + screen.width) / 16; int y1 = (camera.y + screen.height) / 16; for(int y = y0; y < y1; y++) { if(y < 0 || y >= height) continue; // height is the height of the level for(int x = x0; x < x1; x++) { if(x < 0 || x >= width) continue; // width is the width of the level getTile(x, y).render(screen, x * 16, y * 16); } } I tried using the levels getTile method to see if the tile that the object was going to advance to, to see if it was a certain tile, but, it seems to only work in some directions. Any ideas on what I'm doing wrong and fixes would be greatly appreciated. What's wrong is that it doesn't collide properly in every direction and also this is how I tested for a collision in the objects class if(!level.getTile((x + xa) / 16, (y + ya) / 16).isSolid()) { x += xa; y += ya; } EDIT: xa and ya represent the direction as well as the movement, if xa is negative it means the object is moving left, if its positive it is moving right, and same with ya except negative for up, positive for down.

    Read the article

  • cocos2d/OpenGL multitexturing problem

    - by Gajoo
    I've got a simple shader to test multitextureing the problem is both samplers are using same image as their reference. the shader code is basically just this : vec4 mid = texture2D(u_texture,v_texCoord); float g = texture2D(u_guide,v_guideCoord); gl_FragColor = vec4(g , mid.g,0,1); and this is how I'm calling draw function : int last_State; glGetIntegerv(GL_ACTIVE_TEXTURE, &last_State); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, getTexture()->getName()); glActiveTexture(GL_TEXTURE1); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, mGuideTexture->getName()); ccGLEnableVertexAttribs( kCCVertexAttribFlag_TexCoords |kCCVertexAttribFlag_Position); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, 0, vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, 0, texCoord); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glDisable(GL_TEXTURE_2D); I've already check mGuideTexture->getName() and getTexture()->getName() are returning correct textures. but looking at the result I can tell, both samplers are reading from getTexture()->getName(). here are some screen shots showing what is happening : The image rendered Using above codes The image rendered when I change textures passed to samples I'm expecting to see green objects from the first picture with red objects hanging from the top.

    Read the article

  • Adding 2D vector movement with rotation applied

    - by Michael Zehnich
    I am trying to apply a slight sine wave movement to objects that float around the screen to make them a little more interesting. I would like to apply this to the objects so that they oscillate from side to side, not front to back (so the oscillation does not affect their forward velocity). After reading various threads and tutorials, I have come to the conclusion that I need to create and add vectors, but I simply cannot come up with a solution that works. This is where I'm at right now, in the object's update method (updated based on comments): Vector2 oldPosition = new Vector2(spritePos.X, spritePos.Y); //note: newPosition is initially set in the constructor to spritePos.x/y Vector2 direction = newPosition - oldPosition; Vector2 perpendicular = new Vector2(direction.Y, -direction.X); perpendicular.Normalize(); sinePosAng += 0.1f; perpendicular.X += 2.5f * (float)Math.Sin(sinePosAng); spritePos.X += velocity * (float)Math.Cos(radians); spritePos.Y += velocity * (float)Math.Sin(radians); spritePos += perpendicular; newPosition = spritePos;

    Read the article

  • XNA hlsl tex2D() only reads 3 channels from normal maps and specular maps

    - by cubrman
    Our engine uses deferred rendering and at the main draw phase gathers plenty of data from the objects it draws. In order to save on tex2D calls, we packed our objects' specular maps with all sorts of data, so three out of four channels are already taken. To make it clear: I am talking about the assets that come with the models and are stored in their material's Specular Level channel, not about the RenderTarget. So now I need another information to be stored in the alpha channel, but I cannot make the shader to read it properly! Nomatter what I write into alpha it ends up being 1 (255)! I tried: saving the textures in PNG/TGA formats. turning off pre-computed alpha in model's properties. Out of every texture available to me (we use Diffuse map, Normal Map and Specular Map) I was only able to read alpha successfully from the Diffuse Map! Here is how I add specular and normal maps to my model's material in the content processor: if (geometry.Material.Textures.ContainsKey(normalMapKey)) { ExternalReference<TextureContent> texRef = geometry.Material.Textures[normalMapKey]; geometry.Material.Textures.Remove("NormalMap"); geometry.Material.Textures.Add("NormalMap", texRef); } ... foreach (KeyValuePair<String, ExternalReference<TextureContent>> texture in material.Textures) { if ((texture.Key == "Texture") || (texture.Key == "NormalMap") || (texture.Key == "SpecularMap")) mat.Textures.Add(texture.Key, texture.Value); } In the shader I obviously use: float4 data = tex2D(specularMapSampler, TexCoords); so data.a is always 1 in my case, could you suggest a reason?

    Read the article

< Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >