Search Results

Search found 4841 results on 194 pages for 'poor programmer'.

Page 165/194 | < Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Installing Visual Studio Team Foundation Server Service Pack 1

    - by Martin Hinshelwood
    As has become customary when the product team releases a new patch, SP or version I like to document the install. Although I had no errors on my main computer, my netbook did have problems. Although I am not ready to call it a Service Pack problem just yet! Update 2011-03-10 – Running the Team Foundation Server 2010 Service Pack 1 install a second time worked As per Brian's post I am installing the Team Foundation Server Service Pack first and indeed as this is a single server local deployment I need to install both. If I only install one it will leave the other product broken. This however does not affect you if you are running Visual Studio and Team Foundation Server on separate computers as is normal in a production deployment. Main workhorse I will be installing the service pack first on my main computer as I want to actually use it here. Figure: My main workhorse I will also be installing this on my netbook which is obviously of significantly lower spec, but I will do that one after. Although, as always I had my fingers crossed, I was not really worried. Figure: KB2182621 Compared to Visual Studio there are not really a lot of components to update. Figure: TFS 2010 and SQL 2008 are the main things to update There is no “web” installer for the Team Foundation Server 2010 Service Pack, but that is ok as most people will be installing it on a production server and will want to have everything local. I would have liked a Web installer, but the added complexity for the product team is not work the capability for a 500mb patch. Figure: There is currently no way to roll SP1 and RTM together Figure: No problems with the file verification, phew Figure: Although the install took a while, it progressed smoothly   Figure: I always like a success screen Well, as far as the install is concerned everything is OK, but what about TFS? Can I still connect and can I still administer it. Figure: Service Pack 1 is reflected correctly in the Administration Console I am confident that there are no major problems with TFS on my system and that it has been updated to SP1. I can do all of the things that I used before with ease, and with the new features detailed by Brian I think I will be happy. Netbook The great god Murphy has stuck, and my poor wee laptop spat the Team Foundation Server 2010 Service Pack 1 out so fast it hit me on the back of the head. That will teach me for not looking… Figure: “Installation did not succeed” I am pretty sure should not be all caps! On examining the file I found that everything worked, except the actual Team Foundation Server 2010 serving step. Action: System Requirement Checks... Action complete Action: Downloading and/or Verifying Items c:\757fe6efe9f065130d4838081911\VS10-KB2182621.msp: Verifying signature for VS10-KB2182621.msp c:\757fe6efe9f065130d4838081911\VS10-KB2182621.msp Signature verified successfully for VS10-KB2182621.msp c:\757fe6efe9f065130d4838081911\DACFramework_enu.msi: Verifying signature for DACFramework_enu.msi c:\757fe6efe9f065130d4838081911\DACFramework_enu.msi Signature verified successfully for DACFramework_enu.msi c:\757fe6efe9f065130d4838081911\DACProjectSystemSetup_enu.msi: Verifying signature for DACProjectSystemSetup_enu.msi Exists: evaluating Exists evaluated to false c:\757fe6efe9f065130d4838081911\DACProjectSystemSetup_enu.msi Signature verified successfully for DACProjectSystemSetup_enu.msi c:\757fe6efe9f065130d4838081911\TSqlLanguageService_enu.msi: Verifying signature for TSqlLanguageService_enu.msi c:\757fe6efe9f065130d4838081911\TSqlLanguageService_enu.msi Signature verified successfully for TSqlLanguageService_enu.msi c:\757fe6efe9f065130d4838081911\SharedManagementObjects_x86_enu.msi: Verifying signature for SharedManagementObjects_x86_enu.msi c:\757fe6efe9f065130d4838081911\SharedManagementObjects_x86_enu.msi Signature verified successfully for SharedManagementObjects_x86_enu.msi c:\757fe6efe9f065130d4838081911\SharedManagementObjects_amd64_enu.msi: Verifying signature for SharedManagementObjects_amd64_enu.msi c:\757fe6efe9f065130d4838081911\SharedManagementObjects_amd64_enu.msi Signature verified successfully for SharedManagementObjects_amd64_enu.msi c:\757fe6efe9f065130d4838081911\SQLSysClrTypes_x86_enu.msi: Verifying signature for SQLSysClrTypes_x86_enu.msi c:\757fe6efe9f065130d4838081911\SQLSysClrTypes_x86_enu.msi Signature verified successfully for SQLSysClrTypes_x86_enu.msi c:\757fe6efe9f065130d4838081911\SQLSysClrTypes_amd64_enu.msi: Verifying signature for SQLSysClrTypes_amd64_enu.msi c:\757fe6efe9f065130d4838081911\SQLSysClrTypes_amd64_enu.msi Signature verified successfully for SQLSysClrTypes_amd64_enu.msi c:\757fe6efe9f065130d4838081911\vcruntime\Vc_runtime_x86.cab: Verifying signature for vcruntime\Vc_runtime_x86.cab c:\757fe6efe9f065130d4838081911\vcruntime\Vc_runtime_x86.cab Signature verified successfully for vcruntime\Vc_runtime_x86.cab c:\757fe6efe9f065130d4838081911\vcruntime\Vc_runtime_x86.msi: Verifying signature for vcruntime\Vc_runtime_x86.msi c:\757fe6efe9f065130d4838081911\vcruntime\Vc_runtime_x86.msi Signature verified successfully for vcruntime\Vc_runtime_x86.msi c:\757fe6efe9f065130d4838081911\SetupUtility.exe: Verifying signature for SetupUtility.exe c:\757fe6efe9f065130d4838081911\SetupUtility.exe Signature verified successfully for SetupUtility.exe c:\757fe6efe9f065130d4838081911\vcruntime\Vc_runtime_x64.cab: Verifying signature for vcruntime\Vc_runtime_x64.cab c:\757fe6efe9f065130d4838081911\vcruntime\Vc_runtime_x64.cab Signature verified successfully for vcruntime\Vc_runtime_x64.cab c:\757fe6efe9f065130d4838081911\vcruntime\Vc_runtime_x64.msi: Verifying signature for vcruntime\Vc_runtime_x64.msi c:\757fe6efe9f065130d4838081911\vcruntime\Vc_runtime_x64.msi Signature verified successfully for vcruntime\Vc_runtime_x64.msi c:\757fe6efe9f065130d4838081911\NDP40-KB2468871.exe: Verifying signature for NDP40-KB2468871.exe c:\757fe6efe9f065130d4838081911\NDP40-KB2468871.exe Signature verified successfully for NDP40-KB2468871.exe Action complete Action: Performing actions on all Items Entering Function: BaseMspInstallerT >::PerformAction Action: Performing Install on MSP: c:\757fe6efe9f065130d4838081911\VS10-KB2182621.msp targetting Product: Microsoft Team Foundation Server 2010 - ENU Returning IDOK. INSTALLMESSAGE_ERROR [Error 1935.An error occurred during the installation of assembly 'Microsoft.TeamFoundation.WebAccess.WorkItemTracking,version="10.0.0.0",publicKeyToken="b03f5f7f11d50a3a",processorArchitecture="MSIL",fileVersion="10.0.40219.1",culture="neutral"'. Please refer to Help and Support for more information. HRESULT: 0x80070005. ] Returning IDOK. INSTALLMESSAGE_ERROR [Error 1712.One or more of the files required to restore your computer to its previous state could not be found. Restoration will not be possible.] Patch (c:\757fe6efe9f065130d4838081911\VS10-KB2182621.msp) Install failed on product (Microsoft Team Foundation Server 2010 - ENU). Msi Log: MSI returned 0x643 Entering Function: MspInstallerT >::Rollback Action Rollback changes PerformMsiOperation returned 0x643 PerformMsiOperation returned 0x643 OnFailureBehavior for this item is to Rollback. Action complete Final Result: Installation failed with error code: (0x80070643), "Fatal error during installation. " (Elapsed time: 0 00:14:09). Figure: Error log for Team Foundation Server 2010 install shows a failure As there is really no information in this log as to why the installation failed so I checked the event log on that box. Figure: There are hundreds of errors and it actually looks like there are more problems than a failed Service Pack I am going to just run it again and see if it was because the netbook was slow to catch on to the update. Hears hoping, but even if it fails, I would question the installation of Windows (PDC laptop original install) before I question the Service Pack Figure: Second run through was successful I don’t know if the laptop was just slow, or what… Did you get this error? If you did I will push this to the product team as a problem, but unless more people have this sort of error, I will just look to write this off as a corrupted install of Windows and reinstall.

    Read the article

  • Performance and Optimization Isn’t Evil

    - by Reed
    Donald Knuth is a fairly amazing guy.  I consider him one of the most influential contributors to computer science of all time.  Unfortunately, most of the time I hear his name, I cringe.  This is because it’s typically somebody quoting a small portion of one of his famous statements on optimization: “premature optimization is the root of all evil.” I mention that this is only a portion of the entire quote, and, as such, I feel that Knuth is being quoted out of context.  Optimization is important.  It is a critical part of every software development effort, and should never be ignored.  A developer who ignores optimization is not a professional.  Every developer should understand optimization – know what to optimize, when to optimize it, and how to think about code in a way that is intelligent and productive from day one. I want to start by discussing my own, personal motivation here.  I recently wrote about a performance issue I ran across, and was slammed by multiple comments and emails that effectively boiled down to: “You’re an idiot.  Premature optimization is the root of all evil.  This doesn’t matter.”  It didn’t matter that I discovered this while measuring in a profiler, and that it was a portion of my code base that can take “many hours to complete.”  Even so, multiple people instantly jump to “it’s premature – it doesn’t matter.” This is a common thread I see.  For example, StackOverflow has many pages of posts with answers that boil down to (mis)quoting Knuth.  In fact, just about any question relating to a performance related issue gets this quote thrown at it immediately – whether it deserves it or not.  That being said, I did receive some positive comments and emails as well.  Many people want to understand how to optimize their code, approaches to take, tools and techniques they can use, and any other advice they can discover. First, lets get back to Knuth – I mentioned before that Knuth is being quoted out of context.  Lets start by looking at the entire quote from his 1974 paper Structured Programming with go to Statements: “We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified.” Ironically, if you read Knuth’s original paper, this statement was made in the middle of a discussion of how Knuth himself had changed how he approaches optimization.  It was never a statement saying “don’t optimize”, but rather, “optimizing intelligently provides huge advantages.”  His approach had three benefits: “a) it doesn’t take long” … “b) the payoff is real”, c) you can “be less efficient in the other parts of my programs, which therefore are more readable and more easily written and debugged.” Looking at Knuth’s premise here, and reading that section of his paper, really leads to a few observations: Optimization is important  “he will be wise to look carefully at the critical code” Normally, 3% of your code – three lines out of every 100 you write, are “critical code” and will require some optimization: “we should not pass up our opportunities in that critical 3%” Optimization, if done well, should not be time consuming: “it doesn’t take long” Optimization, if done correctly, provides real benefits: “the payoff is real” None of this is new information.  People who care about optimization have been discussing this for years – for example, Rico Mariani’s Designing For Performance (a fantastic article) discusses many of the same issues very intelligently. That being said, many developers seem unable or unwilling to consider optimization.  Many others don’t seem to know where to start.  As such, I’m going to spend some time writing about optimization – what is it, how should we think about it, and what can we do to improve our own code.

    Read the article

  • Adopting DBVCS

    - by Wes McClure
    Identify early adopters Pick a small project with a small(ish) team.  This can be a legacy application or a green-field application. Strive to find a team of early adopters that will be eager to try something new. Get the team on board! Research Research the tool(s) that you want to use.  Some tools provide all of the features you would need while some only provide a slice of the pie.  DBVCS requires the ability to manage a set of change scripts that update a database from one version to the next.  Ideally a tool can track database versions and automatically apply updates.  The change script generation process can be manual, but having diff tools available to automatically generate it can really reduce the overhead to adoption.  Finally, an automated tool to generate a script file per database object is an added bonus as your version control system can quickly identify what was changed in a commit (add/del/modify), just like with code changes. Don’t settle on just one tool, identify several.  Then work with the team to evaluate the tools.  Have the team do some tests of the following scenarios with each tool: Baseline an existing database: can the migration tool work with legacy databases?  Caution: most migration platforms do not support baselines or have poor support, especially the fad of fluent APIs. Add/drop tables Add/drop procedures/functions/views Alter tables (rename columns, add columns, remove columns) Massage data – migrations sometimes involve changing data types that cannot be implicitly casted and require you to decide how the data is explicitly cast to the new type.  This is a requirement for a migrations platform.  Think about a case where you might want to combine fields, or move a field from one table to another, you wouldn’t want to lose the data. Run the tool via the command line.  If you cannot automate the tool in Continuous Integration what is the point? Create a copy of a database on demand. Backup/restore databases locally. Let the team give feedback and decide together, what tool they would like to try out. My recommendation at this point would be to include TSqlMigrations and RoundHouse as SQL based migration platforms.  In general I would recommend staying away from the fluent platforms as they often lack baseline capabilities and add overhead to learn a new API when SQL is already a very well known DSL.  Code migrations often get messy with procedures/views/functions as these have to be created with SQL and aren’t cross platform anyways.  IMO stick to SQL based migrations. Reconciling Production If your project is a legacy application, you will need to reconcile the current state of production with your development databases.  Find changes in production and bring them down to development, even if they are old and need to be removed.  Once complete, produce a baseline of either dev or prod as they are now in sync.  Commit this to your VCS of choice. Add whatever schema changes tracking mechanism your tool requires to your development database.  This often requires adding a table to track the schema version of that database.  Your tool should support doing this for you.  You can add this table to production when you do your next release. Script out any changes currently in dev.  Remove production artifacts that you brought down during reconciliation.  Add change scripts for any outstanding changes in dev since the last production release.  Commit these to your repository.   Say No to Shared Dev DBs Simply put, you wouldn’t dream of sharing a code checkout, why would you share a development database?  If you have a shared dev database, back it up, distribute the backups and take the shared version offline (including the dev db server once all projects are using DB VCS).  Doing DB VCS with a shared database is bound to cause problems as people won’t be able to easily script out their own changes from those that others are working on.   First prod release Copy prod to your beta/testing environment.  Add the schema changes table (or mechanism) and do a test run of your changes.  If successful you can schedule this to be run on production.   Evaluation After your first release, evaluate the pain points of the process.  Try to find tools or modifications to existing tools to help fix them.  Don’t leave stones unturned, iteratively evolve your tools and practices to make the process as seamless as possible.  This is why I suggest open source alternatives.  Nothing is set in stone, a good example was adding transactional support to TSqlMigrations.  We ran into situations where an update would break a database, so I added a feature to do transactional updates and rollback on errors!  Another good example is generating change scripts.  We have been manually making these for months now.  I found an open source project called Open DB Diff and integrated this with TSqlMigrations.  These were things we just accepted at the time when we began adopting our tool set.  Once we became comfortable with the base functionality, it was time to start automating more of the process.  Just like anything else with development, never be afraid to try to find tools to make your job easier!   Enjoy -Wes

    Read the article

  • Play Your Favorite DOS Games in XP, Vista, and Windows 7

    - by Matthew Guay
    Want to take a trip down memory lane with old school DOS games?  D-Fend Reloaded makes it easy for you to play your favorite DOS games directly on XP, Vista, and Windows 7. D-Fend Reloaded is a great frontend for DOSBox, the popular DOS emulator.  It lets you install and run many DOS games and applications directly from its interface without ever touching a DOS prompt.  It works great on XP, Vista, and Windows 7 32 & 64-bit versions.   Getting Started Download D-Fend Reloaded (link below), and install with the default settings.  You don’t need to install DOSBox, as D-Fend Reloaded will automatically install all the components you need to run DOS games on Windows. D-Fend Reloaded can also be installed as a portable application, so you can run it from a flash drive on any Windows computer by selecting User defined installation. Then select Portable mode installation. Once D-Fend Reloaded is installed, you can go ahead and open the program. Then simply click “Accept all settings” to apply the default settings.   D-Fend is now ready to run all of your favorite DOS games. Installing DOS Games and Applications: To install a DOS game or application, simply drag-and-drop a zip file of the app into D-Fend Reloaded’s window.  D-Fend Reloaded will automatically extract the program… Then will ask you to name the application and choose where to store it — by default it uses the name of the DOS app. Now you’ll see a new entry for the app you just installed.  Simply double-click to run it.   D-Fend will remind you that you can switch out of fullscreen mode by pressing Alt+Enter, and can also close the DOS application by pressing Ctrl+F9.  Press Ok to run the program. Here we’re running Ms. PacPC, a remake of the classic game Ms. Pac-Man, in full-screen mode.  All features work automatically, including sound, and you never have to setup anything from DOS command line — it just works. Here it’s in windowed mode running on Windows 7. Please note that your color scheme may change to Windows Basic while running DOS applications. You can run DOS application just as easily.  Here’s Word 5.5 running in in DOSBox through D-Fend Reloaded… Game Packs: Want to quickly install many old DOS freeware and trial games?  D-Fend Reloaded offers several game packs that let you install dozens of DOS games with only four clicks…just download and run the game pack installer of your choice (link below). Now you’ve got a selection of DOS games to choose from. Here’s a group of poor lemmings walking around … in Windows 7. Conclusion D-Fend Reloaded gives you a great way to run your favorite DOS games and applications directly from XP, Vista, and Windows 7.  Give it a try, and relive your DOS days from the comfort of your Windows desktop. What were some of your favorite DOS games and applications? Leave a comment and let us know. Links Download D-Fend Reloaded Download DOS game packs for D-Fend Reloaded Download Ms. Pac-PC Similar Articles Productive Geek Tips Friday Fun: Get Your Mario OnFriday Fun: Go Retro with PacmanThursday’s Pre-Holiday Lazy Links RoundupFriday Fun: Five More Time Wasting Online GamesFriday Fun: Holiday Themed Games TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional The Growth of Citibank Quickly Switch between Tabs in IE Windows Media Player 12: Tweak Video & Sound with Playback Enhancements Own a cell phone, or does a cell phone own you? Make your Joomla & Drupal Sites Mobile with OSMOBI Integrate Twitter and Delicious and Make Life Easier

    Read the article

  • ASP.NET Error Handling: Creating an extension method to send error email

    - by Jalpesh P. Vadgama
    Error handling in asp.net required to handle any kind of error occurred. We all are using that in one or another scenario. But some errors are there which will occur in some specific scenario in production environment in this case We can’t show our programming errors to the End user. So we are going to put a error page over there or whatever best suited as per our requirement. But as a programmer we should know that error so we can track the scenario and we can solve that error or can handle error. In this kind of situation an Error Email comes handy. Whenever any occurs in system it will going to send error in our email. Here I am going to write a extension method which will send errors in email. From asp.net 3.5 or higher version of .NET framework  its provides a unique way to extend your classes. Here you can fine more information about extension method. So lets create extension method via implementing a static class like following. I am going to use same code for sending email via my Gmail account from here. Following is code for that. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Net.Mail; namespace Experiement { public static class MyExtension { public static void SendErrorEmail(this Exception ex) { MailMessage mailMessage = new MailMessage(new MailAddress("[email protected]") , new MailAddress("[email protected]")); mailMessage.Subject = "Exception Occured in your site"; mailMessage.IsBodyHtml = true; System.Text.StringBuilder errorMessage = new System.Text.StringBuilder(); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>","Exception",ex.Message)); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", "Stack Trace", ex.StackTrace)); if (ex.InnerException != null) { errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", " Inner Exception", ex.InnerException.Message)); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", "Inner Stack Trace", ex.InnerException.StackTrace)); } mailMessage.Body = errorMessage.ToString(); System.Net.NetworkCredential networkCredentials = new System.Net.NetworkCredential("[email protected]", "password"); SmtpClient smtpClient = new SmtpClient(); smtpClient.EnableSsl = true; smtpClient.UseDefaultCredentials = false; smtpClient.Credentials = networkCredentials; smtpClient.Host = "smtp.gmail.com"; smtpClient.Port = 587; smtpClient.Send(mailMessage); } } } After creating an extension method let us that extension method to handle error like following in page load event of page. using System; namespace Experiement { public partial class WebForm1 : System.Web.UI.Page { protected void Page_Load(object sender,System.EventArgs e) { try { throw new Exception("My custom Exception"); } catch (Exception ex) { ex.SendErrorEmail(); Response.Write(ex.Message); } } } } Now in above code I have generated custom exception for example but in production It can be any Exception. And you can see I have use ex.SendErrorEmail() function in catch block to send email. That’s it.. Now it will throw exception and you will email in your email box like below.   That’s its. It’s so simple…Stay tuned for more.. Happy programming.. Technorati Tags: Exception,Extension Mehtod,Error Handling,ASP.NET

    Read the article

  • Tuxedo 11gR1 Client Server Affinity

    - by todd.little
    One of the major new features in Oracle Tuxedo 11gR1 is the ability to define an affinity between clients and servers. In previous releases of Tuxedo, the only way to ensure that multiple requests from a client went to the same server was to establish a conversation with tpconnect() and then use tpsend() and tprecv(). Although this works it has some drawbacks. First for single-threaded servers, the server is tied up for the entire duration of the conversation and cannot service other clients, an obvious scalability issue. I believe the more significant drawback is that the application programmer has to switch from the simple request/response model provided by tpcall() to the half duplex tpsend() and tprecv() calls used with conversations. Switching between the two typically requires a fair amount of redesign and recoding. The Client Server Affinity feature in Tuxedo 11gR1 allows by way of configuration an application to define affinities that can exist between clients and servers. This is done in the *SERVICES section of the UBBCONFIG file. Using new parameters for services defined in the *SERVICES section, customers can determine when an affinity session is created or deleted, the scope of the affinity, and whether requests can be routed outside the affinity scope. The AFFINITYSCOPE parameter can be MACHINE, GROUP, or SERVER, meaning that while the affinity session is in place, all requests from the client will be routed to the same MACHINE, GROUP, or SERVER. The creation and deletion of affinity is defined by the SESSIONROLE parameter and a service can be defined as either BEGIN, END, or NONE, where BEGIN starts an affinity session, END deletes the affinity session, and NONE does not impact the affinity session. Finally customers can define how strictly they want the affinity scope adhered to using the AFFINITYSTRICT parameter. If set to MANDATORY, all requests made during an affinity session will be routed to a server in the affinity scope. Thus if the affinity scope is SERVER, all subsequent tpcall() requests will be sent to the same server the affinity scope was established with. If the server doesn't offer that service, even though other servers do offer the service, the call will fail with TPNOENT. Setting AFFINITYSTRICT to PRECEDENT tells Tuxedo to try and route the request to a server in the affinity scope, but if that's not possible, then Tuxedo can try to route the request to servers out of scope. All of this begs the question, why? Why have this feature? There many uses for this capability, but the most common is when there is state that is maintained in a server, group of servers, or in a machine and subsequent requests from a client must be routed to where that state is maintained. This might be something as simple as a database cursor maintained by a server on behalf of a client. Alternatively it might be that the server has a connection to an external system and subsequent requests need to go back to the server that has that connection. A more sophisticated case is where a group of servers maintains some sort of cache in shared memory and subsequent requests need to be routed to where the cache is maintained. Although this last case might be able to be handled by data dependent routing, using client server affinity allows the cache to be partitioned dynamically instead of statically.

    Read the article

  • I Didn&rsquo;t Get You Anything&hellip;

    - by Bob Rhubart
    Nearly every day this blog features a  list posts and articles written by members of the OTN architect community. But with Christmas just days away, I thought a break in that routine was in order. After all, if the holidays aren’t excuse enough for an off-topic post, then the terrorists have won. Rather than buy gifts for everyone -- which, given the readership of this blog and my budget could amount to a cash outlay of upwards of $15.00 – I thought I’d share a bit of holiday humor. I wrote the following essay back in the mid-90s, for a “print” publication that used “paper” as a content delivery system.  That was then. I’m older now, my kids are older, but my feelings toward the holidays haven’t changed… It’s New, It’s Improved, It’s Christmas! The holidays are a time of rituals. Some of these, like the shopping, the music, the decorations, and the food, are comforting in their predictability. Other rituals, like the shopping, the  music, the decorations, and the food, can leave you curled into the fetal position in some dark corner, whimpering. How you react to these various rituals depends a lot on your general disposition and credit card balance. I, for one, love Christmas. But there is one Christmas ritual that really tangles my tinsel: the seasonal editorializing about how our modern celebration of the holidays pales in comparison to that of Christmas past. It's not that the old notions of how to celebrate the holidays aren't all cozy and romantic--you can't watch marathon broadcasts of "It's A Wonderful White Christmas Carol On Thirty-Fourth Street Story" without a nostalgic teardrop or two falling onto your plate of Christmas nachos. It's just that the loudest cheerleaders for "old-fashioned" holiday celebrations overlook the fact that way-back-when those people didn't have the option of doing it any other way. Dashing through the snow in a one-horse open sleigh? No thanks. When Christmas morning rolls around, I'm going to be mighty grateful that the family is going to hop into a nice warm Toyota for the ride over to grandma's place. I figure a horse-drawn sleigh is big fun for maybe fifteen minutes. After that you’re going to want Old Dobbin to haul ass back to someplace warm where the egg nog is spiked and the family can gather in the flickering glow of a giant TV and contemplate the true meaning of football. Chestnuts roasting on an open fire? Sorry, no fireplace. We've got a furnace for heat, and stuffing nuts in there voids the warranty. Any of the roasting we do these days is in the microwave, and I'm pretty sure that if you put chestnuts in the microwave they would become little yuletide hand grenades. Although, if you've got a snoot full of Yule grog, watching chestnuts explode in your microwave might be a real holiday hoot. Some people may see microwave ovens as a symptom of creeping non-traditional holiday-ism. But I'll bet you that if there were microwave ovens around in Charles Dickens' day, the Cratchits wouldn't have had to entertain an uncharacteristically giddy Scrooge for six or seven hours while the goose cooked. Holiday entertaining is, in fact, the one area that even the most severe critic of modern practices would have to admit has not changed since Tim was Tiny. A good holiday celebration, then as now, involves lots of food, free-flowing drink, and a gathering of friends and family, some of whom you are about as happy to see as a subpoena. Just as the Cratchit's Christmas was spent with a man who, for all they knew, had suffered some kind of head trauma, so the modern holiday gathering includes relatives or acquaintances who, because they watch too many talk shows, and/or have poor personal hygiene, and/or fail to maintain scheduled medication, you would normally avoid like a plate of frosted botulism. But in the season of good will towards men, you smile warmly at the mystery uncle wandering around half-crocked with a clump of mistletoe dangling from the bill of his N.R.A. cap. Dickens' story wouldn't have become the holiday classic it has if, having spotted on their doorstep an insanely grinning, raw poultry-bearing, fresh-off-a-rough-night Scrooge, the Cratchits had pulled their shades and pretended not to be home. Which is probably what I would have done. Instead, knowing full well his reputation as a career grouch, they welcomed him into their home, and we have a touching story that teaches a valuable lesson about how the Christmas spirit can get the boss to pump up the payroll. Despite what the critics might say, our modern Christmas isn't all that different from those of long ago. Sure, the technology has changed, but that just means a bigger, brighter, louder Christmas, with lasers and holograms and stuff. It's our modern celebration of a season that even the least spiritual among us recognizes as a time of hope that the nutcases of the world will wake up and realize that peace on earth is a win/win proposition for everybody. If Christmas has changed, it's for the better. We should continue making Christmas bigger and louder and shinier until everybody gets it.  *** Happy Holidays, everyone!   del.icio.us Tags: holiday,humor Technorati Tags: holiday,humor

    Read the article

  • Building a Mafia&hellip;TechFest Style

    - by David Hoerster
    It’s been a few months since I last blogged (not that I blog much to begin with), but things have been busy.  We all have a lot going on in our lives, but I’ve had one item that has taken up a surprising amount of time – Pittsburgh TechFest 2012.  After the event, I went through some minutes of the first meetings for TechFest, and I started to think about how it all came together.  I think what inspired me the most about TechFest was how people from various technical communities were able to come together and build and promote a common event.  As a result, I wanted to blog about this to show that people from different communities can work together to build something that benefits all communities.  (Hopefully I've got all my facts straight.)  TechFest started as an idea Eric Kepes and myself had when we were planning our next Pittsburgh Code Camp, probably in the summer of 2011.  Our Spring 2011 Code Camp was a little different because we had a great infusion of some folks from the Pittsburgh Agile group (especially with a few speakers from LeanDog).  The line-up was great, but we felt our audience wasn’t as broad as it should have been.  We thought it would be great to somehow attract other user groups around town and have a big, polyglot conference. We started contacting leaders from Pittsburgh’s various user groups.  Eric and I split up the ones that we knew about, and we just started making contacts.  Most of the people we started contacting never heard of us, nor we them.  But we all had one thing in common – we ran user groups who’s primary goal is educating our members to make them better at what they do. Amazingly, and I say this because I wasn’t sure what to expect, we started getting some interest from the various leaders.  One leader, Greg Akins, is, in my opinion, Pittsburgh’s poster boy for the polyglot programmer.  He’s helped us in the past with .NET Code Camps, is a Java developer (and leader in Pittsburgh’s Java User Group), works with Ruby and I’m sure a handful of other languages.  He helped make some e-introductions to other user group leaders, and the whole thing just started to snowball. Once we realized we had enough interest with the user group leaders, we decided to not have a Fall Code Camp and instead focus on this new entity. Flash-forward to October of 2011.  I set up a meeting, with the help of Jeremy Jarrell (Pittsburgh Agile leader) to hold a meeting with the leaders of many of Pittsburgh technical user groups.  We had representatives from 12 technical user groups (Python, JavaScript, Clojure, Ruby, PittAgile, jQuery, PHP, Perl, SQL, .NET, Java and PowerShell) – 14 people.  We likened it to a scene from a Godfather movie where the heads of all the families come together to make some deal.  As a result, the name “TechFest Mafia” was born and kind of stuck. Over the next 7 months or so, we had our starts and stops.  There were moments where I thought this event would not happen either because we wouldn’t have the right mix of topics (was I off there!), or enough people register (OK, I was wrong there, too!) or find an appropriate venue (hmm…wrong there, too) or find enough sponsors to help support the event (wow…not doing so well).  Overall, everything fell into place with a lot of hard work from Eric, Jen, Greg, Jeremy, Sean, Nicholas, Gina and probably a few others that I’m forgetting.  We also had a bit of luck, too.  But in the end, the passion that we had to put together an event that was really about making ourselves better at what we do really paid off. I’ve never been more excited about a project coming together than I have been with Pittsburgh TechFest 2012.  From the moment the first person arrived at the event to the final minutes of my closing remarks (where I almost lost my voice – I ended up being diagnosed with bronchitis the next day!), it was an awesome event.  I’m glad to have been part of bringing something like this to Pittsburgh…and I’m looking forward to Pittsburgh TechFest 2013.  See you there!

    Read the article

  • Simultaneously calling multiple methods on a WCF service from silverlight

    - by ola karlsson
    A while back I had to debug some performance issues in an existing Silverlight app, as the problem / solution was a bit obscure and finding info about it was quite tricky, I thought I’d share, maybe it can help the next person with this problem. The App On start, the app would do a number of calls to different methods on a WCF service, this to populate the UI with the necessary data. Recently one of those services had been changed and was now taking quite a bit longer than it used to. This was resulting in quite a long loading time for the whole UI, which was set up so it wouldn’t let the user interact with anything, until all the service calls had finished. First I broke out the longer running service call from the others, then removed the constraint that it had to be loaded for the UI in general to become responsive. I also added a loading indicator just on that area of the UI, thinking that the main UI would load while this particular section could keep loading independently. The Problem However this is where things started to get a bit strange. I found that even after these changes, the main UI wouldn’t activate until the long running call returned. So now, I did what I should have done to start with, I got Fiddler out and had a look at what was really happening. What I found was that, once the call to the long running service method was placed, all subsequent call were waiting for that one to return before executing. Not having really worked with WCF previously or knowing much about it in general, I was stumped… I knew of the issues where Silverlight is restricted by the browsers networking features in regards to number of simultaneous connections etc. However that just didn’t seem to be the issue here, you can clearly see in Fiddler that there’s numerous calls, but they’re just not returning. I thought of the problem maybe being in the WCF service, but the calls were really not that complicated and surely the service should be able to handle a lot more than what I was throwing at it! So I did what every developer does in this type of scenario, I hit the search engines. I did a whole bunch of searching on things like “multiple simultaneous WCF calls from Silverlight” and “Calling long running WCF services from Silverlight” etc. etc. This however, pretty much got me nowhere, I found a whole heap of resources on how to do WCF calls from Silverlight but most of them were very basic and of no use what so ever. The fog is clearing It wasn’t until I came across the term “ WCF blocking calls” and started incorporating that in my searches I started to get somewhere. Those searches quite quickly brought me to the following thread in the Silverlight forum “Long-running WCF call blocking subsequent calls” which discussed the exact problem I was facing and the best part, one of the guys there had the solution! The short answer is in the forum post and the guys answering, has also done a more extensive blog post about it called “Silverlight, WCF, and ASP.Net Configuration Gotchas” which covers it very well.  So come on what’s the solution?! I heard you ask, unless you’ve already gone to the links and looked it up ;) The Solution Well, it turns out that the issue is founded in a mix of Silverlight, Asp.Net and WCF, basically if you’re doing multiple calls to a single WCF web-service and you have Asp.Net session state enabled, the calls will be executed sequentially by the service, hence any long running calls will block subsequent ones. So why is Asp.Net session state effecting us, we’re working in Silverlight, right? We'll as mentioned earlier, by default Silverlight uses the browsers networking stack when doing service calls, hence to the WCF service, the call looks like it might as well be coming from a normal Asp.Net. To get around this, we look to a feature introduced in Silverlight 3, namely the Client HTTP Stack. The Client HTTP Stack to the rescue By using the following syntax (for example in our App.xaml.cs, Application_Startup method) WebRequest.RegisterPrefix("http://", WebRequestCreator.ClientHttp); we can set our Silverlight application to use the Client HTTP Stack, which incidentally solves our problem! By using Silverlights own networking stack, rather than that of the browser, we get around the Asp.Net - WCF session state issue. The above code specifies that all calls to addresses starting with “http://” should go through the client stack, this can actually be set more granular and you can specify it to be used only for certain domains etc. Summary The actual solution is well covered in the forum and blog posts I link to above. This post is more about sharing my experience, hopefully helping to spread the word about this and maybe make it a bit easier for the next poor guy with this issue to find the solution. Until next time, Ola

    Read the article

  • What’s the use of code reuse?

    - by Tony Davis
    All great developers write reusable code, don’t they? Well, maybe, but as with all statements regarding what “great” developers do or don’t do, it’s probably an over-simplification. A novice programmer, in particular, will encounter in the literature a general assumption of the importance of code reusability. They spend time worrying about DRY (don’t repeat yourself), moving logic into specific “helper” modules that they can then reuse, agonizing about the minutiae of the class structure, inheritance and interface design that will promote easy reuse. Unfortunately, writing code specifically for reuse often leads to complicated object hierarchies and inheritance models that are anything but reusable. If, instead, one strives to write simple code units that are highly maintainable and perform a single function, in a concise, isolated fashion then the potential for reuse simply “drops out” as a natural by-product. Programmers, of course, care about these principles, about encapsulation and clean interfaces that don’t expose inner workings and allow easy pluggability. This is great when it helps with the maintenance and development of code but how often, in practice, do we actually reuse our code? Most DBAs and database developers are familiar with the practical reasons for the limited opportunities to reuse database code and its potential downsides. However, surely elsewhere in our code base, reuse happens often. After all, we can all name examples, such as date/time handling modules, which if we write with enough care we can plug in to many places. I spoke to a developer just yesterday who looked me in the eye and told me that in 30+ years as a developer (a successful one, I’d add), he’d never once reused his own code. As I sat blinking in disbelief, he explained that, of course, he always thought he would reuse it. He’d often agonized over its design, certain that he was creating code of great significance that he and other generations would reuse, with grateful tears misting their eyes. In fact, it never happened. He had in his head, most of the algorithms he needed and would simply write the code from scratch each time, refining the algorithms and tailoring the code to meet the specific requirements. It was, he said, simply quicker to do that than dig out the old code, check it, correct the mistakes, and adapt it. Is this a common experience, or just a strange anomaly? Viewed in a certain light, building code with a focus on reusability seems to hark to a past age where people built cars and music systems with the idea that someone else could and would replace and reuse the parts. Technology advances so rapidly that the next time you need the “same” code, it’s likely a new technique, or a whole new language, has emerged in the meantime, better equipped to tackle the task. Maybe we should be less fearful of the idea that we could write code well suited to the system requirements, but with little regard for reuse potential, and then rewrite a better version from scratch the next time.

    Read the article

  • Guest (and occasional co-host) on Jesse Liberty's Yet Another Podcast

    - by Jon Galloway
    I was a recent guest on Jesse Liberty's Yet Another Podcast talking about the latest Visual Studio, ASP.NET and Azure releases. Download / Listen: Yet Another Podcast #75–Jon Galloway on ASP.NET/ MVC/ Azure Co-hosted shows: Jesse's been inviting me to co-host shows and I told him I'd show up when I was available. It's a nice change to be a drive-by co-host on a show (compared with the work that goes into organizing / editing / typing show notes for Herding Code shows). My main focus is on Herding Code, but it's nice to pop in and talk to Jesse's excellent guests when it works out. Some shows I've co-hosted over the past year: Yet Another Podcast #76–Glenn Block on Node.js & Technology in China Yet Another Podcast  #73 - Adam Kinney on developing for Windows 8 with HTML5 Yet Another Podcast #64 - John Papa & Javascript Yet Another Podcast #60 - Steve Sanderson and John Papa on Knockout.js Yet Another Podcast #54–Damian Edwards on ASP.NET Yet Another Podcast #53–Scott Hanselman on Blogging Yet Another Podcast #52–Peter Torr on Windows Phone Multitasking Yet Another Podcast #51–Shawn Wildermuth: //build, Xaml Programming & Beyond And some more on the way that haven't been released yet. Some of these I'm pretty quiet, on others I get wacky and hassle the guests because, hey, not my podcast so not my problem. Show notes from the ASP.NET / MVC / Azure show: What was just released Visual Studio 2012 Web Developer features ASP.NET 4.5 Web Forms Strongly Typed data controls Data access via command methods Similar Binding syntax to ASP.NET MVC Some context: Damian Edwards and WebFormsMVP Two questions from Jesse: Q: Are you making this harder or more complicated for Web Forms developers? Short answer: Nothing's removed, it's just a new option History of SqlDataSource, ObjectDataSource Q: If I'm using some MVC patterns, why not just move to MVC? Short answer: This works really well in hybrid applications, doesn't require a rewrite Allows sharing models, validation, other code between Web Forms and MVC ASP.NET MVC Adaptive Rendering (oh, also, this is in Web Forms 4.5 as well) Display Modes Mobile project template using jQuery Mobile OAuth login to allow Twitter, Google, Facebook, etc. login Jon (and friends') MVC 4 book on the way: Professional ASP.NET MVC 4 Windows 8 development Jesse and Jon announce they're working on a new book: Pro Windows 8 Development with XAML and C# Jon and Jesse agree that it's nice to be able to write Windows 8 applications using the same skills they picked up for Silverlight, WPF, and Windows Phone development. Compare / contrast ASP.NET MVC and Windows 8 development Q: Does ASP.NET and HTML5 development overlap? Jon thinks they overlap in the MVC world because you're writing HTML views without controls Jon describes how his web development career moved from a preoccupation with server code to a focus on user interaction, which occurs in the browser Jon mentions his NDC Oslo presentation on Learning To Love HTML as Beautiful Code Q: How do you apply C# / XAML or HTML5 skills to Windows 8 development? Q: If I'm a XAML programmer, what's the learning curve on getting up to speed on ASP.NET MVC? Jon describes the difference in application lifecycle and state management Jon says it's nice that web development is really interactive compared to application development Q: Can you learn MVC by reading a book? Or is it a lot bigger than that? What is Azure, and why would I use it? Jon describes the traditional Azure platform mode and how Azure Web Sites fits in Q: Why wouldn't Jesse host his blog on Azure Web Sites? Domain names on Azure Web Sites File hosting options Q: Is Azure just another host? How is it different from any of the other shared hosting options? A: Azure gives you the ability to scale up or down whenever you want A: Other services are available if or when you want them

    Read the article

  • Review: ComponentOne Studio for Entity Framework

    - by Tim Murphy
    While I have always been a fan of libraries that improve coding efficiency and reduce code redundancy I have mostly been using ones that were in the public domain.  As part of the Geeks With Blogs Influencers program a got my hands on ComponentOne’s Studio for Entity Framework.  Below are my thought after working with the product for several weeks. My coding preference has always been maintainable code that is reusable across an enterprises protfolio.  Because of this my focus in reviewing this product is less on the RAD components and more on its benefits for layered applications using code first Entity Framework. Before we get into the pros and cons here is a summary of the main feature listed for SEF. Unified Data Context Virtual Data Access More Powerful Data Binding Pros The first thing that I found to my liking is the C1DataSource. It basically manages a cache for your Entity Model context.  Under RAD conditions this is setup automatically when you drop the object on a your design surface.  If you are like me and want to abstract you data management into a library it takes a little more work, but it is still acceptable and gains the same benefits. The second feature that I found beneficial is the definition of views with improved sorting and filtering.  Again the ease of use of these features is greater on the RAD side but no capabilities are missing when manipulating object in code. Linq has become my friend over the last couple of years and it was great to see that ComponentOne had ensured that it remained a first class citizen in their design.  When you look into this product yourself I would suggest taking a dive into LiveLinq which allow the joining of different data source types. As I went through discovering the features of this framework I appreciated the number of examples that they supplied for different uses.  Besides showing how to use SEF with WinForms, WPF and Silverlight they also showed how to accomplish tasks both RAD, code only and MVVM approaches. Cons The only area that I would really like to see improvement is in there level of detail in their documentation.  Specifically I would like to have seen some of the supporting code explained, such as what some supporting object did, in the examples instead of having to go to the programmer’s reference. I did find some times where currently existing projects had some trouble determining scope that the RAD controls were allowed, but I expect this is something that is in part end user related. Summary Overall I found the Studio for Entity Framework capable and well thought out.  If you are already using the Entity Framework this product will fit into your environment with little effort in return for greater flexibility and greater robustness in your solutions. Whether the $895 list price for a standard version works for you will depend on your return on investment. Smaller companies with only a small number of projects may not be able to stomach it, you get a full featured product that is supported by a well established company.  The more projects and the more code you have the greater your return on investment will be. Personally I intend to apply this product to some production systems and will probably have some tips and tricks in the future. del.icio.us Tags: ComponentOne,Studio for Entity Framework,Geeks With Blogs,Influencers,Product Reviews

    Read the article

  • TiVo Follow-up&hellip;Training Opportunities

    - by MightyZot
    A few posts ago I talked about my experience with TiVo Customer Service. While I didn’t receive bad service per se, I felt like the reps could have communicated better. I made the argument that it should be just as easy to leave a company as it is to engage with a company, even though my intention is to remain a TiVo fan. I worked for DataStorm Technologies in the early 90s. I pointed out to another developer that we were leaving files behind in our installations. My opinion was that, if the customer is uninstalling our application, there should be no trace of it left after uninstall except for the customer’s data. He replied with, “screw ‘em. They’re leaving us. Why do we care if we left anything behind?” Wow. Surely there is a lot of arrogance in that statement. Think about this…how often do you change your services, devices, or whatever?  Personally, I change things up about once every two or three years. If I don’t change things up, I at least think about it. So, every two or three years there is an opportunity for you (as a vendor or business) to sell me something. (That opportunity actually exists all the time, because there are many of these two or three year periods overlapping.) Likewise, you have the opportunity to win back my business every two or three years as well. Customer service on exit is just as important as customer service during engagement because, every so often, you have another chance to gain back my loyalty. If you screw that up on exit, your chances are close to zero. In addition, you need to consider all of the potential or existing customers that are part of or affected by my social organizations. “Melissa” at TiVo gave me a call last week and set up some time to talk about my experience. We talked yesterday and she gave me a few moments to pontificate about my thoughts on the importance of a complete customer experience. She had listened to my customer support calls and agreed that I had made it clear that I intended to remain a TiVo customer even though suddenLink is handling my subscription. She said that suddenLink is a very important partner for them and, of course, they want to do everything they can to support TiVo / suddenLink customers.  “Melissa” also said that they had turned this experience into a training opportunity for the reps involved. I hope that is true, because that “programmer arrogance” that I mentioned above (which was somewhat pervasive back then) may be part of the reason why that company is no longer around. Good job “Melissa”!  And, like I said, I am still a TiVo fan. In fact, we love our new TiVo and many of the great new features. In addition, if you’re one of the two people that read these posts, please remember that these are just opinions. Your experiences may be, and likely will be, completely unique to you.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • What's going on with INETA and the Regional Speakers Bureau?

    - by Chris Williams
    For those of you that have been waiting patiently (and not so patiently) I'm happy to say that we're very near completion on some changes/enhancements/improvements that will allow us to finally go live with the INETA Regional Speakers Bureau. I know quite a few of you have already registered, which is great (though some of you may need to come back and update your info) and we've had a few folks submit requests, mostly in a test capacity, but soon we'll be up and live. Here's how it breaks down. Be sure to read this, because things have changed a bit from when we initially announced it. 1. The majority of our speaker/event funding is going into the Regional Speakers Bureau.  The National Bureau still exists, but it's a good bit smaller than it was before, and it's not an "every group" benefit anymore. We'll be using the National Bureau as more of a strategic task force, targeting high impact events and areas that need some community building love from INETA. These will be identified and handled on a case by case basis, and may include more than just user group events. 2. You're going to get more events per group, per year than you did before. Not only are we focusing more resources on this program, but we're also making a lot of efforts to use it more effectively. With the INETA Regional Speakers Bureau, you should be able to get 2-3 INETA speakers per year, on average. Not every geographical area will have exactly the same experience, but we're doing the best we can. 3. It's not a farm team program for the National Bureau. Unsurprisingly, I managed to offend a number of people when I previously made the comment that the Regional Speakers Bureau program was a farm team or stepping stone to the National Bureau. It was a poor choice of words.  Anyone can participate in the Regional Speakers Bureau, and I look forward to working with all of you. 4. There is assistance for your efforts. The exact final details are still being hammered out, but expect it to look something like this: (all distances listed are based on a round trip) Distances < 120 miles = $0 121 miles - 240 miles = $50 (effectively 1 to 2 hours, each way) 241 miles - 360 miles = $100 (effectively 2 to 3 hours, each way) 361 miles - 480 miles = $200 (effectively 3 to 4 hours, each way) For those of you who travel a lot, we're working on a solution to handle group visits when you're away from home. These will (for now) be handled on a case by case basis. 5. We're going to make it as easy as possible to work with the program. In order to do this, we need a few things from you. For speakers, that means your home address. It also means (maybe) filling out a simple 1 line expense report via the INETA website. For user groups, it means making sure your meeting address is up to date as well. 6. Distances will be automatically calculated from your home of record to the user group event and back. We realize that this is not a perfect solution to every instance, but we're not paying you to speak at an event, and you won't be taxed on this money. It's simply some assistance to make your community efforts easier. Our way of saying thanks for everything you do. 7. Sounds good so far, what's the catch? There's always a catch, right? In this case there are two of them: 1) At this time, Microsoft employees are welcome to use the website to line up speaking engagements with user groups, but are not eligible for financial assistance. 2) Anyone can register and use the website to line up speaking engagements with user groups, however you must receive and maintain a net score of 3+ positive ratings (we're implementing a thumbs up / thumbs down system) in order to receive financial assistance. These ratings are provided by the User Group leaders after the meeting has taken place. 8. Involvement by the User Group leaders is a key factor in the success of this program. Your job isn't done once you request a speaker. After you've had your meeting, it's critical that you go back to the website and take a very small survey. Doing this ensures that the speaker gets rated (and compensated if eligible) and also ensures that you can make another request, since you won't be able to make a new request if you have an old one outstanding. 9. What about Canada? We're definitely working on that. Unfortunately nothing new to report on that front, other than to say that we're trying. So... this is where things stand currently. We're working very quickly to get this in place and get speakers and groups together. If you have any questions, please leave a comment below and I'll answer them as quickly as possible. If I've forgotten anything, or if things change, I'll update it here. Thanks, Chris G. Williams INETA Board of Directors

    Read the article

  • Extend Your Applications Your Way: Oracle OpenWorld Live Poll Results

    - by Applications User Experience
    Lydia Naylor, Oracle Applications User Experience Manager At OpenWorld 2012, I attended one of our team’s very exciting sessions: “Extend Your Applications, Your Way”. It was clear that customers were engaged by the topics presented. Not only did we see many heads enthusiastically nodding in agreement during the presentation, and witness a large crowd surround our speakers Killian Evers, Kristin Desmond and Greg Nerpouni afterwards, but we can prove it…with data! Figure 1. Killian Evers, Kristin Desmond, and Greg Nerpouni of Oracle at the OOW 2012 session. At the beginning of our OOW 2012 journey, Greg Nerpouni, Fusion HCM Principal Product Manager, told me he really wanted to get feedback from the audience on our extensibility direction. Initially, we were thinking of doing a group activity at the OOW UX labs events that we hold every year, but Greg was adamant- he wanted “real-time” feedback. So, after a little tinkering, we came up with a way to use an online survey tool, a simple QR code (Quick Response code: a matrix barcode that can include information like URLs and can be read by mobile device cameras), and the audience’s mobile devices to do just that. Figure 2. Actual QR Code for survey Prior to the session, we developed a short survey in Vovici (an online survey tool), with questions to gather feedback on certain points in the presentation, as well as demographic data from our participants. We used Vovici’s feature to generate a mobile HTML version of the survey. At the session, attendees accessed the survey by simply scanning a QR code or typing in a TinyURL (a shorthand web address that is easily accessible through mobile devices). Killian, Kristin and Greg paused at certain points during the session and asked participants to answer a few survey questions about what they just presented. Figure 3. Session survey deployed on a mobile phone The nice thing about Vovici’s survey tool is that you can see the data real-time as participants are responding to questions - so we knew during the session that not only was our direction on track but we were hitting the mark and fulfilling Greg’s request. We planned on showing the live polling results to the audience at the end of the presentation but it ran just a little over time, and we were gently nudged out of the room by the session attendants. We’ve included a quick summary below and this link to the full results for your enjoyment. Figure 4. Most important extensions to Fusion Applications So what did participants think of our direction for extensibility? A total of 94% agreed that it was an improvement upon their current process. The vast majority, 80%, concurred that the extensibility model accounts for the major roles involved: end user, business systems analyst and programmer. Attendees suggested a few supporting roles such as systems administrator, data architect and integrator. Customers and partners in the audience verified that Oracle‘s Fusion Composers allow them to make changes in the most common areas they need to: user interface, business processes, reporting and analytics. Integrations were also suggested. All top 10 things customers can do on a page rated highly in importance, with all but two getting an average rating above 4.4 on a 5 point scale. The kinds of layout changes our composers allow customers to make align well with customers’ needs. The most common were adding columns to a table (94%) and resizing regions and drag and drop content (both selected by 88% of participants). We want to thank the attendees of the session for allowing us another great opportunity to gather valuable feedback from our customers! If you didn’t have a chance to attend the session, we will provide a link to the OOW presentation when it becomes available.

    Read the article

  • Algorithm to Find the Aggregate Mass of "Granola Bar"-Like Structures?

    - by Stuart Robbins
    I'm a planetary science researcher and one project I'm working on is N-body simulations of Saturn's rings. The goal of this particular study is to watch as particles clump together under their own self-gravity and measure the aggregate mass of the clumps versus the mean velocity of all particles in the cell. We're trying to figure out if this can explain some observations made by the Cassini spacecraft during the Saturnian summer solstice when large structures were seen casting shadows on the nearly edge-on rings. Below is a screenshot of what any given timestep looks like. (Each particle is 2 m in diameter and the simulation cell itself is around 700 m across.) The code I'm using already spits out the mean velocity at every timestep. What I need to do is figure out a way to determine the mass of particles in the clumps and NOT the stray particles between them. I know every particle's position, mass, size, etc., but I don't know easily that, say, particles 30,000-40,000 along with 102,000-105,000 make up one strand that to the human eye is obvious. So, the algorithm I need to write would need to be a code with as few user-entered parameters as possible (for replicability and objectivity) that would go through all the particle positions, figure out what particles belong to clumps, and then calculate the mass. It would be great if it could do it for "each" clump/strand as opposed to everything over the cell, but I don't think I actually need it to separate them out. The only thing I was thinking of was doing some sort of N2 distance calculation where I'd calculate the distance between every particle and if, say, the closest 100 particles were within a certain distance, then that particle would be considered part of a cluster. But that seems pretty sloppy and I was hoping that you CS folks and programmers might know of a more elegant solution? Edited with My Solution: What I did was to take a sort of nearest-neighbor / cluster approach and do the quick-n-dirty N2 implementation first. So, take every particle, calculate distance to all other particles, and the threshold for in a cluster or not was whether there were N particles within d distance (two parameters that have to be set a priori, unfortunately, but as was said by some responses/comments, I wasn't going to get away with not having some of those). I then sped it up by not sorting distances but simply doing an order N search and increment a counter for the particles within d, and that sped stuff up by a factor of 6. Then I added a "stupid programmer's tree" (because I know next to nothing about tree codes). I divide up the simulation cell into a set number of grids (best results when grid size ˜7 d) where the main grid lines up with the cell, one grid is offset by half in x and y, and the other two are offset by 1/4 in ±x and ±y. The code then divides particles into the grids, then each particle N only has to have distances calculated to the other particles in that cell. Theoretically, if this were a real tree, I should get order N*log(N) as opposed to N2 speeds. I got somewhere between the two, where for a 50,000-particle sub-set I got a 17x increase in speed, and for a 150,000-particle cell, I got a 38x increase in speed. 12 seconds for the first, 53 seconds for the second, 460 seconds for a 500,000-particle cell. Those are comparable speeds to how long the code takes to run the simulation 1 timestep forward, so that's reasonable at this point. Oh -- and it's fully threaded, so it'll take as many processors as I can throw at it.

    Read the article

  • SQLAuthority News – History of the Database – 5 Years of Blogging at SQLAuthority

    - by pinaldave
    Don’t miss the Contest:Participate in 5th Anniversary Contest   Today is this blog’s birthday, and I want to do a fun, informative blog post. Five years ago this day I started this blog. Intention – my personal web blog. I wrote this blog for me and still today whatever I learn I share here. I don’t want to wander too far off topic, though, so I will write about two of my favorite things – history and databases.  And what better way to cover these two topics than to talk about the history of databases. If you want to be technical, databases as we know them today only date back to the late 1960’s and early 1970’s, when computers began to keep records and store memories.  But the idea of memory storage didn’t just appear 40 years ago – there was a history behind wanting to keep these records. In fact, the written word originated as a way to keep records – ancient man didn’t decide they suddenly wanted to read novels, they needed a way to keep track of the harvest, of their flocks, and of the tributes paid to the local lord.  And that is how writing and the database began.  You could consider the cave paintings from 17,0000 years ago at Lascaux, France, or the clay token from the ancient Sumerians in 8,000 BC to be the first instances of record keeping – and thus databases. If you prefer, you can consider the advent of written language to be the first database.  Many historians believe the first written language appeared in the 37th century BC, with Egyptian hieroglyphics. The ancient Sumerians, not to be outdone, also created their own written language within a few hundred years. Databases could be more closely described as collections of information, in which case the Sumerians win the prize for the first archive.  A collection of 20,000 stone tablets was unearthed in 1964 near the modern day city Tell Mardikh, in Syria.  This ancient database is from 2,500 BC, and appears to be a sort of law library where apprentice-scribes copied important documents.  Further archaeological digs hope to uncover the palace library, and thus an even larger database. Of course, the most famous ancient database would have to be the Royal Library of Alexandria, the great collection of records and wisdom in ancient Egypt.  It was created by Ptolemy I, and existed from 300 BC through 30 AD, when Julius Caesar effectively erased the hard drives when he accidentally set fire to it.  As any programmer knows who has forgotten to hit “save” or has experienced a sudden power outage, thousands of hours of work was lost in a single instant. Databases existed in very similar conditions up until recently.  Cuneiform tablets gave way to papyrus, which led to vellum, and eventually modern paper and the printing press.  Someday the databases we rely on so much today will become another chapter in the history of record keeping.  Who knows what the databases of tomorrow will look like! Reference:  Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • The busy developers guide to the Kinect SDK Beta

    - by mbcrump
    The Kinect is awesome. From day one, I’ve said this thing has got potential. After playing with several open-source Kinect projects, I am please to announce that Microsoft has released the official SDK beta on 6/16/2011. I’ve created this quick start guide to get you up to speed in no time flat. Let’s begin: What is it? The Kinect for Windows SDK beta is a starter kit for applications developers that includes APIs, sample code, and drivers. This SDK enables the academic research and enthusiast communities to create rich experiences by using Microsoft Xbox 360 Kinect sensor technology on computers running Windows 7. (defined by Microsoft) Links worth checking out: Download Kinect for Windows SDK beta – You can either download a 32 or 64 bit SDK depending on your OS. Readme for Kinect for Windows SDK Beta from Microsoft Research  Programming Guide: Getting Started with the Kinect for Windows SDK Beta Code Walkthroughs of the samples that ship with the Kinect for Windows SDK beta (Found in \Samples Folder) Coding4Fun Kinect Toolkit – Lots of extension methods and controls for WPF and WinForms. Kinect Mouse Cursor – Use your hands to control things like a mouse created by Brian Peek. Kinect Paint – Basically MS Paint but use your hands! Kinect for Windows SDK Quickstarts Installing and Using the Kinect Sensor Getting it installed: After downloading the Kinect SDK Beta, double click the installer to get the ball rolling. Hit the next button a few times and it should complete installing. Once you have everything installed then simply plug in your Kinect device into the USB Port on your computer and hopefully you will get the following screen: Once installed, you are going to want to check out the following folders: C:\Program Files (x86)\Microsoft Research KinectSDK – This contains the actual Kinect Sample Executables along with the documentation as a CHM file. Also check out the C:\Users\Public\Documents\Microsoft Research KinectSDK Samples directory: The main thing to note here is that these folders contain the source code to the applications where you can compile/build them yourself. Audio NUI DEMO Time Let’s get started with some demos. Navigate to the C:\Program Files (x86)\Microsoft Research KinectSDK folder and double click on ShapeGame.exe. Next up is SkeletalViewer.exe (image taken from http://www.i-programmer.info/news/91-hardware/2619-microsoft-launch-kinect-sdk-beta.html as I could not get a good image using SnagIt) At this point, you will have to download Kinect Mouse Cursor – This is really cool because you can use your hands to control the mouse cursor. I actually used this to resize itself. Last up is Kinect Paint – This is very cool, just make sure you read the instructions! MS Paint on steroids! A few tips for getting started building Kinect Applications. It appears WPF is the way to go with building Kinect Applications. You must also use a version of Visual Studio 2010.  Your going to need to reference Microsoft.Research.Kinect.dll when building a Kinect Application. Right click on References and then goto Browse and navigate to C:\Program Files (x86)\Microsoft Research KinectSDK and select Microsoft.Research.Kinect.dll. You are going to want to make sure your project has the Platform target set to x86. The Coding4Fun Kinect Toolkit really makes things easier with extension methods and controls. Just note that this is for WinForms or WPF. Conclusion It looks like we have a lot of fun in store with the Kinect SDK. I’m very excited about the release and have already been thinking about all the applications that I can begin building. It seems that development will be easier now that we have an official SDK and the great work from Coding4Fun. Please subscribe to my blog or follow me on twitter for more information about Kinect, Silverlight and other great technology.  Subscribe to my feed

    Read the article

  • Monitoring almost anything with BizTalk 360

    - by Michael Stephenson
    When you work in an integration environment it is common that you will find yourself in a situation where you integrate with some unusual applications or have some unusual dependencies. That is the nature of integration. When you work with BizTalk one of the common problems is that BizTalk often is the place where problems with applications you integrate with are highlighted and these external applications may have poor monitoring solutions. Fortunately if you are a working with a customer who uses BizTalk 360 then it contains a feature called the "Web Endpoint Manager". Typically the web endpoint manager is used to monitor web services that you integrate with and will ping them at appropriate times to make sure they return the expected HTTP status code. When you have an usual situation where you want to monitor something which is key to the success to your solution but you find yourself having to consider a significant custom solution to monitor the external dependency then the Web Endpoint Manager could be your friend. The endpoint manager monitors a url and checks for a certain status code. This means that you can create your own aspx web page and then make BizTalk 360 monitor this web page. Behind the web page you could write any code you wished. An example of this is architecture is shown in the below diagram.     In the custom web page you would implement some custom code to do whatever it is that you want to monitor. In the below code snippet you can see how the Page_Load default method is doing some kind of check then depending on the result of the check it returns a certain HTTP code. protected void Page_Load(object sender, EventArgs e) { var result = CheckSomething();   if (result == "Success") Response.StatusCode = 202; else if (result == "DatabaseError") Response.StatusCode = 510; else if (result == "SystemError") Response.StatusCode = 512; else Response.StatusCode = 513;   }   In BizTalk 360 you would go into the Monitor and Notify tab and then to BizTalk Environment which gives you access to the Web Endpoint Manager. You need an alarm setup which configures how the endpoint will be checked. I'm not going to go through the details of creating the alarm as this is already documented in the BizTalk 360 documentation. One point to note is that in the example I am using I setup a threshold alarm which means that the url is checked about every minute and if there is an error that persists for a period of time then the alarm will raise the alert notification. In my example I configured the alarm to fire if the error persisted for 3 minutes. The below picture shows accessing the endpoint manager.   In the web endpoint manager you would then configure your endpoint to monitor and the HTTP response code which indicates all is working fine. The below picture shows this. I now have my endpoint monitoring setup and BizTalk 360 should be checking my custom endpoint to see that it is available. If I wanted to manually sanity check that the endpoints I have registered are working fine then clicking the Refresh button will show if they are all good or not. If my custom ASP.net page which is checking my dependency gets a problem you will see in the endpoint manager that the status code does not match the expected return code and your endpoints will display in red and you can see the problem. The below picture shows this. If I use specific HTTP response codes for the errors the custom ASP.net page might encounter I can easily interpret these to know what the problem is. Using the alarms and notifications with BizTalk 360 it means when your endpoint goes into an error state you can easily configure email or SMS notifications from BizTalk 360 to tell you that your endpoint is having problems and you can use BizTalk 360 to help correlate what the problem is to allow you to investigate further. Below you can see the email which tells me my endpoint is not working.   When everything returns to normal you will see the status is now fixed and you will see a situation like below where you can see the WebEndpoints are now green and the return code matches what is expected.   Conclusion As you can see it is really easy to plug your own custom ASP.net page into the BizTalk 360 web endpoint monitoring feature. This extension then gives you the power to really extend the monitoring to almost anything you want as long as you can write some .net code to check that the dependency is available and working. It would be interesting to hear of any ideas people have around things they would monitor with this extension. More details on the end point monitor can be found on the following link: http://www.biztalk360.com/tour/monitoring_notifications

    Read the article

  • How does one find out which application is associated with an indicator icon?

    - by Amos Annoy
    It is trivial to do this in Ubuntu 10.04. The question is specific to Ubuntu 12.04. some pertinent references (src: answer to What is the difference between indicators and a system tray?: Here is the documentation for indicators: Application indicators | Ubuntu App Developer libindicate Reference Manual libappindicator Reference Manual also DesktopExperienceTeam/ApplicationIndicators - Ubuntu Wiki ref: How can the application that makes an indicator icon be identified? bookmark: How does one find out which application is associated with an indicator icon in Ubuntu 12.04? is a serious question for reasons & problems outlined below and for which a significant investment has been made and is necessary for remedial purposes. reviewing refs. to find an orchestrated resolution ... (an indicator ap. indicator maybe needed) This has nothing to do (does it?) with right click. How can an indicator's icon in Ubuntu 12.04 be matched with the program responsible for it's manifestation on the top panel? A list of running applications can include all processes using System Monitor. How is the correct matching process found for an indicator? How are the sub-indicator applications identified? These are the aps associated with the components of an indicators drop-down menu. (This was to be a separate question and quite naturally follows up the progression. It is included here as it is obvious there is no provisioning to track down offending either sub or indicator aps. easily.) (The examination of SM points out a rather poignant factor in the faster battery depletion and shortened run time - the ambient quiescent CPU rate in 12.04 is now well over 20% when previously, in 10.04, it was well under 10%, between 5% and 7%! - the huge inordinate cpu overhead originates from Xorg and compiz - after booting the system, only SM is run and All Processes are selected, sorting on %CPU - switching between Resources and Processes profiles the execution overhead problem - running another ap like gedit "Text Editor" briefly gives it CPU priority - going back to S&M several aps. are at the top of the list in order: gnome-system-monitor as expected, then: Xorg, compiz, unity-panel-service, hud-service, with dbus-daemon and kworker/x:y's mixed in with some expected daemons and background tasks like nm-applet - not only do Xorg and compiz require excessive CPU time but their entourage has to come along too! further exacerbating the problem - our compute bound tasks no longer work effectively in the field - reduced battery life, reduced CPU time for custom ap.s etc. - and all this precipitated from an examination of what is going on with the battery ap. indicator - this was and is not a flippant, rhetorical or idle musing but has consequences for the credible deployment of 12.04 to reduce the negative impact of its overhead in a production environment) (I have a problem with the battery indicator - it sometimes has % and other times hh:mm - it is necessary to know the ap. & v. to get more info on controlling same. ditto: There are issues with other indicator aps.: NM vs. iwlist/iwconfig conflict, BT ap. vs RF switch, Battery ap. w/ no suspend/sleep for poor battery runtime, ... the list goes on) Details from: How can I find Application Indicator ID's? suggests looking at: file:///usr/share/indicator-application/ordering-override.keyfile [Ordering Index Overrides] nm-applet=1 gnome-power-manager=2 ibus=3 gst-keyboard-xkb=4 gsd-keyboard-xkb=5 which solves the battery ap. identification, and presumably nm is NetworkManager for the rf icon, but the envelope, blue tooth and speaker indicator aps. are still a mystery. (Also, the ordering is not correlated.) Mind you, it was simple in the past to simply right click to get the About option to find the ap. & v. info. browsing around and about: file:///usr/share/indicator-application/ordering-override.keyfile examined: file:///usr/share/indicators file:///usr/share/indicators/messages/applications/ ... perhaps?/presumably? the information sought may be buried in file:///usr/share/indicators A reference in the comments was given to: What is the difference between indicators and a system tray? quoting from that source ... Unfortunately desktop indicators are not well documented yet: I couldn't find any specification doc ... Well ... the actual document https://wiki.ubuntu.com/DesktopExperienceTeam/ApplicationIndicators#Summary does not help much but it's existential information provides considerable insight ...

    Read the article

  • EU Digital Agenda scores 85/100

    - by trond-arne.undheim
    If the Digital Agenda was a bottle of wine and I were wine critic Robert Parker, I would say the Digital Agenda has "a great bouquet, many good elements, with astringent, dry and puckering mouth feel that will not please everyone, but still displaying some finesse. A somewhat controlled effort with no surprises and a few noticeable flaws in the delivery. Noticeably shorter aftertaste than advertised by the producers. Score: 85/100. Enjoy now". The EU Digital Agenda states that "standards are vital for interoperability" and has a whole chapter on interoperability and standards. With this strong emphasis, there is hope the EU's outdated standardization system finally is headed for reform. It has been 23 years since the legal framework of standardisation was completed by Council Decision 87/95/EEC8 in the Information and Communications Technology (ICT) sector. Standardization is market driven. For several decades the IT industry has been developing standards and specifications in global open standards development organisations (fora/consortia), many of which have transparency procedures and practices far superior to the European Standards Organizations. The Digital Agenda rightly states: "reflecting the rise and growing importance of ICT standards developed by certain global fora and consortia". Some fora/consortia, of course, are distorted, influenced by single vendors, have poor track record, and need constant vigilance, but they are the minority. Therefore, the recognition needs to be accompanied by eligibility criteria focused on openness. Will the EU reform its ICT standardization by the end of 2010? Possibly, and only if DG Enterprise takes on board that Information and Communications Technologies (ICTs) have driven half of the productivity growth in Europe over the past 15 years, a prominent fact in the EU's excellent Digital Competitiveness report 2010 published on Monday 17 May. It is ok to single out the ICT sector. It simply is the most important sector right now as it fuels growth in all other sectors. Let's not wait for the entire standardization package which may take another few years. Europe does not have time. The Digital Agenda is an umbrella strategy with deliveries from a host of actors across the Commission. For instance, the EU promises to issue "guidance on transparent ex-ante disclosure rules for essential intellectual property rights and licensing terms and conditions in the context of standard setting", by 2011 in the Horisontal Guidelines now out for public consultation by DG COMP and to some extent by DG ENTR's standardization policy reform. This is important. The EU will issue procurement guidance as interoperability frameworks are put into practice. This is a joint responsibility of several DGs, and is likely to suffer coordination problems, controversy and delays. We have seen plenty of the latter already and I have commented on the Commission's own interoperability elsewhere, with mixed luck. :( Yesterday, I watched the cartoonesque Korean western film The Good, the Bad and the Weird. In the movie (and I meant in the movie only), a bandit, a thief, and a bounty hunter, all excellent at whatever they do, fight for a treasure map. Whether that is a good analogy for the situation within the Commission, others are better judges of than I. However, as a movie fanatic, I still await the final shoot-out, and, as in the film, the only certainty is that "life is about chasing and being chased". The missed opportunity (in this case not following up the push from Member States to better define open standards based interoperability) is a casualty of the chaos ensued in the European Wild West (and I mean that in the most endearing sense, and my excuses beforehand to actors who possibly justifiably cannot bear being compared to fictional movie characters). Instead of exposing the ongoing fight, the EU opted for the legalistic use of the term "standards" throughout the document. This is a term that--to the EU-- excludes most standards used by the IT industry world wide. So, while it, for a moment, meant "weapon down", it will not lead to lasting peace. The Digital Agenda calls for the Member States to "Implement commitments on interoperability and standards in the Malmö and Granada Declarations by 2013". This is a far cry from the actual Ministerial Declarations which called upon the Commission to help them with this implementation by recognizing and further defining open standards based interoperability. Unless there is more forthcoming from the Commission, the market's judgement will be: you simply fall short. Generally, I think the EU focus now should be "from policy to practice" and the Digital Agenda does indeed stop short of tackling some highly practical issues. There is need for progress beyond the Digital Agenda. Here are some suggestions that would help Europe re-take global leadership on openness, public sector reform, and economic growth: A strong European software strategy centred around open standards based interoperability by 2011. An ambitious new eCommission strategy for 2011-15 focused on migration to open standards by 2015. Aligning the IT portfolio across the Commission into one Digital Agenda DG by 2012. Focusing all best practice exchange in eGovernment on one social networking site, epractice.eu (full disclosure: I had a role in getting that site up and running) Prioritizing public sector needs in global standardization over European standardization by 2014.

    Read the article

  • Welcome to Jackstown

    - by fatherjack
    I live in a small town, the population count isn't that great but let me introduce you to some of the population. We'll start with Martin the Doc, he fixes up anything that gets poorly, so much so that he could be classed as the doctor, the vet and even the garage mechanic. He's got a reputation that he can fix anything and that hasn't been proved wrong yet. He's great friends with Brian (who gets called "Brains") the teacher who seems to have a sound understanding of any topic you care to pass his way. If he isn't sure he tells you and then goes to find out and comes back with a full answer real quick. Its good to have that sort of research capability close at hand. Brains is also great at encouraging anyone who needs a bit of support to get them up to speed and working on their jobs. Steve sees Brains regularly, that's because he is the librarian, he keeps all sorts of reading material and nowadays there's even video to watch about any topic you like. Steve keeps scouring all sorts of places to get the content that's needed and he keeps it in good order so that what ever is needed can be found quickly. He also has to make sure that old stuff gets marked as probably out of date so that anyone reading it wont get mislead. Over the road from him is Greg, he's the town crier. We don't have a newspaper here so Greg keeps us all informed of what's going on "out of town" - what new stuff we might make use of and what wont work in a small place like this. If we are interested he goes ahead and gets people in to demonstrate their products  and tell us about the details. Greg is pretty good at getting us discounts too. Now Greg's brother Ian works for the mayors office in the "waste management department" nowadays its all about the recycling but he still has to make sure that the stuff that cant be used any more gets disposed of properly. It depends on the type of waste he's dealing with that decides how it need to be treated and he has to know a lot about the different methods and when to use which ones. There are two people that keep the peace in town, Brent is the detective, investigating wrong doings and applying justice where necessary and Bart is the diplomat who smooths things over when any people have a dispute or disagreement. Brent is meticulous in his investigations and fair in the way he handles any situation he finds. Discretion is his byword. There's a rumour that Bart used to work for the United Nations but what ever his history there is no denying his ability to get apparently irreconcilable parties working together to their combined benefit. Someone who works closely with Bart is Brad, he is the translator in town. He has several languages that he can converse in but he can also explain things from someone's point of view or  and make it understandable to someone else. To keep things on the straight and narrow from a legal perspective is Ben the solicitor, making sure we all abide by the rules.Two people who make for an interesting evening's conversation if you get them together are Aaron and Grant, Aaron is the local planning inspector and Grant is an inventor of some reputation. Anything being constructed around here needs Aarons agreement. He's quite flexible in his rules though; if you can justify what you want to do with solid logic but he wont stand for any development going on without his inclusion. That gets a demolition notice and there's no argument. Grant as I mentioned is the inventor in town, if something can be improved or created then Grant is your man. He mainly works on his own but isnt averse to getting specific advice and assistance from specialist from out of town if they can help him finish his creations.There aren't too many people left for you to meet in the town, there's Rob, he's an ex professional sportsman. He played Hockey, Football, Cricket, you name it. He was in his element as goal keeper / wicket keeper and that shows in his personal life. He just goes about his business and people often don't even know that he's helped them. Really low profile, doesn't get any glory but saves people from lots of problems, even disasters on occasion. There goes Neil, he's a bit of an odd person, some people say he's gifted with special clairvoyant powers, personally I think he's got his ear to the ground and knows where to find out the important news as soon as its made public. Anyone getting a visit from Neil is best off to follow his advice though, he's usually spot on and you wont be caught by surprise if you follow his recommendations – wherever it comes from.Poor old Andrew is the last person to introduce you to. Andrew doesn't show himself too often but when he does it seems that people find a reason to blame him for their problems, whether he had anything to do with their predicament or not. In all honesty, without fail, and to his great credit, he takes it in good grace and never retaliates or gets annoyed when he's out and about.  It pays off too as its very often the case that those who were blaming him recently suddenly find they need his help and they readily forget the issues pretty rapidly.And then there's me, what do I do in town? Well, I'm just a DBA with a lot of hats. (Jackstown Pop. 1)

    Read the article

  • Mixed Emotions: Humans React to Natural Language Computer

    - by Applications User Experience
    There was a big event in Silicon Valley on Tuesday, November 15. Watson, the natural language computer developed at IBM Watson Research Center in Yorktown Heights, New York, and its inventor and principal research investigator, David Ferrucci, were guests at the Computer History Museum in Mountain View, California for another round of the television game Jeopardy. You may have read about or watched on YouTube how Watson beat Ken Jennings and Brad Rutter, two top Jeopardy competitors, last February. This time, Watson swept the floor with two Silicon Valley high-achievers, one a venture capitalist with a background  in math, computer engineering, and physics, and the other a technology and finance writer well-versed in all aspects of culture and humanities. Watson is the product of the DeepQA research project, which attempts to create an artificially intelligent computing system through advances in natural language processing (NLP), among other technologies. NLP is a computing strategy that seeks to provide answers by processing large amounts of unstructured data contained in multiple large domains of human knowledge. There are several ways to perform NLP, but one way to start is by recognizing key words, then processing  contextual  cues associated with the keyword concepts so that you get many more “smart” (that is, human-like) deductions,  rather than a series of “dumb” matches.  Jeopardy questions often require more than key word matching to get the correct answer; typically several pieces of information put together, often from vastly different categories, to come up with a satisfactory word string solution that can be rephrased as a question.  Smarter than your average search engine, but is it as smart as a human? Watson was especially fast at descrambling mixed-up state capital names, and recalling and pairing movie titles where one started and the other ended in the same word (e.g., Billion Dollar Baby Boom, where both titles used the word Baby). David said they had basically removed the variable of how fast Watson hit the buzzer compared to human contestants, but frustration frequently appeared on the faces of the contestants beaten to the punch by Watson. David explained that top Jeopardy winners like Jennings achieved their success with a similar strategy, timing their buzz to the end of the reading of the clue,  and “running the board”, being first to respond on about 60% of the clues.  Similar results for Watson. It made sense that Watson would be good at the technical and scientific stuff, so I figured the venture capitalist was toast. But I thought for sure Watson would lose to the writer in categories such as pop culture, wines and foods, and other humanities. Surprisingly, it held its own. I was amazed it could recognize a word definition of a syllogism in the category of philosophy. So what was the audience reaction to all of this? We started out expecting our formidable human contestants to easily run some of their categories; however, they started off on the wrong foot with the state capitals which Watson could unscramble so efficiently. By the end of the first round, contestants and the audience were feeling a little bit, well, …. deflated. Watson was winning by about $13,000, and the humans had gone into negative dollars. The IBM host said he was going to “slow Watson down a bit,” and the humans came back with respectable scores in Double Jeopardy. This was partially thanks to a very sympathetic audience (and host, also a human) providing “group-think” on many questions, especially baseball ‘s most valuable players, which by the way, couldn’t have been hard because even I knew them.  Yes, that’s right, the humans cheated. Since Watson could speak but not hear us (it didn’t have speech recognition capability), it was probably unaware of this. In Final Jeopardy, the single question had to do with law. I was sure Watson would blow this one, but all contestants were able to answer correctly about a copyright law. In a career devoted to making computers more helpful to people, I think I may have seen how a computer can do too much. I’m not sure I’d want to work side-by-side with a Watson doing my job. Certainly listening and empathy are important traits we humans still have over Watson.  While there was great enthusiasm in the packed room of computer scientists and their friends for this standing-room-only show, I think it made several of us uneasy (especially the poor human contestants whose egos were soundly bashed in the first round). This computer system, by the way , only took 4 years to program. David Ferrucci mentioned several practical uses for Watson, including medical diagnoses and legal strategies. Are you “the expert” in your job? Imagine NLP computing on an Oracle database.   This may be the user interface of the future to enable users to better process big data. How do you think you’d like it? Postscript: There were three little boys sitting in front of me in the very first row. They looked, how shall I say it, … unimpressed!

    Read the article

< Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >