Search Results

Search found 10863 results on 435 pages for 'no refunds no returns'.

Page 166/435 | < Previous Page | 162 163 164 165 166 167 168 169 170 171 172 173  | Next Page >

  • Unable to Mange DNS via MMC

    - by IT Helpdesk Team Manager
    When trying to access the DNS service on Microsoft Windows Server 2003 (Build 3790) domain controller/schema master via the MMC DNS snap in or locally via the DNS MMC from Administrative tools I'm getting a red "X" through the icon for the DNS Server. The inability to access DNS management via MMC happens on all domain controllers as well. We've looked at items such as the DHCP client not being started, incorrect DNS setup ( the machine points at itself and another DC ), the DNS service not running ( it is and all DNS queries via NSLOOKUP work correctly ), dslint returns the correct information and functions as expected. There is the following entry in the DNS event log: The DNS server could not initialize the remote procedure call (RPC) service. If it is not running, start the RPC service or reboot the computer. The event data is the error code. For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp. 0000: 0000051b dnscmd fails with RPC server unavailable yet RPC is started: C:\Documents and Settings\Administrator.DOMAIN>dnscmd /Info Info query failed status = 1722 (0x000006ba) Command failed: RPC_S_SERVER_UNAVAILABLE 1722 (000006ba) DCDIAG /TEST:DNS /V /E produces the following errors: Warning: no DNS RPC connectivity (error or non Microsoft DNS server is running) [Error details: 1753 (Type: Win32 - Description: There are no more endpoints available from the endpoint mapper.)] Warning: no DNS RPC connectivity (error or non Microsoft DNS server is running) [Error details: 1722 (Type: Win32 - Description: The RPC server is unavailable.)] The DNS server could not initialize the remote procedure call (RPC) service. If it is not running, start the RPC service or reboot the computer. The event data is the error code. A DNS query for _ldap._tcp.dc._msdcs. returns the correct results. All domain and ADS related activities are working except that I can't manage my DNS via MMC or dnscmd. Any thoughts or solutions would be greatly appreciated. EDIT: Adding Registry export per request: Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc Class Name: <NO CLASS> Last Write Time: 10/18/2012 - 2:29 PM Value 0 Name: DCOM Protocols Type: REG_MULTI_SZ Data: ncacn_ip_tcp Value 1 Name: UuidSequenceNumber Type: REG_DWORD Data: 0xb19bd0f Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ClientProtocols Class Name: <NO CLASS> Last Write Time: 3/9/2007 - 12:11 PM Value 0 Name: ncacn_np Type: REG_SZ Data: rpcrt4.dll Value 1 Name: ncacn_ip_tcp Type: REG_SZ Data: rpcrt4.dll Value 2 Name: ncadg_ip_udp Type: REG_SZ Data: rpcrt4.dll Value 3 Name: ncacn_http Type: REG_SZ Data: rpcrt4.dll Value 4 Name: ncacn_at_dsp Type: REG_SZ Data: rpcrt4.dll Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Value 0 Name: DefaultSyntax Type: REG_SZ Data: 3 Value 1 Name: Endpoint Type: REG_SZ Data: \pipe\locator Value 2 Name: NetworkAddress Type: REG_SZ Data: \\. Value 3 Name: Protocol Type: REG_SZ Data: ncacn_np Value 4 Name: ServerNetworkAddress Type: REG_SZ Data: \\. Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NetBios Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\RpcProxy Class Name: <NO CLASS> Last Write Time: 3/9/2007 - 12:11 PM Value 0 Name: Enabled Type: REG_DWORD Data: 0x1 Value 1 Name: ValidPorts Type: REG_SZ Data: pdc:100-5000 Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\SecurityService Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Value 0 Name: 9 Type: REG_SZ Data: secur32.dll Value 1 Name: 10 Type: REG_SZ Data: secur32.dll Value 2 Name: 14 Type: REG_SZ Data: schannel.dll Value 3 Name: 16 Type: REG_SZ Data: secur32.dll Value 4 Name: 1 Type: REG_SZ Data: secur32.dll Value 5 Name: 18 Type: REG_SZ Data: secur32.dll Value 6 Name: 68 Type: REG_SZ Data: netlogon.dll

    Read the article

  • Ubuntu 12 crashed and took down network

    - by Leopd
    We recently set up a new Ubuntu 12.04LTS server on our network. It's not fully configured so it's not doing much beyond sshd and a default apache2 install. But this evening it appears to have crashed. It wasn't responding to the network or the keyboard. But the worst part is, it took down the entire network. My knowledge of the network stack below OSI layer 3 is very limited, so the rest confuses me. When this machine was physically connected to the network, no other machine could connect to the outside internet. When things were broken, running arp showed that our gateway's IP address (10.0.1.1) was listed as "invalid." Unplugging the server from the network fixed the problem, and plugging it back in broke it again. So the crashed server was advertising itself as owning the gateway's IP address? There's nothing at all in syslog during the time when it was causing problems. Any ideas about how to figure out what went wrong or what we can do to prevent it from happening again? I'm hesitant to even put the machine back on the network right now. Update ** It crashed again, and I ran tcpdump -penn arp (thanks bahamat!) for several minutes and got this... (timestamps and duplicate lines removed) 00:1e:65:f8:dc:24 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 10.0.1.1 tell 10.0.2.191, length 46 00:1e:65:f8:dc:24 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 10.0.1.44 tell 10.0.2.191, length 46 60:d8:19:d4:71:d6 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 10.0.1.1 tell 10.0.2.125, length 46 d4:9a:20:04:e9:78 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-has 192.168.1.1 tell 192.168.1.100, length 28 Update 2 ** When the network is functioning properly, arping -c4 10.0.1.1 returns this: ARPING 10.0.1.1 60 bytes from c0:c1:c0:77:25:8e (10.0.1.1): index=0 time=267.982 usec 60 bytes from c0:c1:c0:77:25:8e (10.0.1.1): index=1 time=422.955 usec 60 bytes from c0:c1:c0:77:25:8e (10.0.1.1): index=2 time=299.215 usec 60 bytes from c0:c1:c0:77:25:8e (10.0.1.1): index=3 time=366.926 usec --- 10.0.1.1 statistics --- 4 packets transmitted, 4 packets received, 0% unanswered (0 extra) When the bad server is plugged in, arping -c4 10.0.1.1 returns: ARPING 10.0.1.1 --- 10.0.1.1 statistics --- 4 packets transmitted, 0 packets received, 100% unanswered (0 extra) Context ** 10.0.x.x is the main subnet. 10.0.1.1 is the main internet gateway 10.0.1.44 is a printer 10.0.2.* devices are all laptops / workstations I have no idea what's using the 192.168.x.x subnet -- your guesses are at least as good as mine. A VM on a workstation? A misconfigured WAP? Somebody re-sharing wifi? A machine that failed to DHCP? The offending ubuntu server's MAC address ends in cd:80 so isn't listed in the dump. It should DHCP to 10.0.3.3 Thanks for any help. This ARP stuff is all voodoo to me. Packets just go to IP addresses, right? ;)

    Read the article

  • Ubuntu 14.04, OpenLDAP TLS problems

    - by larsemil
    So i have set up an openldap server using this guide here. It worked fine. But as i want to use sssd i also need TLS to be working for ldap. So i looked into and followed the TLS part of the guide. And i never got any errors and slapd started fine again. BUT. It does not seem to work when i try to use ldap over tls. root@server:~# ldapsearch -x -ZZ -H ldap://83.209.243.253 -b dc=daladevelop,dc=se ldap_start_tls: Protocol error (2) additional info: unsupported extended operation Ganking up the debug level some notches returns some more information: root@server:~# ldapsearch -x -ZZ -H ldap://83.209.243.253 -b dc=daladevelop,dc=se -d 5 ldap_url_parse_ext(ldap://83.209.243.253) ldap_create ldap_url_parse_ext(ldap://83.209.243.253:389/??base) ldap_extended_operation_s ldap_extended_operation ldap_send_initial_request ldap_new_connection 1 1 0 ldap_int_open_connection ldap_connect_to_host: TCP 83.209.243.253:389 ldap_new_socket: 3 ldap_prepare_socket: 3 ldap_connect_to_host: Trying 83.209.243.253:389 ldap_pvt_connect: fd: 3 tm: -1 async: 0 ldap_open_defconn: successful ldap_send_server_request ber_scanf fmt ({it) ber: ber_scanf fmt ({) ber: ber_flush2: 31 bytes to sd 3 ldap_result ld 0x7f25df51e220 msgid 1 wait4msg ld 0x7f25df51e220 msgid 1 (infinite timeout) wait4msg continue ld 0x7f25df51e220 msgid 1 all 1 ** ld 0x7f25df51e220 Connections: * host: 83.209.243.253 port: 389 (default) refcnt: 2 status: Connected last used: Fri Jun 6 08:52:16 2014 ** ld 0x7f25df51e220 Outstanding Requests: * msgid 1, origid 1, status InProgress outstanding referrals 0, parent count 0 ld 0x7f25df51e220 request count 1 (abandoned 0) ** ld 0x7f25df51e220 Response Queue: Empty ld 0x7f25df51e220 response count 0 ldap_chkResponseList ld 0x7f25df51e220 msgid 1 all 1 ldap_chkResponseList returns ld 0x7f25df51e220 NULL ldap_int_select read1msg: ld 0x7f25df51e220 msgid 1 all 1 ber_get_next ber_get_next: tag 0x30 len 42 contents: read1msg: ld 0x7f25df51e220 msgid 1 message type extended-result ber_scanf fmt ({eAA) ber: read1msg: ld 0x7f25df51e220 0 new referrals read1msg: mark request completed, ld 0x7f25df51e220 msgid 1 request done: ld 0x7f25df51e220 msgid 1 res_errno: 2, res_error: <unsupported extended operation>, res_matched: <> ldap_free_request (origid 1, msgid 1) ldap_parse_extended_result ber_scanf fmt ({eAA) ber: ldap_parse_result ber_scanf fmt ({iAA) ber: ber_scanf fmt (}) ber: ldap_msgfree ldap_err2string ldap_start_tls: Protocol error (2) additional info: unsupported extended operation ldap_free_connection 1 1 ldap_send_unbind ber_flush2: 7 bytes to sd 3 ldap_free_connection: actually freed So no good information there neither. In /var/log/syslog i get: Jun 6 08:55:42 master slapd[21383]: conn=1008 fd=23 ACCEPT from IP=83.209.243.253:56440 (IP=0.0.0.0:389) Jun 6 08:55:42 master slapd[21383]: conn=1008 op=0 EXT oid=1.3.6.1.4.1.1466.20037 Jun 6 08:55:42 master slapd[21383]: conn=1008 op=0 do_extended: unsupported operation "1.3.6.1.4.1.1466.20037" Jun 6 08:55:42 master slapd[21383]: conn=1008 op=0 RESULT tag=120 err=2 text=unsupported extended operation Jun 6 08:55:42 master slapd[21383]: conn=1008 op=1 UNBIND Jun 6 08:55:42 master slapd[21383]: conn=1008 fd=23 closed If i portscan the host i get the following: Starting Nmap 6.40 ( http://nmap.org ) at 2014-06-06 08:56 CEST Nmap scan report for h83-209-243-253.static.se.alltele.net (83.209.243.253) Host is up (0.0072s latency). Not shown: 996 closed ports PORT STATE SERVICE 22/tcp open ssh 80/tcp open http 389/tcp open ldap 636/tcp open ldapssl But when i check certs root@master:~# openssl s_client -connect daladevelop.se:636 -showcerts -state CONNECTED(00000003) SSL_connect:before/connect initialization SSL_connect:unknown state 140244859233952:error:140790E5:SSL routines:SSL23_WRITE:ssl handshake failure:s23_lib.c:177: --- no peer certificate available --- No client certificate CA names sent --- SSL handshake has read 0 bytes and written 317 bytes --- New, (NONE), Cipher is (NONE) Secure Renegotiation IS NOT supported Compression: NONE Expansion: NONE --- And i feel like i am clearly out in deep water not knowing at all where to go from here. Anny hints appreciated on what to do or to get better debug logging... EDIT: This is my config slapcated from cn=config and it does not mention at all anything about TLS. I have inserted my certinfo.ldif: root@master:~# cat certinfo.ldif dn: cn=config add: olcTLSCACertificateFile olcTLSCACertificateFile: /etc/ssl/certs/cacert.pem - add: olcTLSCertificateFile olcTLSCertificateFile: /etc/ssl/certs/daladevelop_slapd_cert.pem - add: olcTLSCertificateKeyFile olcTLSCertificateKeyFile: /etc/ssl/private/daladevelop_slapd_key.pem and when doing that i only got this as an answer. root@master:~# sudo ldapmodify -Y EXTERNAL -H ldapi:/// -f certinfo.ldif SASL/EXTERNAL authentication started SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth SASL SSF: 0 modifying entry "cn=config" So still no wiser.

    Read the article

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • ASP.NET MVC 3 Hosting :: New Features in ASP.NET MVC 3

    - by mbridge
    Razor View Engine The Razor view engine is a new view engine option for ASP.NET MVC that supports the Razor templating syntax. The Razor syntax is a streamlined approach to HTML templating designed with the goal of being a code driven minimalist templating approach that builds on existing C#, VB.NET and HTML knowledge. The result of this approach is that Razor views are very lean and do not contain unnecessary constructs that get in the way of you and your code. ASP.NET MVC 3 Preview 1 only supports C# Razor views which use the .cshtml file extension. VB.NET support will be enabled in later releases of ASP.NET MVC 3. For more information and examples, see Introducing “Razor” – a new view engine for ASP.NET on Scott Guthrie’s blog. Dynamic View and ViewModel Properties A new dynamic View property is available in views, which provides access to the ViewData object using a simpler syntax. For example, imagine two items are added to the ViewData dictionary in the Index controller action using code like the following: public ActionResult Index() {          ViewData["Title"] = "The Title";          ViewData["Message"] = "Hello World!"; } Those properties can be accessed in the Index view using code like this: <h2>View.Title</h2> <p>View.Message</p> There is also a new dynamic ViewModel property in the Controller class that lets you add items to the ViewData dictionary using a simpler syntax. Using the previous controller example, the two values added to the ViewData dictionary can be rewritten using the following code: public ActionResult Index() {     ViewModel.Title = "The Title";     ViewModel.Message = "Hello World!"; } “Add View” Dialog Box Supports Multiple View Engines The Add View dialog box in Visual Studio includes extensibility hooks that allow it to support multiple view engines, as shown in the following figure: Service Location and Dependency Injection Support ASP.NET MVC 3 introduces improved support for applying Dependency Injection (DI) via Inversion of Control (IoC) containers. ASP.NET MVC 3 Preview 1 provides the following hooks for locating services and injecting dependencies: - Creating controller factories. - Creating controllers and setting dependencies. - Setting dependencies on view pages for both the Web Form view engine and the Razor view engine (for types that derive from ViewPage, ViewUserControl, ViewMasterPage, WebViewPage). - Setting dependencies on action filters. Using a Dependency Injection container is not required in order for ASP.NET MVC 3 to function properly. Global Filters ASP.NET MVC 3 allows you to register filters that apply globally to all controller action methods. Adding a filter to the global filters collection ensures that the filter runs for all controller requests. To register an action filter globally, you can make the following call in the Application_Start method in the Global.asax file: GlobalFilters.Filters.Add(new MyActionFilter()); The source of global action filters is abstracted by the new IFilterProvider interface, which can be registered manually or by using Dependency Injection. This allows you to provide your own source of action filters and choose at run time whether to apply a filter to an action in a particular request. New JsonValueProviderFactory Class The new JsonValueProviderFactory class allows action methods to receive JSON-encoded data and model-bind it to an action-method parameter. This is useful in scenarios such as client templating. Client templates enable you to format and display a single data item or set of data items by using a fragment of HTML. ASP.NET MVC 3 lets you connect client templates easily with an action method that both returns and receives JSON data. Support for .NET Framework 4 Validation Attributes and IvalidatableObject The ValidationAttribute class was improved in the .NET Framework 4 to enable richer support for validation. When you write a custom validation attribute, you can use a new IsValid overload that provides a ValidationContext instance. This instance provides information about the current validation context, such as what object is being validated. This change enables scenarios such as validating the current value based on another property of the model. The following example shows a sample custom attribute that ensures that the value of PropertyOne is always larger than the value of PropertyTwo: public class CompareValidationAttribute : ValidationAttribute {     protected override ValidationResult IsValid(object value,              ValidationContext validationContext) {         var model = validationContext.ObjectInstance as SomeModel;         if (model.PropertyOne > model.PropertyTwo) {            return ValidationResult.Success;         }         return new ValidationResult("PropertyOne must be larger than PropertyTwo");     } } Validation in ASP.NET MVC also supports the .NET Framework 4 IValidatableObject interface. This interface allows your model to perform model-level validation, as in the following example: public class SomeModel : IValidatableObject {     public int PropertyOne { get; set; }     public int PropertyTwo { get; set; }     public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) {         if (PropertyOne <= PropertyTwo) {            yield return new ValidationResult(                "PropertyOne must be larger than PropertyTwo");         }     } } New IClientValidatable Interface The new IClientValidatable interface allows the validation framework to discover at run time whether a validator has support for client validation. This interface is designed to be independent of the underlying implementation; therefore, where you implement the interface depends on the validation framework in use. For example, for the default data annotations-based validator, the interface would be applied on the validation attribute. Support for .NET Framework 4 Metadata Attributes ASP.NET MVC 3 now supports .NET Framework 4 metadata attributes such as DisplayAttribute. New IMetadataAware Interface The new IMetadataAware interface allows you to write attributes that simplify how you can contribute to the ModelMetadata creation process. Before this interface was available, you needed to write a custom metadata provider in order to have an attribute provide extra metadata. This interface is consumed by the AssociatedMetadataProvider class, so support for the IMetadataAware interface is automatically inherited by all classes that derive from that class (notably, the DataAnnotationsModelMetadataProvider class). New Action Result Types In ASP.NET MVC 3, the Controller class includes two new action result types and corresponding helper methods. HttpNotFoundResult Action The new HttpNotFoundResult action result is used to indicate that a resource requested by the current URL was not found. The status code is 404. This class derives from HttpStatusCodeResult. The Controller class includes an HttpNotFound method that returns an instance of this action result type, as shown in the following example: public ActionResult List(int id) {     if (id < 0) {                 return HttpNotFound();     }     return View(); } HttpStatusCodeResult Action The new HttpStatusCodeResult action result is used to set the response status code and description. Permanent Redirect The HttpRedirectResult class has a new Boolean Permanent property that is used to indicate whether a permanent redirect should occur. A permanent redirect uses the HTTP 301 status code. Corresponding to this change, the Controller class now has several methods for performing permanent redirects: - RedirectPermanent - RedirectToRoutePermanent - RedirectToActionPermanent These methods return an instance of HttpRedirectResult with the Permanent property set to true. Breaking Changes The order of execution for exception filters has changed for exception filters that have the same Order value. In ASP.NET MVC 2 and earlier, exception filters on the controller with the same Order as those on an action method were executed before the exception filters on the action method. This would typically be the case when exception filters were applied without a specified order Order value. In MVC 3, this order has been reversed in order to allow the most specific exception handler to execute first. As in earlier versions, if the Order property is explicitly specified, the filters are run in the specified order. Known Issues When you are editing a Razor view (CSHTML file), the Go To Controller menu item in Visual Studio will not be available, and there are no code snippets.

    Read the article

  • Behind ASP.NET MVC Mock Objects

    - by imran_ku07
       Introduction:           I think this sentence now become very familiar to ASP.NET MVC developers that "ASP.NET MVC is designed with testability in mind". But what ASP.NET MVC team did for making applications build with ASP.NET MVC become easily testable? Understanding this is also very important because it gives you some help when designing custom classes. So in this article i will discuss some abstract classes provided by ASP.NET MVC team for the various ASP.NET intrinsic objects, including HttpContext, HttpRequest, and HttpResponse for making these objects as testable. I will also discuss that why it is hard and difficult to test ASP.NET Web Forms.      Description:           Starting from Classic ASP to ASP.NET MVC, ASP.NET Intrinsic objects is extensively used in all form of web application. They provide information about Request, Response, Server, Application and so on. But ASP.NET MVC uses these intrinsic objects in some abstract manner. The reason for this abstraction is to make your application testable. So let see the abstraction.           As we know that ASP.NET MVC uses the same runtime engine as ASP.NET Web Form uses, therefore the first receiver of the request after IIS and aspnet_filter.dll is aspnet_isapi.dll. This will start the application domain. With the application domain up and running, ASP.NET does some initialization and after some initialization it will call Application_Start if it is defined. Then the normal HTTP pipeline event handlers will be executed including both HTTP Modules and global.asax event handlers. One of the HTTP Module is registered by ASP.NET MVC is UrlRoutingModule. The purpose of this module is to match a route defined in global.asax. Every matched route must have IRouteHandler. In default case this is MvcRouteHandler which is responsible for determining the HTTP Handler which returns MvcHandler (which is derived from IHttpHandler). In simple words, Route has MvcRouteHandler which returns MvcHandler which is the IHttpHandler of current request. In between HTTP pipeline events the handler of ASP.NET MVC, MvcHandler.ProcessRequest will be executed and shown as given below,          void IHttpHandler.ProcessRequest(HttpContext context)          {                    this.ProcessRequest(context);          }          protected virtual void ProcessRequest(HttpContext context)          {                    // HttpContextWrapper inherits from HttpContextBase                    HttpContextBase ctxBase = new HttpContextWrapper(context);                    this.ProcessRequest(ctxBase);          }          protected internal virtual void ProcessRequest(HttpContextBase ctxBase)          {                    . . .          }             HttpContextBase is the base class. HttpContextWrapper inherits from HttpContextBase, which is the parent class that include information about a single HTTP request. This is what ASP.NET MVC team did, just wrap old instrinsic HttpContext into HttpContextWrapper object and provide opportunity for other framework to provide their own implementation of HttpContextBase. For example           public class MockHttpContext : HttpContextBase          {                    . . .          }                     As you can see, it is very easy to create your own HttpContext. That's what did the third party mock frameworks like TypeMock, Moq, RhinoMocks, or NMock2 to provide their own implementation of ASP.NET instrinsic objects classes.           The key point to note here is the types of ASP.NET instrinsic objects. In ASP.NET Web Form and ASP.NET MVC. For example in ASP.NET Web Form the type of Request object is HttpRequest (which is sealed) and in ASP.NET MVC the type of Request object is HttpRequestBase. This is one of the reason that makes test in ASP.NET WebForm is difficult. because their is no base class and the HttpRequest class is sealed, therefore it cannot act as a base class to others. On the other side ASP.NET MVC always uses a base class to give a chance to third parties and unit test frameworks to create thier own implementation ASP.NET instrinsic object.           Therefore we can say that in ASP.NET MVC, instrinsic objects are of type base classes (for example HttpContextBase) .Actually these base classes had it's own implementation of same interface as the intrinsic objects it abstracts. It includes only virtual members which simply throws an exception. ASP.NET MVC also provides the corresponding wrapper classes (for example, HttpRequestWrapper) which provides a concrete implementation of the base classes in the form of ASP.NET intrinsic object. Other wrapper classes may be defined by third parties in the form of a mock object for testing purpose.           So we can say that a Request object in ASP.NET MVC may be HttpRequestWrapper or may be MockRequestWrapper(assuming that MockRequestWrapper class is used for testing purpose). Here is list of ASP.NET instrinsic and their implementation in ASP.NET MVC in the form of base and wrapper classes. Base Class Wrapper Class ASP.NET Intrinsic Object Description HttpApplicationStateBase HttpApplicationStateWrapper Application HttpApplicationStateBase abstracts the intrinsic Application object HttpBrowserCapabilitiesBase HttpBrowserCapabilitiesWrapper HttpBrowserCapabilities HttpBrowserCapabilitiesBase abstracts the HttpBrowserCapabilities class HttpCachePolicyBase HttpCachePolicyWrapper HttpCachePolicy HttpCachePolicyBase abstracts the HttpCachePolicy class HttpContextBase HttpContextWrapper HttpContext HttpContextBase abstracts the intrinsic HttpContext object HttpFileCollectionBase HttpFileCollectionWrapper HttpFileCollection HttpFileCollectionBase abstracts the HttpFileCollection class HttpPostedFileBase HttpPostedFileWrapper HttpPostedFile HttpPostedFileBase abstracts the HttpPostedFile class HttpRequestBase HttpRequestWrapper Request HttpRequestBase abstracts the intrinsic Request object HttpResponseBase HttpResponseWrapper Response HttpResponseBase abstracts the intrinsic Response object HttpServerUtilityBase HttpServerUtilityWrapper Server HttpServerUtilityBase abstracts the intrinsic Server object HttpSessionStateBase HttpSessionStateWrapper Session HttpSessionStateBase abstracts the intrinsic Session object HttpStaticObjectsCollectionBase HttpStaticObjectsCollectionWrapper HttpStaticObjectsCollection HttpStaticObjectsCollectionBase abstracts the HttpStaticObjectsCollection class      Summary:           ASP.NET MVC provides a set of abstract classes for ASP.NET instrinsic objects in the form of base classes, allowing someone to create their own implementation. In addition, ASP.NET MVC also provide set of concrete classes in the form of wrapper classes. This design really makes application easier to test and even application may replace concrete implementation with thier own implementation, which makes ASP.NET MVC very flexable.

    Read the article

  • Parallelism in .NET – Part 5, Partitioning of Work

    - by Reed
    When parallelizing any routine, we start by decomposing the problem.  Once the problem is understood, we need to break our work into separate tasks, so each task can be run on a different processing element.  This process is called partitioning. Partitioning our tasks is a challenging feat.  There are opposing forces at work here: too many partitions adds overhead, too few partitions leaves processors idle.  Trying to work the perfect balance between the two extremes is the goal for which we should aim.  Luckily, the Task Parallel Library automatically handles much of this process.  However, there are situations where the default partitioning may not be appropriate, and knowledge of our routines may allow us to guide the framework to making better decisions. First off, I’d like to say that this is a more advanced topic.  It is perfectly acceptable to use the parallel constructs in the framework without considering the partitioning taking place.  The default behavior in the Task Parallel Library is very well-behaved, even for unusual work loads, and should rarely be adjusted.  I have found few situations where the default partitioning behavior in the TPL is not as good or better than my own hand-written partitioning routines, and recommend using the defaults unless there is a strong, measured, and profiled reason to avoid using them.  However, understanding partitioning, and how the TPL partitions your data, helps in understanding the proper usage of the TPL. I indirectly mentioned partitioning while discussing aggregation.  Typically, our systems will have a limited number of Processing Elements (PE), which is the terminology used for hardware capable of processing a stream of instructions.  For example, in a standard Intel i7 system, there are four processor cores, each of which has two potential hardware threads due to Hyperthreading.  This gives us a total of 8 PEs – theoretically, we can have up to eight operations occurring concurrently within our system. In order to fully exploit this power, we need to partition our work into Tasks.  A task is a simple set of instructions that can be run on a PE.  Ideally, we want to have at least one task per PE in the system, since fewer tasks means that some of our processing power will be sitting idle.  A naive implementation would be to just take our data, and partition it with one element in our collection being treated as one task.  When we loop through our collection in parallel, using this approach, we’d just process one item at a time, then reuse that thread to process the next, etc.  There’s a flaw in this approach, however.  It will tend to be slower than necessary, often slower than processing the data serially. The problem is that there is overhead associated with each task.  When we take a simple foreach loop body and implement it using the TPL, we add overhead.  First, we change the body from a simple statement to a delegate, which must be invoked.  In order to invoke the delegate on a separate thread, the delegate gets added to the ThreadPool’s current work queue, and the ThreadPool must pull this off the queue, assign it to a free thread, then execute it.  If our collection had one million elements, the overhead of trying to spawn one million tasks would destroy our performance. The answer, here, is to partition our collection into groups, and have each group of elements treated as a single task.  By adding a partitioning step, we can break our total work into small enough tasks to keep our processors busy, but large enough tasks to avoid overburdening the ThreadPool.  There are two clear, opposing goals here: Always try to keep each processor working, but also try to keep the individual partitions as large as possible. When using Parallel.For, the partitioning is always handled automatically.  At first, partitioning here seems simple.  A naive implementation would merely split the total element count up by the number of PEs in the system, and assign a chunk of data to each processor.  Many hand-written partitioning schemes work in this exactly manner.  This perfectly balanced, static partitioning scheme works very well if the amount of work is constant for each element.  However, this is rarely the case.  Often, the length of time required to process an element grows as we progress through the collection, especially if we’re doing numerical computations.  In this case, the first PEs will finish early, and sit idle waiting on the last chunks to finish.  Sometimes, work can decrease as we progress, since previous computations may be used to speed up later computations.  In this situation, the first chunks will be working far longer than the last chunks.  In order to balance the workload, many implementations create many small chunks, and reuse threads.  This adds overhead, but does provide better load balancing, which in turn improves performance. The Task Parallel Library handles this more elaborately.  Chunks are determined at runtime, and start small.  They grow slowly over time, getting larger and larger.  This tends to lead to a near optimum load balancing, even in odd cases such as increasing or decreasing workloads.  Parallel.ForEach is a bit more complicated, however. When working with a generic IEnumerable<T>, the number of items required for processing is not known in advance, and must be discovered at runtime.  In addition, since we don’t have direct access to each element, the scheduler must enumerate the collection to process it.  Since IEnumerable<T> is not thread safe, it must lock on elements as it enumerates, create temporary collections for each chunk to process, and schedule this out.  By default, it uses a partitioning method similar to the one described above.  We can see this directly by looking at the Visual Partitioning sample shipped by the Task Parallel Library team, and available as part of the Samples for Parallel Programming.  When we run the sample, with four cores and the default, Load Balancing partitioning scheme, we see this: The colored bands represent each processing core.  You can see that, when we started (at the top), we begin with very small bands of color.  As the routine progresses through the Parallel.ForEach, the chunks get larger and larger (seen by larger and larger stripes). Most of the time, this is fantastic behavior, and most likely will out perform any custom written partitioning.  However, if your routine is not scaling well, it may be due to a failure in the default partitioning to handle your specific case.  With prior knowledge about your work, it may be possible to partition data more meaningfully than the default Partitioner. There is the option to use an overload of Parallel.ForEach which takes a Partitioner<T> instance.  The Partitioner<T> class is an abstract class which allows for both static and dynamic partitioning.  By overriding Partitioner<T>.SupportsDynamicPartitions, you can specify whether a dynamic approach is available.  If not, your custom Partitioner<T> subclass would override GetPartitions(int), which returns a list of IEnumerator<T> instances.  These are then used by the Parallel class to split work up amongst processors.  When dynamic partitioning is available, GetDynamicPartitions() is used, which returns an IEnumerable<T> for each partition.  If you do decide to implement your own Partitioner<T>, keep in mind the goals and tradeoffs of different partitioning strategies, and design appropriately. The Samples for Parallel Programming project includes a ChunkPartitioner class in the ParallelExtensionsExtras project.  This provides example code for implementing your own, custom allocation strategies, including a static allocator of a given chunk size.  Although implementing your own Partitioner<T> is possible, as I mentioned above, this is rarely required or useful in practice.  The default behavior of the TPL is very good, often better than any hand written partitioning strategy.

    Read the article

  • How can I get penetration depth from Minkowski Portal Refinement / Xenocollide?

    - by Raven Dreamer
    I recently got an implementation of Minkowski Portal Refinement (MPR) successfully detecting collision. Even better, my implementation returns a good estimate (local minimum) direction for the minimum penetration depth. So I took a stab at adjusting the algorithm to return the penetration depth in an arbitrary direction, and was modestly successful - my altered method works splendidly for face-edge collision resolution! What it doesn't currently do, is correctly provide the minimum penetration depth for edge-edge scenarios, such as the case on the right: What I perceive to be happening, is that my current method returns the minimum penetration depth to the nearest vertex - which works fine when the collision is actually occurring on the plane of that vertex, but not when the collision happens along an edge. Is there a way I can alter my method to return the penetration depth to the point of collision, rather than the nearest vertex? Here's the method that's supposed to return the minimum penetration distance along a specific direction: public static Vector3 CalcMinDistance(List<Vector3> shape1, List<Vector3> shape2, Vector3 dir) { //holding variables Vector3 n = Vector3.zero; Vector3 swap = Vector3.zero; // v0 = center of Minkowski sum v0 = Vector3.zero; // Avoid case where centers overlap -- any direction is fine in this case //if (v0 == Vector3.zero) return Vector3.zero; //always pass in a valid direction. // v1 = support in direction of origin n = -dir; //get the differnce of the minkowski sum Vector3 v11 = GetSupport(shape1, -n); Vector3 v12 = GetSupport(shape2, n); v1 = v12 - v11; //if the support point is not in the direction of the origin if (v1.Dot(n) <= 0) { //Debug.Log("Could find no points this direction"); return Vector3.zero; } // v2 - support perpendicular to v1,v0 n = v1.Cross(v0); if (n == Vector3.zero) { //v1 and v0 are parallel, which means //the direction leads directly to an endpoint n = v1 - v0; //shortest distance is just n //Debug.Log("2 point return"); return n; } //get the new support point Vector3 v21 = GetSupport(shape1, -n); Vector3 v22 = GetSupport(shape2, n); v2 = v22 - v21; if (v2.Dot(n) <= 0) { //can't reach the origin in this direction, ergo, no collision //Debug.Log("Could not reach edge?"); return Vector2.zero; } // Determine whether origin is on + or - side of plane (v1,v0,v2) //tests linesegments v0v1 and v0v2 n = (v1 - v0).Cross(v2 - v0); float dist = n.Dot(v0); // If the origin is on the - side of the plane, reverse the direction of the plane if (dist > 0) { //swap the winding order of v1 and v2 swap = v1; v1 = v2; v2 = swap; //swap the winding order of v11 and v12 swap = v12; v12 = v11; v11 = swap; //swap the winding order of v11 and v12 swap = v22; v22 = v21; v21 = swap; //and swap the plane normal n = -n; } /// // Phase One: Identify a portal while (true) { // Obtain the support point in a direction perpendicular to the existing plane // Note: This point is guaranteed to lie off the plane Vector3 v31 = GetSupport(shape1, -n); Vector3 v32 = GetSupport(shape2, n); v3 = v32 - v31; if (v3.Dot(n) <= 0) { //can't enclose the origin within our tetrahedron //Debug.Log("Could not reach edge after portal?"); return Vector3.zero; } // If origin is outside (v1,v0,v3), then eliminate v2 and loop if (v1.Cross(v3).Dot(v0) < 0) { //failed to enclose the origin, adjust points; v2 = v3; v21 = v31; v22 = v32; n = (v1 - v0).Cross(v3 - v0); continue; } // If origin is outside (v3,v0,v2), then eliminate v1 and loop if (v3.Cross(v2).Dot(v0) < 0) { //failed to enclose the origin, adjust points; v1 = v3; v11 = v31; v12 = v32; n = (v3 - v0).Cross(v2 - v0); continue; } bool hit = false; /// // Phase Two: Refine the portal int phase2 = 0; // We are now inside of a wedge... while (phase2 < 20) { phase2++; // Compute normal of the wedge face n = (v2 - v1).Cross(v3 - v1); n.Normalize(); // Compute distance from origin to wedge face float d = n.Dot(v1); // If the origin is inside the wedge, we have a hit if (d > 0 ) { //Debug.Log("Do plane test here"); float T = n.Dot(v2) / n.Dot(dir); Vector3 pointInPlane = (dir * T); return pointInPlane; } // Find the support point in the direction of the wedge face Vector3 v41 = GetSupport(shape1, -n); Vector3 v42 = GetSupport(shape2, n); v4 = v42 - v41; float delta = (v4 - v3).Dot(n); float separation = -(v4.Dot(n)); if (delta <= kCollideEpsilon || separation >= 0) { //Debug.Log("Non-convergance detected"); //Debug.Log("Do plane test here"); return Vector3.zero; } // Compute the tetrahedron dividing face (v4,v0,v1) float d1 = v4.Cross(v1).Dot(v0); // Compute the tetrahedron dividing face (v4,v0,v2) float d2 = v4.Cross(v2).Dot(v0); // Compute the tetrahedron dividing face (v4,v0,v3) float d3 = v4.Cross(v3).Dot(v0); if (d1 < 0) { if (d2 < 0) { // Inside d1 & inside d2 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } else { // Inside d1 & outside d2 ==> eliminate v3 v3 = v4; v31 = v41; v32 = v42; } } else { if (d3 < 0) { // Outside d1 & inside d3 ==> eliminate v2 v2 = v4; v21 = v41; v22 = v42; } else { // Outside d1 & outside d3 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } } } return Vector3.zero; } }

    Read the article

  • Routing Issue in ASP.NET MVC 3 RC 2

    - by imran_ku07
         Introduction:             Two weeks ago, ASP.NET MVC team shipped the ASP.NET MVC 3 RC 2 release. This release includes some new features and some performance optimization. This release also fixes most of the bugs but still some minor issues are present in this release. Some of these issues are already discussed by Scott Guthrie at Update on ASP.NET MVC 3 RC2 (and a workaround for a bug in it). In addition to these issues, I have found another issue in this release regarding routing. In this article, I will show you the issue regarding routing and a simple workaround for this issue.       Description:             The easiest way to understand an issue is to reproduce it in the application. So create a MVC 2 application and a MVC 3 RC 2 application. Then in both applications, just open global.asax file and update the default route as below,     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = UrlParameter.Optional, id2 = UrlParameter.Optional } // Parameter defaults );              Then just open Index View and add the following lines,    <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> Home Page </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <% Html.RenderAction("About"); %> </asp:Content>             The above view will issue a child request to About action method. Now run both applications. ASP.NET MVC 2 application will run just fine. But ASP.NET MVC 3 RC 2 application will throw an exception as shown below,                  You may think that this is a routing issue but this is not the case here as both ASP.NET MVC 2 and ASP.NET MVC  3 RC 2 applications(created above) are built with .NET Framework 4.0 and both will use the same routing defined in System.Web. Something is wrong in ASP.NET MVC 3 RC 2. So after digging into ASP.NET MVC source code, I have found that the UrlParameter class in ASP.NET MVC 3 RC 2 overrides the ToString method which simply return an empty string.     public sealed class UrlParameter { public static readonly UrlParameter Optional = new UrlParameter(); private UrlParameter() { } public override string ToString() { return string.Empty; } }             In MVC 2 the ToString method was not overridden. So to quickly fix the above problem just replace UrlParameter.Optional default value with a different value other than null or empty(for example, a single white space) or replace UrlParameter.Optional default value with a new class object containing the same code as UrlParameter class have except the ToString method is not overridden (or with a overridden ToString method that return a string value other than null or empty). But by doing this you will loose the benefit of ASP.NET MVC 2 Optional URL Parameters. There may be many different ways to fix the above problem and not loose the benefit of optional parameters. Here I will create a new class MyUrlParameter with the same code as UrlParameter class have except the ToString method is not overridden. Then I will create a base controller class which contains a constructor to remove all MyUrlParameter route data parameters, same like ASP.NET MVC doing with UrlParameter route data parameters early in the request.     public class BaseController : Controller { public BaseController() { if (System.Web.HttpContext.Current.CurrentHandler is MvcHandler) { RouteValueDictionary rvd = ((MvcHandler)System.Web.HttpContext.Current.CurrentHandler).RequestContext.RouteData.Values; string[] matchingKeys = (from entry in rvd where entry.Value == MyUrlParameter.Optional select entry.Key).ToArray(); foreach (string key in matchingKeys) { rvd.Remove(key); } } } } public class HomeController : BaseController { public ActionResult Index(string id1) { ViewBag.Message = "Welcome to ASP.NET MVC!"; return View(); } public ActionResult About() { return Content("Child Request Contents"); } }     public sealed class MyUrlParameter { public static readonly MyUrlParameter Optional = new MyUrlParameter(); private MyUrlParameter() { } }     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = MyUrlParameter.Optional, id2 = MyUrlParameter.Optional } // Parameter defaults );             MyUrlParameter class is a copy of UrlParameter class except that MyUrlParameter class not overrides the ToString method. Note that the default route is modified to use MyUrlParameter.Optional instead of UrlParameter.Optional. Also note that BaseController class constructor is removing MyUrlParameter parameters from the current request route data so that the model binder will not bind these parameters with action method parameters. Now just run the ASP.NET MVC 3 RC 2 application again, you will find that it runs just fine.             In case if you are curious to know that why ASP.NET MVC 3 RC 2 application throws an exception if UrlParameter class contains a ToString method which returns an empty string, then you need to know something about a feature of routing for url generation. During url generation, routing will call the ParsedRoute.Bind method internally. This method includes a logic to match the route and build the url. During building the url, ParsedRoute.Bind method will call the ToString method of the route values(in our case this will call the UrlParameter.ToString method) and then append the returned value into url. This method includes a logic after appending the returned value into url that if two continuous returned values are empty then don't match the current route otherwise an incorrect url will be generated. Here is the snippet from ParsedRoute.Bind method which will prove this statement.       if ((builder2.Length > 0) && (builder2[builder2.Length - 1] == '/')) { return null; } builder2.Append("/"); ........................................................... ........................................................... ........................................................... ........................................................... if (RoutePartsEqual(obj3, obj4)) { builder2.Append(UrlEncode(Convert.ToString(obj3, CultureInfo.InvariantCulture))); continue; }             In the above example, both id1 and id2 parameters default values are set to UrlParameter object and UrlParameter class include a ToString method that returns an empty string. That's why this route will not matched.            Summary:             In this article I showed you the issue regarding routing and also showed you how to workaround this problem. I explained this issue with an example by creating a ASP.NET MVC 2 and a ASP.NET MVC 3 RC 2 application. Finally I also explained the reason for this issue. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • C#/.NET Little Pitfalls: The Dangers of Casting Boxed Values

    - by James Michael Hare
    Starting a new series to parallel the Little Wonders series.  In this series, I will examine some of the small pitfalls that can occasionally trip up developers. Introduction: Of Casts and Conversions What happens when we try to assign from an int and a double and vice-versa? 1: double pi = 3.14; 2: int theAnswer = 42; 3:  4: // implicit widening conversion, compiles! 5: double doubleAnswer = theAnswer; 6:  7: // implicit narrowing conversion, compiler error! 8: int intPi = pi; As you can see from the comments above, a conversion from a value type where there is no potential data loss is can be done with an implicit conversion.  However, when converting from one value type to another may result in a loss of data, you must make the conversion explicit so the compiler knows you accept this risk.  That is why the conversion from double to int will not compile with an implicit conversion, we can make the conversion explicit by adding a cast: 1: // explicit narrowing conversion using a cast, compiler 2: // succeeds, but results may have data loss: 3: int intPi = (int)pi; So for value types, the conversions (implicit and explicit) both convert the original value to a new value of the given type.  With widening and narrowing references, however, this is not the case.  Converting reference types is a bit different from converting value types.  First of all when you perform a widening or narrowing you don’t really convert the instance of the object, you just convert the reference itself to the wider or narrower reference type, but both the original and new reference type both refer back to the same object. Secondly, widening and narrowing for reference types refers the going down and up the class hierarchy instead of referring to precision as in value types.  That is, a narrowing conversion for a reference type means you are going down the class hierarchy (for example from Shape to Square) whereas a widening conversion means you are going up the class hierarchy (from Square to Shape).  1: var square = new Square(); 2:  3: // implicitly convers because all squares are shapes 4: // (that is, all subclasses can be referenced by a superclass reference) 5: Shape myShape = square; 6:  7: // implicit conversion not possible, not all shapes are squares! 8: // (that is, not all superclasses can be referenced by a subclass reference) 9: Square mySquare = (Square) myShape; So we had to cast the Shape back to Square because at that point the compiler has no way of knowing until runtime whether the Shape in question is truly a Square.  But, because the compiler knows that it’s possible for a Shape to be a Square, it will compile.  However, if the object referenced by myShape is not truly a Square at runtime, you will get an invalid cast exception. Of course, there are other forms of conversions as well such as user-specified conversions and helper class conversions which are beyond the scope of this post.  The main thing we want to focus on is this seemingly innocuous casting method of widening and narrowing conversions that we come to depend on every day and, in some cases, can bite us if we don’t fully understand what is going on!  The Pitfall: Conversions on Boxed Value Types Can Fail What if you saw the following code and – knowing nothing else – you were asked if it was legal or not, what would you think: 1: // assuming x is defined above this and this 2: // assignment is syntactically legal. 3: x = 3.14; 4:  5: // convert 3.14 to int. 6: int truncated = (int)x; You may think that since x is obviously a double (can’t be a float) because 3.14 is a double literal, but this is inaccurate.  Our x could also be dynamic and this would work as well, or there could be user-defined conversions in play.  But there is another, even simpler option that can often bite us: what if x is object? 1: object x; 2:  3: x = 3.14; 4:  5: int truncated = (int) x; On the surface, this seems fine.  We have a double and we place it into an object which can be done implicitly through boxing (no cast) because all types inherit from object.  Then we cast it to int.  This theoretically should be possible because we know we can explicitly convert a double to an int through a conversion process which involves truncation. But here’s the pitfall: when casting an object to another type, we are casting a reference type, not a value type!  This means that it will attempt to see at runtime if the value boxed and referred to by x is of type int or derived from type int.  Since it obviously isn’t (it’s a double after all) we get an invalid cast exception! Now, you may say this looks awfully contrived, but in truth we can run into this a lot if we’re not careful.  Consider using an IDataReader to read from a database, and then attempting to select a result row of a particular column type: 1: using (var connection = new SqlConnection("some connection string")) 2: using (var command = new SqlCommand("select * from employee", connection)) 3: using (var reader = command.ExecuteReader()) 4: { 5: while (reader.Read()) 6: { 7: // if the salary is not an int32 in the SQL database, this is an error! 8: // doesn't matter if short, long, double, float, reader [] returns object! 9: total += (int) reader["annual_salary"]; 10: } 11: } Notice that since the reader indexer returns object, if we attempt to convert using a cast to a type, we have to make darn sure we use the true, actual type or this will fail!  If the SQL database column is a double, float, short, etc this will fail at runtime with an invalid cast exception because it attempts to convert the object reference! So, how do you get around this?  There are two ways, you could first cast the object to its actual type (double), and then do a narrowing cast to on the value to int.  Or you could use a helper class like Convert which analyzes the actual run-time type and will perform a conversion as long as the type implements IConvertible. 1: object x; 2:  3: x = 3.14; 4:  5: // if you want to cast, must cast out of object to double, then 6: // cast convert. 7: int truncated = (int)(double) x; 8:  9: // or you can call a helper class like Convert which examines runtime 10: // type of the value being converted 11: int anotherTruncated = Convert.ToInt32(x); Summary You should always be careful when performing a conversion cast from values boxed in object that you are actually casting to the true type (or a sub-type). Since casting from object is a widening of the reference, be careful that you either know the exact, explicit type you expect to be held in the object, or instead avoid the cast and use a helper class to perform a safe conversion to the type you desire. Technorati Tags: C#,.NET,Pitfalls,Little Pitfalls,BlackRabbitCoder

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • Move penetrating OBB out of another OBB to resolve collision

    - by Milo
    I'm working on collision resolution for my game. I just need a good way to get an object out of another object if it gets stuck. In this case a car. Here is a typical scenario. The red car is in the green object. How do I correctly get it out so the car can slide along the edge of the object as it should. I tried: if(buildings.size() > 0) { Entity e = buildings.get(0); Vector2D vel = new Vector2D(); vel.x = vehicle.getVelocity().x; vel.y = vehicle.getVelocity().y; vel.normalize(); while(vehicle.getRect().overlaps(e.getRect())) { vehicle.setCenter(vehicle.getCenterX() - vel.x * 0.1f, vehicle.getCenterY() - vel.y * 0.1f); } colided = true; } But that does not work too well. Is there some sort of vector I could calculate to use as the vector to move the car away from the object? Thanks Here is my OBB2D class: public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } };

    Read the article

  • Documenting C# Library using GhostDoc and SandCastle

    - by sreejukg
    Documentation is an essential part of any IT project, especially when you are creating reusable components that will be used by other developers (such as class libraries). Without documentation re-using a class library is almost impossible. Just think of coding .net applications without MSDN documentation (Ooops I can’t think of it). Normally developers, who know the bits and pieces of their classes, see this as a boring work to write details again to generate the documentation. Also the amount of work to make this and manage it changes made the process of manual creation of Documentation impossible or tedious. So what is the effective solution? Let me divide this into two steps 1. Generate comments for your code while you are writing the code. 2. Create documentation file using these comments. Now I am going to examine these processes. Step 1: Generate XML Comments automatically Most of the developers write comments for their code. The best thing is that the comments will be entered during the development process. Additionally comments give a good reference to the code, make your code more manageable/readable. Later these comments can be converted into documentation, along with your source code by identifying properties and methods I found an add-in for visual studio, GhostDoc that automatically generates XML documentation comments for C#. The add-in is available in Visual Studio Gallery at MSDN. You can download this from the url http://visualstudiogallery.msdn.microsoft.com/en-us/46A20578-F0D5-4B1E-B55D-F001A6345748. I downloaded the free version from the above url. The free version suits my requirement. There is a professional version (you need to pay some $ for this) available that gives you some more features. I found the free version itself suits my requirements. The installation process is straight forward. A couple of clicks will do the work for you. The best thing with GhostDoc is that it supports multiple versions of visual studio such as 2005, 2008 and 2010. After Installing GhostDoc, when you start Visual studio, the GhostDoc configuration dialog will appear. The first screen asks you to assign a hot key, pressing this hotkey will enter the comment to your code file with the necessary structure required by GhostDoc. Click Assign to go to the next step where you configure the rules for generating the documentation from the code file. Click Create to start creating the rules. Click finish button to close this wizard. Now you performed the necessary configuration required by GhostDoc. Now In Visual Studio tools menu you can find the GhostDoc that gives you some options. Now let us examine how GhostDoc generate comments for a method. I have write the below code in my code behind file. public Char GetChar(string str, int pos) { return str[pos]; } Now I need to generate the comments for this function. Select the function and enter the hot key assigned during the configuration. GhostDoc will generate the comments as follows. /// <summary> /// Gets the char. /// </summary> /// <param name="str">The STR.</param> /// <param name="pos">The pos.</param> /// <returns></returns> public Char GetChar(string str, int pos) { return str[pos]; } So this is a very handy tool that helps developers writing comments easily. You can generate the xml documentation file separately while compiling the project. This will be done by the C# compiler. You can enable the xml documentation creation option (checkbox) under Project properties -> Build tab. Now when you compile, the xml file will created under the bin folder. Step 2: Generate the documentation from the XML file Now you have generated the xml file documentation. Sandcastle is the tool from Microsoft that generates MSDN style documentation from the compiler produced XML file. The project is available in codeplex http://sandcastle.codeplex.com/. Download and install Sandcastle to your computer. Sandcastle is a command line tool that doesn’t have a rich GUI. If you want to automate the documentation generation, definitely you will be using the command line tools. Since I want to generate the documentation from the xml file generated in the previous step, I was expecting a GUI where I can see the options. There is a GUI available for Sandcastle called Sandcastle Help File Builder. See the link to the project in codeplex. http://www.codeplex.com/wikipage?ProjectName=SHFB. You need to install Sandcastle and then the Sandcastle Help file builder. From here I assume that you have installed both sandcastle and Sandcastle help file builder successfully. Once you installed the help file builder, it will be available in your all programs list. Click on the Sandcastle Help File Builder GUI, will launch application. First you need to create a project. Click on File -> New project The New project dialog will appear. Choose a folder to store your project file and give a name for your documentation project. Click the save button. Now you will see your project properties. Now from the Project explorer, right click on the Documentation Sources, Click on the Add Documentation Source link. A documentation source is a file such as an assembly or a Visual Studio solution or project from which information will be extracted to produce API documentation. From the Add Documentation source dialog, I have selected the XML file generated by my project. Once you add the xml file to the project, you will see the dll file automatically added by the help file builder. Now click on the build button. Now the application will generate the help file. The Build window gives to the result of each steps. Once the process completed successfully, you will have the following output in the build window. Now navigate to your Help Project (I have selected the folder My Documents\Documentation), inside help folder, you can find the chm file. Open the chm file will give you MSDN like documentation. Documentation is an important part of development life cycle. Sandcastle with GhostDoc make this process easier so that developers can implement the documentation in the projects with simple to use steps.

    Read the article

  • Finding the normal of OBB face with an OBB penetrating

    - by Milo
    Below is an illustration: I have an OBB in an OBB (see below for OBB2D code if needed). What I need to determine is, what face it is in, and what direction do I point the normal? The goal is to get the OBB out of the OBB so the normal needs to face outward of the OBB. How could I go about: Finding what face the line is penetrating given the 4 corners of the OBB and the class below: if we define dx=x2-x1 and dy=y2-y1, then the normals are (-dy, dx) and (dy, -dx). Which normal points outward of the OBB? Thanks public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } };

    Read the article

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • How to Achieve OC4J RMI Load Balancing

    - by fip
    This is an old, Oracle SOA and OC4J 10G topic. In fact this is not even a SOA topic per se. Questions of RMI load balancing arise when you developed custom web applications accessing human tasks running off a remote SOA 10G cluster. Having returned from a customer who faced challenges with OC4J RMI load balancing, I felt there is still some confusions in the field how OC4J RMI load balancing work. Hence I decide to dust off an old tech note that I wrote a few years back and share it with the general public. Here is the tech note: Overview A typical use case in Oracle SOA is that you are building web based, custom human tasks UI that will interact with the task services housed in a remote BPEL 10G cluster. Or, in a more generic way, you are just building a web based application in Java that needs to interact with the EJBs in a remote OC4J cluster. In either case, you are talking to an OC4J cluster as RMI client. Then immediately you must ask yourself the following questions: 1. How do I make sure that the web application, as an RMI client, even distribute its load against all the nodes in the remote OC4J cluster? 2. How do I make sure that the web application, as an RMI client, is resilient to the node failures in the remote OC4J cluster, so that in the unlikely case when one of the remote OC4J nodes fail, my web application will continue to function? That is the topic of how to achieve load balancing with OC4J RMI client. Solutions You need to configure and code RMI load balancing in two places: 1. Provider URL can be specified with a comma separated list of URLs, so that the initial lookup will land to one of the available URLs. 2. Choose a proper value for the oracle.j2ee.rmi.loadBalance property, which, along side with the PROVIDER_URL property, is one of the JNDI properties passed to the JNDI lookup.(http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI) More details below: About the PROVIDER_URL The JNDI property java.name.provider.url's job is, when the client looks up for a new context at the very first time in the client session, to provide a list of RMI context The value of the JNDI property java.name.provider.url goes by the format of a single URL, or a comma separate list of URLs. A single URL. For example: opmn:ormi://host1:6003:oc4j_instance1/appName1 A comma separated list of multiple URLs. For examples:  opmn:ormi://host1:6003:oc4j_instanc1/appName, opmn:ormi://host2:6003:oc4j_instance1/appName, opmn:ormi://host3:6003:oc4j_instance1/appName When the client looks up for a new Context the very first time in the client session, it sends a query against the OPMN referenced by the provider URL. The OPMN host and port specifies the destination of such query, and the OC4J instance name and appName are actually the “where clause” of the query. When the PROVIDER URL reference a single OPMN server Let's consider the case when the provider url only reference a single OPMN server of the destination cluster. In this case, that single OPMN server receives the query and returns a list of the qualified Contexts from all OC4Js within the cluster, even though there is a single OPMN server in the provider URL. A context represent a particular starting point at a particular server for subsequent object lookup. For example, if the URL is opmn:ormi://host1:6003:oc4j_instance1/appName, then, OPMN will return the following contexts: appName on oc4j_instance1 on host1 appName on oc4j_instance1 on host2, appName on oc4j_instance1 on host3,  (provided that host1, host2, host3 are all in the same cluster) Please note that One OPMN will be sufficient to find the list of all contexts from the entire cluster that satisfy the JNDI lookup query. You can do an experiment by shutting down appName on host1, and observe that OPMN on host1 will still be able to return you appname on host2 and appName on host3. When the PROVIDER URL reference a comma separated list of multiple OPMN servers When the JNDI propery java.naming.provider.url references a comma separated list of multiple URLs, the lookup will return the exact same things as with the single OPMN server: a list of qualified Contexts from the cluster. The purpose of having multiple OPMN servers is to provide high availability in the initial context creation, such that if OPMN at host1 is unavailable, client will try the lookup via OPMN on host2, and so on. After the initial lookup returns and cache a list of contexts, the JNDI URL(s) are no longer used in the same client session. That explains why removing the 3rd URL from the list of JNDI URLs will not stop the client from getting the EJB on the 3rd server. About the oracle.j2ee.rmi.loadBalance Property After the client acquires the list of contexts, it will cache it at the client side as “list of available RMI contexts”.  This list includes all the servers in the destination cluster. This list will stay in the cache until the client session (JVM) ends. The RMI load balancing against the destination cluster is happening at the client side, as the client is switching between the members of the list. Whether and how often the client will fresh the Context from the list of Context is based on the value of the  oracle.j2ee.rmi.loadBalance. The documentation at http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI list all the available values for the oracle.j2ee.rmi.loadBalance. Value Description client If specified, the client interacts with the OC4J process that was initially chosen at the first lookup for the entire conversation. context Used for a Web client (servlet or JSP) that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be returned each time InitialContext() is invoked. lookup Used for a standalone client that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be created each time the client calls Context.lookup(). Please note the regardless of the setting of oracle.j2ee.rmi.loadBalance property, the “refresh” only occurs at the client. The client can only choose from the "list of available context" that was returned and cached from the very first lookup. That is, the client will merely get a new Context object from the “list of available RMI contexts” from the cache at the client side. The client will NOT go to the OPMN server again to get the list. That also implies that if you are adding a node to the server cluster AFTER the client’s initial lookup, the client would not know it because neither the server nor the client will initiate a refresh of the “list of available servers” to reflect the new node. About High Availability (i.e. Resilience Against Node Failure of Remote OC4J Cluster) What we have discussed above is about load balancing. Let's also discuss high availability. This is how the High Availability works in RMI: when the client use the context but get an exception such as socket is closed, it knows that the server referenced by that Context is problematic and will try to get another unused Context from the “list of available contexts”. Again, this list is the list that was returned and cached at the very first lookup in the entire client session.

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • How can unrealscript halt event handler execution after an arbitrary number of lines with no return or error?

    - by Dan Cowell
    I have created a class that extends TcpLink and is instantiated in a custom Kismet Sequence Action. It is being instantiated correctly and is making the GET HTTP request that I need it to (I have checked my access log in apache) and Apache is responding to the request with the appropriate content. The problem I have is that I'm using the event receive mode and it appears that somehow the handler for the Opened event is halted after a specific number of lines of code have executed. Here is my code for the Opened event: event Opened() { // A connection was established WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); //The HTTP GET request //char(13) and char(10) are carrage returns and new lines requesttext = "userId="$userId$"&apartmentId="$apartmentId; SendText("GET /"$path$"?"$requesttext$" HTTP/1.0"); SendText(chr(13)$chr(10)); SendText("Host: "$TargetHost); SendText(chr(13)$chr(10)); SendText("Connection: Close"); SendText(chr(13)$chr(10)$chr(13)$chr(10)); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sent request: "$requesttext); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] end HTTP query"); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkState: "$LinkState); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkMode: "$LinkMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] ReceiveMode: "$ReceiveMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Error: "$string(GetLastError())); } As you can see, a number of the Broadcast calls have been commented out. Initially, only the lines up to the Broadcast containing "[DNomad_TcpLinkClient] Sent request: " were being executed and none of the Broadcasts were commented out. After commenting out that line, the next Broadcast was successful and so on and so forth. As a test, I commented out the very first Broadcast to see if the connection closing had any effect: // A connection was established //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); Upon doing that, an additional Broadcast at the end of the function executed. Thus the inference that there is an upper limit to the number of lines executed. Additionally, my ReceivedText handler is never called, despite Apache returning the correct HTTP 200 response with a body. My working hypothesis is that somehow after the Sequence Action finishes executing the garbage collector cleans up the TcpLinkClient instance. My biggest source of confusion with that is how on earth it does it during the execution of an event handler. Has anyone ever seen anything like this before? My full TcpLinkClient class is below: /* * TcpLinkClient based on an example usage of the TcpLink class by Michiel 'elmuerte' Hendriks for Epic Games, Inc. * */ class DNomad_TcpLinkClient extends TcpLink; var PlayerController PC; var string TargetHost; var int TargetPort; var string path; var string requesttext; var string userId; var string apartmentId; var string statusCode; var string responseData; event PostBeginPlay() { super.PostBeginPlay(); } function DoTcpLinkRequest(string uid, string id) //removes having to send a host { userId = uid; apartmentId = id; Resolve(targethost); } function string GetStatus() { return statusCode; } event Resolved( IpAddr Addr ) { // The hostname was resolved succefully WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] "$TargetHost$" resolved to "$ IpAddrToString(Addr)); // Make sure the correct remote port is set, resolving doesn't set // the port value of the IpAddr structure Addr.Port = TargetPort; //dont comment out this log because it rungs the function bindport WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Bound to port: "$ BindPort() ); if (!Open(Addr)) { WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Open failed"); } } event ResolveFailed() { WorldInfo.Game.Broadcast(self, "[TcpLinkClient] Unable to resolve "$TargetHost); // You could retry resolving here if you have an alternative // remote host. //send failed message to scaleform UI //JunHud(JunPlayerController(PC).myHUD).JunMovie.CallSetHTML("Failed"); } event Opened() { // A connection was established //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); //The HTTP GET request //char(13) and char(10) are carrage returns and new lines requesttext = "userId="$userId$"&apartmentId="$apartmentId; SendText("GET /"$path$"?"$requesttext$" HTTP/1.0"); SendText(chr(13)$chr(10)); SendText("Host: "$TargetHost); SendText(chr(13)$chr(10)); SendText("Connection: Close"); SendText(chr(13)$chr(10)$chr(13)$chr(10)); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sent request: "$requesttext); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] end HTTP query"); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkState: "$LinkState); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkMode: "$LinkMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] ReceiveMode: "$ReceiveMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Error: "$string(GetLastError())); } event Closed() { // In this case the remote client should have automatically closed // the connection, because we requested it in the HTTP request. WorldInfo.Game.Broadcast(self, "Connection closed."); // After the connection was closed we could establish a new // connection using the same TcpLink instance. } event ReceivedText( string Text ) { WorldInfo.Game.Broadcast(self, "Received Text: "$Text); //we dont want the header info, so we split the string after two new lines Text = Split(Text, chr(13)$chr(10)$chr(13)$chr(10), true); WorldInfo.Game.Broadcast(self, "Split Text: "$Text); statusCode = Text; } event ReceivedLine( string Line ) { WorldInfo.Game.Broadcast(self, "Received Line: "$Line); } event ReceivedBinary( int Count, byte B[255] ) { WorldInfo.Game.Broadcast(self, "Received Binary of length: "$Count); } defaultproperties { TargetHost="127.0.0.1" TargetPort=80 //default for HTTP LinkMode=MODE_Text ReceiveMode=RMODE_Event path = "dnomad/datafeed.php" userId = "0"; apartmentId = "0"; statusCode = ""; send = false; }

    Read the article

  • RiverTrail - JavaScript GPPGU Data Parallelism

    - by JoshReuben
    Where is WebCL ? The Khronos WebCL working group is working on a JavaScript binding to the OpenCL standard so that HTML 5 compliant browsers can host GPGPU web apps – e.g. for image processing or physics for WebGL games - http://www.khronos.org/webcl/ . While Nokia & Samsung have some protype WebCL APIs, Intel has one-upped them with a higher level of abstraction: RiverTrail. Intro to RiverTrail Intel Labs JavaScript RiverTrail provides GPU accelerated SIMD data-parallelism in web applications via a familiar JavaScript programming paradigm. It extends JavaScript with simple deterministic data-parallel constructs that are translated at runtime into a low-level hardware abstraction layer. With its high-level JS API, programmers do not have to learn a new language or explicitly manage threads, orchestrate shared data synchronization or scheduling. It has been proposed as a draft specification to ECMA a (known as ECMA strawman). RiverTrail runs in all popular browsers (except I.E. of course). To get started, download a prebuilt version https://github.com/downloads/RiverTrail/RiverTrail/rivertrail-0.17.xpi , install Intel's OpenCL SDK http://www.intel.com/go/opencl and try out the interactive River Trail shell http://rivertrail.github.com/interactive For a video overview, see  http://www.youtube.com/watch?v=jueg6zB5XaM . ParallelArray the ParallelArray type is the central component of this API & is a JS object that contains ordered collections of scalars – i.e. multidimensional uniform arrays. A shape property describes the dimensionality and size– e.g. a 2D RGBA image will have shape [height, width, 4]. ParallelArrays are immutable & fluent – they are manipulated by invoking methods on them which produce new ParallelArray objects. ParallelArray supports several constructors over arrays, functions & even the canvas. // Create an empty Parallel Array var pa = new ParallelArray(); // pa0 = <>   // Create a ParallelArray out of a nested JS array. // Note that the inner arrays are also ParallelArrays var pa = new ParallelArray([ [0,1], [2,3], [4,5] ]); // pa1 = <<0,1>, <2,3>, <4.5>>   // Create a two-dimensional ParallelArray with shape [3, 2] using the comprehension constructor var pa = new ParallelArray([3, 2], function(iv){return iv[0] * iv[1];}); // pa7 = <<0,0>, <0,1>, <0,2>>   // Create a ParallelArray from canvas.  This creates a PA with shape [w, h, 4], var pa = new ParallelArray(canvas); // pa8 = CanvasPixelArray   ParallelArray exposes fluent API functions that take an elemental JS function for data manipulation: map, combine, scan, filter, and scatter that return a new ParallelArray. Other functions are scalar - reduce  returns a scalar value & get returns the value located at a given index. The onus is on the developer to ensure that the elemental function does not defeat data parallelization optimization (avoid global var manipulation, recursion). For reduce & scan, order is not guaranteed - the onus is on the dev to provide an elemental function that is commutative and associative so that scan will be deterministic – E.g. Sum is associative, but Avg is not. map Applies a provided elemental function to each element of the source array and stores the result in the corresponding position in the result array. The map method is shape preserving & index free - can not inspect neighboring values. // Adding one to each element. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.map(function inc(v) {     return v+1; }); //<2,3,4,5,6> combine Combine is similar to map, except an index is provided. This allows elemental functions to access elements from the source array relative to the one at the current index position. While the map method operates on the outermost dimension only, combine, can choose how deep to traverse - it provides a depth argument to specify the number of dimensions it iterates over. The elemental function of combine accesses the source array & the current index within it - element is computed by calling the get method of the source ParallelArray object with index i as argument. It requires more code but is more expressive. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.combine(function inc(i) { return this.get(i)+1; }); reduce reduces the elements from an array to a single scalar result – e.g. Sum. // Calculate the sum of the elements var source = new ParallelArray([1,2,3,4,5]); var sum = source.reduce(function plus(a,b) { return a+b; }); scan Like reduce, but stores the intermediate results – return a ParallelArray whose ith elements is the results of using the elemental function to reduce the elements between 0 and I in the original ParallelArray. // do a partial sum var source = new ParallelArray([1,2,3,4,5]); var psum = source.scan(function plus(a,b) { return a+b; }); //<1, 3, 6, 10, 15> scatter a reordering function - specify for a certain source index where it should be stored in the result array. An optional conflict function can prevent an exception if two source values are assigned the same position of the result: var source = new ParallelArray([1,2,3,4,5]); var reorder = source.scatter([4,0,3,1,2]); // <2, 4, 5, 3, 1> // if there is a conflict use the max. use 33 as a default value. var reorder = source.scatter([4,0,3,4,2], 33, function max(a, b) {return a>b?a:b; }); //<2, 33, 5, 3, 4> filter // filter out values that are not even var source = new ParallelArray([1,2,3,4,5]); var even = source.filter(function even(iv) { return (this.get(iv) % 2) == 0; }); // <2,4> Flatten used to collapse the outer dimensions of an array into a single dimension. pa = new ParallelArray([ [1,2], [3,4] ]); // <<1,2>,<3,4>> pa.flatten(); // <1,2,3,4> Partition used to restore the original shape of the array. var pa = new ParallelArray([1,2,3,4]); // <1,2,3,4> pa.partition(2); // <<1,2>,<3,4>> Get return value found at the indices or undefined if no such value exists. var pa = new ParallelArray([0,1,2,3,4], [10,11,12,13,14], [20,21,22,23,24]) pa.get([1,1]); // 11 pa.get([1]); // <10,11,12,13,14>

    Read the article

  • Building an ASP.Net 4.5 Web forms application - part 3

    - by nikolaosk
    ?his is the third post in a series of posts on how to design and implement an ASP.Net 4.5 Web Forms store that sells posters on line.Make sure you read the first and second post in the series.In this new post I will keep making some minor changes in the Markup,CSS and Master page but there is no point in presenting them here. They are just minor changes to reflect the content and layout I want my site to have. What I need to do now is to add some more pages and start displaying properly data from my database.Having said that I will show you how to add more pages to the web application and present data.1) Launch Visual Studio and open your solution where your project lives2) Add a new web form item on the project.Make sure you include the Master Page.Name it PosterList.aspxHave a look at the picture below 3) In Site.Master add the following link to the master page so the user can navigate to it.You should only add the line in bold     <nav>                    <ul id="menu">                        <li><a runat="server" href="~/">Home</a></li>                        <li><a runat="server" href="~/About.aspx">About</a></li>                        <li><a runat="server" href="~/Contact.aspx">Contact</a></li>                          <li><a href="http://weblogs.asp.net/PosterList.aspx">Posters</a></li>                    </ul>                </nav> 4) Now we need to display categories from the database. We will use a ListView web server control.Inside the <div id="body"> add the following code. <section id="postercat">       <asp:ListView ID="categoryList"                          ItemType="PostersOnLine.DAL.PosterCategory"                         runat="server"                        SelectMethod="GetPosterCategories" >                        <ItemTemplate>                                                    <a href="http://weblogs.asp.net/PosterList.aspx?id=<%#: Item.PosterCategoryID %>">                            <%#: Item.PosterCategoryName %>                            </a>                            </b>                        </ItemTemplate>                        <ItemSeparatorTemplate> ----- </ItemSeparatorTemplate>                    </asp:ListView>             </section>        Let me explain what the code does.We have the ListView control that displays each poster category's name.It also includes a link to the PosterList.aspx page with a query-string value containing the ID of the category. We set the ItemType property in the ListView to the PosterCategory entity .We set the SelectMethod property to a method GetPosterCategories. Now we can use the data-binding expression Item (<%#: %>) that is available within the ItemTemplate . 5) Now we must write the GetPosterCategories method. In the Site.Master.cs file add the following code.This is just a simple function that returns the poster categories.        public IQueryable<PosterCategory> GetPosterCategories()        {            PosterContext ctx = new PosterContext();            IQueryable<PosterCategory> query = ctx.PosterCategories;            return query;        } 6) I just changed a few things in the Site.css file to style the new <section> HTML element that includes the ListView control.#postercat {  text-align: center; background-color: #85C465;}     7) Build and run your application. Everything should compile now. Have a look at the picture below.The links (poster categories) appear.?he ListView control when is called during the page lifecycle calls the GetPosterCategories() method.The method is executed and returns the poster categories that are bound to the control.  When I click on any of the poster category links, the PosterList.aspx page will show up with the appropriate Id that is the PosterCategoryID.Have a look at the picture below  We will add more data-enabled controls in the next post in the PosterList.aspx page. Some people are complaining the posts are too long so I will keep them short. Hope it helps!!!

    Read the article

  • how to use 3D map Actionscript class in mxml file for display map.

    - by nemade-vipin
    hello friends, I have created the application in which I have to use 3D map Action Script class in mxml file to display a map in form. that is in tab navigator last tab. My ActionScript 3D map class is(FlyingDirections):- package src.SBTSCoreObject { import src.SBTSCoreObject.JSONDecoder; import com.google.maps.InfoWindowOptions; import com.google.maps.LatLng; import com.google.maps.LatLngBounds; import com.google.maps.Map3D; import com.google.maps.MapEvent; import com.google.maps.MapOptions; import com.google.maps.MapType; import com.google.maps.MapUtil; import com.google.maps.View; import com.google.maps.controls.NavigationControl; import com.google.maps.geom.Attitude; import com.google.maps.interfaces.IPolyline; import com.google.maps.overlays.Marker; import com.google.maps.overlays.MarkerOptions; import com.google.maps.services.Directions; import com.google.maps.services.DirectionsEvent; import com.google.maps.services.Route; import flash.display.Bitmap; import flash.display.DisplayObject; import flash.display.DisplayObjectContainer; import flash.display.Loader; import flash.display.LoaderInfo; import flash.display.Sprite; import flash.events.Event; import flash.events.IOErrorEvent; import flash.events.MouseEvent; import flash.events.TimerEvent; import flash.filters.DropShadowFilter; import flash.geom.Point; import flash.net.URLLoader; import flash.net.URLRequest; import flash.net.navigateToURL; import flash.text.TextField; import flash.text.TextFieldAutoSize; import flash.text.TextFormat; import flash.utils.Timer; import flash.utils.getTimer; public class FlyingDirections extends Map3D { /** * Panoramio home page. */ private static const PANORAMIO_HOME:String = "http://www.panoramio.com/"; /** * The icon for the car. */ [Embed("assets/car-icon-24px.png")] private static const Car:Class; /** * The Panoramio icon. */ [Embed("assets/iw_panoramio.png")] private static const PanoramioIcon:Class; /** * We animate a zoom in to the start the route before the car starts * to move. This constant sets the time in seconds over which this * zoom occurs. */ private static const LEAD_IN_DURATION:Number = 3; /** * Duration of the trip in seconds. */ private static const TRIP_DURATION:Number = 40; /** * Constants that define the geometry of the Panoramio image markers. */ private static const BORDER_T:Number = 3; private static const BORDER_L:Number = 10; private static const BORDER_R:Number = 10; private static const BORDER_B:Number = 3; private static const GAP_T:Number = 2; private static const GAP_B:Number = 1; private static const IMAGE_SCALE:Number = 1; /** * Trajectory that the camera follows over time. Each element is an object * containing properties used to generate parameter values for flyTo(..). * fraction = 0 corresponds to the start of the trip; fraction = 1 * correspondsto the end of the trip. */ private var FLY_TRAJECTORY:Array = [ { fraction: 0, zoom: 6, attitude: new Attitude(0, 0, 0) }, { fraction: 0.2, zoom: 8.5, attitude: new Attitude(30, 30, 0) }, { fraction: 0.5, zoom: 9, attitude: new Attitude(30, 40, 0) }, { fraction: 1, zoom: 8, attitude: new Attitude(50, 50, 0) }, { fraction: 1.1, zoom: 8, attitude: new Attitude(130, 50, 0) }, { fraction: 1.2, zoom: 8, attitude: new Attitude(220, 50, 0) }, ]; /** * Number of panaramio photos for which we load data. We&apos;ll select a * subset of these approximately evenly spaced along the route. */ private static const NUM_GEOTAGGED_PHOTOS:int = 50; /** * Number of panaramio photos that we actually show. */ private static const NUM_SHOWN_PHOTOS:int = 7; /** * Scaling between real trip time and animation time. */ private static const SCALE_TIME:Number = 0.001; /** * getTimer() value at the instant that we start the trip. If this is 0 then * we have not yet started the car moving. */ private var startTimer:int = 0; /** * The current route. */ private var route:Route; /** * The polyline for the route. */ private var polyline:IPolyline; /** * The car marker. */ private var marker:Marker; /** * The cumulative duration in seconds over each step in the route. * cumulativeStepDuration[0] is 0; cumulativeStepDuration[1] adds the * duration of step 0; cumulativeStepDuration[2] adds the duration * of step 1; etc. */ private var cumulativeStepDuration:/*Number*/Array = []; /** * The cumulative distance in metres over each vertex in the route polyline. * cumulativeVertexDistance[0] is 0; cumulativeVertexDistance[1] adds the * distance to vertex 1; cumulativeVertexDistance[2] adds the distance to * vertex 2; etc. */ private var cumulativeVertexDistance:Array; /** * Array of photos loaded from Panoramio. This array has the same format as * the &apos;photos&apos; property within the JSON returned by the Panoramio API * (see http://www.panoramio.com/api/), with additional properties added to * individual photo elements to hold the loader structures that fetch * the actual images. */ private var photos:Array = []; /** * Array of polyline vertices, where each element is in world coordinates. * Several computations can be faster if we can use world coordinates * instead of LatLng coordinates. */ private var worldPoly:/*Point*/Array; /** * Whether the start button has been pressed. */ private var startButtonPressed:Boolean = false; /** * Saved event from onDirectionsSuccess call. */ private var directionsSuccessEvent:DirectionsEvent = null; /** * Start button. */ private var startButton:Sprite; /** * Alpha value used for the Panoramio image markers. */ private var markerAlpha:Number = 0; /** * Index of the current driving direction step. Used to update the * info window content each time we progress to a new step. */ private var currentStepIndex:int = -1; /** * The fly directions map constructor. * * @constructor */ public function FlyingDirections() { key="ABQIAAAA7QUChpcnvnmXxsjC7s1fCxQGj0PqsCtxKvarsoS-iqLdqZSKfxTd7Xf-2rEc_PC9o8IsJde80Wnj4g"; super(); addEventListener(MapEvent.MAP_PREINITIALIZE, onMapPreinitialize); addEventListener(MapEvent.MAP_READY, onMapReady); } /** * Handles map preintialize. Initializes the map center and zoom level. * * @param event The map event. */ private function onMapPreinitialize(event:MapEvent):void { setInitOptions(new MapOptions({ center: new LatLng(-26.1, 135.1), zoom: 4, viewMode: View.VIEWMODE_PERSPECTIVE, mapType:MapType.PHYSICAL_MAP_TYPE })); } /** * Handles map ready and looks up directions. * * @param event The map event. */ private function onMapReady(event:MapEvent):void { enableScrollWheelZoom(); enableContinuousZoom(); addControl(new NavigationControl()); // The driving animation will be updated on every frame. addEventListener(Event.ENTER_FRAME, enterFrame); addStartButton(); // We start the directions loading now, so that we&apos;re ready to go when // the user hits the start button. var directions:Directions = new Directions(); directions.addEventListener( DirectionsEvent.DIRECTIONS_SUCCESS, onDirectionsSuccess); directions.addEventListener( DirectionsEvent.DIRECTIONS_FAILURE, onDirectionsFailure); directions.load("48 Pirrama Rd, Pyrmont, NSW to Byron Bay, NSW"); } /** * Adds a big blue start button. */ private function addStartButton():void { startButton = new Sprite(); startButton.buttonMode = true; startButton.addEventListener(MouseEvent.CLICK, onStartClick); startButton.graphics.beginFill(0x1871ce); startButton.graphics.drawRoundRect(0, 0, 150, 100, 10, 10); startButton.graphics.endFill(); var startField:TextField = new TextField(); startField.autoSize = TextFieldAutoSize.LEFT; startField.defaultTextFormat = new TextFormat("_sans", 20, 0xffffff, true); startField.text = "Start!"; startButton.addChild(startField); startField.x = 0.5 * (startButton.width - startField.width); startField.y = 0.5 * (startButton.height - startField.height); startButton.filters = [ new DropShadowFilter() ]; var container:DisplayObjectContainer = getDisplayObject() as DisplayObjectContainer; container.addChild(startButton); startButton.x = 0.5 * (container.width - startButton.width); startButton.y = 0.5 * (container.height - startButton.height); var panoField:TextField = new TextField(); panoField.autoSize = TextFieldAutoSize.LEFT; panoField.defaultTextFormat = new TextFormat("_sans", 11, 0x000000, true); panoField.text = "Photos provided by Panoramio are under the copyright of their owners."; container.addChild(panoField); panoField.x = container.width - panoField.width - 5; panoField.y = 5; } /** * Handles directions success. Starts flying the route if everything * is ready. * * @param event The directions event. */ private function onDirectionsSuccess(event:DirectionsEvent):void { directionsSuccessEvent = event; flyRouteIfReady(); } /** * Handles click on the start button. Starts flying the route if everything * is ready. */ private function onStartClick(event:MouseEvent):void { startButton.removeEventListener(MouseEvent.CLICK, onStartClick); var container:DisplayObjectContainer = getDisplayObject() as DisplayObjectContainer; container.removeChild(startButton); startButtonPressed = true; flyRouteIfReady(); } /** * If we have loaded the directions and the start button has been pressed * start flying the directions route. */ private function flyRouteIfReady():void { if (!directionsSuccessEvent || !startButtonPressed) { return; } var directions:Directions = directionsSuccessEvent.directions; // Extract the route. route = directions.getRoute(0); // Draws the polyline showing the route. polyline = directions.createPolyline(); addOverlay(directions.createPolyline()); // Creates a car marker that is moved along the route. var car:DisplayObject = new Car(); marker = new Marker(route.startGeocode.point, new MarkerOptions({ icon: car, iconOffset: new Point(-car.width / 2, -car.height) })); addOverlay(marker); transformPolyToWorld(); createCumulativeArrays(); // Load Panoramio data for the region covered by the route. loadPanoramioData(directions.bounds); var duration:Number = route.duration; // Start a timer that will trigger the car moving after the lead in time. var leadInTimer:Timer = new Timer(LEAD_IN_DURATION * 1000, 1); leadInTimer.addEventListener(TimerEvent.TIMER, onLeadInDone); leadInTimer.start(); var flyTime:Number = -LEAD_IN_DURATION; // Set up the camera flight trajectory. for each (var flyStep:Object in FLY_TRAJECTORY) { var time:Number = flyStep.fraction * duration; var center:LatLng = latLngAt(time); var scaledTime:Number = time * SCALE_TIME; var zoom:Number = flyStep.zoom; var attitude:Attitude = flyStep.attitude; var elapsed:Number = scaledTime - flyTime; flyTime = scaledTime; flyTo(center, zoom, attitude, elapsed); } } /** * Loads Panoramio data for the route bounds. We load data about more photos * than we need, then select a subset lying along the route. * @param bounds Bounds within which to fetch images. */ private function loadPanoramioData(bounds:LatLngBounds):void { var params:Object = { order: "popularity", set: "full", from: "0", to: NUM_GEOTAGGED_PHOTOS.toString(10), size: "small", minx: bounds.getWest(), miny: bounds.getSouth(), maxx: bounds.getEast(), maxy: bounds.getNorth() }; var loader:URLLoader = new URLLoader(); var request:URLRequest = new URLRequest( "http://www.panoramio.com/map/get_panoramas.php?" + paramsToString(params)); loader.addEventListener(Event.COMPLETE, onPanoramioDataLoaded); loader.addEventListener(IOErrorEvent.IO_ERROR, onPanoramioDataFailed); loader.load(request); } /** * Transforms the route polyline to world coordinates. */ private function transformPolyToWorld():void { var numVertices:int = polyline.getVertexCount(); worldPoly = new Array(numVertices); for (var i:int = 0; i < numVertices; ++i) { var vertex:LatLng = polyline.getVertex(i); worldPoly[i] = fromLatLngToPoint(vertex, 0); } } /** * Returns the time at which the route approaches closest to the * given point. * @param world Point in world coordinates. * @return Route time at which the closest approach occurs. */ private function getTimeOfClosestApproach(world:Point):Number { var minDistSqr:Number = Number.MAX_VALUE; var numVertices:int = worldPoly.length; var x:Number = world.x; var y:Number = world.y; var minVertex:int = 0; for (var i:int = 0; i < numVertices; ++i) { var dx:Number = worldPoly[i].x - x; var dy:Number = worldPoly[i].y - y; var distSqr:Number = dx * dx + dy * dy; if (distSqr < minDistSqr) { minDistSqr = distSqr; minVertex = i; } } return cumulativeVertexDistance[minVertex]; } /** * Returns the array index of the first element that compares greater than * the given value. * @param ordered Ordered array of elements. * @param value Value to use for comparison. * @return Array index of the first element that compares greater than * the given value. */ private function upperBound(ordered:Array, value:Number, first:int=0, last:int=-1):int { if (last < 0) { last = ordered.length; } var count:int = last - first; var index:int; while (count > 0) { var step:int = count >> 1; index = first + step; if (value >= ordered[index]) { first = index + 1; count -= step - 1; } else { count = step; } } return first; } /** * Selects up to a given number of photos approximately evenly spaced along * the route. * @param ordered Array of photos, each of which is an object with * a property &apos;closestTime&apos;. * @param number Number of photos to select. */ private function selectEvenlySpacedPhotos(ordered:Array, number:int):Array { var start:Number = cumulativeVertexDistance[0]; var end:Number = cumulativeVertexDistance[cumulativeVertexDistance.length - 2]; var closestTimes:Array = []; for each (var photo:Object in ordered) { closestTimes.push(photo.closestTime); } var selectedPhotos:Array = []; for (var i:int = 0; i < number; ++i) { var idealTime:Number = start + ((end - start) * (i + 0.5) / number); var index:int = upperBound(closestTimes, idealTime); if (index < 1) { index = 0; } else if (index >= ordered.length) { index = ordered.length - 1; } else { var errorToPrev:Number = Math.abs(idealTime - closestTimes[index - 1]); var errorToNext:Number = Math.abs(idealTime - closestTimes[index]); if (errorToPrev < errorToNext) { --index; } } selectedPhotos.push(ordered[index]); } return selectedPhotos; } /** * Handles completion of loading the Panoramio index data. Selects from the * returned photo indices a subset of those that lie along the route and * initiates load of each of these. * @param event Load completion event. */ private function onPanoramioDataLoaded(event:Event):void { var loader:URLLoader = event.target as URLLoader; var decoder:JSONDecoder = new JSONDecoder(loader.data as String); var allPhotos:Array = decoder.getValue().photos; for each (var photo:Object in allPhotos) { var latLng:LatLng = new LatLng(photo.latitude, photo.longitude); photo.closestTime = getTimeOfClosestApproach(fromLatLngToPoint(latLng, 0)); } allPhotos.sortOn("closestTime", Array.NUMERIC); photos = selectEvenlySpacedPhotos(allPhotos, NUM_SHOWN_PHOTOS); for each (photo in photos) { var photoLoader:Loader = new Loader(); // The images aren&apos;t on panoramio.com: we can&apos;t acquire pixel access // using "new LoaderContext(true)". photoLoader.load( new URLRequest(photo.photo_file_url)); photo.loader = photoLoader; // Save the loader info: we use this to find the original element when // the load completes. photo.loaderInfo = photoLoader.contentLoaderInfo; photoLoader.contentLoaderInfo.addEventListener( Event.COMPLETE, onPhotoLoaded); } } /** * Creates a MouseEvent listener function that will navigate to the given * URL in a new window. * @param url URL to which to navigate. */ private function createOnClickUrlOpener(url:String):Function { return function(event:MouseEvent):void { navigateToURL(new URLRequest(url)); }; } /** * Handles completion of loading an individual Panoramio image. * Adds a custom marker that displays the image. Initially this is made * invisible so that it can be faded in as needed. * @param event Load completion event. */ private function onPhotoLoaded(event:Event):void { var loaderInfo:LoaderInfo = event.target as LoaderInfo; // We need to find which photo element this image corresponds to. for each (var photo:Object in photos) { if (loaderInfo == photo.loaderInfo) { var imageMarker:Sprite = createImageMarker(photo.loader, photo.owner_name, photo.owner_url); var options:MarkerOptions = new MarkerOptions({ icon: imageMarker, hasShadow: true, iconAlignment: MarkerOptions.ALIGN_BOTTOM | MarkerOptions.ALIGN_LEFT }); var latLng:LatLng = new LatLng(photo.latitude, photo.longitude); var marker:Marker = new Marker(latLng, options); photo.marker = marker; addOverlay(marker); // A hack: we add the actual image after the overlay has been added, // which creates the shadow, so that the shadow is valid even if we // don&apos;t have security privileges to generate the shadow from the // image. marker.foreground.visible = false; marker.shadow.alpha = 0; var imageHolder:Sprite = new Sprite(); imageHolder.addChild(photo.loader); imageHolder.buttonMode = true; imageHolder.addEventListener( MouseEvent.CLICK, createOnClickUrlOpener(photo.photo_url)); imageMarker.addChild(imageHolder); return; } } trace("An image was loaded which could not be found in the photo array."); } /** * Creates a custom marker showing an image. */ private function createImageMarker(child:DisplayObject, ownerName:String, ownerUrl:String):Sprite { var content:Sprite = new Sprite(); var panoramioIcon:Bitmap = new PanoramioIcon(); var iconHolder:Sprite = new Sprite(); iconHolder.addChild(panoramioIcon); iconHolder.buttonMode = true; iconHolder.addEventListener(MouseEvent.CLICK, onPanoramioIconClick); panoramioIcon.x = BORDER_L; panoramioIcon.y = BORDER_T; content.addChild(iconHolder); // NOTE: we add the image as a child only after we&apos;ve added the marker // to the map. Currently the API requires this if it&apos;s to generate the // shadow for unprivileged content. // Shrink the image, so that it doesn&apos;t obcure too much screen space. // Ideally, we&apos;d subsample, but we don&apos;t have pixel level access. child.scaleX = IMAGE_SCALE; child.scaleY = IMAGE_SCALE; var imageW:Number = child.width; var imageH:Number = child.height; child.x = BORDER_L + 30; child.y = BORDER_T + iconHolder.height + GAP_T; var authorField:TextField = new TextField(); authorField.autoSize = TextFieldAutoSize.LEFT; authorField.defaultTextFormat = new TextFormat("_sans", 12); authorField.text = "author:"; content.addChild(authorField); authorField.x = BORDER_L; authorField.y = BORDER_T + iconHolder.height + GAP_T + imageH + GAP_B; var ownerField:TextField = new TextField(); ownerField.autoSize = TextFieldAutoSize.LEFT; var textFormat:TextFormat = new TextFormat("_sans", 14, 0x0e5f9a); ownerField.defaultTextFormat = textFormat; ownerField.htmlText = "<a href=\"" + ownerUrl + "\" target=\"_blank\">" + ownerName + "</a>"; content.addChild(ownerField); ownerField.x = BORDER_L + authorField.width; ownerField.y = BORDER_T + iconHolder.height + GAP_T + imageH + GAP_B; var totalW:Number = BORDER_L + Math.max(imageW, ownerField.width + authorField.width) + BORDER_R; var totalH:Number = BORDER_T + iconHolder.height + GAP_T + imageH + GAP_B + ownerField.height + BORDER_B; content.graphics.beginFill(0xffffff); content.graphics.drawRoundRect(0, 0, totalW, totalH, 10, 10); content.graphics.endFill(); var marker:Sprite = new Sprite(); marker.addChild(content); content.x = 30; content.y = 0; marker.graphics.lineStyle(); marker.graphics.beginFill(0xff0000); marker.graphics.drawCircle(0, totalH + 30, 3); marker.graphics.endFill(); marker.graphics.lineStyle(2, 0xffffff); marker.graphics.moveTo(30 + 10, totalH - 10); marker.graphics.lineTo(0, totalH + 30); return marker; } /** * Handles click on the Panoramio icon. */ private function onPanoramioIconClick(event:MouseEvent):void { navigateToURL(new URLRequest(PANORAMIO_HOME)); } /** * Handles failure of a Panoramio image load. */ private function onPanoramioDataFailed(event:IOErrorEvent):void { trace("Load of image failed: " + event); } /** * Returns a string containing cgi query parameters. * @param Associative array mapping query parameter key to value. * @return String containing cgi query parameters. */ private static function paramsToString(params:Object):String { var result:String = ""; var separator:String = ""; for (var key:String in params) { result += separator + encodeURIComponent(key) + "=" + encodeURIComponent(params[key]); separator = "&"; } return result; } /** * Called once the lead-in flight is done. Starts the car driving along * the route and starts a timer to begin fade in of the Panoramio * images in 1.5 seconds. */ private function onLeadInDone(event:Event):void { // Set startTimer non-zero so that the car starts to move. startTimer = getTimer(); // Start a timer that will fade in the Panoramio images. var fadeInTimer:Timer = new Timer(1500, 1); fadeInTimer.addEventListener(TimerEvent.TIMER, onFadeInTimer); fadeInTimer.start(); } /** * Handles the fade in timer&apos;s TIMER event. Sets markerAlpha above zero * which causes the frame enter handler to fade in the markers. */ private function onFadeInTimer(event:Event):void { markerAlpha = 0.01; } /** * The end time of the flight. */ private function get endTime():Number { if (!cumulativeStepDuration || cumulativeStepDuration.length == 0) { return startTimer; } return startTimer + cumulativeStepDuration[cumulativeStepDuration.length - 1]; } /** * Creates the cumulative arrays, cumulativeStepDuration and * cumulativeVertexDistance. */ private function createCumulativeArrays():void { cumulativeStepDuration = new Array(route.numSteps + 1); cumulativeVertexDistance = new Array(polyline.getVertexCount() + 1); var polylineTotal:Number = 0; var total:Number = 0; var numVertices:int = polyline.getVertexCount(); for (var stepIndex:int = 0; stepIndex < route.numSteps; ++stepIndex) { cumulativeStepDuration[stepIndex] = total; total += route.getStep(stepIndex).duration; var startVertex:int = stepIndex >= 0 ? route.getStep(stepIndex).polylineIndex : 0; var endVertex:int = stepIndex < (route.numSteps - 1) ? route.getStep(stepIndex + 1).polylineIndex : numVertices; var duration:Number = route.getStep(stepIndex).duration; var stepVertices:int = endVertex - startVertex; var latLng:LatLng = polyline.getVertex(startVertex); for (var vertex:int = startVertex; vertex < endVertex; ++vertex) { cumulativeVertexDistance[vertex] = polylineTotal; if (vertex < numVertices - 1) { var nextLatLng:LatLng = polyline.getVertex(vertex + 1); polylineTotal += nextLatLng.distanceFrom(latLng); } latLng = nextLatLng; } } cumulativeStepDuration[stepIndex] = total; } /** * Opens the info window above the car icon that details the given * step of the driving directions. * @param stepIndex Index of the current step. */ private function openInfoForStep(stepIndex:int):void { // Sets the content of the info window. var content:String; if (stepIndex >= route.numSteps) { content = "<b>" + route.endGeocode.address + "</b>" + "<br /><br />" + route.summaryHtml; } else { content = "<b>" + stepIndex + ".</b> " + route.getStep(stepIndex).descriptionHtml; } marker.openInfoWindow(new InfoWindowOptions({ contentHTML: content })); } /** * Displays the driving directions step appropriate for the given time. * Opens the info window showing the step instructions each time we * progress to a new step. * @param time Time for which to display the step. */ private function displayStepAt(time:Number):void { var stepIndex:int = upperBound(cumulativeStepDuration, time) - 1; var minStepIndex:int = 0; var maxStepIndex:int = route.numSteps - 1; if (stepIndex >= 0 && stepIndex <= maxStepIndex && currentStepIndex != stepIndex) { openInfoForStep(stepIndex); currentStepIndex = stepIndex; } } /** * Returns the LatLng at which the car should be positioned at the given * time. * @param time Time for which LatLng should be found. * @return LatLng. */ private function latLngAt(time:Number):LatLng { var stepIndex:int = upperBound(cumulativeStepDuration, time) - 1; var minStepIndex:int = 0; var maxStepIndex:int = route.numSteps - 1; if (stepIndex < minStepIndex) { return route.startGeocode.point; } else if (stepIndex > maxStepIndex) { return route.endGeocode.point; } var stepStart:Number = cumulativeStepDuration[stepIndex]; var stepEnd:Number = cumulativeStepDuration[stepIndex + 1]; var stepFraction:Number = (time - stepStart) / (stepEnd - stepStart); var startVertex:int = route.getStep(stepIndex).polylineIndex; var endVertex:int = (stepIndex + 1) < route.numSteps ? route.getStep(stepIndex + 1).polylineIndex : polyline.getVertexCount(); var stepVertices:int = endVertex - startVertex; var stepLeng

    Read the article

  • Bacula & Multiple Tape Devices, and so on

    - by Tom O'Connor
    Bacula won't make use of 2 tape devices simultaneously. (Search for #-#-# for the TL;DR) A little background, perhaps. In the process of trying to get a decent working backup solution (backing up 20TB ain't cheap, or easy) at $dayjob, we bought a bunch of things to make it work. Firstly, there's a Spectra Logic T50e autochanger, 40 slots of LTO5 goodness, and that robot's got a pair of IBM HH5 Ultrium LTO5 drives, connected via FibreChannel Arbitrated Loop to our backup server. There's the backup server.. A Dell R715 with 2x 16 core AMD 62xx CPUs, and 32GB of RAM. Yummy. That server's got 2 Emulex FCe-12000E cards, and an Intel X520-SR dual port 10GE NIC. We were also sold Commvault Backup (non-NDMP). Here's where it gets really complicated. Spectra Logic and Commvault both sent respective engineers, who set up the library and the software. Commvault was running fine, in so far as the controller was working fine. The Dell server has Ubuntu 12.04 server, and runs the MediaAgent for CommVault, and mounts our BlueArc NAS as NFS to a few mountpoints, like /home, and some stuff in /mnt. When backing up from the NFS mountpoints, we were seeing ~= 290GB/hr throughput. That's CRAP, considering we've got 20-odd TB to get through, in a <48 hour backup window. The rated maximum on the BlueArc is 700MB/s (2460GB/hr), the rated maximum write speed on the tape devices is 140MB/s, per drive, so that's 492GB/hr (or double it, for the total throughput). So, the next step was to benchmark NFS performance with IOzone, and it turns out that we get epic write performance (across 20 threads), and it's like 1.5-2.5TB/hr write, but read performance is fecking hopeless. I couldn't ever get higher than 343GB/hr maximum. So let's assume that the 343GB/hr is a theoretical maximum for read performance on the NAS, then we should in theory be able to get that performance out of a) CommVault, and b) any other backup agent. Not the case. Commvault seems to only ever give me 200-250GB/hr throughput, and out of experimentation, I installed Bacula to see what the state of play there is. If, for example, Bacula gave consistently better performance and speeds than Commvault, then we'd be able to say "**$.$ Refunds Plz $.$**" #-#-# Alas, I found a different problem with Bacula. Commvault seems pretty happy to read from one part of the mountpoint with one thread, and stream that to a Tape device, whilst reading from some other directory with the other thread, and writing to the 2nd drive in the autochanger. I can't for the life of me get Bacula to mount and write to two tape drives simultaneously. Things I've tried: Setting Maximum Concurrent Jobs = 20 in the Director, File and Storage Daemons Setting Prefer Mounted Volumes = no in the Job Definition Setting multiple devices in the Autochanger resource. Documentation seems to be very single-drive centric, and we feel a little like we've strapped a rocket to a hamster, with this one. The majority of example Bacula configurations are for DDS4 drives, manual tape swapping, and FreeBSD or IRIX systems. I should probably add that I'm not too bothered if this isn't possible, but I'd be surprised. I basically want to use Bacula as proof to stick it to the software vendors that they're overpriced ;) I read somewhere that @KyleBrandt has done something similar with a modern Tape solution.. Configuration Files: *bacula-dir.conf* # # Default Bacula Director Configuration file Director { # define myself Name = backuphost-1-dir DIRport = 9101 # where we listen for UA connections QueryFile = "/etc/bacula/scripts/query.sql" WorkingDirectory = "/var/lib/bacula" PidDirectory = "/var/run/bacula" Maximum Concurrent Jobs = 20 Password = "yourekiddingright" # Console password Messages = Daemon DirAddress = 0.0.0.0 #DirAddress = 127.0.0.1 } JobDefs { Name = "DefaultFileJob" Type = Backup Level = Incremental Client = backuphost-1-fd FileSet = "Full Set" Schedule = "WeeklyCycle" Storage = File Messages = Standard Pool = File Priority = 10 Write Bootstrap = "/var/lib/bacula/%c.bsr" } JobDefs { Name = "DefaultTapeJob" Type = Backup Level = Incremental Client = backuphost-1-fd FileSet = "Full Set" Schedule = "WeeklyCycle" Storage = "SpectraLogic" Messages = Standard Pool = AllTapes Priority = 10 Write Bootstrap = "/var/lib/bacula/%c.bsr" Prefer Mounted Volumes = no } # # Define the main nightly save backup job # By default, this job will back up to disk in /nonexistant/path/to/file/archive/dir Job { Name = "BackupClient1" JobDefs = "DefaultFileJob" } Job { Name = "BackupThisVolume" JobDefs = "DefaultTapeJob" FileSet = "SpecialVolume" } #Job { # Name = "BackupClient2" # Client = backuphost-12-fd # JobDefs = "DefaultJob" #} # Backup the catalog database (after the nightly save) Job { Name = "BackupCatalog" JobDefs = "DefaultFileJob" Level = Full FileSet="Catalog" Schedule = "WeeklyCycleAfterBackup" # This creates an ASCII copy of the catalog # Arguments to make_catalog_backup.pl are: # make_catalog_backup.pl <catalog-name> RunBeforeJob = "/etc/bacula/scripts/make_catalog_backup.pl MyCatalog" # This deletes the copy of the catalog RunAfterJob = "/etc/bacula/scripts/delete_catalog_backup" Write Bootstrap = "/var/lib/bacula/%n.bsr" Priority = 11 # run after main backup } # # Standard Restore template, to be changed by Console program # Only one such job is needed for all Jobs/Clients/Storage ... # Job { Name = "RestoreFiles" Type = Restore Client=backuphost-1-fd FileSet="Full Set" Storage = File Pool = Default Messages = Standard Where = /srv/bacula/restore } FileSet { Name = "SpecialVolume" Include { Options { signature = MD5 } File = /mnt/SpecialVolume } Exclude { File = /var/lib/bacula File = /nonexistant/path/to/file/archive/dir File = /proc File = /tmp File = /.journal File = /.fsck } } # List of files to be backed up FileSet { Name = "Full Set" Include { Options { signature = MD5 } File = /usr/sbin } Exclude { File = /var/lib/bacula File = /nonexistant/path/to/file/archive/dir File = /proc File = /tmp File = /.journal File = /.fsck } } Schedule { Name = "WeeklyCycle" Run = Full 1st sun at 23:05 Run = Differential 2nd-5th sun at 23:05 Run = Incremental mon-sat at 23:05 } # This schedule does the catalog. It starts after the WeeklyCycle Schedule { Name = "WeeklyCycleAfterBackup" Run = Full sun-sat at 23:10 } # This is the backup of the catalog FileSet { Name = "Catalog" Include { Options { signature = MD5 } File = "/var/lib/bacula/bacula.sql" } } # Client (File Services) to backup Client { Name = backuphost-1-fd Address = localhost FDPort = 9102 Catalog = MyCatalog Password = "surelyyourejoking" # password for FileDaemon File Retention = 30 days # 30 days Job Retention = 6 months # six months AutoPrune = yes # Prune expired Jobs/Files } # # Second Client (File Services) to backup # You should change Name, Address, and Password before using # #Client { # Name = backuphost-12-fd # Address = localhost2 # FDPort = 9102 # Catalog = MyCatalog # Password = "i'mnotjokinganddontcallmeshirley" # password for FileDaemon 2 # File Retention = 30 days # 30 days # Job Retention = 6 months # six months # AutoPrune = yes # Prune expired Jobs/Files #} # Definition of file storage device Storage { Name = File # Do not use "localhost" here Address = localhost # N.B. Use a fully qualified name here SDPort = 9103 Password = "lalalalala" Device = FileStorage Media Type = File } Storage { Name = "SpectraLogic" Address = localhost SDPort = 9103 Password = "linkedinmakethebestpasswords" Device = Drive-1 Device = Drive-2 Media Type = LTO5 Autochanger = yes } # Generic catalog service Catalog { Name = MyCatalog # Uncomment the following line if you want the dbi driver # dbdriver = "dbi:sqlite3"; dbaddress = 127.0.0.1; dbport = dbname = "bacula"; DB Address = ""; dbuser = "bacula"; dbpassword = "bbmaster63" } # Reasonable message delivery -- send most everything to email address # and to the console Messages { Name = Standard mailcommand = "/usr/lib/bacula/bsmtp -h localhost -f \"\(Bacula\) \<%r\>\" -s \"Bacula: %t %e of %c %l\" %r" operatorcommand = "/usr/lib/bacula/bsmtp -h localhost -f \"\(Bacula\) \<%r\>\" -s \"Bacula: Intervention needed for %j\" %r" mail = root@localhost = all, !skipped operator = root@localhost = mount console = all, !skipped, !saved # # WARNING! the following will create a file that you must cycle from # time to time as it will grow indefinitely. However, it will # also keep all your messages if they scroll off the console. # append = "/var/lib/bacula/log" = all, !skipped catalog = all } # # Message delivery for daemon messages (no job). Messages { Name = Daemon mailcommand = "/usr/lib/bacula/bsmtp -h localhost -f \"\(Bacula\) \<%r\>\" -s \"Bacula daemon message\" %r" mail = root@localhost = all, !skipped console = all, !skipped, !saved append = "/var/lib/bacula/log" = all, !skipped } # Default pool definition Pool { Name = Default Pool Type = Backup Recycle = yes # Bacula can automatically recycle Volumes AutoPrune = yes # Prune expired volumes Volume Retention = 365 days # one year } # File Pool definition Pool { Name = File Pool Type = Backup Recycle = yes # Bacula can automatically recycle Volumes AutoPrune = yes # Prune expired volumes Volume Retention = 365 days # one year Maximum Volume Bytes = 50G # Limit Volume size to something reasonable Maximum Volumes = 100 # Limit number of Volumes in Pool } Pool { Name = AllTapes Pool Type = Backup Recycle = yes AutoPrune = yes # Prune expired volumes Volume Retention = 31 days # one Moth } # Scratch pool definition Pool { Name = Scratch Pool Type = Backup } # # Restricted console used by tray-monitor to get the status of the director # Console { Name = backuphost-1-mon Password = "LastFMalsostorePasswordsLikeThis" CommandACL = status, .status } bacula-sd.conf # # Default Bacula Storage Daemon Configuration file # Storage { # definition of myself Name = backuphost-1-sd SDPort = 9103 # Director's port WorkingDirectory = "/var/lib/bacula" Pid Directory = "/var/run/bacula" Maximum Concurrent Jobs = 20 SDAddress = 0.0.0.0 # SDAddress = 127.0.0.1 } # # List Directors who are permitted to contact Storage daemon # Director { Name = backuphost-1-dir Password = "passwordslinplaintext" } # # Restricted Director, used by tray-monitor to get the # status of the storage daemon # Director { Name = backuphost-1-mon Password = "totalinsecurityabound" Monitor = yes } Device { Name = FileStorage Media Type = File Archive Device = /srv/bacula/archive LabelMedia = yes; # lets Bacula label unlabeled media Random Access = Yes; AutomaticMount = yes; # when device opened, read it RemovableMedia = no; AlwaysOpen = no; } Autochanger { Name = SpectraLogic Device = Drive-1 Device = Drive-2 Changer Command = "/etc/bacula/scripts/mtx-changer %c %o %S %a %d" Changer Device = /dev/sg4 } Device { Name = Drive-1 Drive Index = 0 Archive Device = /dev/nst0 Changer Device = /dev/sg4 Media Type = LTO5 AutoChanger = yes RemovableMedia = yes; AutomaticMount = yes; AlwaysOpen = yes; RandomAccess = no; LabelMedia = yes } Device { Name = Drive-2 Drive Index = 1 Archive Device = /dev/nst1 Changer Device = /dev/sg4 Media Type = LTO5 AutoChanger = yes RemovableMedia = yes; AutomaticMount = yes; AlwaysOpen = yes; RandomAccess = no; LabelMedia = yes } # # Send all messages to the Director, # mount messages also are sent to the email address # Messages { Name = Standard director = backuphost-1-dir = all } bacula-fd.conf # # Default Bacula File Daemon Configuration file # # # List Directors who are permitted to contact this File daemon # Director { Name = backuphost-1-dir Password = "hahahahahaha" } # # Restricted Director, used by tray-monitor to get the # status of the file daemon # Director { Name = backuphost-1-mon Password = "hohohohohho" Monitor = yes } # # "Global" File daemon configuration specifications # FileDaemon { # this is me Name = backuphost-1-fd FDport = 9102 # where we listen for the director WorkingDirectory = /var/lib/bacula Pid Directory = /var/run/bacula Maximum Concurrent Jobs = 20 #FDAddress = 127.0.0.1 FDAddress = 0.0.0.0 } # Send all messages except skipped files back to Director Messages { Name = Standard director = backuphost-1-dir = all, !skipped, !restored }

    Read the article

  • Parsing concatenated, non-delimited XML messages from TCP-stream using C#

    - by thaller
    I am trying to parse XML messages which are send to my C# application over TCP. Unfortunately, the protocol can not be changed and the XML messages are not delimited and no length prefix is used. Moreover the character encoding is not fixed but each message starts with an XML declaration <?xml>. The question is, how can i read one XML message at a time, using C#. Up to now, I tried to read the data from the TCP stream into a byte array and use it through a MemoryStream. The problem is, the buffer might contain more than one XML messages or the first message may be incomplete. In these cases, I get an exception when trying to parse it with XmlReader.Read or XmlDocument.Load, but unfortunately the XmlException does not really allow me to distinguish the problem (except parsing the localized error string). I tried using XmlReader.Read and count the number of Element and EndElement nodes. That way I know when I am finished reading the first, entire XML message. However, there are several problems. If the buffer does not yet contain the entire message, how can I distinguish the XmlException from an actually invalid, non-well-formed message? In other words, if an exception is thrown before reading the first root EndElement, how can I decide whether to abort the connection with error, or to collect more bytes from the TCP stream? If no exception occurs, the XmlReader is positioned at the start of the root EndElement. Casting the XmlReader to IXmlLineInfo gives me the current LineNumber and LinePosition, however it is not straight forward to get the byte position where the EndElement really ends. In order to do that, I would have to convert the byte array into a string (with the encoding specified in the XML declaration), seek to LineNumber,LinePosition and convert that back to the byte offset. I try to do that with StreamReader.ReadLine, but the stream reader gives no public access to the current byte position. All this seams very inelegant and non robust. I wonder if you have ideas for a better solution. Thank you. EDIT: I looked around and think that the situation is as follows (I might be wrong, corrections are welcome): I found no method so that the XmlReader can continue parsing a second XML message (at least not, if the second message has an XmlDeclaration). XmlTextReader.ResetState could do something similar, but for that I would have to assume the same encoding for all messages. Therefor I could not connect the XmlReader directly to the TcpStream. After closing the XmlReader, the buffer is not positioned at the readers last position. So it is not possible to close the reader and use a new one to continue with the next message. I guess the reason for this is, that the reader could not successfully seek on every possible input stream. When XmlReader throws an exception it can not be determined whether it happened because of an premature EOF or because of a non-wellformed XML. XmlReader.EOF is not set in case of an exception. As workaround I derived my own MemoryBuffer, which returns the very last byte as a single byte. This way I know that the XmlReader was really interested in the last byte and the following exception is likely due to a truncated message (this is kinda sloppy, in that it might not detect every non-wellformed message. However, after appending more bytes to the buffer, sooner or later the error will be detected. I could cast my XmlReader to the IXmlLineInfo interface, which gives access to the LineNumber and the LinePosition of the current node. So after reading the first message I remember these positions and use it to truncate the buffer. Here comes the really sloppy part, because I have to use the character encoding to get the byte position. I am sure you could find test cases for the code below where it breaks (e.g. internal elements with mixed encoding). But up to now it worked for all my tests. The parser class follows here -- may it be useful (I know, its very far from perfect...) class XmlParser { private byte[] buffer = new byte[0]; public int Length { get { return buffer.Length; } } // Append new binary data to the internal data buffer... public XmlParser Append(byte[] buffer2) { if (buffer2 != null && buffer2.Length > 0) { // I know, its not an efficient way to do this. // The EofMemoryStream should handle a List<byte[]> ... byte[] new_buffer = new byte[buffer.Length + buffer2.Length]; buffer.CopyTo(new_buffer, 0); buffer2.CopyTo(new_buffer, buffer.Length); buffer = new_buffer; } return this; } // MemoryStream which returns the last byte of the buffer individually, // so that we know that the buffering XmlReader really locked at the last // byte of the stream. // Moreover there is an EOF marker. private class EofMemoryStream: Stream { public bool EOF { get; private set; } private MemoryStream mem_; public override bool CanSeek { get { return false; } } public override bool CanWrite { get { return false; } } public override bool CanRead { get { return true; } } public override long Length { get { return mem_.Length; } } public override long Position { get { return mem_.Position; } set { throw new NotSupportedException(); } } public override void Flush() { mem_.Flush(); } public override long Seek(long offset, SeekOrigin origin) { throw new NotSupportedException(); } public override void SetLength(long value) { throw new NotSupportedException(); } public override void Write(byte[] buffer, int offset, int count) { throw new NotSupportedException(); } public override int Read(byte[] buffer, int offset, int count) { count = Math.Min(count, Math.Max(1, (int)(Length - Position - 1))); int nread = mem_.Read(buffer, offset, count); if (nread == 0) { EOF = true; } return nread; } public EofMemoryStream(byte[] buffer) { mem_ = new MemoryStream(buffer, false); EOF = false; } protected override void Dispose(bool disposing) { mem_.Dispose(); } } // Parses the first xml message from the stream. // If the first message is not yet complete, it returns null. // If the buffer contains non-wellformed xml, it ~should~ throw an exception. // After reading an xml message, it pops the data from the byte array. public Message deserialize() { if (buffer.Length == 0) { return null; } Message message = null; Encoding encoding = Message.default_encoding; //string xml = encoding.GetString(buffer); using (EofMemoryStream sbuffer = new EofMemoryStream (buffer)) { XmlDocument xmlDocument = null; XmlReaderSettings settings = new XmlReaderSettings(); int LineNumber = -1; int LinePosition = -1; bool truncate_buffer = false; using (XmlReader xmlReader = XmlReader.Create(sbuffer, settings)) { try { // Read to the first node (skipping over some element-types. // Don't use MoveToContent here, because it would skip the // XmlDeclaration too... while (xmlReader.Read() && (xmlReader.NodeType==XmlNodeType.Whitespace || xmlReader.NodeType==XmlNodeType.Comment)) { }; // Check for XML declaration. // If the message has an XmlDeclaration, extract the encoding. switch (xmlReader.NodeType) { case XmlNodeType.XmlDeclaration: while (xmlReader.MoveToNextAttribute()) { if (xmlReader.Name == "encoding") { encoding = Encoding.GetEncoding(xmlReader.Value); } } xmlReader.MoveToContent(); xmlReader.Read(); break; } // Move to the first element. xmlReader.MoveToContent(); // Read the entire document. xmlDocument = new XmlDocument(); xmlDocument.Load(xmlReader.ReadSubtree()); } catch (XmlException e) { // The parsing of the xml failed. If the XmlReader did // not yet look at the last byte, it is assumed that the // XML is invalid and the exception is re-thrown. if (sbuffer.EOF) { return null; } throw e; } { // Try to serialize an internal data structure using XmlSerializer. Type type = null; try { type = Type.GetType("my.namespace." + xmlDocument.DocumentElement.Name); } catch (Exception e) { // No specialized data container for this class found... } if (type == null) { message = new Message(); } else { // TODO: reuse the serializer... System.Xml.Serialization.XmlSerializer ser = new System.Xml.Serialization.XmlSerializer(type); message = (Message)ser.Deserialize(new XmlNodeReader(xmlDocument)); } message.doc = xmlDocument; } // At this point, the first XML message was sucessfully parsed. // Remember the lineposition of the current end element. IXmlLineInfo xmlLineInfo = xmlReader as IXmlLineInfo; if (xmlLineInfo != null && xmlLineInfo.HasLineInfo()) { LineNumber = xmlLineInfo.LineNumber; LinePosition = xmlLineInfo.LinePosition; } // Try to read the rest of the buffer. // If an exception is thrown, another xml message appears. // This way the xml parser could tell us that the message is finished here. // This would be prefered as truncating the buffer using the line info is sloppy. try { while (xmlReader.Read()) { } } catch { // There comes a second message. Needs workaround for trunkating. truncate_buffer = true; } } if (truncate_buffer) { if (LineNumber < 0) { throw new Exception("LineNumber not given. Cannot truncate xml buffer"); } // Convert the buffer to a string using the encoding found before // (or the default encoding). string s = encoding.GetString(buffer); // Seek to the line. int char_index = 0; while (--LineNumber > 0) { // Recognize \r , \n , \r\n as newlines... char_index = s.IndexOfAny(new char[] {'\r', '\n'}, char_index); // char_index should not be -1 because LineNumber>0, otherwise an RangeException is // thrown, which is appropriate. char_index++; if (s[char_index-1]=='\r' && s.Length>char_index && s[char_index]=='\n') { char_index++; } } char_index += LinePosition - 1; var rgx = new System.Text.RegularExpressions.Regex(xmlDocument.DocumentElement.Name + "[ \r\n\t]*\\>"); System.Text.RegularExpressions.Match match = rgx.Match(s, char_index); if (!match.Success || match.Index != char_index) { throw new Exception("could not find EndElement to truncate the xml buffer."); } char_index += match.Value.Length; // Convert the character offset back to the byte offset (for the given encoding). int line1_boffset = encoding.GetByteCount(s.Substring(0, char_index)); // remove the bytes from the buffer. buffer = buffer.Skip(line1_boffset).ToArray(); } else { buffer = new byte[0]; } } return message; } }

    Read the article

  • Why can I query with an int but not a string here? PHP MySQL Datatypes

    - by CT
    I am working on an Asset Database problem. I receive $id from $_GET["id"]; I then query the database and display the results. This works if my id is an integer like "93650" but if it has other characters like "wci1001", it displays this MySQL error: Unknown column 'text' in 'where clause' All fields in tables are of type: VARCHAR(50) What would I need to do to be able to use this query to search by id that includes other characters? Thank you. <?php <?php /* * ASSET DB FUNCTIONS SCRIPT * */ # connect to database function ConnectDB(){ mysql_connect("localhost", "asset_db", "asset_db") or die(mysql_error()); mysql_select_db("asset_db") or die(mysql_error()); } # find asset type returns $type function GetAssetType($id){ $sql = "SELECT asset.type From asset WHERE asset.id = $id"; $result = mysql_query($sql) or die(mysql_error()); $row = mysql_fetch_assoc($result); $type = $row['type']; return $type; } # query server returns $result (sql query array) function QueryServer($id){ $sql = " SELECT asset.id ,asset.company ,asset.location ,asset.purchaseDate ,asset.purchaseOrder ,asset.value ,asset.type ,asset.notes ,server.manufacturer ,server.model ,server.serialNumber ,server.esc ,server.warranty ,server.user ,server.prevUser ,server.cpu ,server.memory ,server.hardDrive FROM asset LEFT JOIN server ON server.id = asset.id WHERE asset.id = $id "; $result = mysql_query($sql); return $result; } # get server data returns $serverArray function GetServerData($result){ while($row = mysql_fetch_assoc($result)) { $id = $row['id']; $company = $row['company']; $location = $row['location']; $purchaseDate = $row['purchaseDate']; $purchaseOrder = $row['purchaseOrder']; $value = $row['value']; $type = $row['type']; $notes = $row['notes']; $manufacturer = $row['manufacturer']; $model = $row['model']; $serialNumber = $row['serialNumber']; $esc = $row['esc']; $warranty = $row['warranty']; $user = $row['user']; $prevUser = $row['prevUser']; $cpu = $row['cpu']; $memory = $row['memory']; $hardDrive = $row['hardDrive']; $serverArray = array($id, $company, $location, $purchaseDate, $purchaseOrder, $value, $type, $notes, $manufacturer, $model, $serialNumber, $esc, $warranty, $user, $prevUser, $cpu, $memory, $hardDrive); } return $serverArray; } # print server table function PrintServerTable($serverArray){ $id = $serverArray[0]; $company = $serverArray[1]; $location = $serverArray[2]; $purchaseDate = $serverArray[3]; $purchaseOrder = $serverArray[4]; $value = $serverArray[5]; $type = $serverArray[6]; $notes = $serverArray[7]; $manufacturer = $serverArray[8]; $model = $serverArray[9]; $serialNumber = $serverArray[10]; $esc = $serverArray[11]; $warranty = $serverArray[12]; $user = $serverArray[13]; $prevUser = $serverArray[14]; $cpu = $serverArray[15]; $memory = $serverArray[16]; $hardDrive = $serverArray[17]; echo "<table width=\"100%\" border=\"0\"><tr><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>General Info</h2></td></tr><tr id=\"hightlight\"><td>Asset ID:</td><td>"; echo $id; echo "</td></tr><tr><td>Company:</td><td>"; echo $company; echo "</td></tr><tr id=\"hightlight\"><td>Location:</td><td>"; echo $location; echo "</td></tr><tr><td>Purchase Date:</td><td>"; echo $purchaseDate; echo "</td></tr><tr id=\"hightlight\"><td>Purchase Order #:</td><td>"; echo $purchaseOrder; echo "</td></tr><tr><td>Value:</td><td>"; echo $value; echo "</td></tr><tr id=\"hightlight\"><td>Type:</td><td>"; echo $type; echo "</td></tr><tr><td>Notes:</td><td>"; echo $notes; echo "</td></tr></table></td><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>Server Info</h2></td></tr><tr id=\"hightlight\"><td>Manufacturer:</td><td>"; echo $manufacturer; echo "</td></tr><tr><td>Model:</td><td>"; echo $model; echo "</td></tr><tr id=\"hightlight\"><td>Serial Number:</td><td>"; echo $serialNumber; echo "</td></tr><tr><td>ESC:</td><td>"; echo $esc; echo "</td></tr><tr id=\"hightlight\"><td>Warranty:</td><td>"; echo $warranty; echo "</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\"><h2>User Info</h2></td></tr><tr id=\"hightlight\"><td>User:</td><td>"; echo $user; echo "</td></tr><tr><td>Previous User:</td><td>"; echo $prevUser; echo "</td></tr></table></td><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>Specs</h2></td></tr><tr id=\"hightlight\"><td>CPU:</td><td>"; echo $cpu; echo "</td></tr><tr><td>Memory:</td><td>"; echo $memory; echo "</td></tr><tr id=\"hightlight\"><td>Hard Drive:</td><td>"; echo $hardDrive; echo "</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\"><h2>Options</h2></td></tr><tr><td colspan=\"2\"><a href=\"#\">Edit Asset</a></td></tr><tr><td colspan=\"2\"><a href=\"#\">Delete Asset</a></td></tr></table></td></tr></table>"; } ?> __ /* * View Asset * */ # include functions script include "functions.php"; $id = $_GET["id"]; if (empty($id)):$id="000"; endif; ConnectDB(); $type = GetAssetType($id); ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="style.css" /> <title>Wagman IT Asset</title> </head> <body> <div id="page"> <div id="header"> <img src="images/logo.png" /> </div> </div> <div id="content"> <div id="container"> <div id="main"> <div id="menu"> <ul> <table width="100%" border="0"> <tr> <td width="15%"></td> <td width="30%%"><li><a href="index.php">Search Assets</a></li></td> <td width="30%"><li><a href="addAsset.php">Add Asset</a></li></td> <td width="25%"></td> </tr> </table> </ul> </div> <div id="text"> <ul> <li> <h1>View Asset</h1> </li> </ul> <?php if (empty($type)):echo "<ul><li><h2>Asset ID does not match any database entries.</h2></li></ul>"; else: switch ($type){ case "Server": $result = QueryServer($id); $ServerArray = GetServerData($result); PrintServerTable($ServerArray); break; case "Desktop"; break; case "Laptop"; break; } endif; ?> </div> </div> </div> <div class="clear"></div> <div id="footer" align="center"> <p>&nbsp;</p> </div> </div> <div id="tagline"> Wagman Construction - Bridging Generations since 1902 </div> </body> </html>

    Read the article

  • mysterical error

    - by Görkem Buzcu
    i get "customer_service_simulator.exe stopped" error, but i dont know why? this is my c programming project and i have limited time left before deadline. the code is: #include <stdio.h> #include <stdlib.h> #include<time.h> #define FALSE 0 #define TRUE 1 /*A Node declaration to store a value, pointer to the next node and a priority value*/ struct Node { int priority; //arrival time int val; //type int wait_time; int departure_time; struct Node *next; }; Queue Record that will store the following: size: total number of elements stored in the list front: it shows the front node of the queue (front of the queue) rear: it shows the rare node of the queue (rear of the queue) availability: availabity of the teller struct QueueRecord { struct Node *front; struct Node *rear; int size; int availability; }; typedef struct Node *niyazi; typedef struct QueueRecord *Queue; Queue CreateQueue(int); void MakeEmptyQueue(Queue); void enqueue(Queue, int, int); int QueueSize(Queue); int FrontOfQueue(Queue); int RearOfQueue(Queue); niyazi dequeue(Queue); int IsFullQueue(Queue); int IsEmptyQueue(Queue); void DisplayQueue(Queue); void sorteddequeue(Queue); void sortedenqueue(Queue, int, int); void tellerzfunctionz(Queue *, Queue, int, int); int main() { int system_clock=0; Queue waitqueue; int exit, val, priority, customers, tellers, avg_serv_time, sim_time,counter; char command; waitqueue = CreateQueue(0); srand(time(NULL)); fflush(stdin); printf("Enter number of customers, number of tellers, average service time, simulation time\n:"); scanf("%d%c %d%c %d%c %d",&customers, &command,&tellers,&command,&avg_serv_time,&command,&sim_time); fflush(stdin); Queue tellerarray[tellers]; for(counter=0;counter<tellers;counter++){ tellerarray[counter]=CreateQueue(0); //burada teller sayisi kadar queue yaratiyorum } for(counter=0;counter<customers;counter++){ priority=1+(int)rand()%sim_time; //this will generate the arrival time sortedenqueue(waitqueue,1,priority); //here i put the customers in the waiting queue } tellerzfunctionz(tellerarray,waitqueue,tellers,customers); DisplayQueue(waitqueue); DisplayQueue(tellerarray[0]); DisplayQueue(tellerarray[1]); // waitqueue-> printf("\n\n"); system("PAUSE"); return 0; } /*This function initialises the queue*/ Queue CreateQueue(int maxElements) { Queue q; q = (struct QueueRecord *) malloc(sizeof(struct QueueRecord)); if (q == NULL) printf("Out of memory space\n"); else MakeEmptyQueue(q); return q; } /*This function sets the queue size to 0, and creates a dummy element and sets the front and rear point to this dummy element*/ void MakeEmptyQueue(Queue q) { q->size = 0; q->availability=0; q->front = (struct Node *) malloc(sizeof(struct Node)); if (q->front == NULL) printf("Out of memory space\n"); else{ q->front->next = NULL; q->rear = q->front; } } /*Shows if the queue is empty*/ int IsEmptyQueue(Queue q) { return (q->size == 0); } /*Returns the queue size*/ int QueueSize(Queue q) { return (q->size); } /*Shows the queue is full or not*/ int IsFullQueue(Queue q) { return FALSE; } /*Returns the value stored in the front of the queue*/ int FrontOfQueue(Queue q) { if (!IsEmptyQueue(q)) return q->front->next->val; else { printf("The queue is empty\n"); return -1; } } /*Returns the value stored in the rear of the queue*/ int RearOfQueue(Queue q) { if (!IsEmptyQueue(q)) return q->rear->val; else { printf("The queue is empty\n"); return -1; } } /*Displays the content of the queue*/ void DisplayQueue(Queue q) { struct Node *pos; pos=q->front->next; printf("Queue content:\n"); printf("-->Priority Value\n"); while (pos != NULL) { printf("--> %d\t %d\n", pos->priority, pos->val); pos = pos->next; } } void enqueue(Queue q, int element, int priority){ if(IsFullQueue(q)){ printf("Error queue is full"); } else{ q->rear->next=(struct Node *)malloc(sizeof(struct Node)); q->rear=q->rear->next; q->rear->next=NULL; q->rear->val=element; q->rear->priority=priority; q->size++; } } void sortedenqueue(Queue q, int val, int priority) { struct Node *insert,*temp; insert=(struct Node *)malloc(sizeof(struct Node)); insert->val=val; insert->priority=priority; temp=q->front; if(q->size==0){ enqueue(q, val, priority); } else{ while(temp->next!=NULL && temp->next->priority<insert->priority){ temp=temp->next; } //printf("%d",temp->priority); insert->next=temp->next; temp->next=insert; q->size++; if(insert->next==NULL){ q->rear=insert; } } } niyazi dequeue(Queue q) { niyazi del; niyazi deli; del=(niyazi)malloc(sizeof(struct Node)); deli=(niyazi)malloc(sizeof(struct Node)); if(IsEmptyQueue(q)){ printf("Queue is empty!"); return NULL; } else { del=q->front->next; q->front->next=del->next; deli->val=del->val; deli->priority=del->priority; free(del); q->size--; return deli; } } void sorteddequeue(Queue q) { struct Node *temp; struct Node *min; temp=q->front->next; min=q->front; int i; for(i=1;i<q->size;i++) { if(temp->next->priority<min->next->priority) { min=temp; } temp=temp->next; } temp=min->next; min->next=min->next->next; free(temp); if(min->next==NULL){ q->rear=min; } q->size--; } void tellerzfunctionz(Queue *a, Queue b, int c, int d){ int i; int value=0; int priority; niyazi temp; temp=(niyazi)malloc(sizeof(struct Node)); if(c==1){ for(i=0;i<d;i++){ temp=dequeue(b); sortedenqueue((*(a)),temp->val,temp->priority); } } else{ for(i=0;i<d;i++){ while(b->front->next->val==1){ if((*(a+value))->availability==1){ temp=dequeue(b); sortedenqueue((*(a+value)),temp->val,temp->priority); (*(a+value))->rear->val=2; } else{ value++; } } } } } //end of the program

    Read the article

< Previous Page | 162 163 164 165 166 167 168 169 170 171 172 173  | Next Page >