Search Results

Search found 27144 results on 1086 pages for 'tail call optimization'.

Page 166/1086 | < Previous Page | 162 163 164 165 166 167 168 169 170 171 172 173  | Next Page >

  • const member functions can call const member functions only?

    - by Abhi
    Hi all. Do const member functions call only const member functions? class Transmitter{ const static string msg; mutable int size; public: void xmit() const{ size = compute(); cout<<msg; } private: int compute() const{return 5;} }; string const Transmitter::msg = "beep"; int main(){ Transmitter t; t.xmit(); return EXIT_SUCCESS; } If i dont make compute() a const, then the compiler complains. Is it because since a const member function is not allowed to modify members, it wont allow any calls to non-consts since it would mean that the const member function would be 'indirectly' modifying the data members?

    Read the article

  • How to call a function from a shared library?

    - by Frank
    What is the easiest and safest way to call a function from a shared library / dll? I am mostly interested in doing this on linux, but it would be better if there were a platform-independent way. Could someone provide example code to show how to make the following work, where the user has compiled his own version of foo into a shared library? // function prototype, implementation loaded at runtime: std::string foo(const std::string); int main(int argc, char** argv) { LoadLibrary(argv[1]); // loads library implementing foo std::cout << "Result: " << foo("test"); return 0; } BTW, I know how to compile the shared lib (foo.so), I just need to know an easy way to load it at runtime.

    Read the article

  • How to Get the Method/Function Call Trace for a Specific Run?

    - by JackWM
    Given a Java or JavaScript program, after its execution, print out a sequence of calls. The calls are in invocation order. E.g. main() { A(); } A() { B(); C(); } Then the call trace should be: main -> A() -> B() -> C() Is there any tool that can profile and output this kind of information? It seems this is common a need for debugging or performance tuning. I noticed that some profilers can do this, but I prefer a simpler/easy-to-use one. Thanks!

    Read the article

  • scala coalesces multiple function call parameters into a Tuple -- can this be disabled?

    - by landon9720
    This is a troublesome violation of type safety in my project, so I'm looking for a way to disable it. It seems that if a function takes an AnyRef (or a java.lang.Object), you can call the function with any combination of parameters, and Scala will coalesce the parameters into a Tuple object and invoke the function. In my case the function isn't expecting a Tuple, and fails at runtime. I would expect this situation to be caught at compile time. object WhyTuple { def main(args: Array[String]): Unit = { fooIt("foo", "bar") } def fooIt(o: AnyRef) { println(o.toString) } } Output: (foo,bar)

    Read the article

  • How to make a call to an executable from Python script?

    - by fx
    I need to execute this script from my Python script. Is it possible? The script generate some outputs with some files being written. How do I access these files? I have tried with subprocess call function but without success. fx@fx-ubuntu:~/Documents/projects/foo$ bin/bar -c somefile.xml -d text.txt -r aString -f anotherString >output The application "bar" also references to some libraries, it also creates some files besides the output. How do I get access to these files? Just by using open()? Thank you,

    Read the article

  • Do you have to call .Save() when modifying a application setting that is bound to a control property

    - by Jordan S
    I am programming in .NET I have an application setting of type string. On my form I have a textbox. I bound the text property of the textbox to my application setting. If I type something in the textbox it changes the value that is held in the Application setting but the next time I start the program it goes back to the default value. Do I need to call Properties.Settings.Default.Save(); after the text is entered for the new value to be saved? Shouldn't it do this automatically? Is there a way I can make it do it automatically?

    Read the article

  • Force to call virtual base function instead of the overriden one.

    - by Roberto Sebestyen
    In the following example "Test that v1 function was called" fails. Is there a way to force call the base implementation of "RunFunction" through an instance of "class V2" ?? class V1 { public virtual string RunFunction() { return "V1"; } } class V2 : V1 { public override string RunFunction() { return "V2"; } } [Test] public void TestCall() { var v1 = (V1)new V2(); var v2 = new V2(); Assert.IsTrue(v1.RunFunction() == "V1", "Test that v1 function was called"); Assert.IsTrue(v2.RunFunction() == "V2", "Test that v2 function was called"); }

    Read the article

  • When would I need to call base() in C#?

    - by user310291
    My BaseClass Constructor is called whereas I have a constructor in derived class so when would I need to call base() ? class BaseClass { public BaseClass() { Debug.Print("BaseClass"); } } class InheritedClass : BaseClass { public InheritedClass() { Debug.Print("InheritedClass"); } } private void Form1_Load(object sender, EventArgs e) { InheritedClass inheritedClass = new InheritedClass(); } Output 'Inheritance.vshost.exe' (Managed (v4.0.30319)): Loaded 'C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\Accessibility\v4.0_4.0.0.0__b03f5f7f11d50a3a\Accessibility.dll' 'Inheritance.vshost.exe' (Managed (v4.0.30319)): Loaded 'C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\System.Configuration\v4.0_4.0.0.0__b03f5f7f11d50a3a\System.Configuration.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. BaseClass InheritedClass The thread 'vshost.RunParkingWindow' (0x12b4) has exited with code 0 (0x0). The thread '<No Name>' (0x85c) has exited with code 0 (0x0). The program '[4368] Inheritance.vshost.exe: Program Trace' has exited with code 0 (0x0). The program '[4368] Inheritance.vshost.exe: Managed (v4.0.30319)' has exited with code 0 (0x0).

    Read the article

  • AS3 - Can I have access to the object (or function) who call me?

    - by lk
    I've asked this same question with Python. Now I like to know if this can be done in AS3. If I have something like this: package { public class SomeClass { private function A():void { C() } private function B():void { C() } private function C():void { // who is the caller, A or B ??? } public function SomeClass() { A() B() } } } Despite the design or other issues, this is only a question of an inquiring mind. Note: This has to be done without changing C signature Note 2: I like to have an access to an instance of the caller function so I can call that caller function (if I want to)

    Read the article

  • Can we manage incoming call number landing on asterisk?

    - by user194469
    I am using Asterisk 1.4.2 in two different machine. I have configured some extensions in asterisk. When any caller, dial my extension number with local number then if I see asterisk console (asterisk -r) then incoming number is starting with 0, but if caller dial same extension number using STD number then in asterisk console (asterisk -r), incoming number is staring with 0091 (here 91 is country code). Could I change this setting or is there any standard for asterisk for local, STD or ISD number?

    Read the article

  • I've set an editor as default, how do I call it to open files in a shell?

    - by iight
    EDIT I thought of a better way to phrase the question. How can I find the alias that Ubuntu is using for a different text editor? Rather than using nano by typing nano file.txt, i'd like to be able to type sublime file.txt to open sublime editor. I don't know where to look to find these aliases. sudo update-alternatives --config editor does not show it as a choice, I only see the 'default' editors, like Nano and vim.tiny.

    Read the article

  • I have nice headphones. Need a wireless USB microphone so I don't have to switch to a headset to make a call

    - by mattalexx
    Right now, I have a pair of Sennheiser HD595 headphones. They are plugged into a DAC/headphone amp. I spend all day listening to music through them and they sound awesome. Then, for making calls, I have a wireless USB headset from Logitech. Problem is, I can't make calls when I'm wearing my Sennheisers but I wouldn't want to listen to music all day using the Logitech headset. So I spend my day switching in between. So the question is, how can I make calls while wearing the headphones of my choice? One thing I thought of is a wireless USB microphone that I can clip to the Sennheisers. So I'd wear the Sennheisers with this mic all day and ditch the Logitech headset. But it doesn't look like anyone makes a microphone like this. By the way, I would love if the solution didn't transmit the sound of my clacky keyboard or noisy wood flooring.

    Read the article

  • Evernote from vim

    - by juanpablo
    I search a way to edit evernote notes from vim I begin with this #!/bin/bash evernoteDir="$HOME/Library/Application*Support/Evernote/data" dataDir=$(ls -trlh $evernoteDir| tail -n 1| awk '{print $NF}') contentDir="$evernoteDir/$dataDir/content" file=$(ls -trlh $contentDir | tail -n 1| awk '{print $NF}') vim -c 's/div>/div>\r/g' $contentDir/$file/content.html https://gist.github.com/1256416 or maybe create a vim plugin for this ... you have any suggestion? EDIT: for a more simple edition of the evernote note in html format, I make this vim function " Markup function {{{ fun! MkdToHtml() "{{{ " markdown to html silent! execute '%s/ $/<br\/>/g' silent! execute '%s/\*\*\(.*\)\*\*/<b>\1<\/b>/g' silent! execute '%s/\t*###\(.*\)/<H3>\1<\/H3>/g' endf "}}} command! -complete=command MkdToHtml call MkdToHtml() nn <silent> <leader>mm :MkdToHtml<CR> " }}} and a vim function for open the last note edited fun! LastEvernote() "{{{ " a better solution is with evernote api let evernoteDir=expand("$HOME")."/Library/Application*Support/Evernote/data" let dataDir=system("ls -trlh ".evernoteDir."| tail -n 1| awk '{print $NF}'") let contentDir=evernoteDir."/".dataDir."/content" let contentDir=substitute(contentDir,"\n","",'g') let note=system("ls -trlh ".contentDir." | tail -n 1| awk '{print $NF}'") let note=substitute(note,"\n","",'g') sil! exec 'sp '.contentDir.'/'.note.'/content.html' sil! exec '1s/>/>\r/g' sil! exec '%s/<br.*\/>/<br\/>\r/g' sil! exec '%s/<\//\r<\//g' sil! exec 'g/^\s*$/d' normal gg sil! exec '1,4fo' sil! exec '$-1,$fo' endf https://gist.github.com/1289727

    Read the article

  • What is wrong with this call to schtasks on Win 7?

    - by Jost
    I'm trying to run this in a Win 7 Professional admin console: schtasks /create /tn "Task at 16:40 on 10/27/2012" /sc "once" /st "16:40" /sd "10/27/2012" /tr "c:\python27\python.exe c:\users\jost\Desktop\executeScript.py" All referenced files exist. The error message I get is ERROR: The filename, directory name, or volume label syntax is incorrect. What is wrong? Running the command directly on the command line works fine.

    Read the article

  • How to call a program and exit from the shell (the caller) when program is active?

    - by Jack
    I want to run a program with GUI, by typing into konsole: foo args … and exit from the shell (that's the caller) when the program (foo) is active. How do I this? Is there a Linux/Unix built-in command/program to do it? I'm not a shell-man, really. I know that it's possible by writing a small program in C or C++ (any other programming language with small I/O interface on POSIX) programming language with the fork() and one-of exec*() function family. It may take some time; I'll do it only if there is no native solution. Sorry for my bad English; it's not my native language. Also, not sure on tags, please edit for me, if I'm wrong. If it matters, I'm using OpenSUSE 10.x.

    Read the article

  • How to force Windows to call the partition it installs on C:?

    - by maaartinus
    I'm going to install Windows XP from a CD and want to make sure it calls the partition it lands on C:. The target partition is the first one on a SATA disk, which is not the first one in my computer. There's no IDE disk there. I don't think I can swap the disks, as I'm using a fake RAID and really don't want to get problems with it. The target partition is on a normal disk. I know it may be unimportant, but I don't want to run in any problems I can avoid. I've seen a question slightly related to it, but I'm not going to install from a USB.

    Read the article

  • Can a Windows batch file call another program without waiting for that program to finish?

    - by iconoclast
    I'm using Windows 7, and have a simple batch file to copy portable executables off my thumb drive to %TEMP%, and then start them. The goal is to prevent Windows from holding my thumbdrive hostage until I kill all the programs I started up from it. However the control flow does not continue to the next app unless I kill the first one, which obviously doesn't work for this purpose. In a Unix shell script I'd simply add & after the executable I start up, but I can't find an equivalent for batch files. How can I do this?

    Read the article

  • SAXException: bad envelope tag

    - by David Guzman
    I'm trying to connect to a webservice https protected through a webservice client. Eclipse generated a stub based webservice client and looks nice to me. The problem comes when I try to call a method from the webservice: String a = (String)webservice.userProfileServices(xml); I'm also using the following SOAP headers: esgGatewayPort = (new EsgGatewayLocator()).getesgGatewayPort(); //setting the authentication header PrefixedQName name = new PrefixedQName("http://schemas.xmlsoap.org/ws/2002/07/secext","Security","wsse"); System.out.println("Setting headers for authentication"); org.apache.axis.message.SOAPHeaderElement sh = new org.apache.axis.message.SOAPHeaderElement(name); SOAPElement sub; try { String clntUserName="myUser"; String clntPassword="myPassword"; sub = sh.addChildElement("UsernameToken"); SOAPElement element = sub.addChildElement("Username"); element.addTextNode(clntUserName); element = sub.addChildElement("Password"); element.addTextNode(clntPassword); ((org.apache.axis.client.Stub) esgGatewayPort).setHeader(sh); } catch (SOAPException e) { e.printStackTrace(); } I receive the following: AxisFault faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.userException faultSubcode: faultString: org.xml.sax.SAXException: Bad envelope tag: HTML faultActor: faultNode: faultDetail: {http://xml.apache.org/axis/}stackTrace:org.xml.sax.SAXException: Bad envelope tag: HTML at org.apache.axis.message.EnvelopeBuilder.startElement(EnvelopeBuilder.java:71) at org.apache.axis.encoding.DeserializationContext.startElement(DeserializationContext.java:1048) at com.sun.org.apache.xerces.internal.parsers.AbstractSAXParser.startElement(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.scanStartElement(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl$NSContentDriver.scanRootElementHook(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl$FragmentContentDriver.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl$PrologDriver.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanDocument(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.AbstractSAXParser.parse(Unknown Source) at com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl$JAXPSAXParser.parse(Unknown Source) at weblogic.xml.jaxp.WebLogicXMLReader.parse(WebLogicXMLReader.java:133) at weblogic.xml.jaxp.RegistryXMLReader.parse(RegistryXMLReader.java:153) at javax.xml.parsers.SAXParser.parse(Unknown Source) at org.apache.axis.encoding.DeserializationContext.parse(DeserializationContext.java:227) at org.apache.axis.SOAPPart.getAsSOAPEnvelope(SOAPPart.java:696) at org.apache.axis.Message.getSOAPEnvelope(Message.java:435) at org.apache.axis.transport.http.HTTPSender.readFromSocket(HTTPSender.java:796) at org.apache.axis.transport.http.HTTPSender.invoke(HTTPSender.java:144) at org.apache.axis.strategies.InvocationStrategy.visit(InvocationStrategy.java:32) at org.apache.axis.SimpleChain.doVisiting(SimpleChain.java:118) at org.apache.axis.SimpleChain.invoke(SimpleChain.java:83) at org.apache.axis.client.AxisClient.invoke(AxisClient.java:165) at org.apache.axis.client.Call.invokeEngine(Call.java:2784) at org.apache.axis.client.Call.invoke(Call.java:2767) at org.apache.axis.client.Call.invoke(Call.java:2443) at org.apache.axis.client.Call.invoke(Call.java:2366) at org.apache.axis.client.Call.invoke(Call.java:1812) Any help will be truly appreciated David

    Read the article

  • Switch case assembly level code

    - by puffadder
    Hi All, I am programming C on cygwin windows. After having done a bit of C programming and getting comfortable with the language, I wanted to look under the hood and see what the compiler is doing for the code that I write. So I wrote down a code block containing switch case statements and converted them into assembly using: gcc -S foo.c Here is the C source: switch(i) { case 1: { printf("Case 1\n"); break; } case 2: { printf("Case 2\n"); break; } case 3: { printf("Case 3\n"); break; } case 4: { printf("Case 4\n"); break; } case 5: { printf("Case 5\n"); break; } case 6: { printf("Case 6\n"); break; } case 7: { printf("Case 7\n"); break; } case 8: { printf("Case 8\n"); break; } case 9: { printf("Case 9\n"); break; } case 10: { printf("Case 10\n"); break; } default: { printf("Nothing\n"); break; } } Now the resultant assembly for the same is: movl $5, -4(%ebp) cmpl $10, -4(%ebp) ja L13 movl -4(%ebp), %eax sall $2, %eax movl L14(%eax), %eax jmp *%eax .section .rdata,"dr" .align 4 L14: .long L13 .long L3 .long L4 .long L5 .long L6 .long L7 .long L8 .long L9 .long L10 .long L11 .long L12 .text L3: movl $LC0, (%esp) call _printf jmp L2 L4: movl $LC1, (%esp) call _printf jmp L2 L5: movl $LC2, (%esp) call _printf jmp L2 L6: movl $LC3, (%esp) call _printf jmp L2 L7: movl $LC4, (%esp) call _printf jmp L2 L8: movl $LC5, (%esp) call _printf jmp L2 L9: movl $LC6, (%esp) call _printf jmp L2 L10: movl $LC7, (%esp) call _printf jmp L2 L11: movl $LC8, (%esp) call _printf jmp L2 L12: movl $LC9, (%esp) call _printf jmp L2 L13: movl $LC10, (%esp) call _printf L2: Now, in the assembly, the code is first checking the last case (i.e. case 10) first. This is very strange. And then it is copying 'i' into 'eax' and doing things that are beyond me. I have heard that the compiler implements some jump table for switch..case. Is it what this code is doing? Or what is it doing and why? Because in case of less number of cases, the code is pretty similar to that generated for if...else ladder, but when number of cases increases, this unusual-looking implementation is seen. Thanks in advance.

    Read the article

  • Optimizing Solaris 11 SHA-1 on Intel Processors

    - by danx
    SHA-1 is a "hash" or "digest" operation that produces a 160 bit (20 byte) checksum value on arbitrary data, such as a file. It is intended to uniquely identify text and to verify it hasn't been modified. Max Locktyukhin and others at Intel have improved the performance of the SHA-1 digest algorithm using multiple techniques. This code has been incorporated into Solaris 11 and is available in the Solaris Crypto Framework via the libmd(3LIB), the industry-standard libpkcs11(3LIB) library, and Solaris kernel module sha1. The optimized code is used automatically on systems with a x86 CPU supporting SSSE3 (Intel Supplemental SSSE3). Intel microprocessor architectures that support SSSE3 include Nehalem, Westmere, Sandy Bridge microprocessor families. Further optimizations are available for microprocessors that support AVX (such as Sandy Bridge). Although SHA-1 is considered obsolete because of weaknesses found in the SHA-1 algorithm—NIST recommends using at least SHA-256, SHA-1 is still widely used and will be with us for awhile more. Collisions (the same SHA-1 result for two different inputs) can be found with moderate effort. SHA-1 is used heavily though in SSL/TLS, for example. And SHA-1 is stronger than the older MD5 digest algorithm, another digest option defined in SSL/TLS. Optimizations Review SHA-1 operates by reading an arbitrary amount of data. The data is read in 512 bit (64 byte) blocks (the last block is padded in a specific way to ensure it's a full 64 bytes). Each 64 byte block has 80 "rounds" of calculations (consisting of a mixture of "ROTATE-LEFT", "AND", and "XOR") applied to the block. Each round produces a 32-bit intermediate result, called W[i]. Here's what each round operates: The first 16 rounds, rounds 0 to 15, read the 512 bit block 32 bits at-a-time. These 32 bits is used as input to the round. The remaining rounds, rounds 16 to 79, use the results from the previous rounds as input. Specifically for round i it XORs the results of rounds i-3, i-8, i-14, and i-16 and rotates the result left 1 bit. The remaining calculations for the round is a series of AND, XOR, and ROTATE-LEFT operators on the 32-bit input and some constants. The 32-bit result is saved as W[i] for round i. The 32-bit result of the final round, W[79], is the SHA-1 checksum. Optimization: Vectorization The first 16 rounds can be vectorized (computed in parallel) because they don't depend on the output of a previous round. As for the remaining rounds, because of step 2 above, computing round i depends on the results of round i-3, W[i-3], one can vectorize 3 rounds at-a-time. Max Locktyukhin found through simple factoring, explained in detail in his article referenced below, that the dependencies of round i on the results of rounds i-3, i-8, i-14, and i-16 can be replaced instead with dependencies on the results of rounds i-6, i-16, i-28, and i-32. That is, instead of initializing intermediate result W[i] with: W[i] = (W[i-3] XOR W[i-8] XOR W[i-14] XOR W[i-16]) ROTATE-LEFT 1 Initialize W[i] as follows: W[i] = (W[i-6] XOR W[i-16] XOR W[i-28] XOR W[i-32]) ROTATE-LEFT 2 That means that 6 rounds could be vectorized at once, with no additional calculations, instead of just 3! This optimization is independent of Intel or any other microprocessor architecture, although the microprocessor has to support vectorization to use it, and exploits one of the weaknesses of SHA-1. Optimization: SSSE3 Intel SSSE3 makes use of 16 %xmm registers, each 128 bits wide. The 4 32-bit inputs to a round, W[i-6], W[i-16], W[i-28], W[i-32], all fit in one %xmm register. The following code snippet, from Max Locktyukhin's article, converted to ATT assembly syntax, computes 4 rounds in parallel with just a dozen or so SSSE3 instructions: movdqa W_minus_04, W_TMP pxor W_minus_28, W // W equals W[i-32:i-29] before XOR // W = W[i-32:i-29] ^ W[i-28:i-25] palignr $8, W_minus_08, W_TMP // W_TMP = W[i-6:i-3], combined from // W[i-4:i-1] and W[i-8:i-5] vectors pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) movdqa W, W_TMP // 4 dwords in W are rotated left by 2 psrld $30, W // rotate left by 2 W = (W >> 30) | (W << 2) pslld $2, W_TMP por W, W_TMP movdqa W_TMP, W // four new W values W[i:i+3] are now calculated paddd (K_XMM), W_TMP // adding 4 current round's values of K movdqa W_TMP, (WK(i)) // storing for downstream GPR instructions to read A window of the 32 previous results, W[i-1] to W[i-32] is saved in memory on the stack. This is best illustrated with a chart. Without vectorization, computing the rounds is like this (each "R" represents 1 round of SHA-1 computation): RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR With vectorization, 4 rounds can be computed in parallel: RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR Optimization: AVX The new "Sandy Bridge" microprocessor architecture, which supports AVX, allows another interesting optimization. SSSE3 instructions have two operands, a input and an output. AVX allows three operands, two inputs and an output. In many cases two SSSE3 instructions can be combined into one AVX instruction. The difference is best illustrated with an example. Consider these two instructions from the snippet above: pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) With AVX they can be combined in one instruction: vpxor W_minus_16, W, W_TMP // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) This optimization is also in Solaris, although Sandy Bridge-based systems aren't widely available yet. As an exercise for the reader, AVX also has 256-bit media registers, %ymm0 - %ymm15 (a superset of 128-bit %xmm0 - %xmm15). Can %ymm registers be used to parallelize the code even more? Optimization: Solaris-specific In addition to using the Intel code described above, I performed other minor optimizations to the Solaris SHA-1 code: Increased the digest(1) and mac(1) command's buffer size from 4K to 64K, as previously done for decrypt(1) and encrypt(1). This size is well suited for ZFS file systems, but helps for other file systems as well. Optimized encode functions, which byte swap the input and output data, to copy/byte-swap 4 or 8 bytes at-a-time instead of 1 byte-at-a-time. Enhanced the Solaris mdb(1) and kmdb(1) debuggers to display all 16 %xmm and %ymm registers (mdb "$x" command). Previously they only displayed the first 8 that are available in 32-bit mode. Can't optimize if you can't debug :-). Changed the SHA-1 code to allow processing in "chunks" greater than 2 Gigabytes (64-bits) Performance I measured performance on a Sun Ultra 27 (which has a Nehalem-class Xeon 5500 Intel W3570 microprocessor @3.2GHz). Turbo mode is disabled for consistent performance measurement. Graphs are better than words and numbers, so here they are: The first graph shows the Solaris digest(1) command before and after the optimizations discussed here, contained in libmd(3LIB). I ran the digest command on a half GByte file in swapfs (/tmp) and execution time decreased from 1.35 seconds to 0.98 seconds. The second graph shows the the results of an internal microbenchmark that uses the Solaris libpkcs11(3LIB) library. The operations are on a 128 byte buffer with 10,000 iterations. The results show operations increased from 320,000 to 416,000 operations per second. Finally the third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. The results show for 1 kernel thread, operations increased from 410 to 600 MBytes/second. For 8 kernel threads, operations increase from 1540 to 1940 MBytes/second. Availability This code is in Solaris 11 FCS. It is available in the 64-bit libmd(3LIB) library for 64-bit programs and is in the Solaris kernel. You must be running hardware that supports Intel's SSSE3 instructions (for example, Intel Nehalem, Westmere, or Sandy Bridge microprocessor architectures). The easiest way to determine if SSSE3 is available is with the isainfo(1) command. For example, nehalem $ isainfo -v $ isainfo -v 64-bit amd64 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu If the output also shows "avx", the Solaris executes the even-more optimized 3-operand AVX instructions for SHA-1 mentioned above: sandybridge $ isainfo -v 64-bit amd64 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this code. Solaris libraries and kernel automatically determine if it's running on SSSE3 or AVX-capable machines and execute the correctly-tuned code for that microprocessor. Summary The Solaris 11 Crypto Framework, via the sha1 kernel module and libmd(3LIB) and libpkcs11(3LIB) libraries, incorporated a useful SHA-1 optimization from Intel for SSSE3-capable microprocessors. As with other Solaris optimizations, they come automatically "under the hood" with the current Solaris release. References "Improving the Performance of the Secure Hash Algorithm (SHA-1)" by Max Locktyukhin (Intel, March 2010). The source for these SHA-1 optimizations used in Solaris "SHA-1", Wikipedia Good overview of SHA-1 FIPS 180-1 SHA-1 standard (FIPS, 1995) NIST Comments on Cryptanalytic Attacks on SHA-1 (2005, revised 2006)

    Read the article

  • World Record Siebel PSPP Benchmark on SPARC T4 Servers

    - by Brian
    Oracle's SPARC T4 servers set a new World Record for Oracle's Siebel Platform Sizing and Performance Program (PSPP) benchmark suite. The result used Oracle's Siebel Customer Relationship Management (CRM) Industry Applications Release 8.1.1.4 and Oracle Database 11g Release 2 running Oracle Solaris on three SPARC T4-2 and two SPARC T4-1 servers. The SPARC T4 servers running the Siebel PSPP 8.1.1.4 workload which includes Siebel Call Center and Order Management System demonstrates impressive throughput performance of the SPARC T4 processor by achieving 29,000 users. This is the first Siebel PSPP 8.1.1.4 benchmark supporting 29,000 concurrent users with a rate of 239,748 Business Transactions/hour. The benchmark demonstrates vertical and horizontal scalability of Siebel CRM Release 8.1.1.4 on SPARC T4 servers. Performance Landscape Systems Txn/hr Users Call Center Order Management Response Times (sec) 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – Web 3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) – App/Gateway 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – DB 239,748 29,000 0.165 0.925 Oracle: Call Center + Order Management Transactions: 197,128 + 42,620 Users: 20300 + 8700 Configuration Summary Web Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 10 8/11 iPlanet Web Server 7 Application Server Configuration: 3 x SPARC T4-2 servers, each with 2 x SPARC T4 processor, 2.85 GHz 256 GB memory 3 x 300 GB SAS internal disks Oracle Solaris 10 8/11 Siebel CRM 8.1.1.5 SIA Database Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.2) Storage Configuration: 1 x Sun Storage F5100 Flash Array 80 x 24 GB flash modules Benchmark Description Siebel 8.1 PSPP benchmark includes Call Center and Order Management: Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling. High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request . Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively. Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process. High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively. Key Points and Best Practices No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects. See Also Siebel White Papers SPARC T4-1 Server oracle.com OTN SPARC T4-2 Server oracle.com OTN Siebel CRM oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

    Read the article

  • SQL Server &ndash; Undelete a Table and Restore a Single Table from Backup

    - by Mladen Prajdic
    This post is part of the monthly community event called T-SQL Tuesday started by Adam Machanic (blog|twitter) and hosted by someone else each month. This month the host is Sankar Reddy (blog|twitter) and the topic is Misconceptions in SQL Server. You can follow posts for this theme on Twitter by looking at #TSQL2sDay hashtag. Let me start by saying: This code is a crazy hack that is to never be used unless you really, really have to. Really! And I don’t think there’s a time when you would really have to use it for real. Because it’s a hack there are number of things that can go wrong so play with it knowing that. I’ve managed to totally corrupt one database. :) Oh… and for those saying: yeah yeah.. you have a single table in a file group and you’re restoring that, I say “nay nay” to you. As we all know SQL Server can’t do single table restores from backup. This is kind of a obvious thing due to different relational integrity (RI) concerns. Since we have to maintain that we have to restore all tables represented in a RI graph. For this exercise i say BAH! to those concerns. Note that this method “works” only for simple tables that don’t have LOB and off rows data. The code can be expanded to include those but I’ve tried to leave things “simple”. Note that for this to work our table needs to be relatively static data-wise. This doesn’t work for OLTP table. Products are a perfect example of static data. They don’t change much between backups, pretty much everything depends on them and their table is one of those tables that are relatively easy to accidentally delete everything from. This only works if the database is in Full or Bulk-Logged recovery mode for tables where the contents have been deleted or truncated but NOT when a table was dropped. Everything we’ll talk about has to be done before the data pages are reused for other purposes. After deletion or truncation the pages are marked as reusable so you have to act fast. The best thing probably is to put the database into single user mode ASAP while you’re performing this procedure and return it to multi user after you’re done. How do we do it? We will be using an undocumented but known DBCC commands: DBCC PAGE, an undocumented function sys.fn_dblog and a little known DATABASE RESTORE PAGE option. All tests will be on a copy of Production.Product table in AdventureWorks database called Production.Product1 because the original table has FK constraints that prevent us from truncating it for testing. -- create a duplicate table. This doesn't preserve indexes!SELECT *INTO AdventureWorks.Production.Product1FROM AdventureWorks.Production.Product   After we run this code take a full back to perform further testing.   First let’s see what the difference between DELETE and TRUNCATE is when it comes to logging. With DELETE every row deletion is logged in the transaction log. With TRUNCATE only whole data page deallocations are logged in the transaction log. Getting deleted data pages is simple. All we have to look for is row delete entry in the sys.fn_dblog output. But getting data pages that were truncated from the transaction log presents a bit of an interesting problem. I will not go into depths of IAM(Index Allocation Map) and PFS (Page Free Space) pages but suffice to say that every IAM page has intervals that tell us which data pages are allocated for a table and which aren’t. If we deep dive into the sys.fn_dblog output we can see that once you truncate a table all the pages in all the intervals are deallocated and this is shown in the PFS page transaction log entry as deallocation of pages. For every 8 pages in the same extent there is one PFS page row in the transaction log. This row holds information about all 8 pages in CSV format which means we can get to this data with some parsing. A great help for parsing this stuff is Peter Debetta’s handy function dbo.HexStrToVarBin that converts hexadecimal string into a varbinary value that can be easily converted to integer tus giving us a readable page number. The shortened (columns removed) sys.fn_dblog output for a PFS page with CSV data for 1 extent (8 data pages) looks like this: -- [Page ID] is displayed in hex format. -- To convert it to readable int we'll use dbo.HexStrToVarBin function found at -- http://sqlblog.com/blogs/peter_debetta/archive/2007/03/09/t-sql-convert-hex-string-to-varbinary.aspx -- This function must be installed in the master databaseSELECT Context, AllocUnitName, [Page ID], DescriptionFROM sys.fn_dblog(NULL, NULL)WHERE [Current LSN] = '00000031:00000a46:007d' The pages at the end marked with 0x00—> are pages that are allocated in the extent but are not part of a table. We can inspect the raw content of each data page with a DBCC PAGE command: -- we need this trace flag to redirect output to the query window.DBCC TRACEON (3604); -- WITH TABLERESULTS gives us data in table format instead of message format-- we use format option 3 because it's the easiest to read and manipulate further onDBCC PAGE (AdventureWorks, 1, 613, 3) WITH TABLERESULTS   Since the DBACC PAGE output can be quite extensive I won’t put it here. You can see an example of it in the link at the beginning of this section. Getting deleted data back When we run a delete statement every row to be deleted is marked as a ghost record. A background process periodically cleans up those rows. A huge misconception is that the data is actually removed. It’s not. Only the pointers to the rows are removed while the data itself is still on the data page. We just can’t access it with normal means. To get those pointers back we need to restore every deleted page using the RESTORE PAGE option mentioned above. This restore must be done from a full backup, followed by any differential and log backups that you may have. This is necessary to bring the pages up to the same point in time as the rest of the data.  However the restore doesn’t magically connect the restored page back to the original table. It simply replaces the current page with the one from the backup. After the restore we use the DBCC PAGE to read data directly from all data pages and insert that data into a temporary table. To finish the RESTORE PAGE  procedure we finally have to take a tail log backup (simple backup of the transaction log) and restore it back. We can now insert data from the temporary table to our original table by hand. Getting truncated data back When we run a truncate the truncated data pages aren’t touched at all. Even the pointers to rows stay unchanged. Because of this getting data back from truncated table is simple. we just have to find out which pages belonged to our table and use DBCC PAGE to read data off of them. No restore is necessary. Turns out that the problems we had with finding the data pages is alleviated by not having to do a RESTORE PAGE procedure. Stop stalling… show me The Code! This is the code for getting back deleted and truncated data back. It’s commented in all the right places so don’t be afraid to take a closer look. Make sure you have a full backup before trying this out. Also I suggest that the last step of backing and restoring the tail log is performed by hand. USE masterGOIF OBJECT_ID('dbo.HexStrToVarBin') IS NULL RAISERROR ('No dbo.HexStrToVarBin installed. Go to http://sqlblog.com/blogs/peter_debetta/archive/2007/03/09/t-sql-convert-hex-string-to-varbinary.aspx and install it in master database' , 18, 1) SET NOCOUNT ONBEGIN TRY DECLARE @dbName VARCHAR(1000), @schemaName VARCHAR(1000), @tableName VARCHAR(1000), @fullBackupName VARCHAR(1000), @undeletedTableName VARCHAR(1000), @sql VARCHAR(MAX), @tableWasTruncated bit; /* THE FIRST LINE ARE OUR INPUT PARAMETERS In this case we're trying to recover Production.Product1 table in AdventureWorks database. My full backup of AdventureWorks database is at e:\AW.bak */ SELECT @dbName = 'AdventureWorks', @schemaName = 'Production', @tableName = 'Product1', @fullBackupName = 'e:\AW.bak', @undeletedTableName = '##' + @tableName + '_Undeleted', @tableWasTruncated = 0, -- copy the structure from original table to a temp table that we'll fill with restored data @sql = 'IF OBJECT_ID(''tempdb..' + @undeletedTableName + ''') IS NOT NULL DROP TABLE ' + @undeletedTableName + ' SELECT *' + ' INTO ' + @undeletedTableName + ' FROM [' + @dbName + '].[' + @schemaName + '].[' + @tableName + ']' + ' WHERE 1 = 0' EXEC (@sql) IF OBJECT_ID('tempdb..#PagesToRestore') IS NOT NULL DROP TABLE #PagesToRestore /* FIND DATA PAGES WE NEED TO RESTORE*/ CREATE TABLE #PagesToRestore ([ID] INT IDENTITY(1,1), [FileID] INT, [PageID] INT, [SQLtoExec] VARCHAR(1000)) -- DBCC PACE statement to run later RAISERROR ('Looking for deleted pages...', 10, 1) -- use T-LOG direct read to get deleted data pages INSERT INTO #PagesToRestore([FileID], [PageID], [SQLtoExec]) EXEC('USE [' + @dbName + '];SELECT FileID, PageID, ''DBCC TRACEON (3604); DBCC PAGE ([' + @dbName + '], '' + FileID + '', '' + PageID + '', 3) WITH TABLERESULTS'' as SQLToExecFROM (SELECT DISTINCT LEFT([Page ID], 4) AS FileID, CONVERT(VARCHAR(100), ' + 'CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING([Page ID], 6, 20)))) AS PageIDFROM sys.fn_dblog(NULL, NULL)WHERE AllocUnitName LIKE ''%' + @schemaName + '.' + @tableName + '%'' ' + 'AND Context IN (''LCX_MARK_AS_GHOST'', ''LCX_HEAP'') AND Operation in (''LOP_DELETE_ROWS''))t');SELECT *FROM #PagesToRestore -- if upper EXEC returns 0 rows it means the table was truncated so find truncated pages IF (SELECT COUNT(*) FROM #PagesToRestore) = 0 BEGIN RAISERROR ('No deleted pages found. Looking for truncated pages...', 10, 1) -- use T-LOG read to get truncated data pages INSERT INTO #PagesToRestore([FileID], [PageID], [SQLtoExec]) -- dark magic happens here -- because truncation simply deallocates pages we have to find out which pages were deallocated. -- we can find this out by looking at the PFS page row's Description column. -- for every deallocated extent the Description has a CSV of 8 pages in that extent. -- then it's just a matter of parsing it. -- we also remove the pages in the extent that weren't allocated to the table itself -- marked with '0x00-->00' EXEC ('USE [' + @dbName + '];DECLARE @truncatedPages TABLE(DeallocatedPages VARCHAR(8000), IsMultipleDeallocs BIT);INSERT INTO @truncatedPagesSELECT REPLACE(REPLACE(Description, ''Deallocated '', ''Y''), ''0x00-->00 '', ''N'') + '';'' AS DeallocatedPages, CHARINDEX('';'', Description) AS IsMultipleDeallocsFROM (SELECT DISTINCT LEFT([Page ID], 4) AS FileID, CONVERT(VARCHAR(100), CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING([Page ID], 6, 20)))) AS PageID, DescriptionFROM sys.fn_dblog(NULL, NULL)WHERE Context IN (''LCX_PFS'') AND Description LIKE ''Deallocated%'' AND AllocUnitName LIKE ''%' + @schemaName + '.' + @tableName + '%'') t;SELECT FileID, PageID , ''DBCC TRACEON (3604); DBCC PAGE ([' + @dbName + '], '' + FileID + '', '' + PageID + '', 3) WITH TABLERESULTS'' as SQLToExecFROM (SELECT LEFT(PageAndFile, 1) as WasPageAllocatedToTable , SUBSTRING(PageAndFile, 2, CHARINDEX('':'', PageAndFile) - 2 ) as FileID , CONVERT(VARCHAR(100), CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING(PageAndFile, CHARINDEX('':'', PageAndFile) + 1, LEN(PageAndFile))))) as PageIDFROM ( SELECT SUBSTRING(DeallocatedPages, delimPosStart, delimPosEnd - delimPosStart) as PageAndFile, IsMultipleDeallocs FROM ( SELECT *, CHARINDEX('';'', DeallocatedPages)*(N-1) + 1 AS delimPosStart, CHARINDEX('';'', DeallocatedPages)*N AS delimPosEnd FROM @truncatedPages t1 CROSS APPLY (SELECT TOP (case when t1.IsMultipleDeallocs = 1 then 8 else 1 end) ROW_NUMBER() OVER(ORDER BY number) as N FROM master..spt_values) t2 )t)t)tWHERE WasPageAllocatedToTable = ''Y''') SELECT @tableWasTruncated = 1 END DECLARE @lastID INT, @pagesCount INT SELECT @lastID = 1, @pagesCount = COUNT(*) FROM #PagesToRestore SELECT @sql = 'Number of pages to restore: ' + CONVERT(VARCHAR(10), @pagesCount) IF @pagesCount = 0 RAISERROR ('No data pages to restore.', 18, 1) ELSE RAISERROR (@sql, 10, 1) -- If the table was truncated we'll read the data directly from data pages without restoring from backup IF @tableWasTruncated = 0 BEGIN -- RESTORE DATA PAGES FROM FULL BACKUP IN BATCHES OF 200 WHILE @lastID <= @pagesCount BEGIN -- create CSV string of pages to restore SELECT @sql = STUFF((SELECT ',' + CONVERT(VARCHAR(100), FileID) + ':' + CONVERT(VARCHAR(100), PageID) FROM #PagesToRestore WHERE ID BETWEEN @lastID AND @lastID + 200 ORDER BY ID FOR XML PATH('')), 1, 1, '') SELECT @sql = 'RESTORE DATABASE [' + @dbName + '] PAGE = ''' + @sql + ''' FROM DISK = ''' + @fullBackupName + '''' RAISERROR ('Starting RESTORE command:' , 10, 1) WITH NOWAIT; RAISERROR (@sql , 10, 1) WITH NOWAIT; EXEC(@sql); RAISERROR ('Restore DONE' , 10, 1) WITH NOWAIT; SELECT @lastID = @lastID + 200 END /* If you have any differential or transaction log backups you should restore them here to bring the previously restored data pages up to date */ END DECLARE @dbccSinglePage TABLE ( [ParentObject] NVARCHAR(500), [Object] NVARCHAR(500), [Field] NVARCHAR(500), [VALUE] NVARCHAR(MAX) ) DECLARE @cols NVARCHAR(MAX), @paramDefinition NVARCHAR(500), @SQLtoExec VARCHAR(1000), @FileID VARCHAR(100), @PageID VARCHAR(100), @i INT = 1 -- Get deleted table columns from information_schema view -- Need sp_executeSQL because database name can't be passed in as variable SELECT @cols = 'select @cols = STUFF((SELECT '', ['' + COLUMN_NAME + '']''FROM ' + @dbName + '.INFORMATION_SCHEMA.COLUMNSWHERE TABLE_NAME = ''' + @tableName + ''' AND TABLE_SCHEMA = ''' + @schemaName + '''ORDER BY ORDINAL_POSITIONFOR XML PATH('''')), 1, 2, '''')', @paramDefinition = N'@cols nvarchar(max) OUTPUT' EXECUTE sp_executesql @cols, @paramDefinition, @cols = @cols OUTPUT -- Loop through all the restored data pages, -- read data from them and insert them into temp table -- which you can then insert into the orignial deleted table DECLARE dbccPageCursor CURSOR GLOBAL FORWARD_ONLY FOR SELECT [FileID], [PageID], [SQLtoExec] FROM #PagesToRestore ORDER BY [FileID], [PageID] OPEN dbccPageCursor; FETCH NEXT FROM dbccPageCursor INTO @FileID, @PageID, @SQLtoExec; WHILE @@FETCH_STATUS = 0 BEGIN RAISERROR ('---------------------------------------------', 10, 1) WITH NOWAIT; SELECT @sql = 'Loop iteration: ' + CONVERT(VARCHAR(10), @i); RAISERROR (@sql, 10, 1) WITH NOWAIT; SELECT @sql = 'Running: ' + @SQLtoExec RAISERROR (@sql, 10, 1) WITH NOWAIT; -- if something goes wrong with DBCC execution or data gathering, skip it but print error BEGIN TRY INSERT INTO @dbccSinglePage EXEC (@SQLtoExec) -- make the data insert magic happen here IF (SELECT CONVERT(BIGINT, [VALUE]) FROM @dbccSinglePage WHERE [Field] LIKE '%Metadata: ObjectId%') = OBJECT_ID('['+@dbName+'].['+@schemaName +'].['+@tableName+']') BEGIN DELETE @dbccSinglePage WHERE NOT ([ParentObject] LIKE 'Slot % Offset %' AND [Object] LIKE 'Slot % Column %') SELECT @sql = 'USE tempdb; ' + 'IF (OBJECTPROPERTY(object_id(''' + @undeletedTableName + '''), ''TableHasIdentity'') = 1) ' + 'SET IDENTITY_INSERT ' + @undeletedTableName + ' ON; ' + 'INSERT INTO ' + @undeletedTableName + '(' + @cols + ') ' + STUFF((SELECT ' UNION ALL SELECT ' + STUFF((SELECT ', ' + CASE WHEN VALUE = '[NULL]' THEN 'NULL' ELSE '''' + [VALUE] + '''' END FROM ( -- the unicorn help here to correctly set ordinal numbers of columns in a data page -- it's turning STRING order into INT order (1,10,11,2,21 into 1,2,..10,11...21) SELECT [ParentObject], [Object], Field, VALUE, RIGHT('00000' + O1, 6) AS ParentObjectOrder, RIGHT('00000' + REVERSE(LEFT(O2, CHARINDEX(' ', O2)-1)), 6) AS ObjectOrder FROM ( SELECT [ParentObject], [Object], Field, VALUE, REPLACE(LEFT([ParentObject], CHARINDEX('Offset', [ParentObject])-1), 'Slot ', '') AS O1, REVERSE(LEFT([Object], CHARINDEX('Offset ', [Object])-2)) AS O2 FROM @dbccSinglePage WHERE t.ParentObject = ParentObject )t)t ORDER BY ParentObjectOrder, ObjectOrder FOR XML PATH('')), 1, 2, '') FROM @dbccSinglePage t GROUP BY ParentObject FOR XML PATH('') ), 1, 11, '') + ';' RAISERROR (@sql, 10, 1) WITH NOWAIT; EXEC (@sql) END END TRY BEGIN CATCH SELECT @sql = 'ERROR!!!' + CHAR(10) + CHAR(13) + 'ErrorNumber: ' + ERROR_NUMBER() + '; ErrorMessage' + ERROR_MESSAGE() + CHAR(10) + CHAR(13) + 'FileID: ' + @FileID + '; PageID: ' + @PageID RAISERROR (@sql, 10, 1) WITH NOWAIT; END CATCH DELETE @dbccSinglePage SELECT @sql = 'Pages left to process: ' + CONVERT(VARCHAR(10), @pagesCount - @i) + CHAR(10) + CHAR(13) + CHAR(10) + CHAR(13) + CHAR(10) + CHAR(13), @i = @i+1 RAISERROR (@sql, 10, 1) WITH NOWAIT; FETCH NEXT FROM dbccPageCursor INTO @FileID, @PageID, @SQLtoExec; END CLOSE dbccPageCursor; DEALLOCATE dbccPageCursor; EXEC ('SELECT ''' + @undeletedTableName + ''' as TableName; SELECT * FROM ' + @undeletedTableName)END TRYBEGIN CATCH SELECT ERROR_NUMBER() AS ErrorNumber, ERROR_MESSAGE() AS ErrorMessage IF CURSOR_STATUS ('global', 'dbccPageCursor') >= 0 BEGIN CLOSE dbccPageCursor; DEALLOCATE dbccPageCursor; ENDEND CATCH-- if the table was deleted we need to finish the restore page sequenceIF @tableWasTruncated = 0BEGIN -- take a log tail backup and then restore it to complete page restore process DECLARE @currentDate VARCHAR(30) SELECT @currentDate = CONVERT(VARCHAR(30), GETDATE(), 112) RAISERROR ('Starting Log Tail backup to c:\Temp ...', 10, 1) WITH NOWAIT; PRINT ('BACKUP LOG [' + @dbName + '] TO DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') EXEC ('BACKUP LOG [' + @dbName + '] TO DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') RAISERROR ('Log Tail backup done.', 10, 1) WITH NOWAIT; RAISERROR ('Starting Log Tail restore from c:\Temp ...', 10, 1) WITH NOWAIT; PRINT ('RESTORE LOG [' + @dbName + '] FROM DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') EXEC ('RESTORE LOG [' + @dbName + '] FROM DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') RAISERROR ('Log Tail restore done.', 10, 1) WITH NOWAIT;END-- The last step is manual. Insert data from our temporary table to the original deleted table The misconception here is that you can do a single table restore properly in SQL Server. You can't. But with little experimentation you can get pretty close to it. One way to possible remove a dependency on a backup to retrieve deleted pages is to quickly run a similar script to the upper one that gets data directly from data pages while the rows are still marked as ghost records. It could be done if we could beat the ghost record cleanup task.

    Read the article

  • A call to PInvoke function '[...]' has unbalanced the stack

    - by Sanctus2099
    Hey I'm getting this weird error on some stuff I've been using for quite a while. It may be a new thing in Visual Studio 2010 but I'm not sure. I'm trying to call a unamanged function written in C++ from C#. From what I've read on the internet and the error message itself it's got something to do with the fact that the signature in my C# file is not the same as the one from C++ but I really can't see it. First of all this is my unamanged function below: TEngine GCreateEngine(int width,int height,int depth,int deviceType); And here is my function in C#: [DllImport("Engine.dll", EntryPoint = "GCreateEngine", CallingConvention = CallingConvention.StdCall)] public static extern IntPtr CreateEngine(int width,int height,int depth,int device); When I debug into C++ I see all arguments just fine so thus I can only think it's got something to do with transforming from TEngine (which is a pointer to a class named CEngine) to IntPtr. I've used this before in VS2008 with no problem. I hope my problem is clear enough for you guys to understand.

    Read the article

< Previous Page | 162 163 164 165 166 167 168 169 170 171 172 173  | Next Page >