Search Results

Search found 19992 results on 800 pages for 'font size'.

Page 167/800 | < Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >

  • Unable to boot Windows 7 after installing Ubuntu

    - by Devendra
    I have Windows 7 on my machine and then installed Ubuntu 12.04 using a live CD. I can see both Windows 7 and Ubuntu in the grub menu, but when I select Windows 7 it shows a black screen for about 2 seconds and the returns to the Grub menu. But if I select Ubuntu it's working fine. This is the contents of the boot-repair log: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v2.00) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos6)/boot/grub. sda1: __________________________________________________________________________ File system: ntfs Boot sector type: Grub2 (v1.99-2.00) Boot sector info: Grub2 (v2.00) is installed in the boot sector of sda1 and looks at sector 388911128 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos6)/boot/grub. No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /bootmgr /Boot/BCD /Windows/System32/winload.exe sda2: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda4: __________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: According to the info in the boot sector, sda5 starts at sector 2048. Operating System: Boot files: sda6: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 12.10 Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/i386-pc/core.img sda7: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 206,848 146,802,687 146,595,840 7 NTFS / exFAT / HPFS /dev/sda2 147,007,488 293,623,807 146,616,320 7 NTFS / exFAT / HPFS /dev/sda3 293,623,808 332,820,613 39,196,806 7 NTFS / exFAT / HPFS /dev/sda4 332,822,526 1,465,145,343 1,132,322,818 f W95 Extended (LBA) /dev/sda5 461,342,720 1,465,145,343 1,003,802,624 7 NTFS / exFAT / HPFS /dev/sda6 332,822,528 453,171,199 120,348,672 83 Linux /dev/sda7 453,173,248 461,338,623 8,165,376 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/sda1 F6AE2C13AE2BCB47 ntfs /dev/sda2 DC2273012272DFC6 ntfs /dev/sda3 1E76E43376E40D79 ntfs New Volume /dev/sda5 5ED60ACDD60AA57D ntfs /dev/sda6 9e70fd16-b48b-4f88-adcf-e443aef83124 ext4 /dev/sda7 52f3dd94-6be7-4a7b-a3ae-f43eb8810483 swap ================================ Mount points: ================================= Device Mount_Point Type Options /dev/sda6 / ext4 (rw,errors=remount-ro) =========================== sda6/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=auto load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_IN insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=10 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash $vt_handoff initrd /boot/initrd.img-3.5.0-17-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-9e70fd16-b48b-4f88-adcf-e443aef83124' { menuentry 'Ubuntu, with Linux 3.5.0-17-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-advanced-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-recovery-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry 'Windows 7 (loader) (on /dev/sda1)' --class windows --class os $menuentry_id_option 'osprober-chain-F6AE2C13AE2BCB47' { insmod part_msdos insmod ntfs set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 F6AE2C13AE2BCB47 else search --no-floppy --fs-uuid --set=root F6AE2C13AE2BCB47 fi chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda6/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> # / was on /dev/sda6 during installation UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 / ext4 errors=remount-ro 0 1 # swap was on /dev/sda7 during installation UUID=52f3dd94-6be7-4a7b-a3ae-f43eb8810483 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda6: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 162.831275940 = 174.838751232 boot/grub/grub.cfg 1 163.036647797 = 175.059267584 boot/initrd.img-3.5.0-17-generic 1 206.871749878 = 222.126850048 boot/vmlinuz-3.5.0-17-generic 1 163.036647797 = 175.059267584 initrd.img 1 163.036647797 = 175.059267584 initrd.img.old 1 206.871749878 = 222.126850048 vmlinuz 1 =============================== StdErr Messages: =============================== cat: write error: Broken pipe cat: write error: Broken pipe ADDITIONAL INFORMATION : =================== log of boot-repair 2012-12-11__00h59 =================== boot-repair version : 3.195~ppa28~quantal boot-sav version : 3.195~ppa28~quantal glade2script version : 3.2.2~ppa45~quantal boot-sav-extra version : 3.195~ppa28~quantal boot-repair is executed in installed-session (Ubuntu 12.10, quantal, Ubuntu, x86_64) CPU op-mode(s): 32-bit, 64-bit BOOT_IMAGE=/boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash vt.handoff=7 =================== os-prober: /dev/sda6:The OS now in use - Ubuntu 12.10 CurrentSession:linux /dev/sda1:Windows 7 (loader):Windows:chain =================== blkid: /dev/sda1: UUID="F6AE2C13AE2BCB47" TYPE="ntfs" /dev/sda2: UUID="DC2273012272DFC6" TYPE="ntfs" /dev/sda3: LABEL="New Volume" UUID="1E76E43376E40D79" TYPE="ntfs" /dev/sda5: UUID="5ED60ACDD60AA57D" TYPE="ntfs" /dev/sda6: UUID="9e70fd16-b48b-4f88-adcf-e443aef83124" TYPE="ext4" /dev/sda7: UUID="52f3dd94-6be7-4a7b-a3ae-f43eb8810483" TYPE="swap" 1 disks with OS, 2 OS : 1 Linux, 0 MacOS, 1 Windows, 0 unknown type OS. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== /etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 #GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== /etc/grub.d/ : drwxr-xr-x 2 root root 4096 Oct 17 20:29 grub.d total 72 -rwxr-xr-x 1 root root 7541 Oct 14 23:06 00_header -rwxr-xr-x 1 root root 5488 Oct 4 15:00 05_debian_theme -rwxr-xr-x 1 root root 10891 Oct 14 23:06 10_linux -rwxr-xr-x 1 root root 10258 Oct 14 23:06 20_linux_xen -rwxr-xr-x 1 root root 1688 Oct 11 19:40 20_memtest86+ -rwxr-xr-x 1 root root 10976 Oct 14 23:06 30_os-prober -rwxr-xr-x 1 root root 1426 Oct 14 23:06 30_uefi-firmware -rwxr-xr-x 1 root root 214 Oct 14 23:06 40_custom -rwxr-xr-x 1 root root 216 Oct 14 23:06 41_custom -rw-r--r-- 1 root root 483 Oct 14 23:06 README =================== UEFI/Legacy mode: This installed-session is not in EFI-mode. EFI in dmesg. Please report this message to [email protected] [ 0.000000] ACPI: UEFI 00000000bafe7000 0003E (v01 DELL QA09 00000002 PTL 00000002) [ 0.000000] ACPI: UEFI 00000000bafe6000 00042 (v01 PTL COMBUF 00000001 PTL 00000001) [ 0.000000] ACPI: UEFI 00000000bafe3000 00256 (v01 DELL QA09 00000002 PTL 00000002) SecureBoot disabled. =================== PARTITIONS & DISKS: sda6 : sda, not-sepboot, grubenv-ok grub2, grub-pc , update-grub, 64, with-boot, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, . sda1 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, haswinload, no-recov-nor-hid, bootmgr, is-winboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda1. sda2 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda2. sda3 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda3. sda5 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda5. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 2048 sectors * 512 bytes =================== parted -l: Model: ATA WDC WD7500BPKT-7 (scsi) Disk /dev/sda: 750GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags 1 106MB 75.2GB 75.1GB primary ntfs boot 2 75.3GB 150GB 75.1GB primary ntfs 3 150GB 170GB 20.1GB primary ntfs 4 170GB 750GB 580GB extended lba 6 170GB 232GB 61.6GB logical ext4 7 232GB 236GB 4181MB logical linux-swap(v1) 5 236GB 750GB 514GB logical ntfs =================== parted -lm: BYT; /dev/sda:750GB:scsi:512:4096:msdos:ATA WDC WD7500BPKT-7; 1:106MB:75.2GB:75.1GB:ntfs::boot; 2:75.3GB:150GB:75.1GB:ntfs::; 3:150GB:170GB:20.1GB:ntfs::; 4:170GB:750GB:580GB:::lba; 6:170GB:232GB:61.6GB:ext4::; 7:232GB:236GB:4181MB:linux-swap(v1)::; 5:236GB:750GB:514GB:ntfs::; =================== mount: /dev/sda6 on / type ext4 (rw,errors=remount-ro) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) gvfsd-fuse on /run/user/dev/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=dev) /dev/sda1 on /mnt/boot-sav/sda1 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda2 on /mnt/boot-sav/sda2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda3 on /mnt/boot-sav/sda3 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda5 on /mnt/boot-sav/sda5 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda3 sda4 sda5 sda6 sda7 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): alarm ashmem autofs binder block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fb1 fd full fuse hpet input kmsg kvm log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda3 sda4 sda5 sda6 sda7 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom v4l vga_arbiter vhost-net video0 zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /dev/sda6 ext4 57G 2.7G 51G 6% / udev devtmpfs 1.9G 12K 1.9G 1% /dev tmpfs tmpfs 770M 892K 769M 1% /run none tmpfs 5.0M 0 5.0M 0% /run/lock none tmpfs 1.9G 260K 1.9G 1% /run/shm none tmpfs 100M 44K 100M 1% /run/user /dev/sda1 fuseblk 70G 36G 35G 51% /mnt/boot-sav/sda1 /dev/sda2 fuseblk 70G 66G 4.8G 94% /mnt/boot-sav/sda2 /dev/sda3 fuseblk 19G 87M 19G 1% /mnt/boot-sav/sda3 /dev/sda5 fuseblk 479G 436G 44G 92% /mnt/boot-sav/sda5 =================== fdisk -l: Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x1dc69d0b Device Boot Start End Blocks Id System /dev/sda1 * 206848 146802687 73297920 7 HPFS/NTFS/exFAT /dev/sda2 147007488 293623807 73308160 7 HPFS/NTFS/exFAT /dev/sda3 293623808 332820613 19598403 7 HPFS/NTFS/exFAT /dev/sda4 332822526 1465145343 566161409 f W95 Ext'd (LBA) Partition 4 does not start on physical sector boundary. /dev/sda5 461342720 1465145343 501901312 7 HPFS/NTFS/exFAT /dev/sda6 332822528 453171199 60174336 83 Linux /dev/sda7 453173248 461338623 4082688 82 Linux swap / Solaris Partition table entries are not in disk order =================== Recommended repair Recommended-Repair This setting will reinstall the grub2 of sda6 into the MBR of sda. Additional repair will be performed: unhide-bootmenu-10s grub-install (GRUB) 2.00-7ubuntu11,grub-install (GRUB) 2. Reinstall the GRUB of sda6 into the MBR of sda Installation finished. No error reported. grub-install /dev/sda: exit code of grub-install /dev/sda:0 update-grub Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.5.0-17-generic Found initrd image: /boot/initrd.img-3.5.0-17-generic Found memtest86+ image: /boot/memtest86+.bin Found Windows 7 (loader) on /dev/sda1 Unhide GRUB boot menu in sda6/boot/grub/grub.cfg Boot successfully repaired. You can now reboot your computer. The boot files of [The OS now in use - Ubuntu 12.10] are far from the start of the disk. Your BIOS may not detect them. You may want to retry after creating a /boot partition (EXT4, >200MB, start of the disk). This can be performed via tools such as gParted. Then select this partition via the [Separate /boot partition:] option of [Boot Repair]. (https://help.ubuntu.com/community/BootPartition)

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • the rmagick manual is quite vague. can you help me by changing a pictures filetype and size?

    - by Joern Akkermann
    Hi, it's about RMagick with Ruby On Rails. I do the following: image = params[:image] # params[:image] is the image from the file-form. name = image.original_filename.scan(/[^\/\\]+/).last name = dir + t.day.to_s + t.month.to_s + t.year.to_s + t.hour.to_s + t.min.to_s + t.sec.to_s + name f = File.new(name, "wb") f.write image f.close image = Magick::Image.read(name) image = image.resize_to_fit(200, 250) f = File.new(name, "wb") f.write image.to_blob f.close Do I really need to first save and then change it? And how about changing not only the size, changing also the Filetype? I want a JPG with 60% quality. Please help me. Yours, Joern.

    Read the article

  • Reconstructing the disk order in RAID 6 with 7 disks

    - by rkotulla
    a little background to this question first: I am running a RAID-6 within a QNAP TS869L external RAID/NAS system. I started with 5 disks of 3 TB each back in the day, and later added another 2 disks of 3TB to the RAID. The QNAP internals handled the growing and re-syncing etc, and everything seemd to be perfectly fine. About 2 weeks ago, I had one of the disks (disk #5, disk #2 has gone bad in the mean time) fail, and somehow (I have no idea why), also disks 1 and 2 got kicked out of the array. I replaced disk #5, but the RAID didn't start working again. After some calls to QNAP technical support, they re-created the array (using mdadm --create --force --assume-clean ...), but the resulting array couldn't find a filesystem, and I was kindly referred to contact a data recovery company that I can't afford. After some digging through old log files, resetting the disk to factory default, etc, I found a few errors that were made during this re-create - I wish I still had some of the original metadata, but unfortunately i don't (I definitely learned that lesson). I'm currently at the point where I know the correct chunk-size (64K), metadata-version (1.0; factory default was 0.9, but from what I read 0.9 doesn't handle disks over 2 TB, mine are 3 TB), and I now find the ext4 filesystem that should be on the disks. Only variable left to determine is the right disk order! I started using the description found in answer #4 of "Recover RAID 5 data after created new array instead of re-using" but am a little confused on what the order should be for a proper RAID-6. RAID-5 is pretty well documented in a number of places, but RAID-6 much less so. Also, does the layout, i.e. distribution of parity and data chunks across the disks, change after the growing of the array from 5 to 7 disks, or does the re-sync re-organize them in such a way a native 7-disk RAID-6 would have been? Thanks some more mdadm output that might be helpful: mdadm version: [~] # mdadm --version mdadm - v2.6.3 - 20th August 2007 mdadm details from one of the disks in the array: [~] # mdadm --examine /dev/sda3 /dev/sda3: Magic : a92b4efc Version : 1.0 Feature Map : 0x0 Array UUID : 1c1614a5:e3be2fbb:4af01271:947fe3aa Name : 0 Creation Time : Tue Jun 10 10:27:58 2014 Raid Level : raid6 Raid Devices : 7 Used Dev Size : 5857395112 (2793.02 GiB 2998.99 GB) Array Size : 29286975360 (13965.12 GiB 14994.93 GB) Used Size : 5857395072 (2793.02 GiB 2998.99 GB) Super Offset : 5857395368 sectors State : clean Device UUID : 7c572d8f:20c12727:7e88c888:c2c357af Update Time : Tue Jun 10 13:01:06 2014 Checksum : d275c82d - correct Events : 7036 Chunk Size : 64K Array Slot : 0 (0, 1, failed, 3, failed, 5, 6) Array State : Uu_u_uu 2 failed mdadm details for the array in the current disk-order (based on my best guess reconstructed from old log-files) [~] # mdadm --detail /dev/md0 /dev/md0: Version : 01.00.03 Creation Time : Tue Jun 10 10:27:58 2014 Raid Level : raid6 Array Size : 14643487680 (13965.12 GiB 14994.93 GB) Used Dev Size : 2928697536 (2793.02 GiB 2998.99 GB) Raid Devices : 7 Total Devices : 5 Preferred Minor : 0 Persistence : Superblock is persistent Update Time : Tue Jun 10 13:01:06 2014 State : clean, degraded Active Devices : 5 Working Devices : 5 Failed Devices : 0 Spare Devices : 0 Chunk Size : 64K Name : 0 UUID : 1c1614a5:e3be2fbb:4af01271:947fe3aa Events : 7036 Number Major Minor RaidDevice State 0 8 3 0 active sync /dev/sda3 1 8 19 1 active sync /dev/sdb3 2 0 0 2 removed 3 8 51 3 active sync /dev/sdd3 4 0 0 4 removed 5 8 99 5 active sync /dev/sdg3 6 8 83 6 active sync /dev/sdf3 output from /proc/mdstat (md8, md9, and md13 are internally used RAIDs holding swap, etc; the one I'm after is md0) [~] # more /proc/mdstat Personalities : [linear] [raid0] [raid1] [raid10] [raid6] [raid5] [raid4] [multipath] md0 : active raid6 sdf3[6] sdg3[5] sdd3[3] sdb3[1] sda3[0] 14643487680 blocks super 1.0 level 6, 64k chunk, algorithm 2 [7/5] [UU_U_UU] md8 : active raid1 sdg2[2](S) sdf2[3](S) sdd2[4](S) sdc2[5](S) sdb2[6](S) sda2[1] sde2[0] 530048 blocks [2/2] [UU] md13 : active raid1 sdg4[3] sdf4[4] sde4[5] sdd4[6] sdc4[2] sdb4[1] sda4[0] 458880 blocks [8/7] [UUUUUUU_] bitmap: 21/57 pages [84KB], 4KB chunk md9 : active raid1 sdg1[6] sdf1[5] sde1[4] sdd1[3] sdc1[2] sda1[0] sdb1[1] 530048 blocks [8/7] [UUUUUUU_] bitmap: 37/65 pages [148KB], 4KB chunk unused devices: <none>

    Read the article

  • linux raid 1: right after replacing and syncing one drive, the other disk fails - understanding what is going on with mdstat/mdadm

    - by devicerandom
    We have an old RAID 1 Linux server (Ubuntu Lucid 10.04), with four partitions. A few days ago /dev/sdb failed, and today we noticed /dev/sda had pre-failure ominous SMART signs (~4000 reallocated sector count). We replaced /dev/sdb this morning and rebuilt the RAID on the new drive, following this guide: http://www.howtoforge.com/replacing_hard_disks_in_a_raid1_array Everything went smooth until the very end. When it looked like it was finishing to synchronize the last partition, the other old one failed. At this point I am very unsure of the state of the system. Everything seems working and the files seem to be all accessible, just as if it synchronized everything, but I'm new to RAID and I'm worried about what is going on. The /proc/mdstat output is: Personalities : [raid1] [linear] [multipath] [raid0] [raid6] [raid5] [raid4] [raid10] md3 : active raid1 sdb4[2](S) sda4[0] 478713792 blocks [2/1] [U_] md2 : active raid1 sdb3[1] sda3[2](F) 244140992 blocks [2/1] [_U] md1 : active raid1 sdb2[1] sda2[2](F) 244140992 blocks [2/1] [_U] md0 : active raid1 sdb1[1] sda1[2](F) 9764800 blocks [2/1] [_U] unused devices: <none> The order of [_U] vs [U_]. Why aren't they consistent along all the array? Is the first U /dev/sda or /dev/sdb? (I tried looking on the web for this trivial information but I found no explicit indication) If I read correctly for md0, [_U] should be /dev/sda1 (down) and /dev/sdb1 (up). But if /dev/sda has failed, how can it be the opposite for md3 ? I understand /dev/sdb4 is now spare because probably it failed to synchronize it 100%, but why does it show /dev/sda4 as up? Shouldn't it be [__]? Or [_U] anyway? The /dev/sda drive now cannot even be accessed by SMART anymore apparently, so I wouldn't expect it to be up. What is wrong with my interpretation of the output? I attach also the outputs of mdadm --detail for the four partitions: /dev/md0: Version : 00.90 Creation Time : Fri Jan 21 18:43:07 2011 Raid Level : raid1 Array Size : 9764800 (9.31 GiB 10.00 GB) Used Dev Size : 9764800 (9.31 GiB 10.00 GB) Raid Devices : 2 Total Devices : 2 Preferred Minor : 0 Persistence : Superblock is persistent Update Time : Tue Nov 5 17:27:33 2013 State : clean, degraded Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 UUID : a3b4dbbd:859bf7f2:bde36644:fcef85e2 Events : 0.7704 Number Major Minor RaidDevice State 0 0 0 0 removed 1 8 17 1 active sync /dev/sdb1 2 8 1 - faulty spare /dev/sda1 /dev/md1: Version : 00.90 Creation Time : Fri Jan 21 18:43:15 2011 Raid Level : raid1 Array Size : 244140992 (232.83 GiB 250.00 GB) Used Dev Size : 244140992 (232.83 GiB 250.00 GB) Raid Devices : 2 Total Devices : 2 Preferred Minor : 1 Persistence : Superblock is persistent Update Time : Tue Nov 5 17:39:06 2013 State : clean, degraded Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 UUID : 8bcd5765:90dc93d5:cc70849c:224ced45 Events : 0.1508280 Number Major Minor RaidDevice State 0 0 0 0 removed 1 8 18 1 active sync /dev/sdb2 2 8 2 - faulty spare /dev/sda2 /dev/md2: Version : 00.90 Creation Time : Fri Jan 21 18:43:19 2011 Raid Level : raid1 Array Size : 244140992 (232.83 GiB 250.00 GB) Used Dev Size : 244140992 (232.83 GiB 250.00 GB) Raid Devices : 2 Total Devices : 2 Preferred Minor : 2 Persistence : Superblock is persistent Update Time : Tue Nov 5 17:46:44 2013 State : clean, degraded Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 UUID : 2885668b:881cafed:b8275ae8:16bc7171 Events : 0.2289636 Number Major Minor RaidDevice State 0 0 0 0 removed 1 8 19 1 active sync /dev/sdb3 2 8 3 - faulty spare /dev/sda3 /dev/md3: Version : 00.90 Creation Time : Fri Jan 21 18:43:22 2011 Raid Level : raid1 Array Size : 478713792 (456.54 GiB 490.20 GB) Used Dev Size : 478713792 (456.54 GiB 490.20 GB) Raid Devices : 2 Total Devices : 2 Preferred Minor : 3 Persistence : Superblock is persistent Update Time : Tue Nov 5 17:19:20 2013 State : clean, degraded Active Devices : 1 Working Devices : 2 Failed Devices : 0 Spare Devices : 1 Number Major Minor RaidDevice State 0 8 4 0 active sync /dev/sda4 1 0 0 1 removed 2 8 20 - spare /dev/sdb4 The active sync on /dev/sda4 baffles me. I am worried because if tomorrow morning I have to replace /dev/sda, I want to be sure what should I sync with what and what is going on. I am also quite baffled by the fact /dev/sda decided to fail exactly when the raid finished resyncing. I'd like to understand what is really happening. Thanks a lot for your patience and help. Massimo

    Read the article

  • Hard drive after PCB swap strange stuff

    - by ramyy
    I’ve done a PCB swap to my HDD. The HDD model is: WD6400AAKS-00A7B2. The original PCB PN matches the new one (first three letter groups), though the cache mismatches (16MB original, 8MB new). The Hardware store that made the swap told me it was hard to do the swap, they have done firmware adaptation. I can see that this firmware version does not match the original, (01.03B01 original, 05.04E05 new). Still I can see that the serial number and model of the drive is correct, the hard drive appeared normal in the BIOS, all the partitions show and everything appears normal. I have encountered three things though, I have left the drive non operated for 2-3 weeks after the swap to avoid corrupting the data or anything else the new PCB might cause, until I buy a new drive and backup the data. I got a drive, and when I powered the old drive manually (I have a laptop, I use a normal desktop power supply and a USB/SATA connector), I heard the motor start and I could hear ticking as if the motor’s somehow struggling to start, and then the motor sound starts again then the ticking, and so on.. I tried powering again it happened again. The third time it started normally and I could see everything normally. I took the chance and copied all the data over to the new drive. When I was done, I powered off the drive (after more than 25 hours of continuous operation), tried to power it up again and it did so normally, and so are the times I powered it up later; but I got very suspicious now. What could be the problem here? And what happened new, it used to power normally after the swap directly? The second thing that happened is that I found size differences with some files; some include movies, songs, (.iso) files for games, and programs. I could find the size is the same, but size on disk is a little more on the new drive for these files. . I’ve tried some of those files (with size differences) they worked fine. They are not too much but still make you suspicious of the integrity of the data copied; one cannot try if all files are working for about (580 GB) worth of data. I tried copying these files on the same partition they exist of the old drive; they are the same in size as when copied to the new drive (allocation unit size not the issue). I took an image of a partition (sector by sector including empty ones) and when I explore it, these file sizes are equal to the original (old drive); I copy them anywhere else their size on disk, increases, i.e becomes equal to the ones I copy from the old drive itself anywhere. Why the size difference and can one trust the integrity of the data?? The third thing is that when I connect my new external USB HDD, the partitions of the old HDD unmount and then mount again. Connected are: (USB mouse + Old HDD) then external HDD. Why that happens?? Considering the following: I compared the SMART reports from after the swap directly and after the copying, no error readings or reallocated sectors where reported. Here they are: http://www.image-share.com/ijpg-1939-219.html I later ran both WD data life guard tests and they came out passed. I’m worried for this drive since I must be sure the data is fine and safe on the new one, and I will consider it backup for the new one, since you can’t trust anything anymore. I hope you can forgive me for the length of the post, but couldn’t ignore any of the details, this hard drive contains very important data to me and I have to deal with the situation with great care.

    Read the article

  • mysterical error

    - by Görkem Buzcu
    i get "customer_service_simulator.exe stopped" error, but i dont know why? this is my c programming project and i have limited time left before deadline. the code is: #include <stdio.h> #include <stdlib.h> #include<time.h> #define FALSE 0 #define TRUE 1 /*A Node declaration to store a value, pointer to the next node and a priority value*/ struct Node { int priority; //arrival time int val; //type int wait_time; int departure_time; struct Node *next; }; Queue Record that will store the following: size: total number of elements stored in the list front: it shows the front node of the queue (front of the queue) rear: it shows the rare node of the queue (rear of the queue) availability: availabity of the teller struct QueueRecord { struct Node *front; struct Node *rear; int size; int availability; }; typedef struct Node *niyazi; typedef struct QueueRecord *Queue; Queue CreateQueue(int); void MakeEmptyQueue(Queue); void enqueue(Queue, int, int); int QueueSize(Queue); int FrontOfQueue(Queue); int RearOfQueue(Queue); niyazi dequeue(Queue); int IsFullQueue(Queue); int IsEmptyQueue(Queue); void DisplayQueue(Queue); void sorteddequeue(Queue); void sortedenqueue(Queue, int, int); void tellerzfunctionz(Queue *, Queue, int, int); int main() { int system_clock=0; Queue waitqueue; int exit, val, priority, customers, tellers, avg_serv_time, sim_time,counter; char command; waitqueue = CreateQueue(0); srand(time(NULL)); fflush(stdin); printf("Enter number of customers, number of tellers, average service time, simulation time\n:"); scanf("%d%c %d%c %d%c %d",&customers, &command,&tellers,&command,&avg_serv_time,&command,&sim_time); fflush(stdin); Queue tellerarray[tellers]; for(counter=0;counter<tellers;counter++){ tellerarray[counter]=CreateQueue(0); //burada teller sayisi kadar queue yaratiyorum } for(counter=0;counter<customers;counter++){ priority=1+(int)rand()%sim_time; //this will generate the arrival time sortedenqueue(waitqueue,1,priority); //here i put the customers in the waiting queue } tellerzfunctionz(tellerarray,waitqueue,tellers,customers); DisplayQueue(waitqueue); DisplayQueue(tellerarray[0]); DisplayQueue(tellerarray[1]); // waitqueue-> printf("\n\n"); system("PAUSE"); return 0; } /*This function initialises the queue*/ Queue CreateQueue(int maxElements) { Queue q; q = (struct QueueRecord *) malloc(sizeof(struct QueueRecord)); if (q == NULL) printf("Out of memory space\n"); else MakeEmptyQueue(q); return q; } /*This function sets the queue size to 0, and creates a dummy element and sets the front and rear point to this dummy element*/ void MakeEmptyQueue(Queue q) { q->size = 0; q->availability=0; q->front = (struct Node *) malloc(sizeof(struct Node)); if (q->front == NULL) printf("Out of memory space\n"); else{ q->front->next = NULL; q->rear = q->front; } } /*Shows if the queue is empty*/ int IsEmptyQueue(Queue q) { return (q->size == 0); } /*Returns the queue size*/ int QueueSize(Queue q) { return (q->size); } /*Shows the queue is full or not*/ int IsFullQueue(Queue q) { return FALSE; } /*Returns the value stored in the front of the queue*/ int FrontOfQueue(Queue q) { if (!IsEmptyQueue(q)) return q->front->next->val; else { printf("The queue is empty\n"); return -1; } } /*Returns the value stored in the rear of the queue*/ int RearOfQueue(Queue q) { if (!IsEmptyQueue(q)) return q->rear->val; else { printf("The queue is empty\n"); return -1; } } /*Displays the content of the queue*/ void DisplayQueue(Queue q) { struct Node *pos; pos=q->front->next; printf("Queue content:\n"); printf("-->Priority Value\n"); while (pos != NULL) { printf("--> %d\t %d\n", pos->priority, pos->val); pos = pos->next; } } void enqueue(Queue q, int element, int priority){ if(IsFullQueue(q)){ printf("Error queue is full"); } else{ q->rear->next=(struct Node *)malloc(sizeof(struct Node)); q->rear=q->rear->next; q->rear->next=NULL; q->rear->val=element; q->rear->priority=priority; q->size++; } } void sortedenqueue(Queue q, int val, int priority) { struct Node *insert,*temp; insert=(struct Node *)malloc(sizeof(struct Node)); insert->val=val; insert->priority=priority; temp=q->front; if(q->size==0){ enqueue(q, val, priority); } else{ while(temp->next!=NULL && temp->next->priority<insert->priority){ temp=temp->next; } //printf("%d",temp->priority); insert->next=temp->next; temp->next=insert; q->size++; if(insert->next==NULL){ q->rear=insert; } } } niyazi dequeue(Queue q) { niyazi del; niyazi deli; del=(niyazi)malloc(sizeof(struct Node)); deli=(niyazi)malloc(sizeof(struct Node)); if(IsEmptyQueue(q)){ printf("Queue is empty!"); return NULL; } else { del=q->front->next; q->front->next=del->next; deli->val=del->val; deli->priority=del->priority; free(del); q->size--; return deli; } } void sorteddequeue(Queue q) { struct Node *temp; struct Node *min; temp=q->front->next; min=q->front; int i; for(i=1;i<q->size;i++) { if(temp->next->priority<min->next->priority) { min=temp; } temp=temp->next; } temp=min->next; min->next=min->next->next; free(temp); if(min->next==NULL){ q->rear=min; } q->size--; } void tellerzfunctionz(Queue *a, Queue b, int c, int d){ int i; int value=0; int priority; niyazi temp; temp=(niyazi)malloc(sizeof(struct Node)); if(c==1){ for(i=0;i<d;i++){ temp=dequeue(b); sortedenqueue((*(a)),temp->val,temp->priority); } } else{ for(i=0;i<d;i++){ while(b->front->next->val==1){ if((*(a+value))->availability==1){ temp=dequeue(b); sortedenqueue((*(a+value)),temp->val,temp->priority); (*(a+value))->rear->val=2; } else{ value++; } } } } } //end of the program

    Read the article

  • Why is Postfix trying to connect to other machines SMTP port 25?

    - by TryTryAgain
    Jul 5 11:09:25 relay postfix/smtp[3084]: connect to ab.xyz.com[10.41.0.101]:25: Connection refused Jul 5 11:09:25 relay postfix/smtp[3087]: connect to ab.xyz.com[10.41.0.247]:25: Connection refused Jul 5 11:09:25 relay postfix/smtp[3088]: connect to ab.xyz.com[10.41.0.101]:25: Connection refused Jul 5 11:09:25 relay postfix/smtp[3084]: connect to ab.xyz.com[10.41.0.247]:25: Connection refused Jul 5 11:09:25 relay postfix/smtp[3087]: connect to ab.xyz.com[10.41.0.110]:25: Connection refused Jul 5 11:09:25 relay postfix/smtp[3088]: connect to ab.xyz.com[10.41.0.110]:25: Connection refused Jul 5 11:09:25 relay postfix/smtp[3084]: connect to ab.xyz.com[10.41.0.102]:25: Connection refused Jul 5 11:09:30 relay postfix/smtp[3085]: connect to ab.xyz.com[10.41.0.102]:25: Connection refused Jul 5 11:09:30 relay postfix/smtp[3086]: connect to ab.xyz.com[10.41.0.247]:25: Connection refused Jul 5 11:09:30 relay postfix/smtp[3086]: connect to ab.xyz.com[10.41.0.102]:25: Connection refused Jul 5 11:09:55 relay postfix/smtp[3087]: connect to ab.xyz.com[10.40.40.130]:25: Connection timed out Jul 5 11:09:55 relay postfix/smtp[3084]: connect to ab.xyz.com[10.40.40.130]:25: Connection timed out Jul 5 11:09:55 relay postfix/smtp[3088]: connect to ab.xyz.com[10.40.40.130]:25: Connection timed out Jul 5 11:09:55 relay postfix/smtp[3087]: connect to ab.xyz.com[10.41.0.135]:25: Connection refused Jul 5 11:09:55 relay postfix/smtp[3084]: connect to ab.xyz.com[10.41.0.110]:25: Connection refused Jul 5 11:09:55 relay postfix/smtp[3088]: connect to ab.xyz.com[10.41.0.247]:25: Connection refused Is this a DNS thing, doubtful as I've changed from our local DNS to Google's..still Postfix will occasionally try and connect to ab.xyz.com from a variety of addresses that may or may not have port 25 open and act as mail servers to begin with. Why is Postfix attempting to connect to other machines as seen in the log? Mail is being sent properly, other than that, it appears all is good. Occasionally I'll also see: relay postfix/error[3090]: 3F1AB42132: to=, relay=none, delay=32754, delays=32724/30/0/0, dsn=4.4.1, status=deferred (delivery temporarily suspended: connect to ab.xyz.com[10.41.0.102]:25: Connection refused) I have Postfix setup with very little restrictions: mynetworks = 127.0.0.0/8, 10.0.0.0/8 only. Like I said it appears all mail is getting passed through, but I hate seeing errors and it is confusing me as to why it would be attempting to connect to other machines as seen in the log. Some Output of cat /var/log/mail.log|grep 3F1AB42132 Jul 5 02:04:01 relay postfix/smtpd[1653]: 3F1AB42132: client=unknown[10.41.0.109] Jul 5 02:04:01 relay postfix/cleanup[1655]: 3F1AB42132: message-id= Jul 5 02:04:01 relay postfix/qmgr[1588]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 02:04:31 relay postfix/smtp[1634]: 3F1AB42132: to=, relay=none, delay=30, delays=0.02/0/30/0, dsn=4.4.1, status=deferred (connect to ab.xyz.com[10.41.0.110]:25: Connection refused) Jul 5 02:13:58 relay postfix/qmgr[1588]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 02:14:28 relay postfix/smtp[1681]: 3F1AB42132: to=, relay=none, delay=628, delays=598/0.01/30/0, dsn=4.4.1, status=deferred (connect to ab.xyz.com[10.41.0.247]:25: Connection refused) Jul 5 02:28:58 relay postfix/qmgr[1588]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 02:29:28 relay postfix/smtp[1684]: 3F1AB42132: to=, relay=none, delay=1527, delays=1497/0/30/0, dsn=4.4.1, status=deferred (connect to ab.xyz.com[10.41.0.135]:25: Connection refused) Jul 5 02:58:58 relay postfix/qmgr[1588]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 02:59:28 relay postfix/smtp[1739]: 3F1AB42132: to=, relay=none, delay=3327, delays=3297/0/30/0, dsn=4.4.1, status=deferred (connect to ab.xyz.com[10.40.40.130]:25: Connection timed out) Jul 5 03:58:58 relay postfix/qmgr[1588]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 03:59:28 relay postfix/smtp[1839]: 3F1AB42132: to=, relay=none, delay=6928, delays=6897/0.03/30/0, dsn=4.4.1, status=deferred (connect to ab.xyz.com[10.41.0.101]:25: Connection refused) Jul 5 04:11:03 relay postfix/qmgr[2039]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 04:11:33 relay postfix/error[2093]: 3F1AB42132: to=, relay=none, delay=7653, delays=7622/30/0/0, dsn=4.4.1, status=deferred (delivery temporarily suspended: connect to ab.xyz.com[10.41.0.101]:25: Connection refused) Jul 5 05:21:03 relay postfix/qmgr[2039]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 05:21:33 relay postfix/error[2217]: 3F1AB42132: to=, relay=none, delay=11853, delays=11822/30/0/0, dsn=4.4.1, status=deferred (delivery temporarily suspended: connect to ab.xyz.com[10.41.0.101]:25: Connection refused) Jul 5 06:29:25 relay postfix/qmgr[2420]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 06:29:55 relay postfix/error[2428]: 3F1AB42132: to=, relay=none, delay=15954, delays=15924/30/0/0.08, dsn=4.4.1, status=deferred (delivery temporarily suspended: connect to ab.xyz.com[10.41.0.101]:25: Connection refused) Jul 5 07:39:24 relay postfix/qmgr[2885]: 3F1AB42132: from=, size=3404, nrcpt=1 (queue active) Jul 5 07:39:54 relay postfix/error[2936]: 3F1AB42132: to=, relay=none, delay=20153, delays=20123/30/0/0, dsn=4.4.1, status=deferred (delivery temporarily suspended: connect to ab.xyz.com[10.40.40.130]:25: Connection timed out)

    Read the article

  • lxc containers hangs after upgrade to 13.10

    - by doug123
    I have 3 lxc containers. They were all working fine on 12.10 and I upgraded the containers with do-release-upgrade on the containers to 13.04 and 13.10 and that worked great. Then I upgraded the host to 13.04 and then 13.10 and now the 3 containers hang with this: >lxc-start -n as1 -l DEBUG -o $(tty) lxc-start 1383145786.513 INFO lxc_start_ui - using rcfile /var/lib/lxc/as1/config lxc-start 1383145786.513 WARN lxc_log - lxc_log_init called with log already initialized lxc-start 1383145786.513 INFO lxc_apparmor - aa_enabled set to 1 lxc-start 1383145786.514 DEBUG lxc_conf - allocated pty '/dev/pts/2' (5/6) lxc-start 1383145786.514 DEBUG lxc_conf - allocated pty '/dev/pts/13' (7/8) lxc-start 1383145786.514 DEBUG lxc_conf - allocated pty '/dev/pts/14' (9/10) lxc-start 1383145786.514 DEBUG lxc_conf - allocated pty '/dev/pts/15' (11/12) lxc-start 1383145786.514 DEBUG lxc_conf - allocated pty '/dev/pts/17' (13/14) lxc-start 1383145786.514 DEBUG lxc_conf - allocated pty '/dev/pts/18' (15/16) lxc-start 1383145786.514 DEBUG lxc_conf - allocated pty '/dev/pts/19' (17/18) lxc-start 1383145786.514 DEBUG lxc_conf - allocated pty '/dev/pts/20' (19/20) lxc-start 1383145786.514 INFO lxc_conf - tty's configured lxc-start 1383145786.514 DEBUG lxc_start - sigchild handler set lxc-start 1383145786.514 DEBUG lxc_console - opening /dev/tty for console peer lxc-start 1383145786.514 DEBUG lxc_console - using '/dev/tty' as console lxc-start 1383145786.514 DEBUG lxc_console - 6242 got SIGWINCH fd 25 lxc-start 1383145786.514 DEBUG lxc_console - set winsz dstfd:22 cols:177 rows:53 lxc-start 1383145786.514 INFO lxc_start - 'as1' is initialized lxc-start 1383145786.522 DEBUG lxc_start - Not dropping cap_sys_boot or watching utmp lxc-start 1383145786.524 DEBUG lxc_conf - mac address of host interface 'vethB4L35W' changed to private fe:7c:96:a0:ae:29 lxc-start 1383145786.525 DEBUG lxc_conf - instanciated veth 'vethB4L35W/vethVC61K2', index is '26' lxc-start 1383145786.529 DEBUG lxc_cgroup - cgroup 'memory.limit_in_bytes' set to '20G' lxc-start 1383145786.529 DEBUG lxc_cgroup - cgroup 'cpuset.cpus' set to '12-23' lxc-start 1383145786.529 INFO lxc_cgroup - cgroup has been setup lxc-start 1383145786.555 DEBUG lxc_conf - move 'eth0' to '6249' lxc-start 1383145786.555 INFO lxc_conf - 'as1' hostname has been setup lxc-start 1383145786.575 DEBUG lxc_conf - 'eth0' has been setup lxc-start 1383145786.575 INFO lxc_conf - network has been setup lxc-start 1383145786.575 INFO lxc_conf - looking at .44 42 252:0 / / rw,relatime - ext4 /dev/mapper/limitorderbook1-root rw,errors=remount-ro,data=ordered . lxc-start 1383145786.575 INFO lxc_conf - now p is . /. lxc-start 1383145786.575 INFO lxc_conf - looking at .52 44 0:5 / /dev rw,relatime - devtmpfs udev rw,size=32961632k,nr_inodes=8240408,mode=755 . lxc-start 1383145786.575 INFO lxc_conf - now p is . /dev. lxc-start 1383145786.575 INFO lxc_conf - looking at .61 52 0:11 / /dev/pts rw,nosuid,noexec,relatime - devpts devpts rw,mode=600,ptmxmode=000 . lxc-start 1383145786.575 INFO lxc_conf - now p is . /dev/pts. lxc-start 1383145786.575 INFO lxc_conf - looking at .68 44 0:15 / /run rw,nosuid,noexec,relatime - tmpfs tmpfs rw,size=6594456k,mode=755 . lxc-start 1383145786.575 INFO lxc_conf - now p is . /run. lxc-start 1383145786.575 INFO lxc_conf - looking at .69 68 0:18 / /run/lock rw,nosuid,nodev,noexec,relatime - tmpfs none rw,size=5120k . lxc-start 1383145786.575 INFO lxc_conf - now p is . /run/lock. lxc-start 1383145786.575 INFO lxc_conf - looking at .72 68 0:19 / /run/shm rw,nosuid,nodev,relatime - tmpfs none rw . lxc-start 1383145786.575 INFO lxc_conf - now p is . /run/shm. lxc-start 1383145786.575 INFO lxc_conf - looking at .73 68 0:21 / /run/user rw,nosuid,nodev,noexec,relatime - tmpfs none rw,size=102400k,mode=755 . lxc-start 1383145786.575 INFO lxc_conf - now p is . /run/user. lxc-start 1383145786.575 INFO lxc_conf - looking at .76 44 0:14 / /sys rw,nosuid,nodev,noexec,relatime - sysfs sysfs rw . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys. lxc-start 1383145786.575 INFO lxc_conf - looking at .77 76 0:16 / /sys/fs/cgroup rw,relatime - tmpfs none rw,size=4k,mode=755 . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup. lxc-start 1383145786.575 INFO lxc_conf - looking at .78 77 0:20 / /sys/fs/cgroup/cpuset rw,relatime - cgroup cgroup rw,cpuset,clone_children . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/cpuset. lxc-start 1383145786.575 INFO lxc_conf - looking at .79 77 0:23 / /sys/fs/cgroup/cpu rw,relatime - cgroup cgroup rw,cpu . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/cpu. lxc-start 1383145786.575 INFO lxc_conf - looking at .80 77 0:24 / /sys/fs/cgroup/cpuacct rw,relatime - cgroup cgroup rw,cpuacct . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/cpuacct. lxc-start 1383145786.575 INFO lxc_conf - looking at .81 77 0:25 / /sys/fs/cgroup/memory rw,relatime - cgroup cgroup rw,memory . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/memory. lxc-start 1383145786.575 INFO lxc_conf - looking at .82 77 0:26 / /sys/fs/cgroup/devices rw,relatime - cgroup cgroup rw,devices . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/devices. lxc-start 1383145786.575 INFO lxc_conf - looking at .83 77 0:27 / /sys/fs/cgroup/freezer rw,relatime - cgroup cgroup rw,freezer . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/freezer. lxc-start 1383145786.575 INFO lxc_conf - looking at .84 77 0:28 / /sys/fs/cgroup/blkio rw,relatime - cgroup cgroup rw,blkio . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/blkio. lxc-start 1383145786.575 INFO lxc_conf - looking at .85 77 0:29 / /sys/fs/cgroup/perf_event rw,relatime - cgroup cgroup rw,perf_event . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/perf_event. lxc-start 1383145786.575 INFO lxc_conf - looking at .94 77 0:30 / /sys/fs/cgroup/hugetlb rw,relatime - cgroup cgroup rw,hugetlb . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/hugetlb. lxc-start 1383145786.575 INFO lxc_conf - looking at .95 77 0:31 / /sys/fs/cgroup/systemd rw,nosuid,nodev,noexec,relatime - cgroup systemd rw,name=systemd . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/cgroup/systemd. lxc-start 1383145786.575 INFO lxc_conf - looking at .96 76 0:17 / /sys/fs/fuse/connections rw,relatime - fusectl none rw . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/fuse/connections. lxc-start 1383145786.575 INFO lxc_conf - looking at .98 76 0:6 / /sys/kernel/debug rw,relatime - debugfs none rw . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/kernel/debug. lxc-start 1383145786.575 INFO lxc_conf - looking at .101 76 0:10 / /sys/kernel/security rw,relatime - securityfs none rw . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/kernel/security. lxc-start 1383145786.575 INFO lxc_conf - looking at .102 76 0:22 / /sys/fs/pstore rw,relatime - pstore none rw . lxc-start 1383145786.575 INFO lxc_conf - now p is . /sys/fs/pstore. lxc-start 1383145786.575 INFO lxc_conf - looking at .103 44 0:3 / /proc rw,nosuid,nodev,noexec,relatime - proc proc rw . lxc-start 1383145786.575 INFO lxc_conf - now p is . /proc. lxc-start 1383145786.575 INFO lxc_conf - looking at .104 44 9:2 / /data rw,relatime - ext4 /dev/md2 rw,errors=remount-ro,data=ordered . lxc-start 1383145786.575 INFO lxc_conf - now p is . /data. lxc-start 1383145786.575 INFO lxc_conf - looking at .105 44 8:1 / /boot rw,relatime - ext2 /dev/sda1 rw,errors=continue . lxc-start 1383145786.575 INFO lxc_conf - now p is . /boot. lxc-start 1383145786.576 DEBUG lxc_conf - mounted '/data/srv/lxc/as1' on '/usr/lib/x86_64-linux-gnu/lxc' lxc-start 1383145786.576 DEBUG lxc_conf - mounted 'none' on '/usr/lib/x86_64-linux-gnu/lxc//dev/pts', type 'devpts' lxc-start 1383145786.576 DEBUG lxc_conf - mounted 'none' on '/usr/lib/x86_64-linux-gnu/lxc//proc', type 'proc' lxc-start 1383145786.576 DEBUG lxc_conf - mounted 'none' on '/usr/lib/x86_64-linux-gnu/lxc//sys', type 'sysfs' lxc-start 1383145786.576 DEBUG lxc_conf - mounted 'none' on '/usr/lib/x86_64-linux-gnu/lxc//run', type 'tmpfs' lxc-start 1383145786.576 INFO lxc_conf - mount points have been setup lxc-start 1383145786.577 INFO lxc_conf - console has been setup lxc-start 1383145786.577 INFO lxc_conf - 8 tty(s) has been setup lxc-start 1383145786.577 INFO lxc_conf - rootfs path is ./data/srv/lxc/as1., mount is ./usr/lib/x86_64-linux-gnu/lxc. lxc-start 1383145786.577 INFO lxc_apparmor - I am 1, /proc/self points to 1 lxc-start 1383145786.577 DEBUG lxc_conf - created '/usr/lib/x86_64-linux-gnu/lxc/lxc_putold' directory lxc-start 1383145786.577 DEBUG lxc_conf - mountpoint for old rootfs is '/usr/lib/x86_64-linux-gnu/lxc/lxc_putold' lxc-start 1383145786.577 DEBUG lxc_conf - pivot_root syscall to '/usr/lib/x86_64-linux-gnu/lxc' successful lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/dev/pts' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/run/lock' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/run/shm' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/run/user' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/cpuset' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/cpu' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/cpuacct' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/memory' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/devices' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/freezer' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/blkio' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/perf_event' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/hugetlb' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup/systemd' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/fuse/connections' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/kernel/debug' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/kernel/security' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/pstore' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/proc' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/data' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/boot' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/dev' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/run' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys/fs/cgroup' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold/sys' lxc-start 1383145786.577 DEBUG lxc_conf - umounted '/lxc_putold' lxc-start 1383145786.577 INFO lxc_conf - created new pts instance lxc-start 1383145786.578 DEBUG lxc_conf - drop capability 'sys_boot' (22) lxc-start 1383145786.578 DEBUG lxc_conf - capabilities have been setup lxc-start 1383145786.578 NOTICE lxc_conf - 'as1' is setup. lxc-start 1383145786.578 DEBUG lxc_cgroup - cgroup 'memory.limit_in_bytes' set to '20G' lxc-start 1383145786.578 DEBUG lxc_cgroup - cgroup 'cpuset.cpus' set to '12-23' lxc-start 1383145786.578 INFO lxc_cgroup - cgroup has been setup lxc-start 1383145786.578 INFO lxc_apparmor - setting up apparmor lxc-start 1383145786.578 INFO lxc_apparmor - changed apparmor profile to lxc-container-default lxc-start 1383145786.578 NOTICE lxc_start - exec'ing '/sbin/init' lxc-start 1383145786.578 INFO lxc_conf - looking at .15 20 0:14 / /sys rw,nosuid,nodev,noexec,relatime - sysfs sysfs rw . lxc-start 1383145786.578 INFO lxc_conf - now p is . /sys. lxc-start 1383145786.578 INFO lxc_conf - looking at .16 20 0:3 / /proc rw,nosuid,nodev,noexec,relatime - proc proc rw . lxc-start 1383145786.578 INFO lxc_conf - now p is . /proc. lxc-start 1383145786.578 INFO lxc_conf - looking at .17 20 0:5 / /dev rw,relatime - devtmpfs udev rw,size=32961632k,nr_inodes=8240408,mode=755 . lxc-start 1383145786.578 INFO lxc_conf - now p is . /dev. lxc-start 1383145786.578 INFO lxc_conf - looking at .18 17 0:11 / /dev/pts rw,nosuid,noexec,relatime - devpts devpts rw,mode=600,ptmxmode=000 . lxc-start 1383145786.578 INFO lxc_conf - now p is . /dev/pts. lxc-start 1383145786.578 INFO lxc_conf - looking at .19 20 0:15 / /run rw,nosuid,noexec,relatime - tmpfs tmpfs rw,size=6594456k,mode=755 . lxc-start 1383145786.578 INFO lxc_conf - now p is . /run. lxc-start 1383145786.578 INFO lxc_conf - looking at .20 1 252:0 / / rw,relatime - ext4 /dev/mapper/limitorderbook1-root rw,errors=remount-ro,data=ordered . lxc-start 1383145786.578 INFO lxc_conf - now p is . /. lxc-start 1383145786.578 INFO lxc_conf - looking at .22 15 0:16 / /sys/fs/cgroup rw,relatime - tmpfs none rw,size=4k,mode=755 . lxc-start 1383145786.578 INFO lxc_conf - now p is . /sys/fs/cgroup. lxc-start 1383145786.578 INFO lxc_conf - looking at .23 15 0:17 / /sys/fs/fuse/connections rw,relatime - fusectl none rw . lxc-start 1383145786.578 INFO lxc_conf - now p is . /sys/fs/fuse/connections. lxc-start 1383145786.578 INFO lxc_conf - looking at .24 15 0:6 / /sys/kernel/debug rw,relatime - debugfs none rw . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/kernel/debug. lxc-start 1383145786.579 INFO lxc_conf - looking at .25 15 0:10 / /sys/kernel/security rw,relatime - securityfs none rw . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/kernel/security. lxc-start 1383145786.579 INFO lxc_conf - looking at .26 19 0:18 / /run/lock rw,nosuid,nodev,noexec,relatime - tmpfs none rw,size=5120k . lxc-start 1383145786.579 INFO lxc_conf - now p is . /run/lock. lxc-start 1383145786.579 INFO lxc_conf - looking at .27 19 0:19 / /run/shm rw,nosuid,nodev,relatime - tmpfs none rw . lxc-start 1383145786.579 INFO lxc_conf - now p is . /run/shm. lxc-start 1383145786.579 INFO lxc_conf - looking at .28 22 0:20 / /sys/fs/cgroup/cpuset rw,relatime - cgroup cgroup rw,cpuset,clone_children . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/cpuset. lxc-start 1383145786.579 INFO lxc_conf - looking at .29 19 0:21 / /run/user rw,nosuid,nodev,noexec,relatime - tmpfs none rw,size=102400k,mode=755 . lxc-start 1383145786.579 INFO lxc_conf - now p is . /run/user. lxc-start 1383145786.579 INFO lxc_conf - looking at .30 15 0:22 / /sys/fs/pstore rw,relatime - pstore none rw . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/pstore. lxc-start 1383145786.579 INFO lxc_conf - looking at .31 22 0:23 / /sys/fs/cgroup/cpu rw,relatime - cgroup cgroup rw,cpu . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/cpu. lxc-start 1383145786.579 INFO lxc_conf - looking at .32 22 0:24 / /sys/fs/cgroup/cpuacct rw,relatime - cgroup cgroup rw,cpuacct . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/cpuacct. lxc-start 1383145786.579 INFO lxc_conf - looking at .33 22 0:25 / /sys/fs/cgroup/memory rw,relatime - cgroup cgroup rw,memory . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/memory. lxc-start 1383145786.579 INFO lxc_conf - looking at .34 22 0:26 / /sys/fs/cgroup/devices rw,relatime - cgroup cgroup rw,devices . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/devices. lxc-start 1383145786.579 INFO lxc_conf - looking at .35 22 0:27 / /sys/fs/cgroup/freezer rw,relatime - cgroup cgroup rw,freezer . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/freezer. lxc-start 1383145786.579 INFO lxc_conf - looking at .36 22 0:28 / /sys/fs/cgroup/blkio rw,relatime - cgroup cgroup rw,blkio . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/blkio. lxc-start 1383145786.579 INFO lxc_conf - looking at .37 22 0:29 / /sys/fs/cgroup/perf_event rw,relatime - cgroup cgroup rw,perf_event . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/perf_event. lxc-start 1383145786.579 INFO lxc_conf - looking at .38 22 0:30 / /sys/fs/cgroup/hugetlb rw,relatime - cgroup cgroup rw,hugetlb . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/hugetlb. lxc-start 1383145786.579 INFO lxc_conf - looking at .39 20 9:2 / /data rw,relatime - ext4 /dev/md2 rw,errors=remount-ro,data=ordered . lxc-start 1383145786.579 INFO lxc_conf - now p is . /data. lxc-start 1383145786.579 INFO lxc_conf - looking at .40 20 8:1 / /boot rw,relatime - ext2 /dev/sda1 rw,errors=continue . lxc-start 1383145786.579 INFO lxc_conf - now p is . /boot. lxc-start 1383145786.579 INFO lxc_conf - looking at .41 22 0:31 / /sys/fs/cgroup/systemd rw,nosuid,nodev,noexec,relatime - cgroup systemd rw,name=systemd . lxc-start 1383145786.579 INFO lxc_conf - now p is . /sys/fs/cgroup/systemd. lxc-start 1383145786.579 NOTICE lxc_start - '/sbin/init' started with pid '6249' lxc-start 1383145786.579 WARN lxc_start - invalid pid for SIGCHLD <4>init: ureadahead main process (7) terminated with status 5 <4>init: console-font main process (94) terminated with status 1 And it will just sit there like that for hours at least. The container becomes pingable but I can't ssh and if I try lxc-console -n as1 I get a blank screen. If I do lxc-stop -n as1 or ^C in the window where it has hung I get: ^CTERM environment variable not set. <4>init: plymouth-upstart-bridge main process (192) terminated with status 1 <4>init: hwclock-save main process (187) terminated with status 70 * Asking all remaining processes to terminate... ...done. * All processes ended within 1 seconds... ...done. * Deactivating swap... ...fail! mount: cannot mount block device /dev/md2 read-only * Will now restart But after 20 minutes it hasn't restarted. Any ideas why these containers are hanging?

    Read the article

  • obiee memory usage

    - by user554629
    Heap memory is a frequent customer topic. Here's the quick refresher, oriented towards AIX, but the principles apply to other unix implementations. 1. 32-bit processes have a maximum addressability of 4GB; usable application heap size of 2-3 GB.  On AIX it is controlled by an environment variable: export LDR_CNTRL=....=MAXDATA=0x080000000   # 2GB ( The leading zero is deliberate, not required )   1a. It is  possible to get 3.25GB  heap size for a 32-bit process using @DSA (Discontiguous Segment Allocation)     export LDR_CNTRL=MAXDATA=0xd0000000@DSA  # 3.25 GB 32-bit only        One side-effect of using AIX segments "c" and "d" is that shared libraries will be loaded privately, and not shared.        If you need the additional heap space, this is worth the trade-off.  This option is frequently used for 32-bit java.   1b. 64-bit processes have no need for the @DSA option. 2. 64-bit processes can double the 32-bit heap size to 4GB using: export LDR_CNTRL=....=MAXDATA=0x100000000  # 1 with 8-zeros    2a. But this setting would place the same memory limitations on obiee as a 32-bit process    2b. The major benefit of 64-bit is to break the binds of 32-bit addressing.  At a minimum, use 8GB export LDR_CNTRL=....=MAXDATA=0x200000000  # 2 with 8-zeros    2c.  Many large customers are providing extra safety to their servers by using 16GB: export LDR_CNTRL=....=MAXDATA=0x400000000  # 4 with 8-zeros There is no performance penalty for providing virtual memory allocations larger than required by the application.  - If the server only uses 2GB of space in 64-bit ... specifying 16GB just provides an upper bound cushion.    When an unexpected user query causes a sudden memory surge, the extra memory keeps the server running. 3.  The next benefit to 64-bit is that you can provide huge thread stack sizes for      strange queries that might otherwise crash the server.      nqsserver uses fast recursive algorithms to traverse complicated control structures.    This means lots of thread space to hold the stack frames.    3a. Stack frames mostly contain register values;  64-bit registers are twice as large as 32-bit          At a minimum you should  quadruple the size of the server stack threads in NQSConfig.INI          when migrating from 32- to 64-bit, to prevent a rogue query from crashing the server.           Allocate more than is normally necessary for safety.    3b. There is no penalty for allocating more stack size than you need ...           it is just virtual memory;   no real resources  are consumed until the extra space is needed.    3c. Increasing thread stack sizes may require the process heap size (MAXDATA) to be increased.          Heap space is used for dynamic memory requests, and for thread stacks.          No performance penalty to run with large heap and thread stack sizes.           In a 32-bit world, this safety would require careful planning to avoid exceeding 2GM usable storage.     3d. Increasing the number of threads also may require additional heap storage.          Most thread stack frames on obiee are allocated when the server is started,          and the real memory usage increases as threads run work. Does 2.8GB sound like a lot of memory for an AIX application server? - I guess it is what you are accustomed to seeing from "grandpa's applications". - One of the primary design goals of obiee is to trade memory for services ( db, query caches, etc) - 2.8GB is still well under the 4GB heap size allocated with MAXDATA=0x100000000 - 2.8GB process size is also possible even on 32-bit Windows applications - It is not unusual to receive a sudden request for 30MB of contiguous storage on obiee.- This is not a memory leak;  eventually the nqsserver storage will stabilize, but it may take days to do so. vmstat is the tool of choice to observe memory usage.  On AIX vmstat will show  something that may be  startling to some people ... that available free memory ( the 2nd column ) is always  trending toward zero ... no available free memory.  Some customers have concluded that "nearly zero memory free" means it is time to upgrade the server with more real memory.   After the upgrade, the server again shows very little free memory available. Should you be concerned about this?   Many customers are !!  Here is what is happening: - AIX filesystems are built on a paging model.   If you read/write a  filesystem block it is paged into memory ( no read/write system calls ) - This filesystem "page" has its own "backing store" on disk, the original filesystem block.   When the system needs the real memory page holding the file block, there is no need to "page out".    The page can be stolen immediately, because the original is still on disk in the filesystem. - The filesystem  pages tend to collect ... every filesystem block that was ever seen since    system boot is available in memory.  If another application needs the file block, it is retrieved with no physical I/O. What happens if the system does need the memory ... to satisfy a 30MB heap request by nqsserver, for example? - Since the filesystem blocks have their own backing store ( not on a paging device )   the kernel can just steal any filesystem block ... on a least-recently-used basis   to satisfy a new real memory request for "computation pages". No cause for alarm.   vmstat is accurately displaying whether all filesystem blocks have been touched, and now reside in memory.   Back to nqsserver:  when should you be worried about its memory footprint? Answer:  Almost never.   Stop monitoring it ... stop fussing over it ... stop trying to optimize it. This is a production application, and nqsserver uses the memory it requires to accomplish the job, based on demand. C'mon ... never worry?   I'm from New York ... worry is what we do best. Ok, here is the metric you should be watching, using vmstat: - Are you paging ... there are several columns of vmstat outputbash-2.04$ vmstat 3 3 System configuration: lcpu=4 mem=4096MB kthr    memory              page              faults        cpu    ----- ------------ ------------------------ ------------ -----------  r  b    avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa  0  0 208492  2600   0   0   0   0    0   0  13   45  73  0  0 99  0  0  0 208492  2600   0   0   0   0    0   0   9   12  77  0  0 99  0  0  0 208492  2600   0   0   0   0    0   0   9   40  86  0  0 99  0 avm is the "available free memory" indicator that trends toward zerore   is "re-page".  The kernel steals a real memory page for one process;  immediately repages back to original processpi  "page in".   A process memory page previously paged out, now paged back in because the process needs itpo "page out" A process memory block was paged out, because it was needed by some other process Light paging activity ( re, pi, po ) is not a concern for worry.   Processes get started, need some memory, go away. Sustained paging activity  is cause for concern.   obiee users are having a terrible day if these counters are always changing. Hang on ... if nqsserver needs that memory and I reduce MAXDATA to keep the process under control, won't the nqsserver process crash when the memory is needed? Yes it will.   It means that nqsserver is configured to require too much memory and there are  lots of options to reduce the real memory requirement.  - number of threads  - size of query cache  - size of sort But I need nqsserver to keep running. Real memory is over-committed.    Many things can cause this:- running all application processes on a single server    ... DB server, web servers, WebLogic/WebSphere, sawserver, nqsserver, etc.   You could move some of those to another host machine and communicate over the network  The need for real memory doesn't go away, it's just distributed to other host machines. - AIX LPAR is configured with too little memory.     The AIX admin needs to provide more real memory to the LPAR running obiee. - More memory to this LPAR affects other partitions. Then it's time to visit your friendly IBM rep and buy more memory.

    Read the article

  • evaluating a code of a graph [migrated]

    - by mazen.r.f
    This is relatively a long code,if you have the tolerance and the will to find out how to make this code work then take a look please, i will appreciate your feed back. i have spent two days trying to come up with a code to represent a graph , then calculate the shortest path using dijkastra algorithm , but i am not able to get the right result , even the code runs without errors , but the result is not correct , always i am getting 0. briefly,i have three classes , Vertex, Edge, Graph , the Vertex class represents the nodes in the graph and it has id and carried ( which carry the weight of the links connected to it while using dijkastra algorithm ) and a vector of the ids belong to other nodes the path will go through before arriving to the node itself , this vector is named previous_nodes. the Edge class represents the edges in the graph it has two vertices ( one in each side ) and a wight ( the distance between the two vertices ). the Graph class represents the graph , it has two vectors one is the vertices included in this graph , and the other is the edges included in the graph. inside the class Graph there is a method its name shortest takes the sources node id and the destination and calculates the shortest path using dijkastra algorithm, and i think that it is the most important part of the code. my theory about the code is that i will create two vectors one for the vertices in the graph i will name it vertices and another vector its name is ver_out it will include the vertices out of calculation in the graph, also i will have two vectors of type Edge , one its name edges for all the edges in the graph and the other its name is track to contain temporarily the edges linked to the temporarily source node in every round , after the calculation of every round the vector track will be cleared. in main() i created five vertices and 10 edges to simulate a graph , the result of the shortest path supposedly to be 4 , but i am always getting 0 , that means i am having something wrong in my code , so if you are interesting in helping me find my mistake and how to make the code work , please take a look. the way shortest work is as follow at the beginning all the edges will be included in the vector edges , we select the edges related to the source and put them in the vector track , then we iterate through track and add the wight of every edge to the vertex (node ) related to it ( not the source vertex ) , then after we clear track and remove the source vertex from the vector vertices and select a new source , and start over again select the edges related to the new source , put them in track , iterate over edges in tack , adding the weights to the corresponding vertices then remove this vertex from the vector vertices, and clear track , and select a new source , and so on . here is the code. #include<iostream> #include<vector> #include <stdlib.h> // for rand() using namespace std; class Vertex { private: unsigned int id; // the name of the vertex unsigned int carried; // the weight a vertex may carry when calculating shortest path vector<unsigned int> previous_nodes; public: unsigned int get_id(){return id;}; unsigned int get_carried(){return carried;}; void set_id(unsigned int value) {id = value;}; void set_carried(unsigned int value) {carried = value;}; void previous_nodes_update(unsigned int val){previous_nodes.push_back(val);}; void previous_nodes_erase(unsigned int val){previous_nodes.erase(previous_nodes.begin() + val);}; Vertex(unsigned int init_val = 0, unsigned int init_carried = 0) :id (init_val), carried(init_carried) // constructor { } ~Vertex() {}; // destructor }; class Edge { private: Vertex first_vertex; // a vertex on one side of the edge Vertex second_vertex; // a vertex on the other side of the edge unsigned int weight; // the value of the edge ( or its weight ) public: unsigned int get_weight() {return weight;}; void set_weight(unsigned int value) {weight = value;}; Vertex get_ver_1(){return first_vertex;}; Vertex get_ver_2(){return second_vertex;}; void set_first_vertex(Vertex v1) {first_vertex = v1;}; void set_second_vertex(Vertex v2) {second_vertex = v2;}; Edge(const Vertex& vertex_1 = 0, const Vertex& vertex_2 = 0, unsigned int init_weight = 0) : first_vertex(vertex_1), second_vertex(vertex_2), weight(init_weight) { } ~Edge() {} ; // destructor }; class Graph { private: std::vector<Vertex> vertices; std::vector<Edge> edges; public: Graph(vector<Vertex> ver_vector, vector<Edge> edg_vector) : vertices(ver_vector), edges(edg_vector) { } ~Graph() {}; vector<Vertex> get_vertices(){return vertices;}; vector<Edge> get_edges(){return edges;}; void set_vertices(vector<Vertex> vector_value) {vertices = vector_value;}; void set_edges(vector<Edge> vector_ed_value) {edges = vector_ed_value;}; unsigned int shortest(unsigned int src, unsigned int dis) { vector<Vertex> ver_out; vector<Edge> track; for(unsigned int i = 0; i < edges.size(); ++i) { if((edges[i].get_ver_1().get_id() == vertices[src].get_id()) || (edges[i].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[i]); edges.erase(edges.begin()+i); } }; for(unsigned int i = 0; i < track.size(); ++i) { if(track[i].get_ver_1().get_id() != vertices[src].get_id()) { track[i].get_ver_1().set_carried((track[i].get_weight()) + track[i].get_ver_2().get_carried()); track[i].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else { track[i].get_ver_2().set_carried((track[i].get_weight()) + track[i].get_ver_1().get_carried()); track[i].get_ver_2().previous_nodes_update(vertices[src].get_id()); } } for(unsigned int i = 0; i < vertices.size(); ++i) if(vertices[i].get_id() == src) vertices.erase(vertices.begin() + i); // removing the sources vertex from the vertices vector ver_out.push_back (vertices[src]); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int i = 0; i < vertices.size(); ++i) if((vertices[i].get_carried() < vertices[src].get_carried()) && (vertices[i].get_id() != dis)) src = vertices[i].get_id(); //while(!edges.empty()) for(unsigned int round = 0; round < vertices.size(); ++round) { for(unsigned int k = 0; k < edges.size(); ++k) { if((edges[k].get_ver_1().get_id() == vertices[src].get_id()) || (edges[k].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[k]); edges.erase(edges.begin()+k); } }; for(unsigned int n = 0; n < track.size(); ++n) if((track[n].get_ver_1().get_id() != vertices[src].get_id()) && (track[n].get_ver_1().get_carried() > (track[n].get_ver_2().get_carried() + track[n].get_weight()))) { track[n].get_ver_1().set_carried((track[n].get_weight()) + track[n].get_ver_2().get_carried()); track[n].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else if(track[n].get_ver_2().get_carried() > (track[n].get_ver_1().get_carried() + track[n].get_weight())) { track[n].get_ver_2().set_carried((track[n].get_weight()) + track[n].get_ver_1().get_carried()); track[n].get_ver_2().previous_nodes_update(vertices[src].get_id()); } for(unsigned int t = 0; t < vertices.size(); ++t) if(vertices[t].get_id() == src) vertices.erase(vertices.begin() + t); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int tt = 0; tt < edges.size(); ++tt) { if(vertices[tt].get_carried() < vertices[src].get_carried()) { src = vertices[tt].get_id(); } } } return vertices[dis].get_carried(); } }; int main() { cout<< "Hello, This is a graph"<< endl; vector<Vertex> vers(5); vers[0].set_id(0); vers[1].set_id(1); vers[2].set_id(2); vers[3].set_id(3); vers[4].set_id(4); vector<Edge> eds(10); eds[0].set_first_vertex(vers[0]); eds[0].set_second_vertex(vers[1]); eds[0].set_weight(5); eds[1].set_first_vertex(vers[0]); eds[1].set_second_vertex(vers[2]); eds[1].set_weight(9); eds[2].set_first_vertex(vers[0]); eds[2].set_second_vertex(vers[3]); eds[2].set_weight(4); eds[3].set_first_vertex(vers[0]); eds[3].set_second_vertex(vers[4]); eds[3].set_weight(6); eds[4].set_first_vertex(vers[1]); eds[4].set_second_vertex(vers[2]); eds[4].set_weight(2); eds[5].set_first_vertex(vers[1]); eds[5].set_second_vertex(vers[3]); eds[5].set_weight(5); eds[6].set_first_vertex(vers[1]); eds[6].set_second_vertex(vers[4]); eds[6].set_weight(7); eds[7].set_first_vertex(vers[2]); eds[7].set_second_vertex(vers[3]); eds[7].set_weight(1); eds[8].set_first_vertex(vers[2]); eds[8].set_second_vertex(vers[4]); eds[8].set_weight(8); eds[9].set_first_vertex(vers[3]); eds[9].set_second_vertex(vers[4]); eds[9].set_weight(3); unsigned int path; Graph graf(vers, eds); path = graf.shortest(2, 4); cout<< path << endl; return 0; }

    Read the article

  • Evaluating code for a graph [migrated]

    - by mazen.r.f
    This is relatively long code. Please take a look at this code if you are still willing to do so. I will appreciate your feedback. I have spent two days trying to come up with code to represent a graph, calculating the shortest path using Dijkstra's algorithm. But I am not able to get the right result, even though the code runs without errors. The result is not correct and I am always getting 0. I have three classes: Vertex, Edge, and Graph. The Vertex class represents the nodes in the graph and it has id and carried (which carry the weight of the links connected to it while using Dijkstra's algorithm) and a vector of the ids belong to other nodes the path will go through before arriving to the node itself. This vector is named previous_nodes. The Edge class represents the edges in the graph and has two vertices (one in each side) and a width (the distance between the two vertices). The Graph class represents the graph. It has two vectors, where one is the vertices included in this graph, and the other is the edges included in the graph. Inside the class Graph, there is a method named shortest() that takes the sources node id and the destination and calculates the shortest path using Dijkstra's algorithm. I think that it is the most important part of the code. My theory about the code is that I will create two vectors, one for the vertices in the graph named vertices, and another vector named ver_out (it will include the vertices out of calculation in the graph). I will also have two vectors of type Edge, where one is named edges (for all the edges in the graph), and the other is named track (to temporarily contain the edges linked to the temporary source node in every round). After the calculation of every round, the vector track will be cleared. In main(), I've created five vertices and 10 edges to simulate a graph. The result of the shortest path supposedly is 4, but I am always getting 0. That means I have something wrong in my code. If you are interesting in helping me find my mistake and making the code work, please take a look. The way shortest work is as follow: at the beginning, all the edges will be included in the vector edges. We select the edges related to the source and put them in the vector track, then we iterate through track and add the width of every edge to the vertex (node) related to it (not the source vertex). After that, we clear track and remove the source vertex from the vector vertices and select a new source. Then we start over again and select the edges related to the new source, put them in track, iterate over edges in track, adding the weights to the corresponding vertices, then remove this vertex from the vector vertices. Then clear track, and select a new source, and so on. #include<iostream> #include<vector> #include <stdlib.h> // for rand() using namespace std; class Vertex { private: unsigned int id; // the name of the vertex unsigned int carried; // the weight a vertex may carry when calculating shortest path vector<unsigned int> previous_nodes; public: unsigned int get_id(){return id;}; unsigned int get_carried(){return carried;}; void set_id(unsigned int value) {id = value;}; void set_carried(unsigned int value) {carried = value;}; void previous_nodes_update(unsigned int val){previous_nodes.push_back(val);}; void previous_nodes_erase(unsigned int val){previous_nodes.erase(previous_nodes.begin() + val);}; Vertex(unsigned int init_val = 0, unsigned int init_carried = 0) :id (init_val), carried(init_carried) // constructor { } ~Vertex() {}; // destructor }; class Edge { private: Vertex first_vertex; // a vertex on one side of the edge Vertex second_vertex; // a vertex on the other side of the edge unsigned int weight; // the value of the edge ( or its weight ) public: unsigned int get_weight() {return weight;}; void set_weight(unsigned int value) {weight = value;}; Vertex get_ver_1(){return first_vertex;}; Vertex get_ver_2(){return second_vertex;}; void set_first_vertex(Vertex v1) {first_vertex = v1;}; void set_second_vertex(Vertex v2) {second_vertex = v2;}; Edge(const Vertex& vertex_1 = 0, const Vertex& vertex_2 = 0, unsigned int init_weight = 0) : first_vertex(vertex_1), second_vertex(vertex_2), weight(init_weight) { } ~Edge() {} ; // destructor }; class Graph { private: std::vector<Vertex> vertices; std::vector<Edge> edges; public: Graph(vector<Vertex> ver_vector, vector<Edge> edg_vector) : vertices(ver_vector), edges(edg_vector) { } ~Graph() {}; vector<Vertex> get_vertices(){return vertices;}; vector<Edge> get_edges(){return edges;}; void set_vertices(vector<Vertex> vector_value) {vertices = vector_value;}; void set_edges(vector<Edge> vector_ed_value) {edges = vector_ed_value;}; unsigned int shortest(unsigned int src, unsigned int dis) { vector<Vertex> ver_out; vector<Edge> track; for(unsigned int i = 0; i < edges.size(); ++i) { if((edges[i].get_ver_1().get_id() == vertices[src].get_id()) || (edges[i].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[i]); edges.erase(edges.begin()+i); } }; for(unsigned int i = 0; i < track.size(); ++i) { if(track[i].get_ver_1().get_id() != vertices[src].get_id()) { track[i].get_ver_1().set_carried((track[i].get_weight()) + track[i].get_ver_2().get_carried()); track[i].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else { track[i].get_ver_2().set_carried((track[i].get_weight()) + track[i].get_ver_1().get_carried()); track[i].get_ver_2().previous_nodes_update(vertices[src].get_id()); } } for(unsigned int i = 0; i < vertices.size(); ++i) if(vertices[i].get_id() == src) vertices.erase(vertices.begin() + i); // removing the sources vertex from the vertices vector ver_out.push_back (vertices[src]); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int i = 0; i < vertices.size(); ++i) if((vertices[i].get_carried() < vertices[src].get_carried()) && (vertices[i].get_id() != dis)) src = vertices[i].get_id(); //while(!edges.empty()) for(unsigned int round = 0; round < vertices.size(); ++round) { for(unsigned int k = 0; k < edges.size(); ++k) { if((edges[k].get_ver_1().get_id() == vertices[src].get_id()) || (edges[k].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[k]); edges.erase(edges.begin()+k); } }; for(unsigned int n = 0; n < track.size(); ++n) if((track[n].get_ver_1().get_id() != vertices[src].get_id()) && (track[n].get_ver_1().get_carried() > (track[n].get_ver_2().get_carried() + track[n].get_weight()))) { track[n].get_ver_1().set_carried((track[n].get_weight()) + track[n].get_ver_2().get_carried()); track[n].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else if(track[n].get_ver_2().get_carried() > (track[n].get_ver_1().get_carried() + track[n].get_weight())) { track[n].get_ver_2().set_carried((track[n].get_weight()) + track[n].get_ver_1().get_carried()); track[n].get_ver_2().previous_nodes_update(vertices[src].get_id()); } for(unsigned int t = 0; t < vertices.size(); ++t) if(vertices[t].get_id() == src) vertices.erase(vertices.begin() + t); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int tt = 0; tt < edges.size(); ++tt) { if(vertices[tt].get_carried() < vertices[src].get_carried()) { src = vertices[tt].get_id(); } } } return vertices[dis].get_carried(); } }; int main() { cout<< "Hello, This is a graph"<< endl; vector<Vertex> vers(5); vers[0].set_id(0); vers[1].set_id(1); vers[2].set_id(2); vers[3].set_id(3); vers[4].set_id(4); vector<Edge> eds(10); eds[0].set_first_vertex(vers[0]); eds[0].set_second_vertex(vers[1]); eds[0].set_weight(5); eds[1].set_first_vertex(vers[0]); eds[1].set_second_vertex(vers[2]); eds[1].set_weight(9); eds[2].set_first_vertex(vers[0]); eds[2].set_second_vertex(vers[3]); eds[2].set_weight(4); eds[3].set_first_vertex(vers[0]); eds[3].set_second_vertex(vers[4]); eds[3].set_weight(6); eds[4].set_first_vertex(vers[1]); eds[4].set_second_vertex(vers[2]); eds[4].set_weight(2); eds[5].set_first_vertex(vers[1]); eds[5].set_second_vertex(vers[3]); eds[5].set_weight(5); eds[6].set_first_vertex(vers[1]); eds[6].set_second_vertex(vers[4]); eds[6].set_weight(7); eds[7].set_first_vertex(vers[2]); eds[7].set_second_vertex(vers[3]); eds[7].set_weight(1); eds[8].set_first_vertex(vers[2]); eds[8].set_second_vertex(vers[4]); eds[8].set_weight(8); eds[9].set_first_vertex(vers[3]); eds[9].set_second_vertex(vers[4]); eds[9].set_weight(3); unsigned int path; Graph graf(vers, eds); path = graf.shortest(2, 4); cout<< path << endl; return 0; }

    Read the article

  • CentOS - Add additional hard drive raid arrays on Dell Perc 5/i card

    - by Quanano
    We have a Dell Poweredge 2900 system with Dell Perc 5/i card and 4 SAS hard drives attached, with NTFS partitions on them. We installed CentOS on one raid array on this controller with a different controller and it is working fine. We are now trying to access the drives shown above and they are not being shown in /dev as sdb, etc. sda is the drive that we installed centos on and it has sda1, sda2, sda3, etc. The CDROM has been picked up as well. If I scan for scsi devices then the perc and adaptec controllers are both found. sg0 is the CDROM and sg2 is the centos installed, however I think sg1 is the other drive but I cannot see anyway to mount the partitions, as only the drive is listed in /dev. Thanks. EXTRA INFO fdisk -l: Disk /dev/sda: 72.7 GB, 72746008576 bytes 255 heads, 63 sectors/track, 8844 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x11e3119f Device Boot Start End Blocks Id System /dev/sda1 * 1 64 512000 83 Linux Partition 1 does not end on cylinder boundary. /dev/sda2 64 8845 70528000 8e Linux LVM Disk /dev/mapper/vg_lal2server-lv_root: 34.4 GB, 34431041536 bytes 255 heads, 63 sectors/track, 4186 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/mapper/vg_lal2server-lv_root doesn't contain a valid partition table Disk /dev/mapper/vg_lal2server-lv_swap: 21.1 GB, 21139292160 bytes 255 heads, 63 sectors/track, 2570 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/mapper/vg_lal2server-lv_swap doesn't contain a valid partition table Disk /dev/mapper/vg_lal2server-lv_home: 16.6 GB, 16647192576 bytes 255 heads, 63 sectors/track, 2023 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/mapper/vg_lal2server-lv_home doesn't contain a valid partition table These are all from the install hdd not the additional hard drives modprobe a320raid FATAL: Module a320raid not found. lsscsi -v: [0:0:0:0] cd/dvd TSSTcorp CDRWDVD TS-H492C DE02 /dev/sr0 dir: /sys/bus/scsi/devices/0:0:0:0 [/sys/devices/pci0000:00/0000:00:1f.1/host0/target0:0:0/0:0:0:0] [4:0:10:0] enclosu DP BACKPLANE 1.05 - dir: /sys/bus/scsi/devices/4:0:10:0 [/sys/devices/pci0000:00/0000:00:05.0/0000:01:00.0/0000:02:0e.0/host4/target4:0:10/4:0:10:0] [4:2:0:0] disk DELL PERC 5/i 1.03 /dev/sda dir: /sys/bus/scsi/devices/4:2:0:0 [/sys/devices/pci0000:00/0000:00:05.0/0000:01:00.0/0000:02:0e.0/host4/target4:2:0/4:2:0:0] . lsmod: Module Size Used by fuse 66285 0 des_generic 16604 0 ecb 2209 0 md4 3461 0 nls_utf8 1455 0 cifs 278370 0 autofs4 26888 4 ipt_REJECT 2383 0 ip6t_REJECT 4628 2 nf_conntrack_ipv6 8748 2 nf_defrag_ipv6 12182 1 nf_conntrack_ipv6 xt_state 1492 2 nf_conntrack 79453 2 nf_conntrack_ipv6,xt_state ip6table_filter 2889 1 ip6_tables 19458 1 ip6table_filter ipv6 322029 31 ip6t_REJECT,nf_conntrack_ipv6,nf_defrag_ipv6 bnx2 79618 0 ses 6859 0 enclosure 8395 1 ses dcdbas 9219 0 serio_raw 4818 0 sg 30124 0 iTCO_wdt 13662 0 iTCO_vendor_support 3088 1 iTCO_wdt i5000_edac 8867 0 edac_core 46773 3 i5000_edac i5k_amb 5105 0 shpchp 33482 0 ext4 364410 3 mbcache 8144 1 ext4 jbd2 88738 1 ext4 sd_mod 39488 3 crc_t10dif 1541 1 sd_mod sr_mod 16228 0 cdrom 39771 1 sr_mod megaraid_sas 77090 2 aic79xx 129492 0 scsi_transport_spi 26151 1 aic79xx pata_acpi 3701 0 ata_generic 3837 0 ata_piix 22846 0 radeon 1023359 1 ttm 70328 1 radeon drm_kms_helper 33236 1 radeon drm 230675 3 radeon,ttm,drm_kms_helper i2c_algo_bit 5762 1 radeon i2c_core 31276 4 radeon,drm_kms_helper,drm,i2c_algo_bit dm_mirror 14101 0 dm_region_hash 12170 1 dm_mirror dm_log 10122 2 dm_mirror,dm_region_hash dm_mod 81500 11 dm_mirror,dm_log blkid: /dev/sda1: UUID="bc4777d9-ae2c-4c58-96ea-cedb342b8338" TYPE="ext4" /dev/sda2: UUID="j2wRZr-Mlko-QWBR-BndC-V2uN-vdhO-iKCuYu" TYPE="LVM2_member" /dev/mapper/vg_lal2server-lv_root: UUID="9238208a-1daf-4c3c-aa9b-469f0387ebee" TYPE="ext4" /dev/mapper/vg_lal2server-lv_swap: UUID="dbefb39c-5871-4bc9-b767-1ef18f12bd3d" TYPE="swap" /dev/mapper/vg_lal2server-lv_home: UUID="ec698993-08b7-443e-84f0-9f9cb31c5da8" TYPE="ext4" dmesg shows: megaraid_sas: fw state:c0000000 megasas: fwstate:c0000000, dis_OCR=0 scsi2 : LSI SAS based MegaRAID driver scsi 2:0:0:0: Direct-Access SEAGATE ST3146855SS S527 PQ: 0 ANSI: 5 scsi 2:0:1:0: Direct-Access SEAGATE ST3146855SS S527 PQ: 0 ANSI: 5 scsi 2:0:2:0: Direct-Access SEAGATE ST3146855SS S527 PQ: 0 ANSI: 5 scsi 2:0:3:0: Direct-Access SEAGATE ST3146855SS S527 PQ: 0 ANSI: 5 scsi 2:0:4:0: Direct-Access HITACHI HUS154545VLS300 D590 PQ: 0 ANSI: 5 scsi 2:0:5:0: Direct-Access HITACHI HUS154545VLS300 D590 PQ: 0 ANSI: 5 scsi 2:0:8:0: Direct-Access FUJITSU MBA3073RC D305 PQ: 0 ANSI: 5 scsi 2:0:9:0: Direct-Access FUJITSU MBA3073RC D305 PQ: 0 ANSI: 5 i.e. the 3 RAID Arrays Seagate Hitatchi and Fujitsu hard drives respectively. FURTHER UPDATE I have installed the megaraid storage manager console and connected to the server. It appears that the two CentOS installation hard drives are OK. The other 6 drives, one raid array of 4 and one raid array of 2 disks. The other drives are listed as (Foreign) Unconfigured Good.

    Read the article

  • How do I implement SkyBox in xna 4.0 Reach Profile (for Windows Phone 7)?

    - by Biny
    I'm trying to Implement SkyBox in my phone game. Most of the samples in the web are for HiDef profile, and they are using custom effects (that not supported on Windows Phone). I've tried to follow this guide. But for some reason my SkyBox is not rendered. This is my SkyBox class: using System; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Rocuna.Core; using Rocuna.GameEngine.Graphics; using Rocuna.GameEngine.Graphics.Components; namespace Rocuna.GameEngine.Extension.WP7.Graphics { /// <summary> /// Sky box element for phone games. /// </summary> public class SkyBox : SkyBoxBase { /// <summary> /// Initializes a new instance of the <see cref="SkyBoxBase"/> class. /// </summary> /// <param name="game">The Game that the game component should be attached to.</param> public SkyBox(TextureCube cube, Game game) : base(game) { Cube = cube; CubeFaces = new Texture2D[6]; PositionOffset = new Vector3(20, 20, 20); CreateGraphic(512); StripTexturesFromCube(); InitializeData(Game.GraphicsDevice); } #region Properties /// <summary> /// Gets or sets the position offset. /// </summary> /// <value> /// The position offset. /// </value> public Vector3 PositionOffset { get; set; } /// <summary> /// Gets or sets the position. /// </summary> /// <value> /// The position. /// </value> public Vector3 Position { get; set; } /// <summary> /// Gets or sets the cube. /// </summary> /// <value> /// The cube. /// </value> public TextureCube Cube { get; set; } /// <summary> /// Gets or sets the pixel array. /// </summary> /// <value> /// The pixel array. /// </value> public Color[] PixelArray { get; set; } /// <summary> /// Gets or sets the cube faces. /// </summary> /// <value> /// The cube faces. /// </value> public Texture2D[] CubeFaces { get; set; } /// <summary> /// Gets or sets the vertex buffer. /// </summary> /// <value> /// The vertex buffer. /// </value> public VertexBuffer VertexBuffer { get; set; } /// <summary> /// Gets or sets the index buffer. /// </summary> /// <value> /// The index buffer. /// </value> public IndexBuffer IndexBuffer { get; set; } /// <summary> /// Gets or sets the effect. /// </summary> /// <value> /// The effect. /// </value> public BasicEffect Effect { get; set; } #endregion protected override void LoadContent() { } public override void Update(GameTime gameTime) { var camera = Game.GetService<GraphicManager>().CurrentCamera; this.Position = camera.Position + PositionOffset; base.Update(gameTime); } public override void Draw(GameTime gameTime) { DrawOrder = int.MaxValue; var graphics = Effect.GraphicsDevice; graphics.DepthStencilState = new DepthStencilState() { DepthBufferEnable = false }; graphics.RasterizerState = new RasterizerState() { CullMode = CullMode.None }; graphics.BlendState = new BlendState(); graphics.SamplerStates[0] = SamplerState.AnisotropicClamp; graphics.SetVertexBuffer(VertexBuffer); graphics.Indices = IndexBuffer; Effect.Texture = CubeFaces[0]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 0, 2); Effect.Texture = CubeFaces[1]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 6, 2); Effect.Texture = CubeFaces[2]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 12, 2); Effect.Texture = CubeFaces[3]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 18, 2); Effect.Texture = CubeFaces[4]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 24, 2); Effect.Texture = CubeFaces[5]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 30, 2); base.Draw(gameTime); } #region Fields private List<VertexPositionNormalTexture> _vertices = new List<VertexPositionNormalTexture>(); private List<ushort> _indices = new List<ushort>(); #endregion #region Private methods private void InitializeData(GraphicsDevice graphicsDevice) { VertexBuffer = new VertexBuffer(graphicsDevice, typeof(VertexPositionNormalTexture), _vertices.Count, BufferUsage.None); VertexBuffer.SetData<VertexPositionNormalTexture>(_vertices.ToArray()); // Create an index buffer, and copy our index data into it. IndexBuffer = new IndexBuffer(graphicsDevice, typeof(ushort), _indices.Count, BufferUsage.None); IndexBuffer.SetData<ushort>(_indices.ToArray()); // Create a BasicEffect, which will be used to render the primitive. Effect = new BasicEffect(graphicsDevice); Effect.TextureEnabled = true; Effect.EnableDefaultLighting(); } private void CreateGraphic(float size) { Vector3[] normals = { Vector3.Right, Vector3.Left, Vector3.Up, Vector3.Down, Vector3.Backward, Vector3.Forward, }; Vector2[] textureCoordinates = { Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, }; var index = 0; foreach (var normal in normals) { var side1 = new Vector3(normal.Z, normal.X, normal.Y); var side2 = Vector3.Cross(normal, side1); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 1); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 3); AddVertex((normal - side1 - side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal - side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 - side2) * size / 2, normal, textureCoordinates[index++]); } } protected void StripTexturesFromCube() { PixelArray = new Color[Cube.Size * Cube.Size]; for (int s = 0; s < CubeFaces.Length; s++) { CubeFaces[s] = new Texture2D(Game.GraphicsDevice, Cube.Size, Cube.Size, false, SurfaceFormat.Color); switch (s) { case 0: Cube.GetData<Color>(CubeMapFace.PositiveX, PixelArray); CubeFaces[s].SetData<Color>(PixelArray); break; case 1: Cube.GetData(CubeMapFace.NegativeX, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 2: Cube.GetData(CubeMapFace.PositiveY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 3: Cube.GetData(CubeMapFace.NegativeY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 4: Cube.GetData(CubeMapFace.PositiveZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 5: Cube.GetData(CubeMapFace.NegativeZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; } } } protected void AddVertex(Vector3 position, Vector3 normal, Vector2 textureCoordinates) { _vertices.Add(new VertexPositionNormalTexture(position, normal, textureCoordinates)); } protected void AddIndex(int index) { if (index > ushort.MaxValue) throw new ArgumentOutOfRangeException("index"); _indices.Add((ushort)index); } protected int CurrentVertex { get { return _vertices.Count; } } #endregion } }

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • jQuery / jqGrids / Submitting form data troubles...

    - by Kelso
    Ive been messing with jqgrids alot of the last couple days, and I have nearly everything the way I want it from the display, tabs with different grids, etc. Im wanting to make use of Modal for adding and editing elements on my grid. My problem that Im running into is this. I have my editurl:"editsu.php" set, if that file is renamed, on edit, i get a 404 in the modal.. great! However, with that file in place, nothing at all seems to happen. I even put a die("testing"); line at the top, so it sees the file, it just doesnt do anything with it. Below is the content. ........ the index page jQuery("#landings").jqGrid({ url:'server.php?tid=1', datatype: "json", colNames:['ID','Tower','Sector', 'Client', 'VLAN','IP','DLink','ULink','Service','Lines','Freq','Radio','Serial','Mac'], colModel:[ {name:'id', index:'id', width : 50, align: 'center', sortable:true,editable:true,editoptions:{size:10}}, {name:'tower', index:'tower', width : 85, align: 'center', sortable:true,editable:false,editoptions:{readonly:true,size:30}}, {name:'sector', index:'sector', width : 50, align: 'center',sortable:true,editable:true,editoptions:{readonly:true,size:20}}, {name:'customer',index:'customer', width : 175, align: 'left', editable:true,editoptions:{readonly:true,size:35}}, {name:'vlan', index:'vlan', width : 35, align: 'left',editable:true,editoptions:{size:10}}, {name:'suip', index:'suip', width : 65, align: 'left',editable:true,editoptions:{size:20}}, {name:'datadl',index:'datadl', width:55, editable: true,edittype:"select",editoptions:{value:"<? $qr = qquery("select * from datatypes"); while ($q = ffetch($qr)) {echo "$q[id]:$q[name];";}?>"}}, {name:'dataul', index:'dataul', width : 55, editable: true,edittype:"select",editoptions:{value:"<? $qr = qquery("select * from datatypes"); while ($q = ffetch($qr)) {echo "$q[id]:$q[name];";}?>"}}, {name:'servicetype', index:'servicetype', width : 85, editable: true,edittype:"select",editoptions:{value:"<? $qr = qquery("select * from servicetype"); while ($q = ffetch($qr)) {echo "$q[id]:$q[name];";}?>"}}, {name:'voicelines', index:'voicelines', width : 35, align: 'center',editable:true,editoptions:{size:30}}, {name:'freqname', index:'freqname', width : 35, editable: true,edittype:"select",editoptions:{value:"<? $qr = qquery("select * from freqband"); while ($q = ffetch($qr)) {echo "$q[id]:$q[name];";}?>"}}, {name:'radioname', index:'radioname', width : 120, editable: true,edittype:"select",editoptions:{value:"<? $qr = qquery("select * from radiotype"); while ($q = ffetch($qr)) {echo "$q[id]:$q[name];";}?>"}}, {name:'serial', index:'serial', width : 100, align: 'right',editable:true,editoptions:{size:20}}, {name:'mac', index:'mac', width : 120, align: 'right',editable:true,editoptions:{size:20}} ], rowNum:20, rowList:[30,50,70], pager: '#pagerl', sortname: 'sid', mtype: "GET", viewrecords: true, sortorder: "asc", altRows: true, caption:"Landings", editurl:"editsu.php", height:420 }); jQuery("#landings").jqGrid('navGrid','#pagerl',{edit:true,add:true,del:false,search:false},{height:400,reloadAfterSubmit:false},{height:400,reloadAfterSubmit:false},{reloadAfterSubmit:false},{}); now for the editsu.php file.. $operation = $_REQUEST['oper']; if ($operation == "edit") { qquery("UPDATE customers SET vlan = '".$_POST['vlan']."', datadl = '".$_POST['datadl']."', dataul = '".$_POST['dataul']."', servicetype = '".$_POST['servicetype']."', voicelines = '".$_POST['voicelines']."', freqname = '".$_POST['freqname']."', radioname = '".$_POST['radioname']."', serial = '".$_POST['serial']."', mac = '".$_POST['mac']."' WHERE id = '".$_POST['id']."'") or die(mysql_error()); } Im just having a hard time troubleshooting this to figure out where its getting hung up at. My next question after this would be to see if its possible to make it so when you click "add", that it auto inserts a row into the db with a couple variable predtermined and then bring up the modal window, but ill work on the first problem first. thanks!

    Read the article

  • How can I reset addAttributeToFilter in Magento searches

    - by Bobby
    I'm having problems getting the addAttributeToFilter function within a loop to behave in Magento. I have test data in my store to support searches for all of the following data; $attributeSelections=array( array('size' => 44, 'color' => 67, 'manufacturer' => 17), array('size' => 43, 'color' => 69, 'manufacturer' => 17), array('size' => 42, 'color' => 70, 'manufacturer' => 17)); And my code to search through these combinations; foreach ($attributeSelections as $selection) { $searcher = Mage::getSingleton('catalogsearch/advanced')->getProductCollection(); foreach ($selection as $k => $v) { $searcher->addAttributeToFilter("$k", array('eq' => "$v")); echo "$k: $v<br />"; } $result=$searcher->getData(); print_r($result); } This loop gives the following results (slightly sanitised for veiwing pleasure); size: 44 color: 67 manufacturer: 17 Array ( [0] => Array ( [entity_id] => 2965 [entity_type_id] => 4 [attribute_set_id] => 28 [type_id] => simple [sku] => 1006-0001 [size] => 44 [color] => 67 [manufacturer] => 17 ) ) size: 43 color: 69 manufacturer: 17 Array ( [0] => Array ( [entity_id] => 2965 [entity_type_id] => 4 [attribute_set_id] => 28 [type_id] => simple [sku] => 1006-0001 [size] => 44 [color] => 67 [manufacturer] => 17 ) ) size: 42 color: 70 manufacturer: 17 Array ( [0] => Array ( [entity_id] => 2965 [entity_type_id] => 4 [attribute_set_id] => 28 [type_id] => simple [sku] => 1006-0001 [size] => 44 [color] => 67 [manufacturer] => 17 ) ) So my loop is function and generating the search. However, the values fed into addAttributeToFilter on the first itteration of the loop seem to remain stored for each search. I've tried clearing my search object, for example, unset($searcher) and unset($result). I've also tried magento functions such as getNewEmptyItem(), resetData(), distinct() and clear() but none have the desired effect. Basically what I am trying to do is check for duplicate products before my script attempts to programatically create a product with these attribute combinations. The array of attribute selections may be of varying sizes hence the need for a loop. I would be very appreiciative if anyone might be able to shed some light on my problem.

    Read the article

  • Image Resizing: Poor jpeg quality and black PNG backgrounds

    - by azz0r
    Hello, I have two issues with my class, basically the quality of the jpeg images is quite poor, but I'm not sure if thats down to my ratio resizing. Ideally I'd like this class to be strict with image sizes and crop into them, but I cant get my head around it. My main issue is that pngs always have a black bg, does anyone have experience with this happening? <?php class OpenSource_ImageResize { function __construct($theFile, $toWhere, $mime, $extension, $newWidth, $newHeight) { if ($mime == NULL) { $mime = getimagesize($theFile); $mime = $mime['mime']; } if ($mime == 'image/jpeg') { $size = getimagesize($theFile); if ($size[0] > $newWidth || $size[1] > $newHeight) { $sourceImage = imagecreatefromjpeg($theFile); } else { return copy($theFile, $toWhere); throw new exception('Could not create jpeg'); return false; } } else if ($mime == 'image/png') { $size = getimagesize($theFile); if ($size[0] > $newWidth || $size[1] > $newHeight) { $sourceImage = imagecreatefrompng($theFile); } else { return copy($theFile, $toWhere); //throw new exception('Could not create png'); return false; } } else if ($mime == 'image/gif') { $size = getimagesize($theFile); if ($size[0] > $newWidth || $size[1] > $newHeight) { $sourceImage = imagecreatefromgif ($theFile); } else { return copy($theFile, $toWhere); //throw new exception('Could not create gif'); return false; } } else { throw new exception('Not a valid mime type'); return false; } $oldX = imageSX($sourceImage); $oldY = imageSY($sourceImage); if ($newWidth == NULL) { $thumbHeight = $newHeight; $thumbWidth = round($newHeight/($oldY/$oldX)); } else if ($oldX > $oldY) { $thumbWidth = $newWidth; $thumbHeight = $oldY * ($newHeight/$oldX); } if ($oldX < $oldY) { $thumbWidth = round($newHeight/($oldY/$oldX)); $thumbHeight = $newHeight; } if ($oldX == $oldY) { $thumbWidth = $newWidth; $thumbHeight = $newHeight; } if (!gd_info()) { $dstImage = ImageCreate($thumbWidth, $thumbHeight); imagecopyresized($dstImage, $sourceImage, 0, 0, 0, 0, $thumbWidth, $thumbHeight, $oldX, $oldY); } else { $dstImage = ImageCreateTrueColor($thumbWidth, $thumbHeight); imagecopyresampled($dstImage, $sourceImage, 0, 0, 0, 0, $thumbWidth, $thumbHeight, $oldX, $oldY); } if ($mime == 'image/png') { $xparent = imagecolorresolvealpha($dstImage, 255,2,240, 0) ; imagecolortransparent($dstImage,$xparent); imagealphablending($dstImage,true); imagepng($dstImage, $toWhere); } else if ($mime == 'image/jpeg') { imagejpeg($dstImage, $toWhere); } else if ($mime == 'image/gif') { imagegif ($dstImage, $toWhere); } imagedestroy($dstImage); imagedestroy($sourceImage); return true; } }

    Read the article

  • Alphabetically Ordering an array of words

    - by Genesis
    I'm studying C on my own in preparation for my upcoming semester of school and was wondering what I was doing wrong with my code so far. If Things look weird it is because this is part of a much bigger grab bag of sorting functions I'm creating to get a sense of how to sort numbers,letters,arrays,and the like! I'm basically having some troubles with the manipulation of strings in C currently. Also, I'm quite limited in my knowledge of C at the moment! My main Consists of this: #include <stdio.h> #include <stdio.h> #include <stdlib.h> int numbers[10]; int size; int main(void){ setvbuf(stdout,NULL,_IONBF,0); //This is magical code that allows me to input. int wordNumber; int lengthOfWord = 50; printf("How many words do you want to enter: "); scanf("%i", &wordNumber); printf("%i\n",wordNumber); char words[wordNumber][lengthOfWord]; printf("Enter %i words:",wordNumber); int i; for(i=0;i<wordNumber+1;i++){ //+1 is because my words[0] is blank. fgets(&words[i], 50, stdin); } for(i=1;i<wordNumber+1;i++){ // Same as the above comment! printf("%s", words[i]); //prints my words out! } alphabetize(words,wordNumber); //I want to sort these arrays with this function. } My sorting "method" I am trying to construct is below! This function is seriously flawed, but I'd thought I'd keep it all to show you where my mind was headed when writing this. void alphabetize(char a[][],int size){ // This wont fly. size = size+1; int wordNumber; int lengthOfWord; char sortedWords[wordNumber][lengthOfWord]; //In effort for the for loop int i; int j; for(i=1;i<size;i++){ //My effort to copy over this array for manipulation for(j=1;j<size;j++){ sortedWords[i][j] = a[i][j]; } } //This should be kinda what I want when ordering words alphabetically, right? for(i=1;i<size;i++){ for(j=2;j<size;j++){ if(strcmp(sortedWords[i],sortedWords[j]) > 0){ char* temp = sortedWords[i]; sortedWords[i] = sortedWords[j]; sortedWords[j] = temp; } } } for(i=1;i<size;i++){ printf("%s, ",sortedWords[i]); } } I guess I also have another question as well... When I use fgets() it's doing this thing where I get a null word for the first spot of the array. I have had other issues recently trying to scanf() char[] in certain ways specifically spacing my input word variables which "magically" gets rid of the first null space before the character. An example of this is using scanf() to write "Hello" and getting " Hello" or " ""Hello"... Appreciate any thoughts on this, I've got all summer to study up so this doesn't need to be answered with haste! Also, thank you stack overflow as a whole for being so helpful in the past. This may be my first post, but I have been a frequent visitor for the past couple of years and it's been one of the best places for helpful advice/tips.

    Read the article

  • How do I make XTerm not use bold?

    - by mike
    I like using XTerm, I like its default "fixed" font, and I like using terminal colors rather than having a monochromatic terminal. However, XTerm seems to insist on using a bold version of the font whenever it's displaying a bright color: I hate hate hate the bold version of the font, but I like the brightness. The man page seems to suggest that adding "XTerm.VT100.boldMode:false" to my ~/.Xresources would disable this "feature", but it doesn't seem to have any effect. I've had it in there for months, so it's not a rebooting issue. How can I force XTerm to always use the standard, non-bold version of the fixed font, even when it's displaying bright text? Edit: Some have suggested putting "XTerm*boldMode: false" in my ~/.Xresources. That didn't help either. I've confirmed that the changes have taken effect with xrdb, though: $ xrdb -query | grep boldMode XTerm*boldMode: false And if i run xprop and click an xterm, I get "WM_CLASS(STRING) = "xterm", "XTerm"" .. so i'm definitely running real xterms. BTW, this is just a plain-vanilla Ubuntu Intrepid box. If anyone else here is running the same, can you try running: echo -e '#\e[1m#' ...and let me know whether the # on the right has a black pixel in the middle like the one on the left does?

    Read the article

  • From Binary to Data Structures

    - by Cédric Menzi
    Table of Contents Introduction PE file format and COFF header COFF file header BaseCoffReader Byte4ByteCoffReader UnsafeCoffReader ManagedCoffReader Conclusion History This article is also available on CodeProject Introduction Sometimes, you want to parse well-formed binary data and bring it into your objects to do some dirty stuff with it. In the Windows world most data structures are stored in special binary format. Either we call a WinApi function or we want to read from special files like images, spool files, executables or may be the previously announced Outlook Personal Folders File. Most specifications for these files can be found on the MSDN Libarary: Open Specification In my example, we are going to get the COFF (Common Object File Format) file header from a PE (Portable Executable). The exact specification can be found here: PECOFF PE file format and COFF header Before we start we need to know how this file is formatted. The following figure shows an overview of the Microsoft PE executable format. Source: Microsoft Our goal is to get the PE header. As we can see, the image starts with a MS-DOS 2.0 header with is not important for us. From the documentation we can read "...After the MS DOS stub, at the file offset specified at offset 0x3c, is a 4-byte...". With this information we know our reader has to jump to location 0x3c and read the offset to the signature. The signature is always 4 bytes that ensures that the image is a PE file. The signature is: PE\0\0. To prove this we first seek to the offset 0x3c, read if the file consist the signature. So we need to declare some constants, because we do not want magic numbers.   private const int PeSignatureOffsetLocation = 0x3c; private const int PeSignatureSize = 4; private const string PeSignatureContent = "PE";   Then a method for moving the reader to the correct location to read the offset of signature. With this method we always move the underlining Stream of the BinaryReader to the start location of the PE signature.   private void SeekToPeSignature(BinaryReader br) { // seek to the offset for the PE signagure br.BaseStream.Seek(PeSignatureOffsetLocation, SeekOrigin.Begin); // read the offset int offsetToPeSig = br.ReadInt32(); // seek to the start of the PE signature br.BaseStream.Seek(offsetToPeSig, SeekOrigin.Begin); }   Now, we can check if it is a valid PE image by reading of the next 4 byte contains the content PE.   private bool IsValidPeSignature(BinaryReader br) { // read 4 bytes to get the PE signature byte[] peSigBytes = br.ReadBytes(PeSignatureSize); // convert it to a string and trim \0 at the end of the content string peContent = Encoding.Default.GetString(peSigBytes).TrimEnd('\0'); // check if PE is in the content return peContent.Equals(PeSignatureContent); }   With this basic functionality we have a good base reader class to try the different methods of parsing the COFF file header. COFF file header The COFF header has the following structure: Offset Size Field 0 2 Machine 2 2 NumberOfSections 4 4 TimeDateStamp 8 4 PointerToSymbolTable 12 4 NumberOfSymbols 16 2 SizeOfOptionalHeader 18 2 Characteristics If we translate this table to code, we get something like this:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public MachineType Machine; public ushort NumberOfSections; public uint TimeDateStamp; public uint PointerToSymbolTable; public uint NumberOfSymbols; public ushort SizeOfOptionalHeader; public Characteristic Characteristics; } BaseCoffReader All readers do the same thing, so we go to the patterns library in our head and see that Strategy pattern or Template method pattern is sticked out in the bookshelf. I have decided to take the template method pattern in this case, because the Parse() should handle the IO for all implementations and the concrete parsing should done in its derived classes.   public CoffHeader Parse() { using (var br = new BinaryReader(File.Open(_fileName, FileMode.Open, FileAccess.Read, FileShare.Read))) { SeekToPeSignature(br); if (!IsValidPeSignature(br)) { throw new BadImageFormatException(); } return ParseInternal(br); } } protected abstract CoffHeader ParseInternal(BinaryReader br);   First we open the BinaryReader, seek to the PE signature then we check if it contains a valid PE signature and rest is done by the derived implementations. Byte4ByteCoffReader The first solution is using the BinaryReader. It is the general way to get the data. We only need to know which order, which data-type and its size. If we read byte for byte we could comment out the first line in the CoffHeader structure, because we have control about the order of the member assignment.   protected override CoffHeader ParseInternal(BinaryReader br) { CoffHeader coff = new CoffHeader(); coff.Machine = (MachineType)br.ReadInt16(); coff.NumberOfSections = (ushort)br.ReadInt16(); coff.TimeDateStamp = br.ReadUInt32(); coff.PointerToSymbolTable = br.ReadUInt32(); coff.NumberOfSymbols = br.ReadUInt32(); coff.SizeOfOptionalHeader = (ushort)br.ReadInt16(); coff.Characteristics = (Characteristic)br.ReadInt16(); return coff; }   If the structure is as short as the COFF header here and the specification will never changed, there is probably no reason to change the strategy. But if a data-type will be changed, a new member will be added or ordering of member will be changed the maintenance costs of this method are very high. UnsafeCoffReader Another way to bring the data into this structure is using a "magically" unsafe trick. As above, we know the layout and order of the data structure. Now, we need the StructLayout attribute, because we have to ensure that the .NET Runtime allocates the structure in the same order as it is specified in the source code. We also need to enable "Allow unsafe code (/unsafe)" in the project's build properties. Then we need to add the following constructor to the CoffHeader structure.   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { unsafe { fixed (byte* packet = &data[0]) { this = *(CoffHeader*)packet; } } } }   The "magic" trick is in the statement: this = *(CoffHeader*)packet;. What happens here? We have a fixed size of data somewhere in the memory and because a struct in C# is a value-type, the assignment operator = copies the whole data of the structure and not only the reference. To fill the structure with data, we need to pass the data as bytes into the CoffHeader structure. This can be achieved by reading the exact size of the structure from the PE file.   protected override CoffHeader ParseInternal(BinaryReader br) { return new CoffHeader(br.ReadBytes(Marshal.SizeOf(typeof(CoffHeader)))); }   This solution is the fastest way to parse the data and bring it into the structure, but it is unsafe and it could introduce some security and stability risks. ManagedCoffReader In this solution we are using the same approach of the structure assignment as above. But we need to replace the unsafe part in the constructor with the following managed part:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { IntPtr coffPtr = IntPtr.Zero; try { int size = Marshal.SizeOf(typeof(CoffHeader)); coffPtr = Marshal.AllocHGlobal(size); Marshal.Copy(data, 0, coffPtr, size); this = (CoffHeader)Marshal.PtrToStructure(coffPtr, typeof(CoffHeader)); } finally { Marshal.FreeHGlobal(coffPtr); } } }     Conclusion We saw that we can parse well-formed binary data to our data structures using different approaches. The first is probably the clearest way, because we know each member and its size and ordering and we have control about the reading the data for each member. But if add member or the structure is going change by some reason, we need to change the reader. The two other solutions use the approach of the structure assignment. In the unsafe implementation we need to compile the project with the /unsafe option. We increase the performance, but we get some security risks.

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • Data Source Connection Pool Sizing

    - by Steve Felts
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} One of the most time-consuming procedures of a database application is establishing a connection. The connection pooling of the data source can be used to minimize this overhead.  That argues for using the data source instead of accessing the database driver directly. Configuring the size of the pool in the data source is somewhere between an art and science – this article will try to move it closer to science.  From the beginning, WLS data source has had an initial capacity and a maximum capacity configuration values.  When the system starts up and when it shrinks, initial capacity is used.  The pool can grow to maximum capacity.  Customers found that they might want to set the initial capacity to 0 (more on that later) but didn’t want the pool to shrink to 0.  In WLS 10.3.6, we added minimum capacity to specify the lower limit to which a pool will shrink.  If minimum capacity is not set, it defaults to the initial capacity for upward compatibility.   We also did some work on the shrinking in release 10.3.4 to reduce thrashing; the algorithm that used to shrink to the maximum of the currently used connections or the initial capacity (basically the unused connections were all released) was changed to shrink by half of the unused connections. The simple approach to sizing the pool is to set the initial/minimum capacity to the maximum capacity.  Doing this creates all connections at startup, avoiding creating connections on demand and the pool is stable.  However, there are a number of reasons not to take this simple approach. When WLS is booted, the deployment of the data source includes synchronously creating the connections.  The more connections that are configured in initial capacity, the longer the boot time for WLS (there have been several projects for parallel boot in WLS but none that are available).  Related to creating a lot of connections at boot time is the problem of logon storms (the database gets too much work at one time).   WLS has a solution for that by setting the login delay seconds on the pool but that also increases the boot time. There are a number of cases where it is desirable to set the initial capacity to 0.  By doing that, the overhead of creating connections is deferred out of the boot and the database doesn’t need to be available.  An application may not want WLS to automatically connect to the database until it is actually needed, such as for some code/warm failover configurations. There are a number of cases where minimum capacity should be less than maximum capacity.  Connections are generally expensive to keep around.  They cause state to be kept on both the client and the server, and the state on the backend may be heavy (for example, a process).  Depending on the vendor, connection usage may cost money.  If work load is not constant, then database connections can be freed up by shrinking the pool when connections are not in use.  When using Active GridLink, connections can be created as needed according to runtime load balancing (RLB) percentages instead of by connection load balancing (CLB) during data source deployment. Shrinking is an effective technique for clearing the pool when connections are not in use.  In addition to the obvious reason that there times where the workload is lighter,  there are some configurations where the database and/or firewall conspire to make long-unused or too-old connections no longer viable.  There are also some data source features where the connection has state and cannot be used again unless the state matches the request.  Examples of this are identity based pooling where the connection has a particular owner and XA affinity where the connection is associated with a particular RAC node.  At this point, WLS does not re-purpose (discard/replace) connections and shrinking is a way to get rid of the unused existing connection and get a new one with the correct state when needed. So far, the discussion has focused on the relationship of initial, minimum, and maximum capacity.  Computing the maximum size requires some knowledge about the application and the current number of simultaneously active users, web sessions, batch programs, or whatever access patterns are common.  The applications should be written to only reserve and close connections as needed but multiple statements, if needed, should be done in one reservation (don’t get/close more often than necessary).  This means that the size of the pool is likely to be significantly smaller then the number of users.   If possible, you can pick a size and see how it performs under simulated or real load.  There is a high-water mark statistic (ActiveConnectionsHighCount) that tracks the maximum connections concurrently used.  In general, you want the size to be big enough so that you never run out of connections but no bigger.   It will need to deal with spikes in usage, which is where shrinking after the spike is important.  Of course, the database capacity also has a big influence on the decision since it’s important not to overload the database machine.  Planning also needs to happen if you are running in a Multi-Data Source or Active GridLink configuration and expect that the remaining nodes will take over the connections when one of the nodes in the cluster goes down.  For XA affinity, additional headroom is also recommended.  In summary, setting initial and maximum capacity to be the same may be simple but there are many other factors that may be important in making the decision about sizing.

    Read the article

< Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >