Search Results

Search found 4808 results on 193 pages for 'reserved instances'.

Page 169/193 | < Previous Page | 165 166 167 168 169 170 171 172 173 174 175 176  | Next Page >

  • Page allocation failures on iSCSI storage

    - by Dave
    We have a CentOS 6.3 iscsi server (16GB RAM) running on Infiniband bus (ipoib). When the load is high I can see multiple errors: Sep 3 23:22:20 stor4 kernel: tgtd: page allocation failure. order:2, mode:0x20 Sep 3 23:22:20 stor4 kernel: Pid: 3637, comm: tgtd Not tainted 2.6.32 #1 Sep 3 23:22:20 stor4 kernel: Call Trace: Sep 3 23:22:20 stor4 kernel: [] ? __alloc_pages_nodemask+0x77f/0x940 Sep 3 23:22:20 stor4 kernel: [] ? kmem_getpages+0x62/0x170 Sep 3 23:22:20 stor4 kernel: [] ? fallback_alloc+0x1ba/0x270 Sep 3 23:22:20 stor4 kernel: [] ? cache_grow+0x2cf/0x320 Sep 3 23:22:20 stor4 kernel: [] ? ____cache_alloc_node+0x99/0x160 Sep 3 23:22:20 stor4 kernel: [] ? pskb_expand_head+0x64/0x270 Sep 3 23:22:20 stor4 kernel: [] ? __kmalloc+0x189/0x220 Sep 3 23:22:20 stor4 kernel: [] ? pskb_expand_head+0x64/0x270 Sep 3 23:22:20 stor4 kernel: [] ? __pskb_pull_tail+0x2aa/0x360 Sep 3 23:22:20 stor4 kernel: [] ? tcp_init_tso_segs+0x37/0x50 Sep 3 23:22:20 stor4 kernel: [] ? dev_queue_xmit+0x4bb/0x6f0 Sep 3 23:22:20 stor4 kernel: [] ? neigh_connected_output+0xbd/0x100 Sep 3 23:22:20 stor4 kernel: [] ? ip_finish_output+0x237/0x310 Sep 3 23:22:20 stor4 kernel: [] ? ip_output+0xb8/0xc0 Sep 3 23:22:20 stor4 kernel: [] ? __ip_local_out+0x9f/0xb0 Sep 3 23:22:20 stor4 kernel: [] ? ip_local_out+0x25/0x30 Sep 3 23:22:20 stor4 kernel: [] ? ip_queue_xmit+0x190/0x420 Sep 3 23:22:20 stor4 kernel: [] ? sock_aio_write+0x167/0x180 Sep 3 23:22:20 stor4 kernel: [] ? tcp_transmit_skb+0x3fe/0x7b0 Sep 3 23:22:20 stor4 kernel: [] ? tcp_write_xmit+0x1fb/0xa20 Sep 3 23:22:20 stor4 kernel: [] ? __tcp_push_pending_frames+0x30/0xe0 Sep 3 23:22:20 stor4 kernel: [] ? tcp_push_pending_frames+0x33/0x40 Sep 3 23:22:20 stor4 kernel: [] ? do_tcp_setsockopt+0x3d6/0x480 Sep 3 23:22:20 stor4 kernel: [] ? tcp_setsockopt+0x2a/0x30 Sep 3 23:22:20 stor4 kernel: [] ? sock_common_setsockopt+0x14/0x20 Sep 3 23:22:20 stor4 kernel: [] ? sys_setsockopt+0x7f/0xe0 Sep 3 23:22:20 stor4 kernel: [] ? system_call_fastpath+0x16/0x1b Sep 3 23:22:20 stor4 kernel: Mem-Info: Sep 3 23:22:20 stor4 kernel: Node 0 DMA per-cpu: Sep 3 23:22:20 stor4 kernel: CPU 0: hi: 0, btch: 1 usd: 0 Sep 3 23:22:20 stor4 kernel: CPU 1: hi: 0, btch: 1 usd: 0 Sep 3 23:22:20 stor4 kernel: CPU 2: hi: 0, btch: 1 usd: 0 Sep 3 23:22:20 stor4 kernel: CPU 3: hi: 0, btch: 1 usd: 0 Sep 3 23:22:20 stor4 kernel: Node 0 DMA32 per-cpu: Sep 3 23:22:20 stor4 kernel: CPU 0: hi: 186, btch: 31 usd: 183 Sep 3 23:22:20 stor4 kernel: CPU 1: hi: 186, btch: 31 usd: 23 Sep 3 23:22:20 stor4 kernel: CPU 2: hi: 186, btch: 31 usd: 183 Sep 3 23:22:20 stor4 kernel: CPU 3: hi: 186, btch: 31 usd: 181 Sep 3 23:22:20 stor4 kernel: Node 0 Normal per-cpu: Sep 3 23:22:20 stor4 kernel: CPU 0: hi: 186, btch: 31 usd: 171 Sep 3 23:22:20 stor4 kernel: CPU 1: hi: 186, btch: 31 usd: 29 Sep 3 23:22:20 stor4 kernel: CPU 2: hi: 186, btch: 31 usd: 32 Sep 3 23:22:20 stor4 kernel: CPU 3: hi: 186, btch: 31 usd: 32 Sep 3 23:22:20 stor4 kernel: active_anon:1875 inactive_anon:2473 isolated_anon:0 Sep 3 23:22:20 stor4 kernel: active_file:1243637 inactive_file:2505055 isolated_file:0 Sep 3 23:22:20 stor4 kernel: unevictable:0 dirty:268338 writeback:0 unstable:0 Sep 3 23:22:20 stor4 kernel: free:86050 slab_reclaimable:132377 slab_unreclaimable:23744 Sep 3 23:22:20 stor4 kernel: mapped:1293 shmem:222 pagetables:720 bounce:0 Sep 3 23:22:20 stor4 kernel: Node 0 DMA free:15732kB min:124kB low:152kB high:184kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15332kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes Sep 3 23:22:20 stor4 kernel: lowmem_reserve[]: 0 2172 16060 16060 Sep 3 23:22:20 stor4 kernel: Node 0 DMA32 free:107544kB min:18268kB low:22832kB high:27400kB active_anon:468kB inactive_anon:2364kB active_file:566208kB inactive_file:976112kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:2224900kB mlocked:0kB dirty:96816kB writeback:0kB mapped:908kB shmem:12kB slab_reclaimable:176940kB slab_unreclaimable:968kB kernel_stack:64kB pagetables:192kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Sep 3 23:22:20 stor4 kernel: lowmem_reserve[]: 0 0 13887 13887 Sep 3 23:22:20 stor4 kernel: Node 0 Normal free:220924kB min:116772kB low:145964kB high:175156kB active_anon:7032kB inactive_anon:7528kB active_file:4408340kB inactive_file:9044108kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:14220800kB mlocked:0kB dirty:976536kB writeback:0kB mapped:4264kB shmem:876kB slab_reclaimable:352568kB slab_unreclaimable:94008kB kernel_stack:2048kB pagetables:2688kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Sep 3 23:22:20 stor4 kernel: lowmem_reserve[]: 0 0 0 0 Sep 3 23:22:20 stor4 kernel: Node 0 DMA: 1*4kB 0*8kB 1*16kB 1*32kB 1*64kB 0*128kB 1*256kB 0*512kB 1*1024kB 1*2048kB 3*4096kB = 15732kB Sep 3 23:22:20 stor4 kernel: Node 0 DMA32: 16305*4kB 4381*8kB 353*16kB 8*32kB 1*64kB 1*128kB 0*256kB 1*512kB 1*1024kB 0*2048kB 0*4096kB = 107900kB Sep 3 23:22:20 stor4 kernel: Node 0 Normal: 14548*4kB 14808*8kB 2420*16kB 31*32kB 5*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 1*4096kB = 220784kB Sep 3 23:22:20 stor4 kernel: 3748822 total pagecache pages Sep 3 23:22:20 stor4 kernel: 0 pages in swap cache Sep 3 23:22:20 stor4 kernel: Swap cache stats: add 0, delete 0, find 0/0 Sep 3 23:22:20 stor4 kernel: Free swap = 975864kB Sep 3 23:22:20 stor4 kernel: Total swap = 975864kB Sep 3 23:22:20 stor4 kernel: 4194303 pages RAM Sep 3 23:22:20 stor4 kernel: 126915 pages reserved Sep 3 23:22:20 stor4 kernel: 3753534 pages shared Sep 3 23:22:20 stor4 kernel: 213500 pages non-shared TCP stack and VM config: net.core.rmem_max = 83886080 net.core.wmem_max = 83886080 net.core.rmem_default = 65536 net.core.wmem_default = 65536 net.ipv4.tcp_rmem = 40960 1048560 4194304 net.ipv4.tcp_wmem = 40960 196608 4194304 net.ipv4.tcp_mem = 16388608 16388608 16388608 vm.min_free_kbytes=135168 Additional tweaks: /sbin/blockdev --setra 16384 /dev/sdb echo 2048 /sys/block/sdb/queue/nr_requests Where might the problem be? Thank you.

    Read the article

  • Looking for personal scheduling software / todo list with rather particular requirements

    - by Cthulhu
    I've been scouring the web for a couple of (my boss') hours, looking for a piece of software that can organize my tasks in two ways. First, I have a list of bullet points / todo items I can do at any given time. Think of stuff like solve issue X, ask X about Y, write documentation about Z, etcetera. Second, I have a number of running projects I'd like to organize better, as in schedule for a certain part of a day of the week. Ideally (I think), my day would be organized as 50% spent on projects and 50% on the other small things. Now, I don't like most calendar applications (such as Outlook & friends), their UI is too 'official', not really easy to move stuff around (in my experience). I don't like most todo lists either, too static and things. I like new, fast and hip software. I've looked at GTD versions of Tiddlywiki, and I like mGSD for one particular feature. You can make lists of tasks and basically give them one of three statusses - Now (nothing required, you can do it right away), Waiting (you need someone or something before you can work on this), or the most gratifying of all, Done. I like that feature because it's a simple todo list, but indicates more accurately the things you can do right now and the things you depend on someone else for to do. Anyways, that's just a small aspect of that program - most of the other things in there I can't find a particularly good use for. If there's something like that (maybe something that works even snappier, cleaner UI), combined with an easy to use bit of scheduling software (optionally separated into two applications, but preferrably not), I think I'd like that. (Besides something like that, I also use several instances of Trac to monitor tasks and bugs and things for the various clients and projects I have to serve, and TaskCoach to monitor the amount of time I spend on each task / each client. An easy / low-maintenance time tracking software would be neat too) Of course, the software has to be free to use. I don't like shareware, trials, limited software and the like. I could develop my own too, but I'm lazy like that and there's a dozen other projects I'd like to do in my free time (neither of which I actually do). Edit: I like David Seah's printable CEO stuff, if something like that (with some video game / instant achievement / gratification) exists in software, it'd be awesome.

    Read the article

  • VPC SSH port forward into private subnet

    - by CP510
    Ok, so I've been racking my brain for DAYS on this dilema. I have a VPC setup with a public subnet, and a private subnet. The NAT is in place of course. I can connect from SSH into a instance in the public subnet, as well as the NAT. I can even ssh connect to the private instance from the public instance. I changed the SSHD configuration on the private instance to accept both port 22 and an arbitrary port number 1300. That works fine. But I need to set it up so that I can connect to the private instance directly using the 1300 port number, ie. ssh -i keyfile.pem [email protected] -p 1300 and 1.2.3.4 should route it to the internal server 10.10.10.10. Now I heard iptables is the job for this, so I went ahead and researched and played around with some routing with that. These are the rules I have setup on the public instance (not the NAT). I didn't want to use the NAT for this since AWS apperantly pre-configures the NAT instances when you set them up and I heard using iptables can mess that up. *filter :INPUT ACCEPT [129:12186] :FORWARD ACCEPT [0:0] :OUTPUT ACCEPT [84:10472] -A INPUT -i lo -j ACCEPT -A INPUT -i eth0 -p tcp -m state --state NEW -m tcp --dport 1300 -j ACCEPT -A INPUT -d 10.10.10.10/32 -p tcp -m limit --limit 5/min -j LOG --log-prefix "SSH Dropped: " -A FORWARD -d 10.10.10.10/32 -p tcp -m tcp --dport 1300 -j ACCEPT -A OUTPUT -o lo -j ACCEPT COMMIT # Completed on Wed Apr 17 04:19:29 2013 # Generated by iptables-save v1.4.12 on Wed Apr 17 04:19:29 2013 *nat :PREROUTING ACCEPT [2:104] :INPUT ACCEPT [2:104] :OUTPUT ACCEPT [6:681] :POSTROUTING ACCEPT [7:745] -A PREROUTING -i eth0 -p tcp -m tcp --dport 1300 -j DNAT --to-destination 10.10.10.10:1300 -A POSTROUTING -p tcp -m tcp --dport 1300 -j MASQUERADE COMMIT So when I try this from home. It just times out. No connection refused messages or anything. And I can't seem to find any log messages about dropped packets. My security groups and ACL settings allow communications on these ports in both directions in both subnets and on the NAT. I'm at a loss. What am I doing wrong?

    Read the article

  • Which hardware to VM ratio for Build-Server virtualization?

    - by Martin
    Let's start with saying that I'm a total noob wrt. to server virtualization. That is, I use VMs often during development, but they're simple desktop machine things for me. Now to my problem: We have two (physical) build servers, one master, one slave running Jenkins to do daily tasks and build (Visual C++ Builds) our release packages for our software. As such these machines are critical to our company, because we do lot's releases and without a controlled environment to create them, we can't ship fixes. (And currently there's no proper backup of these machines in place, because they do not hold any data as such - it just would be a major pain to setup them again should they go bust. (But setting up backup that I'd know would work in case of HW failure would even be more pain, so we have skipped that until now.)) Therefore (and for scaling purposes) we would like to go virtual with these machines. Outsourcing to the cloud is not an option, not at all, so we'll have to use on-premises hardware and VM hosts. Each Build-Server (master or slave) is a fully configured (installs, licenses, shares in case of the master, ...) Windows Server box. I would now ideally like to just convert the (two) existing physical nodes to VM images and run them. Later add more VM slave instances as clones of the existing ones. And here begin my questions: Should I go for one VM per one hardware-box or should I go for something where a single hardware runs multiple VMs? That would mean a single point of failure hardware wise and doesn't seem like a good idea ... or?? Since we're doing C++ compilation with Visual Studio, I assume that during a build the hardware (processor cores + disk) will be fully utilized, so going with more than one build-node per hardware doesn't seem to make much sense?? Wrt. to hardware options, does it make any difference which VM software we use (VMWare, MS, Virtualbox, ... ?) (We're using Windows exclusively for our builds.) Regarding budget: We have a normal small company (20 developers) budget for this. ;-) That is, if it's going to cost a few k$ it's going to cost. If it's free - the better. I strongly prefer solutions where there's no multi-k$ maintenance costs per year.

    Read the article

  • SQL Express 2008 R2 on Amazon EC2 instance: tons of free memory, poor performance

    - by gravyface
    The old SQL Express 2005 was running on a low-end single Xeon CPU Dell server, RAID 5 7200 disks, 2 GB RAM (SBS 2003). I have not done any baseline measurements on the old physical server, but the Web app is used by half a dozen people (maybe 2 concurrently), so I figured "how bad can an Amazon EC2 instance be?". It's pretty horrible: a difference of 8 seconds of load time on one screen. First of all, I'm not a SQL guru, but here's what I've tried: Had a Small Instance, now running a c1.medium (High Cpu Medium) Windows 2008 32-bit R2 EBS-backed instance running IIS 7.5 and SQL Express 2008 R2. No noticeable improvement. Changed Page File from fixed 256 to Automatic. Setup a Striped Mirror from within Disk Management with two attached 1 GB EBS volumes. Moved database and transaction log, left everything else on the boot EBS volume. No noticeable change. Looked at memory, ~1000 MB of physical memory free (1.7 GB total). Changed SQL instance to use a minimum of 1024 RAM; restarted server, no change in memory usage. SQL still only using ~28MB of RAM(!). So I'm thinking: this database is tiny (28MB), why isn't the whole thing cached in RAM? Surely that would speed up performance. The transaction log is 241 MB. Seems kind of large in comparison -- has this not been committed? Is it a cause of performance degradation? I recall something about Recovery Models and log sizes somewhere in my travels, but not positive. Another thing: the old server was running SQL Express 2005. Not sure if that has any impact, but I tried changing the compatibility level from SQL 2000 to 2008, but that had no effect. Anyways, what else can I try here? Seems ridiculous to throw more virtual hardware at this thing. I know I/O is going to be rough on EBS volumes, but surely others are successfully running small .NET/SQL apps on reasonably priced instances?

    Read the article

  • Where is my app.config for SSIS?

    Sometimes when working with SSIS you need to add or change settings in the .NET application configuration file, which can be a bit confusing when you are building a SSIS package not an application. First of all lets review a couple of examples where you may need to do this. You are using referencing an assembly in a Script Task that uses Enterprise Library (aka EntLib), so you need to add the relevant configuration sections and settings, perhaps for the logging application block. You are using using Enterprise Library in a custom task or component, and again you need to add the relevant configuration sections and settings. You are using a web service with Microsoft Web Services Enhancements (WSE) 3.0 and hosting the proxy in SSIS, in an assembly used by your package, and need to add the configuration sections and settings. You need to change behaviours of the .NET framework which can be influenced by a configuration file, such as the System.Net.Mail default SMTP settings. Perhaps you wish to configure System.Net and the httpWebRequest header for parsing unsafe header (useUnsafeHeaderParsing), which will change the way the HTTP Connection manager behaves. You are consuming a WCF service and wish to specify the endpoint in configuration. There are no doubt plenty more examples but each of these requires us to identify the correct configuration file and and make the relevant changes. There are actually several configuration files, each used by a different execution host depending on how you are working with the SSIS package. The folders we need to look in will actually vary depending on the version of SQL Server as well as the processor architecture, but most are all what we can call the Binn folder. The SQL Server 2005 Binn folder is at C:\Program Files\Microsoft SQL Server\90\DTS\Binn\, compared to C:\Program Files\Microsoft SQL Server\100\DTS\Binn\ for SQL Server 2008. If you are on a 64-bit machine then you will see C:\Program Files (x86)\Microsoft SQL Server\90\DTS\Binn\ for the 32-bit executables and C:\Program Files\Microsoft SQL Server\90\DTS\Binn\ for 64-bit, so be sure to check all relevant locations. Of course SQL Server 2008 may have a C:\Program Files (x86)\Microsoft SQL Server\100\DTS\Binn\ on a 64-bit machine too. To recap, the version of SQL Server determines if you look in the 90 or 100 sub-folder under SQL Server in Program Files (C:\Program Files\Microsoft SQL Server\nn\) . If you are running a 64-bit operating system then you will have two instances program files, C:\Program Files (x86)\ for 32-bit and  C:\Program Files\ for 64-bit. You may wish to check both depending on what you are doing, but this is covered more under each section below. There are a total of five specific configuration files that you may need to change, each one is detailed below: DTExec.exe.config DTExec.exe is the standalone command line tool used for executing SSIS packages, and therefore it is an execution host with an app.config file. e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\DTExec.exe.config The file can be found in both the 32-bit and 64-bit Binn folders. DtsDebugHost.exe.config DtsDebugHost.exe is the execution host used by Business Intelligence Development Studio (BIDS) / Visual Studio when executing a package from the designer in debug mode, which is the default behaviour. e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\DtsDebugHost.exe.config The file can be found in both the 32-bit and 64-bit Binn folders. This may surprise some people as Visual Studio is only 32-bit, but thankfully the debugger supports both. This can be set in the project properties, see the Run64BitRuntime property (true or false) in the Debugging pane of the Project Properties. dtshost.exe.config dtshost.exe is the execution host used by what I think of as the built-in features of SQL Server such as SQL Server Agent e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\dtshost.exe.config This file can be found in both the 32-bit and 64-bit Binn folders devenv.exe.config Something slightly different is devenv.exe which is Visual Studio. This configuration file may also need changing if you need a feature at design-time such as in a Task Editor or Connection Manager editor. Visual Studio 2005 for SQL Server 2005  - C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\devenv.exe.config Visual Studio 2008 for SQL Server 2008  - C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe.config Visual Studio is only available for 32-bit so on a 64-bit machine you will have to look in C:\Program Files (x86)\ only. DTExecUI.exe.config The DTExec UI tool can also have a configuration file and these cab be found under the Tools folders for SQL Sever as shown below. C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\IDE\DTExecUI.exe C:\Program Files\Microsoft SQL Server\100\Tools\Binn\VSShell\Common7\IDE\DTExecUI.exe A configuration file may not exist, but if you can find the matching executable you know you are in the right place so can go ahead and add a new file yourself. In summary we have covered the assembly configuration files for all of the standard methods of building and running a SSIS package, but obviously if you are working programmatically you will need to make the relevant modifications to your program’s app.config as well.

    Read the article

  • Problem compiling hive with ant

    - by conandor
    I compiling with Solaris 10 SPARC, jdk 1.6 from Sun, Ant 1.7.1 from OpenCSW. I have no problem running hadoop 0.17.2.1 However, I have problem compiling/integrating hive with the error 'cannot find symbol', although I followed the tutorial. I have the hive source code from SVN exactly from tutorial. How can I know the hive version I compiling and how can I compile against hadoop 0.17.2.1? Please advice. Thank you. -bash-3.00$ export PATH=/usr/jdk/instances/jdk1.6.0/bin:/usr/bin:/opt/csw/bin:/opt/webstack/bin -bash-3.00$ export JAVA_HOME=/usr/jdk/instances/jdk1.6.0 -bash-3.00$ export HADOOP=/export/home/mywork/hadoop-0.17.2.1/bin/hadoop -bash-3.00$ /opt/csw/bin/ant package -Dhadoop.version=0.17.2.1 Buildfile: build.xml jar: create-dirs: compile-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks deploy-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks jar: init: compile: ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#shims;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.17.2.1 in hadoop-source [ivy:retrieve] found hadoop#core;0.18.3 in hadoop-source [ivy:retrieve] found hadoop#core;0.19.0 in hadoop-source [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 25878ms :: artifacts dl 37ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 4 | 0 | 0 | 0 || 4 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#shims [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 4 already retrieved (0kB/82ms) install-hadoopcore-internal: build_shims: [echo] Compiling shims against hadoop 0.17.2.1 (/export/home/mywork/hive/build/hadoopcore/hadoop-0.17.2.1) ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#shims;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.17.2.1 in hadoop-source [ivy:retrieve] found hadoop#core;0.18.3 in hadoop-source [ivy:retrieve] found hadoop#core;0.19.0 in hadoop-source [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 12041ms :: artifacts dl 30ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 4 | 0 | 0 | 0 || 4 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#shims [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 4 already retrieved (0kB/39ms) install-hadoopcore-internal: build_shims: [echo] Compiling shims against hadoop 0.18.3 (/export/home/mywork/hive/build/hadoopcore/hadoop-0.18.3) ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#shims;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.17.2.1 in hadoop-source [ivy:retrieve] found hadoop#core;0.18.3 in hadoop-source [ivy:retrieve] found hadoop#core;0.19.0 in hadoop-source [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 11107ms :: artifacts dl 36ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 4 | 0 | 0 | 0 || 4 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#shims [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 4 already retrieved (0kB/49ms) install-hadoopcore-internal: build_shims: [echo] Compiling shims against hadoop 0.19.0 (/export/home/mywork/hive/build/hadoopcore/hadoop-0.19.0) ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#shims;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.17.2.1 in hadoop-source [ivy:retrieve] found hadoop#core;0.18.3 in hadoop-source [ivy:retrieve] found hadoop#core;0.19.0 in hadoop-source [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 9969ms :: artifacts dl 33ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 4 | 0 | 0 | 0 || 4 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#shims [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 4 already retrieved (0kB/57ms) install-hadoopcore-internal: build_shims: [echo] Compiling shims against hadoop 0.20.0 (/export/home/mywork/hive/build/hadoopcore/hadoop-0.20.0) jar: [echo] Jar: shims create-dirs: compile-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks deploy-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks jar: init: install-hadoopcore: install-hadoopcore-default: ivy-init-dirs: ivy-download: [get] Getting: http://repo2.maven.org/maven2/org/apache/ivy/ivy/2.1.0/ivy-2.1.0.jar [get] To: /export/home/mywork/hive/build/ivy/lib/ivy-2.1.0.jar [get] Not modified - so not downloaded ivy-probe-antlib: ivy-init-antlib: ivy-init: ivy-retrieve-hadoop-source: [ivy:retrieve] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ :: [ivy:retrieve] :: loading settings :: file = /export/home/mywork/hive/ivy/ivysettings.xml [ivy:retrieve] :: resolving dependencies :: org.apache.hadoop.hive#common;working@kaili [ivy:retrieve] confs: [default] [ivy:retrieve] found hadoop#core;0.20.0 in hadoop-source [ivy:retrieve] :: resolution report :: resolve 4864ms :: artifacts dl 13ms --------------------------------------------------------------------- | | modules || artifacts | | conf | number| search|dwnlded|evicted|| number|dwnlded| --------------------------------------------------------------------- | default | 1 | 0 | 0 | 0 || 1 | 0 | --------------------------------------------------------------------- [ivy:retrieve] :: retrieving :: org.apache.hadoop.hive#common [ivy:retrieve] confs: [default] [ivy:retrieve] 0 artifacts copied, 1 already retrieved (0kB/52ms) install-hadoopcore-internal: setup: compile: [echo] Compiling: common jar: [echo] Jar: common create-dirs: compile-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks deploy-ant-tasks: create-dirs: init: compile: [echo] Compiling: anttasks jar: init: dynamic-serde: compile: [echo] Compiling: hive [javac] Compiling 167 source files to /export/home/mywork/hive/build/serde/classes [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/objectinspector/ObjectInspectorFactory.java:30: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/objectinspector/ObjectInspectorFactory.java:31: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorUtils [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/MetadataTypedColumnsetSerDe.java:31: cannot find symbol [javac] symbol : class MetadataListStructObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector [javac] import org.apache.hadoop.hive.serde2.objectinspector.MetadataListStructObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:33: cannot find symbol [javac] symbol : class BooleanObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.BooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:35: cannot find symbol [javac] symbol : class DoubleObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.DoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:36: cannot find symbol [javac] symbol : class FloatObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.FloatObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:39: cannot find symbol [javac] symbol : class ShortObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.ShortObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/SerDeUtils.java:40: cannot find symbol [javac] symbol : class StringObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:44: cannot find symbol [javac] symbol : class BooleanObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.BooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:46: cannot find symbol [javac] symbol : class DoubleObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.DoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:47: cannot find symbol [javac] symbol : class FloatObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.FloatObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:50: cannot find symbol [javac] symbol : class ShortObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.ShortObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/binarysortable/BinarySortableSerDe.java:51: cannot find symbol [javac] symbol : class StringObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazySimpleSerDe.java:43: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/columnar/ColumnarSerDe.java:41: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyStruct.java:26: cannot find symbol [javac] symbol : class LazySimpleStructObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.lazy.objectinspector [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.LazySimpleStructObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyStruct.java:39: cannot find symbol [javac] symbol: class LazySimpleStructObjectInspector [javac] LazyNonPrimitive<LazySimpleStructObjectInspector> { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyStruct.java:68: cannot find symbol [javac] symbol : class LazySimpleStructObjectInspector [javac] location: class org.apache.hadoop.hive.serde2.lazy.LazyStruct [javac] public LazyStruct(LazySimpleStructObjectInspector oi) { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDe.java:36: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDe.java:37: cannot find symbol [javac] symbol : class PrimitiveObjectInspectorUtils [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDeTypeString.java:23: cannot find symbol [javac] symbol : class StringObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDeTypei16.java:23: cannot find symbol [javac] symbol : class ShortObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.ShortObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDeTypeDouble.java:23: cannot find symbol [javac] symbol : class DoubleObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.DoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/dynamic_type/DynamicSerDeTypeBool.java:23: cannot find symbol [javac] symbol : class BooleanObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.objectinspector.primitive [javac] import org.apache.hadoop.hive.serde2.objectinspector.primitive.BooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyBoolean.java:20: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyBooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyBoolean.java:37: cannot find symbol [javac] symbol: class LazyBooleanObjectInspector [javac] LazyPrimitive<LazyBooleanObjectInspector, BooleanWritable> { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyBoolean.java:39: cannot find symbol [javac] symbol : class LazyBooleanObjectInspector [javac] location: class org.apache.hadoop.hive.serde2.lazy.LazyBoolean [javac] public LazyBoolean(LazyBooleanObjectInspector oi) { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyByte.java:21: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyByteObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyByte.java:37: cannot find symbol [javac] symbol: class LazyByteObjectInspector [javac] LazyPrimitive<LazyByteObjectInspector, ByteWritable> { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyByte.java:39: cannot find symbol [javac] symbol : class LazyByteObjectInspector [javac] location: class org.apache.hadoop.hive.serde2.lazy.LazyByte [javac] public LazyByte(LazyByteObjectInspector oi) { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyDouble.java:23: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyDoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyDouble.java:31: cannot find symbol [javac] symbol: class LazyDoubleObjectInspector [javac] LazyPrimitive<LazyDoubleObjectInspector, DoubleWritable> { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyDouble.java:33: cannot find symbol [javac] symbol : class LazyDoubleObjectInspector [javac] location: class org.apache.hadoop.hive.serde2.lazy.LazyDouble [javac] public LazyDouble(LazyDoubleObjectInspector oi) { [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:25: cannot find symbol [javac] symbol : class LazyObjectInspectorFactory [javac] location: package org.apache.hadoop.hive.serde2.lazy.objectinspector [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.LazyObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:26: cannot find symbol [javac] symbol : class LazySimpleStructObjectInspector [javac] location: package org.apache.hadoop.hive.serde2.lazy.objectinspector [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.LazySimpleStructObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:27: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyBooleanObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:28: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyByteObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:29: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyDoubleObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:30: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyFloatObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:31: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyIntObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:32: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyLongObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:33: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyPrimitiveObjectInspectorFactory; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:34: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyShortObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFactory.java:35: package org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive does not exist [javac] import org.apache.hadoop.hive.serde2.lazy.objectinspector.primitive.LazyStringObjectInspector; [javac] ^ [javac] /export/home/mywork/hive/serde/src/java/org/apache/hadoop/hive/serde2/lazy/LazyFloat.java:

    Read the article

  • SQL SERVER – Shrinking NDF and MDF Files – Readers’ Opinion

    - by pinaldave
    Previously, I had written a blog post about SQL SERVER – Shrinking NDF and MDF Files – A Safe Operation. After that, I have written the following blog post that talks about the advantage and disadvantage of Shrinking and why one should not be Shrinking a file SQL SERVER – SHRINKFILE and TRUNCATE Log File in SQL Server 2008. On this subject, SQL Server Expert Imran Mohammed left an excellent comment. I just feel that his comment is worth a big article itself. For everybody to read his wonderful explanation, I am posting this blog post here. Thanks Imran! Shrinking Database always creates performance degradation and increases fragmentation in the database. I suggest that you keep that in mind before you start reading the following comment. If you are going to say Shrinking Database is bad and evil, here I am saying it first and loud. Now, the comment of Imran is written while keeping in mind only the process showing how the Shrinking Database Operation works. Imran has already explained his understanding and requests further explanation. I have removed the Best Practices section from Imran’s comments, as there are a few corrections. Comments from Imran - Before I explain to you the concept of Shrink Database, let us understand the concept of Database Files. When we create a new database inside the SQL Server, it is typical that SQl Server creates two physical files in the Operating System: one with .MDF Extension, and another with .LDF Extension. .MDF is called as Primary Data File. .LDF is called as Transactional Log file. If you add one or more data files to a database, the physical file that will be created in the Operating System will have an extension of .NDF, which is called as Secondary Data File; whereas, when you add one or more log files to a database, the physical file that will be created in the Operating System will have the same extension as .LDF. The questions now are, “Why does a new data file have a different extension (.NDF)?”, “Why is it called as a secondary data file?” and, “Why is .MDF file called as a primary data file?” Answers: Note: The following explanation is based on my limited knowledge of SQL Server, so experts please do comment. A data file with a .MDF extension is called a Primary Data File, and the reason behind it is that it contains Database Catalogs. Catalogs mean Meta Data. Meta Data is “Data about Data”. An example for Meta Data includes system objects that store information about other objects, except the data stored by the users. sysobjects stores information about all objects in that database. sysindexes stores information about all indexes and rows of every table in that database. syscolumns stores information about all columns that each table has in that database. sysusers stores how many users that database has. Although Meta Data stores information about other objects, it is not the transactional data that a user enters; rather, it’s a system data about the data. Because Primary Data File (.MDF) contains important information about the database, it is treated as a special file. It is given the name Primary Data file because it contains the Database Catalogs. This file is present in the Primary File Group. You can always create additional objects (Tables, indexes etc.) in the Primary data file (This file is present in the Primary File group), by mentioning that you want to create this object under the Primary File Group. Any additional data file that you add to the database will have only transactional data but no Meta Data, so that’s why it is called as the Secondary Data File. It is given the extension name .NDF so that the user can easily identify whether a specific data file is a Primary Data File or a Secondary Data File(s). There are many advantages of storing data in different files that are under different file groups. You can put your read only in the tables in one file (file group) and read-write tables in another file (file group) and take a backup of only the file group that has read the write data, so that you can avoid taking the backup of a read-only data that cannot be altered. Creating additional files in different physical hard disks also improves I/O performance. A real-time scenario where we use Files could be this one: Let’s say you have created a database called MYDB in the D-Drive which has a 50 GB space. You also have 1 Database File (.MDF) and 1 Log File on D-Drive and suppose that all of that 50 GB space has been used up and you do not have any free space left but you still want to add an additional space to the database. One easy option would be to add one more physical hard disk to the server, add new data file to MYDB database and create this new data file in a new hard disk then move some of the objects from one file to another, and put the file group under which you added new file as default File group, so that any new object that is created gets into the new files, unless specified. Now that we got a basic idea of what data files are, what type of data they store and why they are named the way they are, let’s move on to the next topic, Shrinking. First of all, I disagree with the Microsoft terminology for naming this feature as “Shrinking”. Shrinking, in regular terms, means to reduce the size of a file by means of compressing it. BUT in SQL Server, Shrinking DOES NOT mean compressing. Shrinking in SQL Server means to remove an empty space from database files and release the empty space either to the Operating System or to SQL Server. Let’s examine this through an example. Let’s say you have a database “MYDB” with a size of 50 GB that has a free space of about 20 GB, which means 30GB in the database is filled with data and the 20 GB of space is free in the database because it is not currently utilized by the SQL Server (Database); it is reserved and not yet in use. If you choose to shrink the database and to release an empty space to Operating System, and MIND YOU, you can only shrink the database size to 30 GB (in our example). You cannot shrink the database to a size less than what is filled with data. So, if you have a database that is full and has no empty space in the data file and log file (you don’t have an extra disk space to set Auto growth option ON), YOU CANNOT issue the SHRINK Database/File command, because of two reasons: There is no empty space to be released because the Shrink command does not compress the database; it only removes the empty space from the database files and there is no empty space. Remember, the Shrink command is a logged operation. When we perform the Shrink operation, this information is logged in the log file. If there is no empty space in the log file, SQL Server cannot write to the log file and you cannot shrink a database. Now answering your questions: (1) Q: What are the USEDPAGES & ESTIMATEDPAGES that appear on the Results Pane after using the DBCC SHRINKDATABASE (NorthWind, 10) ? A: According to Books Online (For SQL Server 2000): UsedPages: the number of 8-KB pages currently used by the file. EstimatedPages: the number of 8-KB pages that SQL Server estimates the file could be shrunk down to. Important Note: Before asking any question, make sure you go through Books Online or search on the Google once. The reasons for doing so have many advantages: 1. If someone else already has had this question before, chances that it is already answered are more than 50 %. 2. This reduces your waiting time for the answer. (2) Q: What is the difference between Shrinking the Database using DBCC command like the one above & shrinking it from the Enterprise Manager Console by Right-Clicking the database, going to TASKS & then selecting SHRINK Option, on a SQL Server 2000 environment? A: As far as my knowledge goes, there is no difference, both will work the same way, one advantage of using this command from query analyzer is, your console won’t be freezed. You can do perform your regular activities using Enterprise Manager. (3) Q: What is this .NDF file that is discussed above? I have never heard of it. What is it used for? Is it used by end-users, DBAs or the SERVER/SYSTEM itself? A: .NDF File is a secondary data file. You never heard of it because when database is created, SQL Server creates database by default with only 1 data file (.MDF) and 1 log file (.LDF) or however your model database has been setup, because a model database is a template used every time you create a new database using the CREATE DATABASE Command. Unless you have added an extra data file, you will not see it. This file is used by the SQL Server to store data which are saved by the users. Hope this information helps. I would like to as the experts to please comment if what I understand is not what the Microsoft guys meant. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Readers Contribution, Readers Question, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Access violation in DirectX OMSetRenderTargets

    - by IDWMaster
    I receive the following error (Unhandled exception at 0x527DAE81 (d3d11_1sdklayers.dll) in Lesson2.Triangles.exe: 0xC0000005: Access violation reading location 0x00000000) when running the Triangle sample application for DirectX 11 in D3D_FEATURE_LEVEL_9_1. This error occurs at the OMSetRenderTargets function, as shown below, and does not happen if I remove that function from the program (but then, the screen is blue, and does not render the triangle) //// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF //// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO //// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A //// PARTICULAR PURPOSE. //// //// Copyright (c) Microsoft Corporation. All rights reserved #include #include #include "DirectXSample.h" #include "BasicMath.h" #include "BasicReaderWriter.h" using namespace Microsoft::WRL; using namespace Windows::UI::Core; using namespace Windows::Foundation; using namespace Windows::ApplicationModel::Core; using namespace Windows::ApplicationModel::Infrastructure; // This class defines the application as a whole. ref class Direct3DTutorialViewProvider : public IViewProvider { private: CoreWindow^ m_window; ComPtr m_swapChain; ComPtr m_d3dDevice; ComPtr m_d3dDeviceContext; ComPtr m_renderTargetView; public: // This method is called on application launch. void Initialize( _In_ CoreWindow^ window, _In_ CoreApplicationView^ applicationView ) { m_window = window; } // This method is called after Initialize. void Load(_In_ Platform::String^ entryPoint) { } // This method is called after Load. void Run() { // First, create the Direct3D device. // This flag is required in order to enable compatibility with Direct2D. UINT creationFlags = D3D11_CREATE_DEVICE_BGRA_SUPPORT; #if defined(_DEBUG) // If the project is in a debug build, enable debugging via SDK Layers with this flag. creationFlags |= D3D11_CREATE_DEVICE_DEBUG; #endif // This array defines the ordering of feature levels that D3D should attempt to create. D3D_FEATURE_LEVEL featureLevels[] = { D3D_FEATURE_LEVEL_11_1, D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1, D3D_FEATURE_LEVEL_10_0, D3D_FEATURE_LEVEL_9_3, D3D_FEATURE_LEVEL_9_1 }; ComPtr d3dDevice; ComPtr d3dDeviceContext; DX::ThrowIfFailed( D3D11CreateDevice( nullptr, // specify nullptr to use the default adapter D3D_DRIVER_TYPE_HARDWARE, nullptr, // leave as nullptr if hardware is used creationFlags, // optionally set debug and Direct2D compatibility flags featureLevels, ARRAYSIZE(featureLevels), D3D11_SDK_VERSION, // always set this to D3D11_SDK_VERSION &d3dDevice, nullptr, &d3dDeviceContext ) ); // Retrieve the Direct3D 11.1 interfaces. DX::ThrowIfFailed( d3dDevice.As(&m_d3dDevice) ); DX::ThrowIfFailed( d3dDeviceContext.As(&m_d3dDeviceContext) ); // After the D3D device is created, create additional application resources. CreateWindowSizeDependentResources(); // Create a Basic Reader-Writer class to load data from disk. This class is examined // in the Resource Loading sample. BasicReaderWriter^ reader = ref new BasicReaderWriter(); // Load the raw vertex shader bytecode from disk and create a vertex shader with it. auto vertexShaderBytecode = reader-ReadData("SimpleVertexShader.cso"); ComPtr vertexShader; DX::ThrowIfFailed( m_d3dDevice-CreateVertexShader( vertexShaderBytecode-Data, vertexShaderBytecode-Length, nullptr, &vertexShader ) ); // Create an input layout that matches the layout defined in the vertex shader code. // For this lesson, this is simply a float2 vector defining the vertex position. const D3D11_INPUT_ELEMENT_DESC basicVertexLayoutDesc[] = { { "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; ComPtr inputLayout; DX::ThrowIfFailed( m_d3dDevice-CreateInputLayout( basicVertexLayoutDesc, ARRAYSIZE(basicVertexLayoutDesc), vertexShaderBytecode-Data, vertexShaderBytecode-Length, &inputLayout ) ); // Load the raw pixel shader bytecode from disk and create a pixel shader with it. auto pixelShaderBytecode = reader-ReadData("SimplePixelShader.cso"); ComPtr pixelShader; DX::ThrowIfFailed( m_d3dDevice-CreatePixelShader( pixelShaderBytecode-Data, pixelShaderBytecode-Length, nullptr, &pixelShader ) ); // Create vertex and index buffers that define a simple triangle. float3 triangleVertices[] = { float3(-0.5f, -0.5f,13.5f), float3( 0.0f, 0.5f,0), float3( 0.5f, -0.5f,0), }; D3D11_BUFFER_DESC vertexBufferDesc = {0}; vertexBufferDesc.ByteWidth = sizeof(float3) * ARRAYSIZE(triangleVertices); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; vertexBufferDesc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; vertexBufferData.pSysMem = triangleVertices; vertexBufferData.SysMemPitch = 0; vertexBufferData.SysMemSlicePitch = 0; ComPtr vertexBuffer; DX::ThrowIfFailed( m_d3dDevice-CreateBuffer( &vertexBufferDesc, &vertexBufferData, &vertexBuffer ) ); // Once all D3D resources are created, configure the application window. // Allow the application to respond when the window size changes. m_window-SizeChanged += ref new TypedEventHandler( this, &Direct3DTutorialViewProvider::OnWindowSizeChanged ); // Specify the cursor type as the standard arrow cursor. m_window-PointerCursor = ref new CoreCursor(CoreCursorType::Arrow, 0); // Activate the application window, making it visible and enabling it to receive events. m_window-Activate(); // Enter the render loop. Note that tailored applications should never exit. while (true) { // Process events incoming to the window. m_window-Dispatcher-ProcessEvents(CoreProcessEventsOption::ProcessAllIfPresent); // Specify the render target we created as the output target. ID3D11RenderTargetView* targets[1] = {m_renderTargetView.Get()}; m_d3dDeviceContext-OMSetRenderTargets( 1, targets, NULL // use no depth stencil ); // Clear the render target to a solid color. const float clearColor[4] = { 0.071f, 0.04f, 0.561f, 1.0f }; //Code fails here m_d3dDeviceContext-ClearRenderTargetView( m_renderTargetView.Get(), clearColor ); m_d3dDeviceContext-IASetInputLayout(inputLayout.Get()); // Set the vertex and index buffers, and specify the way they define geometry. UINT stride = sizeof(float3); UINT offset = 0; m_d3dDeviceContext-IASetVertexBuffers( 0, 1, vertexBuffer.GetAddressOf(), &stride, &offset ); m_d3dDeviceContext-IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // Set the vertex and pixel shader stage state. m_d3dDeviceContext-VSSetShader( vertexShader.Get(), nullptr, 0 ); m_d3dDeviceContext-PSSetShader( pixelShader.Get(), nullptr, 0 ); // Draw the cube. m_d3dDeviceContext-Draw(3,0); // Present the rendered image to the window. Because the maximum frame latency is set to 1, // the render loop will generally be throttled to the screen refresh rate, typically around // 60Hz, by sleeping the application on Present until the screen is refreshed. DX::ThrowIfFailed( m_swapChain-Present(1, 0) ); } } // This method is called before the application exits. void Uninitialize() { } private: // This method is called whenever the application window size changes. void OnWindowSizeChanged( _In_ CoreWindow^ sender, _In_ WindowSizeChangedEventArgs^ args ) { m_renderTargetView = nullptr; CreateWindowSizeDependentResources(); } // This method creates all application resources that depend on // the application window size. It is called at app initialization, // and whenever the application window size changes. void CreateWindowSizeDependentResources() { if (m_swapChain != nullptr) { // If the swap chain already exists, resize it. DX::ThrowIfFailed( m_swapChain-ResizeBuffers( 2, 0, 0, DXGI_FORMAT_R8G8B8A8_UNORM, 0 ) ); } else { // If the swap chain does not exist, create it. DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {0}; swapChainDesc.Stereo = false; swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; swapChainDesc.Scaling = DXGI_SCALING_NONE; swapChainDesc.Flags = 0; // Use automatic sizing. swapChainDesc.Width = 0; swapChainDesc.Height = 0; // This is the most common swap chain format. swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // Don't use multi-sampling. swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; // Use two buffers to enable flip effect. swapChainDesc.BufferCount = 2; // We recommend using this swap effect for all applications. swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL; // Once the swap chain description is configured, it must be // created on the same adapter as the existing D3D Device. // First, retrieve the underlying DXGI Device from the D3D Device. ComPtr dxgiDevice; DX::ThrowIfFailed( m_d3dDevice.As(&dxgiDevice) ); // Ensure that DXGI does not queue more than one frame at a time. This both reduces // latency and ensures that the application will only render after each VSync, minimizing // power consumption. DX::ThrowIfFailed( dxgiDevice-SetMaximumFrameLatency(1) ); // Next, get the parent factory from the DXGI Device. ComPtr dxgiAdapter; DX::ThrowIfFailed( dxgiDevice-GetAdapter(&dxgiAdapter) ); ComPtr dxgiFactory; DX::ThrowIfFailed( dxgiAdapter-GetParent( __uuidof(IDXGIFactory2), &dxgiFactory ) ); // Finally, create the swap chain. DX::ThrowIfFailed( dxgiFactory-CreateSwapChainForImmersiveWindow( m_d3dDevice.Get(), DX::GetIUnknown(m_window), &swapChainDesc, nullptr, // allow on all displays &m_swapChain ) ); } // Once the swap chain is created, create a render target view. This will // allow Direct3D to render graphics to the window. ComPtr backBuffer; DX::ThrowIfFailed( m_swapChain-GetBuffer( 0, __uuidof(ID3D11Texture2D), &backBuffer ) ); DX::ThrowIfFailed( m_d3dDevice-CreateRenderTargetView( backBuffer.Get(), nullptr, &m_renderTargetView ) ); // After the render target view is created, specify that the viewport, // which describes what portion of the window to draw to, should cover // the entire window. D3D11_TEXTURE2D_DESC backBufferDesc = {0}; backBuffer-GetDesc(&backBufferDesc); D3D11_VIEWPORT viewport; viewport.TopLeftX = 0.0f; viewport.TopLeftY = 0.0f; viewport.Width = static_cast(backBufferDesc.Width); viewport.Height = static_cast(backBufferDesc.Height); viewport.MinDepth = D3D11_MIN_DEPTH; viewport.MaxDepth = D3D11_MAX_DEPTH; m_d3dDeviceContext-RSSetViewports(1, &viewport); } }; // This class defines how to create the custom View Provider defined above. ref class Direct3DTutorialViewProviderFactory : IViewProviderFactory { public: IViewProvider^ CreateViewProvider() { return ref new Direct3DTutorialViewProvider(); } }; [Platform::MTAThread] int main(array^) { auto viewProviderFactory = ref new Direct3DTutorialViewProviderFactory(); Windows::ApplicationModel::Core::CoreApplication::Run(viewProviderFactory); return 0; }

    Read the article

  • Where is my app.config for SSIS?

    Sometimes when working with SSIS you need to add or change settings in the .NET application configuration file, which can be a bit confusing when you are building a SSIS package not an application. First of all lets review a couple of examples where you may need to do this. You are using referencing an assembly in a Script Task that uses Enterprise Library (aka EntLib), so you need to add the relevant configuration sections and settings, perhaps for the logging application block. You are using using Enterprise Library in a custom task or component, and again you need to add the relevant configuration sections and settings. You are using a web service with Microsoft Web Services Enhancements (WSE) 3.0 and hosting the proxy in SSIS, in an assembly used by your package, and need to add the configuration sections and settings. You need to change behaviours of the .NET framework which can be influenced by a configuration file, such as the System.Net.Mail default SMTP settings. Perhaps you wish to configure System.Net and the httpWebRequest header for parsing unsafe header (useUnsafeHeaderParsing), which will change the way the HTTP Connection manager behaves. You are consuming a WCF service and wish to specify the endpoint in configuration. There are no doubt plenty more examples but each of these requires us to identify the correct configuration file and and make the relevant changes. There are actually several configuration files, each used by a different execution host depending on how you are working with the SSIS package. The folders we need to look in will actually vary depending on the version of SQL Server as well as the processor architecture, but most are all what we can call the Binn folder. The SQL Server 2005 Binn folder is at C:\Program Files\Microsoft SQL Server\90\DTS\Binn\, compared to C:\Program Files\Microsoft SQL Server\100\DTS\Binn\ for SQL Server 2008. If you are on a 64-bit machine then you will see C:\Program Files (x86)\Microsoft SQL Server\90\DTS\Binn\ for the 32-bit executables and C:\Program Files\Microsoft SQL Server\90\DTS\Binn\ for 64-bit, so be sure to check all relevant locations. Of course SQL Server 2008 may have a C:\Program Files (x86)\Microsoft SQL Server\100\DTS\Binn\ on a 64-bit machine too. To recap, the version of SQL Server determines if you look in the 90 or 100 sub-folder under SQL Server in Program Files (C:\Program Files\Microsoft SQL Server\nn\) . If you are running a 64-bit operating system then you will have two instances program files, C:\Program Files (x86)\ for 32-bit and  C:\Program Files\ for 64-bit. You may wish to check both depending on what you are doing, but this is covered more under each section below. There are a total of five specific configuration files that you may need to change, each one is detailed below: DTExec.exe.config DTExec.exe is the standalone command line tool used for executing SSIS packages, and therefore it is an execution host with an app.config file. e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\DTExec.exe.config The file can be found in both the 32-bit and 64-bit Binn folders. DtsDebugHost.exe.config DtsDebugHost.exe is the execution host used by Business Intelligence Development Studio (BIDS) / Visual Studio when executing a package from the designer in debug mode, which is the default behaviour. e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\DtsDebugHost.exe.config The file can be found in both the 32-bit and 64-bit Binn folders. This may surprise some people as Visual Studio is only 32-bit, but thankfully the debugger supports both. This can be set in the project properties, see the Run64BitRuntime property (true or false) in the Debugging pane of the Project Properties. dtshost.exe.config dtshost.exe is the execution host used by what I think of as the built-in features of SQL Server such as SQL Server Agent e.g. C:\Program Files\Microsoft SQL Server\90\DTS\Binn\dtshost.exe.config This file can be found in both the 32-bit and 64-bit Binn folders devenv.exe.config Something slightly different is devenv.exe which is Visual Studio. This configuration file may also need changing if you need a feature at design-time such as in a Task Editor or Connection Manager editor. Visual Studio 2005 for SQL Server 2005  - C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\devenv.exe.config Visual Studio 2008 for SQL Server 2008  - C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe.config Visual Studio is only available for 32-bit so on a 64-bit machine you will have to look in C:\Program Files (x86)\ only. DTExecUI.exe.config The DTExec UI tool can also have a configuration file and these cab be found under the Tools folders for SQL Sever as shown below. C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\IDE\DTExecUI.exe C:\Program Files\Microsoft SQL Server\100\Tools\Binn\VSShell\Common7\IDE\DTExecUI.exe A configuration file may not exist, but if you can find the matching executable you know you are in the right place so can go ahead and add a new file yourself. In summary we have covered the assembly configuration files for all of the standard methods of building and running a SSIS package, but obviously if you are working programmatically you will need to make the relevant modifications to your program’s app.config as well.

    Read the article

  • Parallelism in .NET – Part 13, Introducing the Task class

    - by Reed
    Once we’ve used a task-based decomposition to decompose a problem, we need a clean abstraction usable to implement the resulting decomposition.  Given that task decomposition is founded upon defining discrete tasks, .NET 4 has introduced a new API for dealing with task related issues, the aptly named Task class. The Task class is a wrapper for a delegate representing a single, discrete task within your decomposition.  We will go into various methods of construction for tasks later, but, when reduced to its fundamentals, an instance of a Task is nothing more than a wrapper around a delegate with some utility functionality added.  In order to fully understand the Task class within the new Task Parallel Library, it is important to realize that a task really is just a delegate – nothing more.  In particular, note that I never mentioned threading or parallelism in my description of a Task.  Although the Task class exists in the new System.Threading.Tasks namespace: Tasks are not directly related to threads or multithreading. Of course, Task instances will typically be used in our implementation of concurrency within an application, but the Task class itself does not provide the concurrency used.  The Task API supports using Tasks in an entirely single threaded, synchronous manner. Tasks are very much like standard delegates.  You can execute a task synchronously via Task.RunSynchronously(), or you can use Task.Start() to schedule a task to run, typically asynchronously.  This is very similar to using delegate.Invoke to execute a delegate synchronously, or using delegate.BeginInvoke to execute it asynchronously. The Task class adds some nice functionality on top of a standard delegate which improves usability in both synchronous and multithreaded environments. The first addition provided by Task is a means of handling cancellation via the new unified cancellation mechanism of .NET 4.  If the wrapped delegate within a Task raises an OperationCanceledException during it’s operation, which is typically generated via calling ThrowIfCancellationRequested on a CancellationToken, or if the CancellationToken used to construct a Task instance is flagged as canceled, the Task’s IsCanceled property will be set to true automatically.  This provides a clean way to determine whether a Task has been canceled, often without requiring specific exception handling. Tasks also provide a clean API which can be used for waiting on a task.  Although the Task class explicitly implements IAsyncResult, Tasks provide a nicer usage model than the traditional .NET Asynchronous Programming Model.  Instead of needing to track an IAsyncResult handle, you can just directly call Task.Wait() to block until a Task has completed.  Overloads exist for providing a timeout, a CancellationToken, or both to prevent waiting indefinitely.  In addition, the Task class provides static methods for waiting on multiple tasks – Task.WaitAll and Task.WaitAny, again with overloads providing time out options.  This provides a very simple, clean API for waiting on single or multiple tasks. Finally, Tasks provide a much nicer model for Exception handling.  If the delegate wrapped within a Task raises an exception, the exception will automatically get wrapped into an AggregateException and exposed via the Task.Exception property.  This exception is stored with the Task directly, and does not tear down the application.  Later, when Task.Wait() (or Task.WaitAll or Task.WaitAny) is called on this task, an AggregateException will be raised at that point if any of the tasks raised an exception.  For example, suppose we have the following code: Task taskOne = new Task( () => { throw new ApplicationException("Random Exception!"); }); Task taskTwo = new Task( () => { throw new ArgumentException("Different exception here"); }); // Start the tasks taskOne.Start(); taskTwo.Start(); try { Task.WaitAll(new[] { taskOne, taskTwo }); } catch (AggregateException e) { Console.WriteLine(e.InnerExceptions.Count); foreach (var inner in e.InnerExceptions) Console.WriteLine(inner.Message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, our routine will print: 2 Different exception here Random Exception! Note that we had two separate tasks, each of which raised two distinctly different types of exceptions.  We can handle this cleanly, with very little code, in a much nicer manner than the Asynchronous Programming API.  We no longer need to handle TargetInvocationException or worry about implementing the Event-based Asynchronous Pattern properly by setting the AsyncCompletedEventArgs.Error property.  Instead, we just raise our exception as normal, and handle AggregateException in a single location in our calling code.

    Read the article

  • C# 4.0: Dynamic Programming

    - by Paulo Morgado
    The major feature of C# 4.0 is dynamic programming. Not just dynamic typing, but dynamic in broader sense, which means talking to anything that is not statically typed to be a .NET object. Dynamic Language Runtime The Dynamic Language Runtime (DLR) is piece of technology that unifies dynamic programming on the .NET platform, the same way the Common Language Runtime (CLR) has been a common platform for statically typed languages. The CLR always had dynamic capabilities. You could always use reflection, but its main goal was never to be a dynamic programming environment and there were some features missing. The DLR is built on top of the CLR and adds those missing features to the .NET platform. The Dynamic Language Runtime is the core infrastructure that consists of: Expression Trees The same expression trees used in LINQ, now improved to support statements. Dynamic Dispatch Dispatches invocations to the appropriate binder. Call Site Caching For improved efficiency. Dynamic languages and languages with dynamic capabilities are built on top of the DLR. IronPython and IronRuby were already built on top of the DLR, and now, the support for using the DLR is being added to C# and Visual Basic. Other languages built on top of the CLR are expected to also use the DLR in the future. Underneath the DLR there are binders that talk to a variety of different technologies: .NET Binder Allows to talk to .NET objects. JavaScript Binder Allows to talk to JavaScript in SilverLight. IronPython Binder Allows to talk to IronPython. IronRuby Binder Allows to talk to IronRuby. COM Binder Allows to talk to COM. Whit all these binders it is possible to have a single programming experience to talk to all these environments that are not statically typed .NET objects. The dynamic Static Type Let’s take this traditional statically typed code: Calculator calculator = GetCalculator(); int sum = calculator.Sum(10, 20); Because the variable that receives the return value of the GetCalulator method is statically typed to be of type Calculator and, because the Calculator type has an Add method that receives two integers and returns an integer, it is possible to call that Sum method and assign its return value to a variable statically typed as integer. Now lets suppose the calculator was not a statically typed .NET class, but, instead, a COM object or some .NET code we don’t know he type of. All of the sudden it gets very painful to call the Add method: object calculator = GetCalculator(); Type calculatorType = calculator.GetType(); object res = calculatorType.InvokeMember("Add", BindingFlags.InvokeMethod, null, calculator, new object[] { 10, 20 }); int sum = Convert.ToInt32(res); And what if the calculator was a JavaScript object? ScriptObject calculator = GetCalculator(); object res = calculator.Invoke("Add", 10, 20); int sum = Convert.ToInt32(res); For each dynamic domain we have a different programming experience and that makes it very hard to unify the code. With C# 4.0 it becomes possible to write code this way: dynamic calculator = GetCalculator(); int sum = calculator.Add(10, 20); You simply declare a variable who’s static type is dynamic. dynamic is a pseudo-keyword (like var) that indicates to the compiler that operations on the calculator object will be done dynamically. The way you should look at dynamic is that it’s just like object (System.Object) with dynamic semantics associated. Anything can be assigned to a dynamic. dynamic x = 1; dynamic y = "Hello"; dynamic z = new List<int> { 1, 2, 3 }; At run-time, all object will have a type. In the above example x is of type System.Int32. When one or more operands in an operation are typed dynamic, member selection is deferred to run-time instead of compile-time. Then the run-time type is substituted in all variables and normal overload resolution is done, just like it would happen at compile-time. The result of any dynamic operation is always dynamic and, when a dynamic object is assigned to something else, a dynamic conversion will occur. Code Resolution Method double x = 1.75; double y = Math.Abs(x); compile-time double Abs(double x) dynamic x = 1.75; dynamic y = Math.Abs(x); run-time double Abs(double x) dynamic x = 2; dynamic y = Math.Abs(x); run-time int Abs(int x) The above code will always be strongly typed. The difference is that, in the first case the method resolution is done at compile-time, and the others it’s done ate run-time. IDynamicMetaObjectObject The DLR is pre-wired to know .NET objects, COM objects and so forth but any dynamic language can implement their own objects or you can implement your own objects in C# through the implementation of the IDynamicMetaObjectProvider interface. When an object implements IDynamicMetaObjectProvider, it can participate in the resolution of how method calls and property access is done. The .NET Framework already provides two implementations of IDynamicMetaObjectProvider: DynamicObject : IDynamicMetaObjectProvider The DynamicObject class enables you to define which operations can be performed on dynamic objects and how to perform those operations. For example, you can define what happens when you try to get or set an object property, call a method, or perform standard mathematical operations such as addition and multiplication. ExpandoObject : IDynamicMetaObjectProvider The ExpandoObject class enables you to add and delete members of its instances at run time and also to set and get values of these members. This class supports dynamic binding, which enables you to use standard syntax like sampleObject.sampleMember, instead of more complex syntax like sampleObject.GetAttribute("sampleMember").

    Read the article

  • Parallelism in .NET – Part 16, Creating Tasks via a TaskFactory

    - by Reed
    The Task class in the Task Parallel Library supplies a large set of features.  However, when creating the task, and assigning it to a TaskScheduler, and starting the Task, there are quite a few steps involved.  This gets even more cumbersome when multiple tasks are involved.  Each task must be constructed, duplicating any options required, then started individually, potentially on a specific scheduler.  At first glance, this makes the new Task class seem like more work than ThreadPool.QueueUserWorkItem in .NET 3.5. In order to simplify this process, and make Tasks simple to use in simple cases, without sacrificing their power and flexibility, the Task Parallel Library added a new class: TaskFactory. The TaskFactory class is intended to “Provide support for creating and scheduling Task objects.”  Its entire purpose is to simplify development when working with Task instances.  The Task class provides access to the default TaskFactory via the Task.Factory static property.  By default, TaskFactory uses the default TaskScheduler to schedule tasks on a ThreadPool thread.  By using Task.Factory, we can automatically create and start a task in a single “fire and forget” manner, similar to how we did with ThreadPool.QueueUserWorkItem: Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides us with the same level of simplicity we had with ThreadPool.QueueUserWorkItem, but even more power.  For example, we can now easily wait on the task: // Start our task on a background thread var task = Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); // Do other work on the main thread, // while the task above executes in the background this.ExecuteWorkSynchronously(); // Wait for the background task to finish task.Wait(); TaskFactory simplifies creation and startup of simple background tasks dramatically. In addition to using the default TaskFactory, it’s often useful to construct a custom TaskFactory.  The TaskFactory class includes an entire set of constructors which allow you to specify the default configuration for every Task instance created by that factory.  This is particularly useful when using a custom TaskScheduler.  For example, look at the sample code for starting a task on the UI thread in Part 15: // Given the following, constructed on the UI thread // TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // When inside a background task, we can do string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); This is actually quite a bit more complicated than necessary.  When we create the uiScheduler instance, we can use that to construct a TaskFactory that will automatically schedule tasks on the UI thread.  To do that, we’d create the following on our main thread, prior to constructing our background tasks: // Construct a task scheduler from the current SynchronizationContext (UI thread) var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Construct a new TaskFactory using our UI scheduler var uiTaskFactory = new TaskFactory(uiScheduler); If we do this, when we’re on a background thread, we can use this new TaskFactory to marshal a Task back onto the UI thread.  Our previous code simplifies to: // When inside a background task, we can do string status = GetUpdatedStatus(); // Update our UI uiTaskFactory.StartNew( () => statusLabel.Text = status); Notice how much simpler this becomes!  By taking advantage of the convenience provided by a custom TaskFactory, we can now marshal to set data on the UI thread in a single, clear line of code!

    Read the article

  • Parallelism in .NET – Part 1, Decomposition

    - by Reed
    The first step in designing any parallelized system is Decomposition.  Decomposition is nothing more than taking a problem space and breaking it into discrete parts.  When we want to work in parallel, we need to have at least two separate things that we are trying to run.  We do this by taking our problem and decomposing it into parts. There are two common abstractions that are useful when discussing parallel decomposition: Data Decomposition and Task Decomposition.  These two abstractions allow us to think about our problem in a way that helps leads us to correct decision making in terms of the algorithms we’ll use to parallelize our routine. To start, I will make a couple of minor points. I’d like to stress that Decomposition has nothing to do with specific algorithms or techniques.  It’s about how you approach and think about the problem, not how you solve the problem using a specific tool, technique, or library.  Decomposing the problem is about constructing the appropriate mental model: once this is done, you can choose the appropriate design and tools, which is a subject for future posts. Decomposition, being unrelated to tools or specific techniques, is not specific to .NET in any way.  This should be the first step to parallelizing a problem, and is valid using any framework, language, or toolset.  However, this gives us a starting point – without a proper understanding of decomposition, it is difficult to understand the proper usage of specific classes and tools within the .NET framework. Data Decomposition is often the simpler abstraction to use when trying to parallelize a routine.  In order to decompose our problem domain by data, we take our entire set of data and break it into smaller, discrete portions, or chunks.  We then work on each chunk in the data set in parallel. This is particularly useful if we can process each element of data independently of the rest of the data.  In a situation like this, there are some wonderfully simple techniques we can use to take advantage of our data.  By decomposing our domain by data, we can very simply parallelize our routines.  In general, we, as developers, should be always searching for data that can be decomposed. Finding data to decompose if fairly simple, in many instances.  Data decomposition is typically used with collections of data.  Any time you have a collection of items, and you’re going to perform work on or with each of the items, you potentially have a situation where parallelism can be exploited.  This is fairly easy to do in practice: look for iteration statements in your code, such as for and foreach. Granted, every for loop is not a candidate to be parallelized.  If the collection is being modified as it’s iterated, or the processing of elements depends on other elements, the iteration block may need to be processed in serial.  However, if this is not the case, data decomposition may be possible. Let’s look at one example of how we might use data decomposition.  Suppose we were working with an image, and we were applying a simple contrast stretching filter.  When we go to apply the filter, once we know the minimum and maximum values, we can apply this to each pixel independently of the other pixels.  This means that we can easily decompose this problem based off data – we will do the same operation, in parallel, on individual chunks of data (each pixel). Task Decomposition, on the other hand, is focused on the individual tasks that need to be performed instead of focusing on the data.  In order to decompose our problem domain by tasks, we need to think about our algorithm in terms of discrete operations, or tasks, which can then later be parallelized. Task decomposition, in practice, can be a bit more tricky than data decomposition.  Here, we need to look at what our algorithm actually does, and how it performs its actions.  Once we have all of the basic steps taken into account, we can try to analyze them and determine whether there are any constraints in terms of shared data or ordering.  There are no simple things to look for in terms of finding tasks we can decompose for parallelism; every algorithm is unique in terms of its tasks, so every algorithm will have unique opportunities for task decomposition. For example, say we want our software to perform some customized actions on startup, prior to showing our main screen.  Perhaps we want to check for proper licensing, notify the user if the license is not valid, and also check for updates to the program.  Once we verify the license, and that there are no updates, we’ll start normally.  In this case, we can decompose this problem into tasks – we have a few tasks, but there are at least two discrete, independent tasks (check licensing, check for updates) which we can perform in parallel.  Once those are completed, we will continue on with our other tasks. One final note – Data Decomposition and Task Decomposition are not mutually exclusive.  Often, you’ll mix the two approaches while trying to parallelize a single routine.  It’s possible to decompose your problem based off data, then further decompose the processing of each element of data based on tasks.  This just provides a framework for thinking about our algorithms, and for discussing the problem.

    Read the article

  • Building and Deploying Windows Azure Web Sites using Git and GitHub for Windows

    - by shiju
    Microsoft Windows Azure team has released a new version of Windows Azure which is providing many excellent features. The new Windows Azure provides Web Sites which allows you to deploy up to 10 web sites  for free in a multitenant shared environment and you can easily upgrade this web site to a private, dedicated virtual server when the traffic is grows. The Meet Windows Azure Fact Sheet provides the following information about a Windows Azure Web Site: Windows Azure Web Sites enable developers to easily build and deploy websites with support for multiple frameworks and popular open source applications, including ASP.NET, PHP and Node.js. With just a few clicks, developers can take advantage of Windows Azure’s global scale without having to worry about operations, servers or infrastructure. It is easy to deploy existing sites, if they run on Internet Information Services (IIS) 7, or to build new sites, with a free offer of 10 websites upon signup, with the ability to scale up as needed with reserved instances. Windows Azure Web Sites includes support for the following: Multiple frameworks including ASP.NET, PHP and Node.js Popular open source software apps including WordPress, Joomla!, Drupal, Umbraco and DotNetNuke Windows Azure SQL Database and MySQL databases Multiple types of developer tools and protocols including Visual Studio, Git, FTP, Visual Studio Team Foundation Services and Microsoft WebMatrix Signup to Windows and Enable Azure Web Sites You can signup for a 90 days free trial account in Windows Azure from here. After creating an account in Windows Azure, go to https://account.windowsazure.com/ , and select to preview features to view the available previews. In the Web Sites section of the preview features, click “try it now” which will enables the web sites feature Create Web Site in Windows Azure To create a web sites, login to the Windows Azure portal, and select Web Sites from and click New icon from the left corner  Click WEB SITE, QUICK CREATE and put values for URL and REGION dropdown. You can see the all web sites from the dashboard of the Windows Azure portal Set up Git Publishing Select your web site from the dashboard, and select Set up Git publishing To enable Git publishing , you must give user name and password which will initialize a Git repository Clone Git Repository We can use GitHub for Windows to publish apps to non-GitHub repositories which is well explained by Phil Haack on his blog post. Here we are going to deploy the web site using GitHub for Windows. Let’s clone a Git repository using the Git Url which will be getting from the Windows Azure portal. Let’s copy the Git url and execute the “git clone” with the git url. You can use the Git Shell provided by GitHub for Windows. To get it, right on the GitHub for Windows, and select open shell here as shown in the below picture. When executing the Git Clone command, it will ask for a password where you have to give password which specified in the Windows Azure portal. After cloning the GIT repository, you can drag and drop the local Git repository folder to GitHub for Windows GUI. This will automatically add the Windows Azure Web Site repository onto GitHub for Windows where you can commit your changes and publish your web sites to Windows Azure. Publish the Web Site using GitHub for Windows We can add multiple framework level files including ASP.NET, PHP and Node.js, to the local repository folder can easily publish to Windows Azure from GitHub for Windows GUI. For this demo, let me just add a simple Node.js file named Server.js which handles few request handlers. 1: var http = require('http'); 2: var port=process.env.PORT; 3: var querystring = require('querystring'); 4: var utils = require('util'); 5: var url = require("url"); 6:   7: var server = http.createServer(function(req, res) { 8: switch (req.url) { //checking the request url 9: case '/': 10: homePageHandler (req, res); //handler for home page 11: break; 12: case '/register': 13: registerFormHandler (req, res);//hamdler for register 14: break; 15: default: 16: nofoundHandler (req, res);// handler for 404 not found 17: break; 18: } 19: }); 20: server.listen(port); 21: //function to display the html form 22: function homePageHandler (req, res) { 23: console.log('Request handler home was called.'); 24: res.writeHead(200, {'Content-Type': 'text/html'}); 25: var body = '<html>'+ 26: '<head>'+ 27: '<meta http-equiv="Content-Type" content="text/html; '+ 28: 'charset=UTF-8" />'+ 29: '</head>'+ 30: '<body>'+ 31: '<form action="/register" method="post">'+ 32: 'Name:<input type=text value="" name="name" size=15></br>'+ 33: 'Email:<input type=text value="" name="email" size=15></br>'+ 34: '<input type="submit" value="Submit" />'+ 35: '</form>'+ 36: '</body>'+ 37: '</html>'; 38: //response content 39: res.end(body); 40: } 41: //handler for Post request 42: function registerFormHandler (req, res) { 43: console.log('Request handler register was called.'); 44: var pathname = url.parse(req.url).pathname; 45: console.log("Request for " + pathname + " received."); 46: var postData = ""; 47: req.on('data', function(chunk) { 48: // append the current chunk of data to the postData variable 49: postData += chunk.toString(); 50: }); 51: req.on('end', function() { 52: // doing something with the posted data 53: res.writeHead(200, "OK", {'Content-Type': 'text/html'}); 54: // parse the posted data 55: var decodedBody = querystring.parse(postData); 56: // output the decoded data to the HTTP response 57: res.write('<html><head><title>Post data</title></head><body><pre>'); 58: res.write(utils.inspect(decodedBody)); 59: res.write('</pre></body></html>'); 60: res.end(); 61: }); 62: } 63: //Error handler for 404 no found 64: function nofoundHandler(req, res) { 65: console.log('Request handler nofound was called.'); 66: res.writeHead(404, {'Content-Type': 'text/plain'}); 67: res.end('404 Error - Request handler not found'); 68: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If there is any change in the local repository folder, GitHub for Windows will automatically detect the changes. In the above step, we have just added a Server.js file so that GitHub for Windows will detect the changes. Let’s commit the changes to the local repository before publishing the web site to Windows Azure. After committed the all changes, you can click publish button which will publish the all changes to Windows Azure repository. The following screen shot shows deployment history from the Windows Azure portal.   GitHub for Windows is providing a sync button which can use for synchronizing between local repository and Windows Azure repository after making any commit on the local repository after any changes. Our web site is running after the deployment using Git Summary Windows Azure Web Sites lets the developers to easily build and deploy websites with support for multiple framework including ASP.NET, PHP and Node.js and can easily deploy the Web Sites using Visual Studio, Git, FTP, Visual Studio Team Foundation Services and Microsoft WebMatrix. In this demo, we have deployed a Node.js Web Site to Windows Azure using Git. We can use GitHub for Windows to publish apps to non-GitHub repositories and can use to publish Web SItes to Windows Azure.

    Read the article

  • Trace File Source Adapter

    The Trace File Source adapter is a useful addition to your SSIS toolbox.  It allows you to read 2005 and 2008 profiler traces stored as .trc files and read them into the Data Flow.  From there you can perform filtering and analysis using the power of SSIS. There is no need for a SQL Server connection this just uses the trace file. Example Usages Cache warming for SQL Server Analysis Services Reading the flight recorder Find out the longest running queries on a server Analyze statements for CPU, memory by user or some other criteria you choose Properties The Trace File Source adapter has two properties, both of which combine to control the source trace file that is read at runtime. SQL Server 2005 and SQL Server 2008 trace files are supported for both the Database Engine (SQL Server) and Analysis Services. The properties are managed by the Editor form or can be set directly from the Properties Grid in Visual Studio. Property Type Description AccessMode Enumeration This property determines how the Filename property is interpreted. The values available are: DirectInput Variable Filename String This property holds the path for trace file to load (*.trc). The value is either a full path, or the name of a variable which contains the full path to the trace file, depending on the AccessMode property. Trace Column Definition Hopefully the majority of you can skip this section entirely, but if you encounter some problems processing a trace file this may explain it and allow you to fix the problem. The component is built upon the trace management API provided by Microsoft. Unfortunately API methods that expose the schema of a trace file have known issues and are unreliable, put simply the data often differs from what was specified. To overcome these limitations the component uses  some simple XML files. These files enable the trace column data types and sizing attributes to be overridden. For example SQL Server Profiler or TMO generated structures define EventClass as an integer, but the real value is a string. TraceDataColumnsSQL.xml  - SQL Server Database Engine Trace Columns TraceDataColumnsAS.xml    - SQL Server Analysis Services Trace Columns The files can be found in the %ProgramFiles%\Microsoft SQL Server\100\DTS\PipelineComponents folder, e.g. "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsSQL.xml" "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsAS.xml" If at runtime the component encounters a type conversion or sizing error it is most likely due to a discrepancy between the column definition as reported by the API and the actual value encountered. Whilst most common issues have already been fixed through these files we have implemented specific exception traps to direct you to the files to enable you to fix any further issues due to different usage or data scenarios that we have not tested. An example error that you can fix through these files is shown below. Buffer exception writing value to column 'Column Name'. The string value is 999 characters in length, the column is only 111. Columns can be overridden by the TraceDataColumns XML files in "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsAS.xml". Installation The component is provided as an MSI file which you can download and run to install it. This simply places the files on disk in the correct locations and also installs the assemblies in the Global Assembly Cache as per Microsoft’s recommendations. You may need to restart the SQL Server Integration Services service, as this caches information about what components are installed, as well as restarting any open instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. Finally you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the Trace File Source transformation in the Choose Toolbox Items window. This process has been described in detail in the related FAQ entry for How do I install a task or transform component? We recommend you follow best practice and apply the current Microsoft SQL Server Service pack to your SQL Server servers and workstations. Please note that the Microsoft Trace classes used in the component are not supported on 64-bit platforms. To use the Trace File Source on a 64-bit host you need to ensure you have the 32-bit (x86) tools available, and the way you execute your package is setup to use them, please see the help topic 64-bit Considerations for Integration Services for more details. Downloads Trace Sources for SQL Server 2005 -- Trace Sources for SQL Server 2008 Version History SQL Server 2008 Version 2.0.0.382 - SQL Sever 2008 public release. (9 Apr 2009) SQL Server 2005 Version 1.0.0.321 - SQL Server 2005 public release. (18 Nov 2008) -- Screenshots

    Read the article

  • How to Reuse Your Old Wi-Fi Router as a Network Switch

    - by Jason Fitzpatrick
    Just because your old Wi-Fi router has been replaced by a newer model doesn’t mean it needs to gather dust in the closet. Read on as we show you how to take an old and underpowered Wi-Fi router and turn it into a respectable network switch (saving your $20 in the process). Image by mmgallan. Why Do I Want To Do This? Wi-Fi technology has changed significantly in the last ten years but Ethernet-based networking has changed very little. As such, a Wi-Fi router with 2006-era guts is lagging significantly behind current Wi-Fi router technology, but the Ethernet networking component of the device is just as useful as ever; aside from potentially being only 100Mbs instead of 1000Mbs capable (which for 99% of home applications is irrelevant) Ethernet is Ethernet. What does this matter to you, the consumer? It means that even though your old router doesn’t hack it for your Wi-Fi needs any longer the device is still a perfectly serviceable (and high quality) network switch. When do you need a network switch? Any time you want to share an Ethernet cable among multiple devices, you need a switch. For example, let’s say you have a single Ethernet wall jack behind your entertainment center. Unfortunately you have four devices that you want to link to your local network via hardline including your smart HDTV, DVR, Xbox, and a little Raspberry Pi running XBMC. Instead of spending $20-30 to purchase a brand new switch of comparable build quality to your old Wi-Fi router it makes financial sense (and is environmentally friendly) to invest five minutes of your time tweaking the settings on the old router to turn it from a Wi-Fi access point and routing tool into a network switch–perfect for dropping behind your entertainment center so that your DVR, Xbox, and media center computer can all share an Ethernet connection. What Do I Need? For this tutorial you’ll need a few things, all of which you likely have readily on hand or are free for download. To follow the basic portion of the tutorial, you’ll need the following: 1 Wi-Fi router with Ethernet ports 1 Computer with Ethernet jack 1 Ethernet cable For the advanced tutorial you’ll need all of those things, plus: 1 copy of DD-WRT firmware for your Wi-Fi router We’re conducting the experiment with a Linksys WRT54GL Wi-Fi router. The WRT54 series is one of the best selling Wi-Fi router series of all time and there’s a good chance a significant number of readers have one (or more) of them stuffed in an office closet. Even if you don’t have one of the WRT54 series routers, however, the principles we’re outlining here apply to all Wi-Fi routers; as long as your router administration panel allows the necessary changes you can follow right along with us. A quick note on the difference between the basic and advanced versions of this tutorial before we proceed. Your typical Wi-Fi router has 5 Ethernet ports on the back: 1 labeled “Internet”, “WAN”, or a variation thereof and intended to be connected to your DSL/Cable modem, and 4 labeled 1-4 intended to connect Ethernet devices like computers, printers, and game consoles directly to the Wi-Fi router. When you convert a Wi-Fi router to a switch, in most situations, you’ll lose two port as the “Internet” port cannot be used as a normal switch port and one of the switch ports becomes the input port for the Ethernet cable linking the switch to the main network. This means, referencing the diagram above, you’d lose the WAN port and LAN port 1, but retain LAN ports 2, 3, and 4 for use. If you only need to switch for 2-3 devices this may be satisfactory. However, for those of you that would prefer a more traditional switch setup where there is a dedicated WAN port and the rest of the ports are accessible, you’ll need to flash a third-party router firmware like the powerful DD-WRT onto your device. Doing so opens up the router to a greater degree of modification and allows you to assign the previously reserved WAN port to the switch, thus opening up LAN ports 1-4. Even if you don’t intend to use that extra port, DD-WRT offers you so many more options that it’s worth the extra few steps. Preparing Your Router for Life as a Switch Before we jump right in to shutting down the Wi-Fi functionality and repurposing your device as a network switch, there are a few important prep steps to attend to. First, you want to reset the router (if you just flashed a new firmware to your router, skip this step). Following the reset procedures for your particular router or go with what is known as the “Peacock Method” wherein you hold down the reset button for thirty seconds, unplug the router and wait (while still holding the reset button) for thirty seconds, and then plug it in while, again, continuing to hold down the rest button. Over the life of a router there are a variety of changes made, big and small, so it’s best to wipe them all back to the factory default before repurposing the router as a switch. Second, after resetting, we need to change the IP address of the device on the local network to an address which does not directly conflict with the new router. The typical default IP address for a home router is 192.168.1.1; if you ever need to get back into the administration panel of the router-turned-switch to check on things or make changes it will be a real hassle if the IP address of the device conflicts with the new home router. The simplest way to deal with this is to assign an address close to the actual router address but outside the range of addresses that your router will assign via the DHCP client; a good pick then is 192.168.1.2. Once the router is reset (or re-flashed) and has been assigned a new IP address, it’s time to configure it as a switch. Basic Router to Switch Configuration If you don’t want to (or need to) flash new firmware onto your device to open up that extra port, this is the section of the tutorial for you: we’ll cover how to take a stock router, our previously mentioned WRT54 series Linksys, and convert it to a switch. Hook the Wi-Fi router up to the network via one of the LAN ports (consider the WAN port as good as dead from this point forward, unless you start using the router in its traditional function again or later flash a more advanced firmware to the device, the port is officially retired at this point). Open the administration control panel via  web browser on a connected computer. Before we get started two things: first,  anything we don’t explicitly instruct you to change should be left in the default factory-reset setting as you find it, and two, change the settings in the order we list them as some settings can’t be changed after certain features are disabled. To start, let’s navigate to Setup ->Basic Setup. Here you need to change the following things: Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable Save with the “Save Settings” button and then navigate to Setup -> Advanced Routing: Operating Mode: Router This particular setting is very counterintuitive. The “Operating Mode” toggle tells the device whether or not it should enable the Network Address Translation (NAT)  feature. Because we’re turning a smart piece of networking hardware into a relatively dumb one, we don’t need this feature so we switch from Gateway mode (NAT on) to Router mode (NAT off). Our next stop is Wireless -> Basic Wireless Settings: Wireless SSID Broadcast: Disable Wireless Network Mode: Disabled After disabling the wireless we’re going to, again, do something counterintuitive. Navigate to Wireless -> Wireless Security and set the following parameters: Security Mode: WPA2 Personal WPA Algorithms: TKIP+AES WPA Shared Key: [select some random string of letters, numbers, and symbols like JF#d$di!Hdgio890] Now you may be asking yourself, why on Earth are we setting a rather secure Wi-Fi configuration on a Wi-Fi router we’re not going to use as a Wi-Fi node? On the off chance that something strange happens after, say, a power outage when your router-turned-switch cycles on and off a bunch of times and the Wi-Fi functionality is activated we don’t want to be running the Wi-Fi node wide open and granting unfettered access to your network. While the chances of this are next-to-nonexistent, it takes only a few seconds to apply the security measure so there’s little reason not to. Save your changes and navigate to Security ->Firewall. Uncheck everything but Filter Multicast Firewall Protect: Disable At this point you can save your changes again, review the changes you’ve made to ensure they all stuck, and then deploy your “new” switch wherever it is needed. Advanced Router to Switch Configuration For the advanced configuration, you’ll need a copy of DD-WRT installed on your router. Although doing so is an extra few steps, it gives you a lot more control over the process and liberates an extra port on the device. Hook the Wi-Fi router up to the network via one of the LAN ports (later you can switch the cable to the WAN port). Open the administration control panel via web browser on the connected computer. Navigate to the Setup -> Basic Setup tab to get started. In the Basic Setup tab, ensure the following settings are adjusted. The setting changes are not optional and are required to turn the Wi-Fi router into a switch. WAN Connection Type: Disabled Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable In addition to disabling the DHCP server, also uncheck all the DNSMasq boxes as the bottom of the DHCP sub-menu. If you want to activate the extra port (and why wouldn’t you), in the WAN port section: Assign WAN Port to Switch [X] At this point the router has become a switch and you have access to the WAN port so the LAN ports are all free. Since we’re already in the control panel, however, we might as well flip a few optional toggles that further lock down the switch and prevent something odd from happening. The optional settings are arranged via the menu you find them in. Remember to save your settings with the save button before moving onto a new tab. While still in the Setup -> Basic Setup menu, change the following: Gateway/Local DNS : [IP address of primary router, e.g. 192.168.1.1] NTP Client : Disable The next step is to turn off the radio completely (which not only kills the Wi-Fi but actually powers the physical radio chip off). Navigate to Wireless -> Advanced Settings -> Radio Time Restrictions: Radio Scheduling: Enable Select “Always Off” There’s no need to create a potential security problem by leaving the Wi-Fi radio on, the above toggle turns it completely off. Under Services -> Services: DNSMasq : Disable ttraff Daemon : Disable Under the Security -> Firewall tab, uncheck every box except “Filter Multicast”, as seen in the screenshot above, and then disable SPI Firewall. Once you’re done here save and move on to the Administration tab. Under Administration -> Management:  Info Site Password Protection : Enable Info Site MAC Masking : Disable CRON : Disable 802.1x : Disable Routing : Disable After this final round of tweaks, save and then apply your settings. Your router has now been, strategically, dumbed down enough to plod along as a very dependable little switch. Time to stuff it behind your desk or entertainment center and streamline your cabling.     

    Read the article

  • Unity not Working 14.04

    - by Back.Slash
    I am using Ubuntu 14.04 LTS x64. I did a sudo apt-get upgrade yesterday and restarted my PC. Now my taskbar and panel are missing. When I try to restart Unity using unity --replace Then I get error: unity-panel-service stop/waiting compiz (core) - Info: Loading plugin: core compiz (core) - Info: Starting plugin: core unity-panel-service start/running, process 3906 compiz (core) - Info: Loading plugin: ccp compiz (core) - Info: Starting plugin: ccp compizconfig - Info: Backend : gsettings compizconfig - Info: Integration : true compizconfig - Info: Profile : unity compiz (core) - Info: Loading plugin: composite compiz (core) - Info: Starting plugin: composite compiz (core) - Info: Loading plugin: opengl compiz (core) - Info: Unity is fully supported by your hardware. compiz (core) - Info: Unity is fully supported by your hardware. compiz (core) - Info: Starting plugin: opengl libGL error: dlopen /usr/lib/x86_64-linux-gnu/dri/i965_dri.so failed (/usr/lib/x86_64-linux-gnu/dri/i965_dri.so: undefined symbol: _glapi_tls_Dispatch) libGL error: dlopen ${ORIGIN}/dri/i965_dri.so failed (${ORIGIN}/dri/i965_dri.so: cannot open shared object file: No such file or directory) libGL error: dlopen /usr/lib/dri/i965_dri.so failed (/usr/lib/dri/i965_dri.so: cannot open shared object file: No such file or directory) libGL error: unable to load driver: i965_dri.so libGL error: driver pointer missing libGL error: failed to load driver: i965 libGL error: dlopen /usr/lib/x86_64-linux-gnu/dri/swrast_dri.so failed (/usr/lib/x86_64-linux-gnu/dri/swrast_dri.so: undefined symbol: _glapi_tls_Dispatch) libGL error: dlopen ${ORIGIN}/dri/swrast_dri.so failed (${ORIGIN}/dri/swrast_dri.so: cannot open shared object file: No such file or directory) libGL error: dlopen /usr/lib/dri/swrast_dri.so failed (/usr/lib/dri/swrast_dri.so: cannot open shared object file: No such file or directory) libGL error: unable to load driver: swrast_dri.so libGL error: failed to load driver: swrast compiz (core) - Info: Loading plugin: compiztoolbox compiz (core) - Info: Starting plugin: compiztoolbox compiz (core) - Info: Loading plugin: decor compiz (core) - Info: Starting plugin: decor compiz (core) - Info: Loading plugin: vpswitch compiz (core) - Info: Starting plugin: vpswitch compiz (core) - Info: Loading plugin: snap compiz (core) - Info: Starting plugin: snap compiz (core) - Info: Loading plugin: mousepoll compiz (core) - Info: Starting plugin: mousepoll compiz (core) - Info: Loading plugin: resize compiz (core) - Info: Starting plugin: resize compiz (core) - Info: Loading plugin: place compiz (core) - Info: Starting plugin: place compiz (core) - Info: Loading plugin: move compiz (core) - Info: Starting plugin: move compiz (core) - Info: Loading plugin: wall compiz (core) - Info: Starting plugin: wall compiz (core) - Info: Loading plugin: grid compiz (core) - Info: Starting plugin: grid compiz (core) - Info: Loading plugin: regex compiz (core) - Info: Starting plugin: regex compiz (core) - Info: Loading plugin: imgpng compiz (core) - Info: Starting plugin: imgpng compiz (core) - Info: Loading plugin: session compiz (core) - Info: Starting plugin: session I/O warning : failed to load external entity "/home/sumeet/.compiz/session/10de541a813cc1a8fc140170575114755000000020350005" compiz (core) - Info: Loading plugin: gnomecompat compiz (core) - Info: Starting plugin: gnomecompat compiz (core) - Info: Loading plugin: animation compiz (core) - Info: Starting plugin: animation compiz (core) - Info: Loading plugin: fade compiz (core) - Info: Starting plugin: fade compiz (core) - Info: Loading plugin: unitymtgrabhandles compiz (core) - Info: Starting plugin: unitymtgrabhandles compiz (core) - Info: Loading plugin: workarounds compiz (core) - Info: Starting plugin: workarounds compiz (core) - Info: Loading plugin: scale compiz (core) - Info: Starting plugin: scale compiz (core) - Info: Loading plugin: expo compiz (core) - Info: Starting plugin: expo compiz (core) - Info: Loading plugin: ezoom compiz (core) - Info: Starting plugin: ezoom compiz (core) - Info: Loading plugin: unityshell compiz (core) - Info: Starting plugin: unityshell WARN 2014-06-02 18:46:23 unity.glib.dbus.server GLibDBusServer.cpp:579 Can't register object 'org.gnome.Shell' yet as we don't have a connection, waiting for it... ERROR 2014-06-02 18:46:23 unity.debug.interface DebugDBusInterface.cpp:216 Unable to load entry point in libxpathselect: libxpathselect.so.1.4: cannot open shared object file: No such file or directory compiz (unityshell) - Error: GL_ARB_vertex_buffer_object not supported ERROR 2014-06-02 18:46:23 unity.shell.compiz unityshell.cpp:3850 Impossible to delete the unity locked stamp file compiz (core) - Error: Plugin initScreen failed: unityshell compiz (core) - Error: Failed to start plugin: unityshell compiz (core) - Info: Unloading plugin: unityshell X Error of failed request: BadWindow (invalid Window parameter) Major opcode of failed request: 3 (X_GetWindowAttributes) Resource id in failed request: 0x3e000c9 Serial number of failed request: 10115 Current serial number in output stream: 10116 Any help would be highly appreciated. EDIT : My PC configuration description: Portable Computer product: Dell System XPS L502X (System SKUNumber) vendor: Dell Inc. version: 0.1 serial: 1006ZP1 width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: administrator_password=unknown boot=normal chassis=portable family=HuronRiver System frontpanel_password=unknown keyboard_password=unknown power-on_password=unknown sku=System SKUNumber uuid=44454C4C-3000-1030-8036-B1C04F5A5031 *-core description: Motherboard product: 0YR8NN vendor: Dell Inc. physical id: 0 version: A00 serial: .1006ZP1.CN4864314C0560. slot: Part Component *-firmware description: BIOS vendor: Dell Inc. physical id: 0 version: A11 date: 05/29/2012 size: 128KiB capacity: 2496KiB capabilities: pci pnp upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy360 int13floppy1200 int13floppy720 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot smartbattery biosbootspecification netboot *-cpu description: CPU product: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz vendor: Intel Corp. physical id: 19 bus info: cpu@0 version: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz serial: Not Supported by CPU slot: CPU size: 800MHz capacity: 800MHz width: 64 bits clock: 100MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx lahf_lm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=4 threads=8 *-cache:0 description: L1 cache physical id: 1a slot: L1-Cache size: 64KiB capacity: 64KiB capabilities: synchronous internal write-through data *-cache:1 description: L2 cache physical id: 1b slot: L2-Cache size: 256KiB capacity: 256KiB capabilities: synchronous internal write-through data *-cache:2 description: L3 cache physical id: 1c slot: L3-Cache size: 6MiB capacity: 6MiB capabilities: synchronous internal write-back unified *-memory description: System Memory physical id: 1d slot: System board or motherboard size: 6GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: M471B5273DH0-CH9 vendor: Samsung physical id: 0 serial: 450F1160 slot: ChannelA-DIMM0 size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: HMT325S6BFR8C-H9 vendor: Hynix/Hyundai physical id: 1 serial: 0CA0E8E2 slot: ChannelB-DIMM0 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-pci description: Host bridge product: 2nd Generation Core Processor Family DRAM Controller vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 09 width: 32 bits clock: 33MHz *-pci:0 description: PCI bridge product: Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port vendor: Intel Corporation physical id: 1 bus info: pci@0000:00:01.0 version: 09 width: 32 bits clock: 33MHz capabilities: pci pm msi pciexpress normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:3000(size=4096) memory:f0000000-f10fffff ioport:c0000000(size=301989888) *-generic UNCLAIMED description: Unassigned class product: Illegal Vendor ID vendor: Illegal Vendor ID physical id: 0 bus info: pci@0000:01:00.0 version: ff width: 32 bits clock: 66MHz capabilities: bus_master vga_palette cap_list configuration: latency=255 maxlatency=255 mingnt=255 resources: memory:f0000000-f0ffffff memory:c0000000-cfffffff memory:d0000000-d1ffffff ioport:3000(size=128) memory:f1000000-f107ffff *-display description: VGA compatible controller product: 2nd Generation Core Processor Family Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 09 width: 64 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:52 memory:f1400000-f17fffff memory:e0000000-efffffff ioport:4000(size=64) *-communication description: Communication controller product: 6 Series/C200 Series Chipset Family MEI Controller #1 vendor: Intel Corporation physical id: 16 bus info: pci@0000:00:16.0 version: 04 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: driver=mei_me latency=0 resources: irq:50 memory:f1c05000-f1c0500f *-usb:0 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 vendor: Intel Corporation physical id: 1a bus info: pci@0000:00:1a.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:16 memory:f1c09000-f1c093ff *-multimedia description: Audio device product: 6 Series/C200 Series Chipset Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:53 memory:f1c00000-f1c03fff *-pci:1 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode cap_list configuration: driver=pcieport resources: irq:16 *-pci:2 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 memory:f1b00000-f1bfffff *-network description: Wireless interface product: Centrino Wireless-N 1030 [Rainbow Peak] vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: mon.wlan0 version: 34 serial: bc:77:37:14:47:e5 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list logical wireless ethernet physical configuration: broadcast=yes driver=iwlwifi driverversion=3.13.0-27-generic firmware=18.168.6.1 latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:51 memory:f1b00000-f1b01fff *-pci:3 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 4 vendor: Intel Corporation physical id: 1c.3 bus info: pci@0000:00:1c.3 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:19 memory:f1a00000-f1afffff *-usb description: USB controller product: uPD720200 USB 3.0 Host Controller vendor: NEC Corporation physical id: 0 bus info: pci@0000:04:00.0 version: 04 width: 64 bits clock: 33MHz capabilities: pm msi msix pciexpress xhci bus_master cap_list configuration: driver=xhci_hcd latency=0 resources: irq:19 memory:f1a00000-f1a01fff *-pci:4 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 5 vendor: Intel Corporation physical id: 1c.4 bus info: pci@0000:00:1c.4 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 memory:f1900000-f19fffff *-pci:5 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 6 vendor: Intel Corporation physical id: 1c.5 bus info: pci@0000:00:1c.5 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 ioport:2000(size=4096) ioport:f1800000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:06:00.0 logical name: eth0 version: 06 serial: 14:fe:b5:a3:ac:40 size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168e-2.fw ip=172.19.167.151 latency=0 link=yes multicast=yes port=MII speed=1Gbit/s resources: irq:49 ioport:2000(size=256) memory:f1804000-f1804fff memory:f1800000-f1803fff *-usb:1 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:23 memory:f1c08000-f1c083ff *-isa description: ISA bridge product: HM67 Express Chipset Family LPC Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: driver=lpc_ich latency=0 resources: irq:0 *-ide:0 description: IDE interface product: 6 Series/C200 Series Chipset Family 4 port SATA IDE Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 05 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:40b8(size=8) ioport:40cc(size=4) ioport:40b0(size=8) ioport:40c8(size=4) ioport:4090(size=16) ioport:4080(size=16) *-serial UNCLAIMED description: SMBus product: 6 Series/C200 Series Chipset Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:f1c04000-f1c040ff ioport:efa0(size=32) *-ide:1 description: IDE interface product: 6 Series/C200 Series Chipset Family 2 port SATA IDE Controller vendor: Intel Corporation physical id: 1f.5 bus info: pci@0000:00:1f.5 version: 05 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:40a8(size=8) ioport:40c4(size=4) ioport:40a0(size=8) ioport:40c0(size=4) ioport:4070(size=16) ioport:4060(size=16) *-scsi:0 physical id: 1 logical name: scsi0 capabilities: emulated *-disk description: ATA Disk product: SAMSUNG HN-M640M physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 2AR1 serial: S2T3J1KBC00006 size: 596GiB (640GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sectorsize=512 signature=6b746d91 *-volume:0 description: Windows NTFS volume physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 version: 3.1 serial: 0272-3e7f size: 348MiB capacity: 350MiB capabilities: primary bootable ntfs initialized configuration: clustersize=4096 created=2013-09-18 12:20:45 filesystem=ntfs label=System Reserved modified_by_chkdsk=true mounted_on_nt4=true resize_log_file=true state=dirty upgrade_on_mount=true *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 116GiB capacity: 116GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume:0 description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 6037MiB capabilities: nofs *-logicalvolume:1 description: Linux filesystem partition physical id: 6 logical name: /dev/sda6 logical name: / capacity: 110GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,data=ordered state=mounted *-volume:2 description: Windows NTFS volume physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 logical name: /media/os version: 3.1 serial: 4e7853ec-5555-a74d-82e0-9f49798d3772 size: 156GiB capacity: 156GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2013-09-19 09:19:00 filesystem=ntfs label=OS mount.fstype=fuseblk mount.options=ro,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other,blksize=4096 state=mounted *-volume:3 description: Windows NTFS volume physical id: 4 bus info: scsi@0:0.0.0,4 logical name: /dev/sda4 logical name: /media/data version: 3.1 serial: 7666d55f-e1bf-e645-9791-2a1a31b24b9a size: 322GiB capacity: 322GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2013-09-17 23:27:01 filesystem=ntfs label=Data modified_by_chkdsk=true mount.fstype=fuseblk mount.options=rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other,blksize=4096 mounted_on_nt4=true resize_log_file=true state=mounted upgrade_on_mount=true *-scsi:1 physical id: 2 logical name: scsi1 capabilities: emulated *-cdrom description: DVD-RAM writer product: DVD+-RW GT32N vendor: HL-DT-ST physical id: 0.0.0 bus info: scsi@1:0.0.0 logical name: /dev/cdrom logical name: /dev/sr0 version: A201 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-battery product: DELL vendor: SANYO physical id: 1 version: 2008 serial: 1.0 slot: Rear capacity: 57720mWh configuration: voltage=11.1V `

    Read the article

  • LLBLGen Pro v3.5 has been released!

    - by FransBouma
    Last weekend we released LLBLGen Pro v3.5! Below the list of what's new in this release. Of course, not everything is on this list, like the large amount of work we put in refactoring the runtime framework. The refactoring was necessary because our framework has two paradigms which are added to the framework at a different time, and from a design perspective in the wrong order (the paradigm we added first, SelfServicing, should have been built on top of Adapter, the other paradigm, which was added more than a year after the first released version). The refactoring made sure the framework re-uses more code across the two paradigms (they already shared a lot of code) and is better prepared for the future. We're not done yet, but refactoring a massive framework like ours without breaking interfaces and existing applications is ... a bit of a challenge ;) To celebrate the release of v3.5, we give every customer a 30% discount! Use the coupon code NR1ORM with your order :) The full list of what's new: Designer Rule based .NET Attribute definitions. It's now possible to specify a rule using fine-grained expressions with an attribute definition to define which elements of a given type will receive the attribute definition. Rules can be assigned to attribute definitions on the project level, to make it even easier to define attribute definitions in bulk for many elements in the project. More information... Revamped Project Settings dialog. Multiple project related properties and settings dialogs have been merged into a single dialog called Project Settings, which makes it easier to configure the various settings related to project elements. It also makes it easier to find features previously not used  by many (e.g. type conversions) More information... Home tab with Quick Start Guides. To make new users feel right at home, we added a home tab with quick start guides which guide you through four main use cases of the designer. System Type Converters. Many common conversions have been implemented by default in system type converters so users don't have to develop their own type converters anymore for these type conversions. Bulk Element Setting Manipulator. To change setting values for multiple project elements, it was a little cumbersome to do that without a lot of clicking and opening various editors. This dialog makes changing settings for multiple elements very easy. EDMX Importer. It's now possible to import entity model data information from an existing Entity Framework EDMX file. Other changes and fixes See for the full list of changes and fixes the online documentation. LLBLGen Pro Runtime Framework WCF Data Services (OData) support has been added. It's now possible to use your LLBLGen Pro runtime framework powered domain layer in a WCF Data Services application using the VS.NET tools for WCF Data Services. WCF Data Services is a Microsoft technology for .NET 4 to expose your domain model using OData. More information... New query specification and execution API: QuerySpec. QuerySpec is our new query specification and execution API as an alternative to Linq and our more low-level API. It's build, like our Linq provider, on top of our lower-level API. More information... SQL Server 2012 support. The SQL Server DQE allows paging using the new SQL Server 2012 style. More information... System Type converters. For a common set of types the LLBLGen Pro runtime framework contains built-in type conversions so you don't need to write your own type converters anymore. Public/NonPublic property support. It's now possible to mark a field / navigator as non-public which is reflected in the runtime framework as an internal/friend property instead of a public property. This way you can hide properties from the public interface of a generated class and still access it through code added to the generated code base. FULL JOIN support. It's now possible to perform FULL JOIN joins using the native query api and QuerySpec. It's left to the developer to check whether the used target database supports FULL (OUTER) JOINs. Using a FULL JOIN with entity fetches is not recommended, and should only be used when both participants in the join aren't the target of the fetch. Dependency Injection Tracing. It's now possible to enable tracing on dependency injection. Enable tracing at level '4' on the traceswitch 'ORMGeneral'. This will emit trace information about which instance of which type got an instance of type T injected into property P. Entity Instances in projections in Linq. It's now possible to return an entity instance in a custom Linq projection. It's now also possible to pass this instance to a method inside the query projection. Inheritance fully supported in this construct. Entity Framework support The Entity Framework has been updated in the recent year with code-first support and a new simpler context api: DbContext (with DbSet). The amount of code to generate is smaller and the context simpler. LLBLGen Pro v3.5 comes with support for DbContext and DbSet and generates code which utilizes these new classes. NHibernate support NHibernate v3.2+ built-in proxy factory factory support. By default the built-in ProxyFactoryFactory is selected. FluentNHibernate Session Manager uses 1.2 syntax. Fluent NHibernate mappings generate a SessionManager which uses the v1.2 syntax for the ProxyFactoryFactory location Optionally emit schema / catalog name in mappings Two settings have been added which allow the user to control whether the catalog name and/or schema name as known in the project in the designer is emitted into the mappings.

    Read the article

  • Help Protect Your Children with the CEOP Enhanced Internet Explorer 8

    - by Asian Angel
    Do you want to make Internet Explorer safer and more helpful for you and family? Then join us as we look at the CEOP (Child Exploitation and Online Protection Centre) enhanced version of Internet Explorer 8. Setting CEOP Up We chose to install the whole CEOP pack in order to have access to complete set of CEOP Tools. The install process will be comprised of two parts…it will begin with CEOP branded windows showing the components being installed… Note: The components can be downloaded separately for those who only want certain CEOP components added to their browser. Then it will move to the traditional Microsoft Internet Explorer 8 install windows. One thing that we did notice is that here you will be told that you will need to restart your computer but in other windows a log off/log on process is mentioned. Just to make certain that everything goes smoothly we recommend restarting your computer when the installation process is complete. In the EULA section you can see the versions of Windows that the CEOP Pack works with. Once you get past the traditional Microsoft install windows you will be dropped back into the CEOP branded windows. CEOP in Action After you have restarted your computer and opened Internet Explorer you will notice that your homepage has been changed. When it comes to your children that is not a bad thing in this instance. It will also give you an opportunity to look through the CEOP online resources. For the moment you may be wondering where everything is but do not worry. First you can find the two new search providers in the drop-down menu for your “Search Bar” and select a new default if desired. The second thing to look for are the new links that have been added to your “Favorites Menu”. These links can definitely be helpful for you and your family. The third part will require your “Favorites Bar” to be visible in order to see the “Click CEOP Button”. If you have not previously done so you will need to turn on subscribing for “Web Slices”. Click on “Yes” to finish the subscription process. Clicking on the “CEOP Button” again will show all kinds of new links to help provide information for you and your children. Notice that the top part is broken down into “topic categories” while the bottom part is set up for “age brackets”…very nice for helping you focus on the information that you want and/or need. Looking for information and help on a particular topic? Clicking on the “Cyberbullying Link” for example will open the following webpage with information about cyberbullying and a link to get help with the problem. Need something that is focused on your child’s age group? Clicking on the “8-10? Link” as an example opened this page. Want information that is focused on you? The “Parent? Link” leads to this page. The “topic categories & age brackets” make the CEOP Button a very helpful and “family friendly” addition to Internet Explorer. Perhaps you (or your child) want to conduct a search for something that is affecting your child. As you type in a “search term” both of the search providers will provide helpful suggestions for dealing with the problem. We felt that these were very nice suggestions in both instances here… Conclusion We have been able to give you a good peek at what the CEOP Tools can do but the best way to see how helpful it can be for you and your family is try it for yourself. Your children’s safety and happiness is worth it. Links Download the Internet Explorer CEOP Pack (link at bottom of webpage) Note: If you are interested in a singular component or only some use these links. Download the Click CEOP Button Download Search CEOP Download Internet Safety and Security Search Similar Articles Productive Geek Tips Mysticgeek Blog: A Look at Internet Explorer 8 Beta 1 on Windows XPWhen to Use Protect Tab vs Lock Tab in FirefoxMake Ctrl+Tab in Internet Explorer 7 Use Most Recent OrderRemove ISP Text or Corporate Branding from Internet Explorer Title BarQuick Hits: 11 Firefox Tab How-Tos TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Download Microsoft Office Help tab The Growth of Citibank Quickly Switch between Tabs in IE Windows Media Player 12: Tweak Video & Sound with Playback Enhancements Own a cell phone, or does a cell phone own you? Make your Joomla & Drupal Sites Mobile with OSMOBI

    Read the article

  • Big Data – Buzz Words: Importance of Relational Database in Big Data World – Day 9 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is HDFS. In this article we will take a quick look at the importance of the Relational Database in Big Data world. A Big Question? Here are a few questions I often received since the beginning of the Big Data Series - Does the relational database have no space in the story of the Big Data? Does relational database is no longer relevant as Big Data is evolving? Is relational database not capable to handle Big Data? Is it true that one no longer has to learn about relational data if Big Data is the final destination? Well, every single time when I hear that one person wants to learn about Big Data and is no longer interested in learning about relational database, I find it as a bit far stretched. I am not here to give ambiguous answers of It Depends. I am personally very clear that one who is aspiring to become Big Data Scientist or Big Data Expert they should learn about relational database. NoSQL Movement The reason for the NoSQL Movement in recent time was because of the two important advantages of the NoSQL databases. Performance Flexible Schema In personal experience I have found that when I use NoSQL I have found both of the above listed advantages when I use NoSQL database. There are instances when I found relational database too much restrictive when my data is unstructured as well as they have in the datatype which my Relational Database does not support. It is the same case when I have found that NoSQL solution performing much better than relational databases. I must say that I am a big fan of NoSQL solutions in the recent times but I have also seen occasions and situations where relational database is still perfect fit even though the database is growing increasingly as well have all the symptoms of the big data. Situations in Relational Database Outperforms Adhoc reporting is the one of the most common scenarios where NoSQL is does not have optimal solution. For example reporting queries often needs to aggregate based on the columns which are not indexed as well are built while the report is running, in this kind of scenario NoSQL databases (document database stores, distributed key value stores) database often does not perform well. In the case of the ad-hoc reporting I have often found it is much easier to work with relational databases. SQL is the most popular computer language of all the time. I have been using it for almost over 10 years and I feel that I will be using it for a long time in future. There are plenty of the tools, connectors and awareness of the SQL language in the industry. Pretty much every programming language has a written drivers for the SQL language and most of the developers have learned this language during their school/college time. In many cases, writing query based on SQL is much easier than writing queries in NoSQL supported languages. I believe this is the current situation but in the future this situation can reverse when No SQL query languages are equally popular. ACID (Atomicity Consistency Isolation Durability) – Not all the NoSQL solutions offers ACID compliant language. There are always situations (for example banking transactions, eCommerce shopping carts etc.) where if there is no ACID the operations can be invalid as well database integrity can be at risk. Even though the data volume indeed qualify as a Big Data there are always operations in the application which absolutely needs ACID compliance matured language. The Mixed Bag I have often heard argument that all the big social media sites now a days have moved away from Relational Database. Actually this is not entirely true. While researching about Big Data and Relational Database, I have found that many of the popular social media sites uses Big Data solutions along with Relational Database. Many are using relational databases to deliver the results to end user on the run time and many still uses a relational database as their major backbone. Here are a few examples: Facebook uses MySQL to display the timeline. (Reference Link) Twitter uses MySQL. (Reference Link) Tumblr uses Sharded MySQL (Reference Link) Wikipedia uses MySQL for data storage. (Reference Link) There are many for prominent organizations which are running large scale applications uses relational database along with various Big Data frameworks to satisfy their various business needs. Summary I believe that RDBMS is like a vanilla ice cream. Everybody loves it and everybody has it. NoSQL and other solutions are like chocolate ice cream or custom ice cream – there is a huge base which loves them and wants them but not every ice cream maker can make it just right  for everyone’s taste. No matter how fancy an ice cream store is there is always plain vanilla ice cream available there. Just like the same, there are always cases and situations in the Big Data’s story where traditional relational database is the part of the whole story. In the real world scenarios there will be always the case when there will be need of the relational database concepts and its ideology. It is extremely important to accept relational database as one of the key components of the Big Data instead of treating it as a substandard technology. Ray of Hope – NewSQL In this module we discussed that there are places where we need ACID compliance from our Big Data application and NoSQL will not support that out of box. There is a new termed coined for the application/tool which supports most of the properties of the traditional RDBMS and supports Big Data infrastructure – NewSQL. Tomorrow In tomorrow’s blog post we will discuss about NewSQL. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Getting a Web Resource Url in non WebForms Applications

    - by Rick Strahl
    WebResources in ASP.NET are pretty useful feature. WebResources are resources that are embedded into a .NET assembly and can be loaded from the assembly via a special resource URL. WebForms includes a method on the ClientScriptManager (Page.ClientScript) and the ScriptManager object to retrieve URLs to these resources. For example you can do: ClientScript.GetWebResourceUrl(typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); GetWebResourceUrl requires a type (which is used for the assembly lookup in which to find the resource) and the resource id to lookup. GetWebResourceUrl() then returns a nasty old long URL like this: WebResource.axd?d=-b6oWzgbpGb8uTaHDrCMv59VSmGhilZP5_T_B8anpGx7X-PmW_1eu1KoHDvox-XHqA1EEb-Tl2YAP3bBeebGN65tv-7-yAimtG4ZnoWH633pExpJor8Qp1aKbk-KQWSoNfRC7rQJHXVP4tC0reYzVw2&t=634533278261362212 While lately excessive resource usage has been frowned upon especially by MVC developers who tend to opt for content distributed as files, I still think that Web Resources have their place even in non-WebForms applications. Also if you have existing assemblies that include resources like scripts and common image links it sure would be nice to access them from non-WebForms pages like MVC views or even in plain old Razor Web Pages. Where's my Page object Dude? Unfortunately natively ASP.NET doesn't have a mechanism for retrieving WebResource Urls outside of the WebForms engine. It's a feature that's specifically baked into WebForms and that relies specifically on the Page HttpHandler implementation. Both Page.ClientScript (obviously) and ScriptManager rely on a hosting Page object in order to work and the various methods off these objects require control instances passed. The reason for this is that the script managers can inject scripts and links into Page content (think RegisterXXXX methods) and for that a Page instance is required. However, for many other methods - like GetWebResourceUrl() - that simply return resources or resource links the Page reference is really irrelevant. While there's a separate ClientScriptManager class, it's marked as sealed and doesn't have any public constructors so you can't create your own instance (without Reflection). Even if it did the internal constructor it does have requires a Page reference. No good… So, can we get access to a WebResourceUrl generically without running in a WebForms Page instance? We just have to create a Page instance ourselves and use it internally. There's nothing intrinsic about the use of the Page class in ClientScript, at least for retrieving resources and resource Urls so it's easy to create an instance of a Page for example in a static method. For our needs of retrieving ResourceUrls or even actually retrieving script resources we can use a canned, non-configured Page instance we create on our own. The following works just fine: public static string GetWebResourceUrl(Type type, string resource ) { Page page = new Page(); return page.ClientScript.GetWebResourceUrl(type, resource); } A slight optimization for this might be to cache the created Page instance. Page tends to be a pretty heavy object to create each time a URL is required so you might want to cache the instance: public class WebUtils { private static Page CachedPage { get { if (_CachedPage == null) _CachedPage = new Page(); return _CachedPage; } } private static Page _CachedPage; public static string GetWebResourceUrl(Type type, string resource) { return CachedPage.ClientScript.GetWebResourceUrl(type, resource); } } You can now use GetWebResourceUrl in a Razor page like this: <!DOCTYPE html> <html <head> <script src="@WebUtils.GetWebResourceUrl(typeof(ControlResources),ControlResources.JQUERY_SCRIPT_RESOURCE)"> </script> </head> <body> <div class="errordisplay"> <img src="@WebUtils.GetWebResourceUrl(typeof(ControlResources),ControlResources.WARNING_ICON_RESOURCE)" /> This is only a Test! </div> </body> </html> And voila - there you have WebResources served from a non-Page based application. WebResources may be a on the way out, but legacy apps have them embedded and for some situations, like fallback scripts and some common image resources I still like to use them. Being able to use them from non-WebForms applications should have been built into the core ASP.NETplatform IMHO, but seeing that it's not this workaround is easy enough to implement.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  MVC   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Algorithmia Source Code released on CodePlex

    - by FransBouma
    Following the release of our BCL Extensions Library on CodePlex, we have now released the source-code of Algorithmia on CodePlex! Algorithmia is an algorithm and data-structures library for .NET 3.5 or higher and is one of the pillars LLBLGen Pro v3's designer is built on. The library contains many data-structures and algorithms, and the source-code is well documented and commented, often with links to official descriptions and papers of the algorithms and data-structures implemented. The source-code is shared using Mercurial on CodePlex and is licensed under the friendly BSD2 license. User documentation is not available at the moment but will be added soon. One of the main design goals of Algorithmia was to create a library which contains implementations of well-known algorithms which weren't already implemented in .NET itself. This way, more developers out there can enjoy the results of many years of what the field of Computer Science research has delivered. Some algorithms and datastructures are known in .NET but are re-implemented because the implementation in .NET isn't efficient for many situations or lacks features. An example is the linked list in .NET: it doesn't have an O(1) concat operation, as every node refers to the containing LinkedList object it's stored in. This is bad for algorithms which rely on O(1) concat operations, like the Fibonacci heap implementation in Algorithmia. Algorithmia therefore contains a linked list with an O(1) concat feature. The following functionality is available in Algorithmia: Command, Command management. This system is usable to build a fully undo/redo aware system by building your object graph using command-aware classes. The Command pattern is implemented using a system which allows transparent undo-redo and command grouping so you can use it to make a class undo/redo aware and set properties, use its contents without using commands at all. The Commands namespace is the namespace to start. Classes you'd want to look at are CommandifiedMember, CommandifiedList and KeyedCommandifiedList. See the CommandQueueTests in the test project for examples. Graphs, Graph algorithms. Algorithmia contains a sophisticated graph class hierarchy and algorithms implemented onto them: non-directed and directed graphs, as well as a subgraph view class, which can be used to create a view onto an existing graph class which can be self-maintaining. Algorithms include transitive closure, topological sorting and others. A feature rich depth-first search (DFS) crawler is available so DFS based algorithms can be implemented quickly. All graph classes are undo/redo aware, as they can be set to be 'commandified'. When a graph is 'commandified' it will do its housekeeping through commands, which makes it fully undo-redo aware, so you can remove, add and manipulate the graph and undo/redo the activity automatically without any extra code. If you define the properties of the class you set as the vertex type using CommandifiedMember, you can manipulate the properties of vertices and the graph contents with full undo/redo functionality without any extra code. Heaps. Heaps are data-structures which have the largest or smallest item stored in them always as the 'root'. Extracting the root from the heap makes the heap determine the next in line to be the 'maximum' or 'minimum' (max-heap vs. min-heap, all heaps in Algorithmia can do both). Algorithmia contains various heaps, among them an implementation of the Fibonacci heap, one of the most efficient heap datastructures known today, especially when you want to merge different instances into one. Priority queues. Priority queues are specializations of heaps. Algorithmia contains a couple of them. Sorting. What's an algorithm library without sort algorithms? Algorithmia implements a couple of sort algorithms which sort the data in-place. This aspect is important in situations where you want to sort the elements in a buffer/list/ICollection in-place, so all data stays in the data-structure it already is stored in. PropertyBag. It re-implements Tony Allowatt's original idea in .NET 3.5 specific syntax, which is to have a generic property bag and to be able to build an object in code at runtime which can be bound to a property grid for editing. This is handy for when you have data / settings stored in XML or other format, and want to create an editable form of it without creating many editors. IEditableObject/IDataErrorInfo implementations. It contains default implementations for IEditableObject and IDataErrorInfo (EditableObjectDataContainer for IEditableObject and ErrorContainer for IDataErrorInfo), which make it very easy to implement these interfaces (just a few lines of code) without having to worry about bookkeeping during databinding. They work seamlessly with CommandifiedMember as well, so your undo/redo aware code can use them out of the box. EventThrottler. It contains an event throttler, which can be used to filter out duplicate events in an event stream coming into an observer from an event. This can greatly enhance performance in your UI without needing to do anything other than hooking it up so it's placed between the event source and your real handler. If your UI is flooded with events from data-structures observed by your UI or a middle tier, you can use this class to filter out duplicates to avoid redundant updates to UI elements or to avoid having observers choke on many redundant events. Small, handy stuff. A MultiValueDictionary, which can store multiple unique values per key, instead of one with the default Dictionary, and is also merge-aware so you can merge two into one. A Pair class, to quickly group two elements together. Multiple interfaces for helping with building a de-coupled, observer based system, and some utility extension methods for the defined data-structures. We regularly update the library with new code. If you have ideas for new algorithms or want to share your contribution, feel free to discuss it on the project's Discussions page or send us a pull request. Enjoy!

    Read the article

  • RegLoadAppKey working fine on 32-bit OS, failing on 64-bit OS, even if both processes are 32-bit

    - by James Manning
    I'm using .NET 4 and the new RegistryKey.FromHandle call so I can take the hKey I get from opening a registry file with RegLoadAppKey and operate on it with the existing managed API. I thought at first it was just a matter of a busted DllImport and my call had an invalid type in the params or a missing MarshalAs or whatever, but looking at other registry functions and their DllImport declarations (for instance, on pinvoke.net), I don't see what else to try (I've had hKey returned as both int and IntPtr, both worked on 32-bit OS and fail on 64-bit OS) I've got it down to as simple a repro case as I can - it just tries to create a 'random' subkey then write a value to it. It works fine on my Win7 x86 box and fails on Win7 x64 and 2008 R2 x64, even when it's still a 32-bit process, even run from a 32-bit cmd prompt. EDIT: It also fails in the same way if it's a 64-bit process. on Win7 x86: INFO: Running as Admin in 32-bit process on 32-bit OS Was able to create Microsoft\Windows\CurrentVersion\RunOnceEx\a95b1bbf-7a04-4707-bcca-6aee6afbfab7 and write a value under it on Win7 x64, as 32-bit: INFO: Running as Admin in 32-bit process on 64-bit OS Unhandled Exception: System.UnauthorizedAccessException: Access to the registry key '\Microsoft\Windows\CurrentVersion\RunOnceEx\ce6d5ff6-c3af-47f7-b3dc-c5a1b9a3cd22' is denied. at Microsoft.Win32.RegistryKey.Win32Error(Int32 errorCode, String str) at Microsoft.Win32.RegistryKey.CreateSubKeyInternal(String subkey, RegistryKeyPermissionCheck permissionCheck, Object registrySecurityObj, RegistryOptions registryOptions) at Microsoft.Win32.RegistryKey.CreateSubKey(String subkey) at LoadAppKeyAndModify.Program.Main(String[] args) on Win7 x64, as 64-bit: INFO: Running as Admin in 64-bit process on 64-bit OS Unhandled Exception: System.UnauthorizedAccessException: Access to the registry key '\Microsoft\Windows\CurrentVersion\RunOnceEx\43bc857d-7d07-499c-8070-574d6732c130' is denied. at Microsoft.Win32.RegistryKey.Win32Error(Int32 errorCode, String str) at Microsoft.Win32.RegistryKey.CreateSubKeyInternal(String subkey, RegistryKeyPermissionCheck permissionCheck, Object registrySecurityObj, RegistryOptions registryOptions) at Microsoft.Win32.RegistryKey.CreateSubKey(String subkey, RegistryKeyPermissionCheck permissionCheck) at LoadAppKeyAndModify.Program.Main(String[] args) source: class Program { static void Main(string[] args) { Console.WriteLine("INFO: Running as {0} in {1}-bit process on {2}-bit OS", new WindowsPrincipal(WindowsIdentity.GetCurrent()).IsInRole(WindowsBuiltInRole.Administrator) ? "Admin" : "Normal User", Environment.Is64BitProcess ? 64 : 32, Environment.Is64BitOperatingSystem ? 64 : 32); if (args.Length != 1) { throw new ApplicationException("Need 1 argument - path to the software hive file on disk"); } string softwareHiveFile = Path.GetFullPath(args[0]); if (File.Exists(softwareHiveFile) == false) { throw new ApplicationException("Specified file does not exist: " + softwareHiveFile); } // pick a random subkey so it doesn't already exist var keyPathToCreate = "Microsoft\\Windows\\CurrentVersion\\RunOnceEx\\" + Guid.NewGuid(); var hKey = RegistryNativeMethods.RegLoadAppKey(softwareHiveFile); using (var safeRegistryHandle = new SafeRegistryHandle(new IntPtr(hKey), true)) using (var appKey = RegistryKey.FromHandle(safeRegistryHandle)) using (var runOnceExKey = appKey.CreateSubKey(keyPathToCreate)) { runOnceExKey.SetValue("foo", "bar"); Console.WriteLine("Was able to create {0} and write a value under it", keyPathToCreate); } } } internal static class RegistryNativeMethods { [Flags] public enum RegSAM { AllAccess = 0x000f003f } private const int REG_PROCESS_APPKEY = 0x00000001; // approximated from pinvoke.net's RegLoadKey and RegOpenKey // NOTE: changed return from long to int so we could do Win32Exception on it [DllImport("advapi32.dll", SetLastError = true)] private static extern int RegLoadAppKey(String hiveFile, out int hKey, RegSAM samDesired, int options, int reserved); public static int RegLoadAppKey(String hiveFile) { int hKey; int rc = RegLoadAppKey(hiveFile, out hKey, RegSAM.AllAccess, REG_PROCESS_APPKEY, 0); if (rc != 0) { throw new Win32Exception(rc, "Failed during RegLoadAppKey of file " + hiveFile); } return hKey; } }

    Read the article

  • SOA Suite Integration: Part 2: A basic BPEL process

    - by Anthony Shorten
    This is the next in the series about SOA Suite integration with Oracle Utilities Application Framework. One of the first scenarios I am going to illustrate in this series is building a basic BPEL process using Web Service calls to the Oracle Utilities Application Framework. The scenario is this. I will pass in the userid and the BPEL process will call our the AS-User Web Service we created in Part 1. This is just a basic test and illustrate how to import the Web Service into SOA Suite. To use this scenario, you will need access to Oracle SOA Suite, access to a copy of any Oracle Utilities Application Framework based product and Oracle JDeveloper (to build the process). First of all you need to start Oracle JDeveloper and create a new SOA Project to house the BPEL process in. For the purposes of this example I will call the project simpleBPEL and verify that SOA is part of the project. I will select "Composite with BPEL" to denote it as a BPEL process. I can also the same process to create a Mediator or OSB project (refer to the JDeveloper documentation on these technologies). For this example I will use BPEL 1.1 as my specification standard (BPEL 2.0 can also be used if desired). I give the individual BPEL process as simpleBPEL (you can use a different name but I wanted to keep the project and process the same for this example). I will also build a Synchronous BPEL Process as I want a response from the Web Service. I will leave the defaults to save time. I have no have a blank canvas to build my BPEL process against. Note: for simplicity I am going to use as much defaulting as possible. In fact I am not going to specify an input schema for the incoming call as I will use the basic single field used by BPEL as default. The first step is to import the AS-User Web Service into my BPEL project. To do this I use the standard Web Service BPEL component from the Component Palette to import the WSDL into the BPEL project. Now the tricky part (a joke), you drag and drop the component from the Palette onto the right side of the canvas in the Partner Links swim lane. This swim lane is reserved for Partner Links that have a Partner Role (i.e. being called rather than calling). When you drop the Web Service onto the canvas the Create Web Service wizard is invoked to ask for details of the Web Service. At this point you give the BPEL node a name. I have used the name RetrieveUser as a name. I placed the WSDL URL from the XAI Inbound Service screen in the WSDL URL. Once you specify the URL you can press the Find existing WSDL's button to load the information into BPEL from the call. You will notice the Port Type is prefilled with the port from the WSDL. I also suggest that you check copy wsdl and it's dependent artifacts into the project if you intending to work on the BPEL process offline. If you do not check this your target application must be accessible when you work on the BPEL process (that is not always convenient). Note: For the perceptive of you will notice that the URL specified in this example is different to the URL in the last post. The reason is for the demonstrations I shifted to a new server and did not redo all of the past screen captures. If you copy the WSDL into the project you will get an information screen about Localize Files. It is just a confirmation screen. The last confirmation screen is a summary of the partner link (the main tab is locked for editing at this stage). At this stage you have successfully imported the Web Service. To complete the setup of the Web Service you need to set the credentials for the Web Service to use. Refer to the past post on how to do that. Now to use the Web Service. To call the Web Service (as it is just imported not connected to the BPEL process yet), you must add an Invoke action to your BPEL Process. To do this, select Invoke action from the BPEL Constructs zone on the Component Palette and drop it on the edit nodes between the receiveInput and replyOutput nodes This will create an empty Invoke action. You will notice some connectors on the Invoke node. Grab the node closest to your Web Service and drag it to connect the Invoke to your Web Service. This instructs BPEL to use the Invoke to call the Web Service. Once the Invoke action is connected to the Web Service an Edit Invoke edit dialog is displayed. At this point I suggest you name the Invoke node. It is important to name the nodes straightaway and name them appropriately for you to trace the logic. I used InvokeUser as the name in this example. To complete the node configuration you must create Variables to hold the input and output for the call. To do this clock on Automatically Create Input Variable on the Edit Invoke dialog. You will be presented with a default variable name. It uses the node name (that is why it is important to name the node before hitting this button) as a prefix. You can name the variable anything but I usually take the default. Repeat the same for the output variable. You now have a completed node for invoking the service. You have a very basic BPEL process which contains an input, invoke and output node. It is not complete yet though. You need to tell the BPEL process how to pass data from the input to the invoke step and how to take the output from the service call and pass it back to the service. You need to now add an Assign node to assign the input to the Web Service. To do this select Assign activity from BPEL Constructs zone in the Component Palette. Drag and drop the Assign activity between the receiveInput and InvokeUser nodes as you want to pass data between these two nodes. You have now added a new Assign node to your BPEL process Double clicking the node allows you to specify the name of the node. I use AssignUser to describe that I am assigning user data. On the Copy Rules tab you can specify the mapping between the input variable InputVariable/payload/process/input string and the input variable for the Web Service call. We are passing data from the input to BPEL to the relevant input variable on the Web Service. This is simply drag and drop between the two data structures. In the example, I am using the input to pass to the user element in my Web Service as the user is the primary key for the object. The fields become linked (which means data from source will be copied to target). Almost there. You now need to process the output from the Web Service call to the outputVariable of the client call. I have decided to pass back one piece of data, the name associated with the user by concatenating the firstName and lastName elements from the Web Service call. To do this I will use a Transform as it is not just a matter of an Assign action. It is a concatenation operation. This also illustrates how you can use BPEL functionality to transform data from a Web Service call. As with the other components you drag and drop the Transform component to the appropriate place in the BPEL process. In this case we want to transform the output from the Web Service call so we want it after the InvokeUser action and the replyOutput action. The Transform component is actually part of the Oracle Extensions to the BPEL specification. Double clicking the Transform node will allow you to name the node.  In this example I used TransformName. To complete the transform I need to tell the product the source of the transformation and the target of the transform. In the example this is the InvokeUser output variable. I also named the mapper file to TransformName. By clicking the + or pencil icon next to the map I can create the map. The mapping screen is shows the source and target schemas for me to map across. As with the assign I can map the relevant elements. In my example, I first map the firstName from the Web Service to the result element. As I want to concatenate the names, I drop the concat function on the call line. I now attach the last name to the function to indicate the concatenation of the field. By default the names will be concatenated with no space. To make the name legible I add a space between the field by clicking the function and adding a space in the call. I now have a completed mapping. I can now save the whole project as my BPEL process is now complete. As you can see the following happens: We accept input from the client (the userid for the call) in the receiveInput step. We assign that value to the input parameters for the Web Service call in the AssignUser step. We invoke the Web Service call to retrieve the data from the product in the InvokeUser step. We take the output from the InvokeUser step and concatenate the names in the TransformName step. We pass back the data in the replyOutput step. At this point we can deploy the BPEL process to the SOA Suite server. I will not cover this aspect as it really all SOA Suite specific (it is all done via Oracle JDeveloper). Now we need to test the service in SOA Suite. We will use the Fusion Middleware Control test facility. I will assume that credentials have also been setup as per our previous post (else you will get a 401 error). You navigate to the deployed BPEL process within Fusion Middleware Control and select the Test Service option. Specify some test data on the payload at the bottom of the Test Service screen. In my case I am returning my own userid information. On the response tab you will see the result. It works. You can verify the steps using the Audit trace facility on individual calls. As you can see this is a basic BPEL but you get the idea of importing the Web Service is pretty straightforward. You can create more sophisticated BPEL processes using the full facilities in Oracle SOA Suite. I just showed you the basic principals.

    Read the article

< Previous Page | 165 166 167 168 169 170 171 172 173 174 175 176  | Next Page >