Search Results

Search found 14597 results on 584 pages for 'zend studio'.

Page 169/584 | < Previous Page | 165 166 167 168 169 170 171 172 173 174 175 176  | Next Page >

  • LLBLGen Pro v3.0 with Entity Framework v4.0 (12m video)

    - by FransBouma
    Today I recorded a video in which I illustrate some of the database-first functionality available in LLBLGen Pro v3.0. LLBLGen Pro v3.0 also supports model-first functionality, which I hope to illustrate in an upcoming video. LLBLGen Pro v3.0 is currently in beta and is scheduled to RTM some time in May 2010. It supports the following frameworks out of the box, with more scheduled to follow in the coming year: LLBLGen Pro RTL (our own o/r mapper framework), Linq to Sql, NHibernate and Entity Framework (v1 and v4). The video I linked to below illustrates the creation of an entity model for Entity Framework v4, by reverse engineering the SQL Server 2008 example database 'AdventureWorks'. The following topics (among others) are included in the video: Abbreviation support (example: convert 'Qty' into 'Quantity' during name construction) Flexible, framework specific settings Attribute definitions for various elements (so no requirement for buddy-classes or messing with generated code or templates) Retrieval of relational model data from a database Reverse engineering of tables into entities, automatically placed in groups Auto-creation of inheritance hierarchies Refactoring of entity fields into Value Type Definitions (DDD) Mapping a Typed view onto a stored procedure resultset Creation of a Typed list (definition of a query with a projection) on a set of related entities Validation and correction of found inconsistencies and errors Generating code using one of the pre-defined presets Illustration of the code in vs.net 2010 It also gives a good overview of what it takes with LLBLGen Pro v3.0 to start from a new project, point it to a database, get an entity model, perform tweaks and validation and generate code which is ready to run. I am no video recording expert so there's no audio and some mouse movements might be a little too quickly. If that's the case, please pause the video. It's rather big (52MB). Click here to open the HTML page with the video (Flash). Opens in a new window. LLBLGen Pro v3.0 is currently in beta (available for v2.x customers) and scheduled to be released somewhere in May 2010.

    Read the article

  • VB.NET IF() Coalesce and “Expression Expected” Error

    - by Jeff Widmer
    I am trying to use the equivalent of the C# “??” operator in some VB.NET code that I am working in. This StackOverflow article for “Is there a VB.NET equivalent for C#'s ?? operator?” explains the VB.NET IF() statement syntax which is exactly what I am looking for... and I thought I was going to be done pretty quickly and could move on. But after implementing the IF() statement in my code I started to receive this error: Compiler Error Message: BC30201: Expression expected. And no matter how I tried using the “IF()” statement, whenever I tried to visit the aspx page that I was working on I received the same error. This other StackOverflow article Using VB.NET If vs. IIf in binding/rendering expression indicated that the VB.NET IF() operator was not available until VS2008 or .NET Framework 3.5.  So I checked the Web Application project properties but it was targeting the .NET Framework 3.5: So I was still not understanding what was going on, but then I noticed the version information in the detailed compiler output of the error page: This happened to be a C# project, but with an ASPX page with inline VB.NET code (yes, it is strange to have that but that is the project I am working on).  So even though the project file was targeting the .NET Framework 3.5, the ASPX page was being compiled using the .NET Framework 2.0.  But why?  Where does this get set?  How does ASP.NET know which version of the compiler to use for the inline code? For this I turned to the web.config.  Here is the system.codedom/compilers section that was in the web.config for this project: <system.codedom>     <compilers>         <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">             <providerOption name="CompilerVersion" value="v3.5" />             <providerOption name="WarnAsError" value="false" />         </compiler>     </compilers> </system.codedom> Keep in mind that this is a C# web application project file but my aspx file has inline VB.NET code.  The web.config does not have any information for how to compile for VB.NET so it defaults to .NET 2.0 (instead of 3.5 which is what I need). So the web.config needed to include the VB.NET compiler option.  Here it is with both the C# and VB.NET options (I copied the VB.NET config from a new VB.NET Web Application project file).     <system.codedom>         <compilers>             <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">                 <providerOption name="CompilerVersion" value="v3.5" />                 <providerOption name="WarnAsError" value="false" />             </compiler>       <compiler language="vb;vbs;visualbasic;vbscript" extension=".vb" warningLevel="4" type="Microsoft.VisualBasic.VBCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">         <providerOption name="CompilerVersion" value="v3.5"/>         <providerOption name="OptionInfer" value="true"/>         <providerOption name="WarnAsError" value="false"/>       </compiler>     </compilers>     </system.codedom>   So the inline VB.NET code on my aspx page was being compiled using the .NET Framework 2.0 when it really needed to be compiled with the .NET Framework 3.5 compiler in order to take advantage of the VB.NET IF() coalesce statement.  Without the VB.NET web.config compiler option, the default is to compile using the .NET Framework 2.0 and the VB.NET IF() coalesce statement does not exist (at least in the form that I want it in).  FYI, there is an older IF statement in VB.NET 2.0 compiler which is why it is giving me the unusual “Expression Expected” error message – see this article for when VB.NET got the new updated version. EDIT (2011-06-20): I had made a wrong assumption in the first version of this blog post.  After a little more research and investigation I was able to figure out that the issue was in the web.config and not with the IIS App Pool.  Thanks to the comment from James which forced me to look into this again.

    Read the article

  • CascadingDropDown jQuery Plugin for ASP.NET MVC

    - by rajbk
    CascadingDropDown is a jQuery plugin that can be used by a select list to get automatic population using AJAX. A sample ASP.NET MVC project is attached at the bottom of this post.   Usage The code below shows two select lists : <select id="customerID" name="customerID"> <option value="ALFKI">Maria Anders</option> <option value="ANATR">Ana Trujillo</option> <option value="ANTON">Antonio Moreno</option> </select>   <select id="orderID" name="orderID"> </select> When a customer is selected in the first select list, the second list will auto populate itself with the following code: $("#orderID").CascadingDropDown("#customerID", '/Sales/AsyncOrders'); Internally, an AJAX post is made to ‘/Sales/AsyncOrders’ with the post body containing  customerID=[selectedCustomerID]. This executes the action AsyncOrders on the SalesController with signature AsyncOrders(string customerID).  The AsyncOrders method returns JSON which is then used to populate the select list. The JSON format expected is shown below : [{ "Text": "John", "Value": "10326" }, { "Text": "Jane", "Value": "10801" }] Details $(targetID).CascadingDropDown(sourceID, url, settings) targetID The ID of the select list that will auto populate.  sourceID The ID of the select list, which, on change, causes the targetID to auto populate. url The url to post to Options promptText Text for the first item in the select list Default : -- Select -- loadingText Optional text to display in the select list while it is being loaded. Default : Loading.. errorText Optional text to display if an error occurs while populating the list Default: Error loading data. postData Data you want posted to the url in place of the default Example : { postData : { customerID : $(‘#custID’), orderID : $(‘#orderID’) }} will cause customerID=ALFKI&orderID=2343 to be sent as the POST body. Default: A text string obtained by calling serialize on the sourceID onLoading (event) Raised before the list is populated. onLoaded (event) Raised after the list is populated, The code below shows how to “animate” the  select list after load. Example using custom options: $("#orderID").CascadingDropDown("#customerID", '/Sales/AsyncOrders', { promptText: '-- Pick an Order--', onLoading: function () { $(this).css("background-color", "#ff3"); }, onLoaded: function () { $(this).animate({ backgroundColor: '#ffffff' }, 300); } }); To return JSON from our action method, we use the Json ActionResult passing in an IEnumerable<SelectListItem>. public ActionResult AsyncOrders(string customerID) { var orders = repository.GetOrders(customerID).ToList().Select(a => new SelectListItem() { Text = a.OrderDate.HasValue ? a.OrderDate.Value.ToString("MM/dd/yyyy") : "[ No Date ]", Value = a.OrderID.ToString(), }); return Json(orders); } Sample Project using VS 2010 RTM NorthwindCascading.zip

    Read the article

  • Maintain scroll position in ASP.NET

    - by nikolaosk
    One of the most common questions I get is " How to maintain the scroll position-location when a postback occurs in our ASP.NET application? " A lot of times when we click on a e.g a button in our application and a postback occurs, our application "loses" its scroll position. The default behaviour is to go back to the top of the page. There is a very nice feature in ASP.NET that enables us to maintain the scroll position in ASP.NET. The name of this attribute is MaintainScrollPositionOnPostBack ....(read more)

    Read the article

  • Maintain scroll position in ASP.NET

    - by nikolaosk
    One of the most common questions I get is " How to maintain the scroll position-location when a postback occurs in our ASP.NET application? " A lot of times when we click on a e.g a button in our application and a postback occurs, our application "loses" its scroll position. The default behaviour is to go back to the top of the page. There is a very nice feature in ASP.NET that enables us to maintain the scroll position in ASP.NET. The name of this attribute is MaintainScrollPositionOnPostBack ....(read more)

    Read the article

  • Silverlight 4 Training Kit

    - by Latest Microsoft Blogs
    We recently released a new free Silverlight 4 Training Kit that walks you through building business applications with Silverlight 4.  You can browse the training kit online or alternatively download an entire offline version of the training kit Read More......(read more)

    Read the article

  • HTTP Push from SQL Server — Comet SQL

    Article provides example solution for presenting data in "real-time" from Microsoft SQL Server in HTML browser. Article presents how to implement Comet functionality in ASP.NET and how to connect Comet with Query Notification from SQL Server.

    Read the article

  • Adding Client Validation To DataAnnotations DataType Attribute

    - by srkirkland
    The System.ComponentModel.DataAnnotations namespace contains a validation attribute called DataTypeAttribute, which takes an enum specifying what data type the given property conforms to.  Here are a few quick examples: public class DataTypeEntity { [DataType(DataType.Date)] public DateTime DateTime { get; set; }   [DataType(DataType.EmailAddress)] public string EmailAddress { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This attribute comes in handy when using ASP.NET MVC, because the type you specify will determine what “template” MVC uses.  Thus, for the DateTime property if you create a partial in Views/[loc]/EditorTemplates/Date.ascx (or cshtml for razor), that view will be used to render the property when using any of the Html.EditorFor() methods. One thing that the DataType() validation attribute does not do is any actual validation.  To see this, let’s take a look at the EmailAddress property above.  It turns out that regardless of the value you provide, the entity will be considered valid: //valid new DataTypeEntity {EmailAddress = "Foo"}; .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Hmmm.  Since DataType() doesn’t validate, that leaves us with two options: (1) Create our own attributes for each datatype to validate, like [Date], or (2) add validation into the DataType attribute directly.  In this post, I will show you how to hookup client-side validation to the existing DataType() attribute for a desired type.  From there adding server-side validation would be a breeze and even writing a custom validation attribute would be simple (more on that in future posts). Validation All The Way Down Our goal will be to leave our DataTypeEntity class (from above) untouched, requiring no reference to System.Web.Mvc.  Then we will make an ASP.NET MVC project that allows us to create a new DataTypeEntity and hookup automatic client-side date validation using the suggested “out-of-the-box” jquery.validate bits that are included with ASP.NET MVC 3.  For simplicity I’m going to focus on the only DateTime field, but the concept is generally the same for any other DataType. Building a DataTypeAttribute Adapter To start we will need to build a new validation adapter that we can register using ASP.NET MVC’s DataAnnotationsModelValidatorProvider.RegisterAdapter() method.  This method takes two Type parameters; The first is the attribute we are looking to validate with and the second is an adapter that should subclass System.Web.Mvc.ModelValidator. Since we are extending DataAnnotations we can use the subclass of ModelValidator called DataAnnotationsModelValidator<>.  This takes a generic argument of type DataAnnotations.ValidationAttribute, which lucky for us means the DataTypeAttribute will fit in nicely. So starting from there and implementing the required constructor, we get: public class DataTypeAttributeAdapter : DataAnnotationsModelValidator<DataTypeAttribute> { public DataTypeAttributeAdapter(ModelMetadata metadata, ControllerContext context, DataTypeAttribute attribute) : base(metadata, context, attribute) { } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now you have a full-fledged validation adapter, although it doesn’t do anything yet.  There are two methods you can override to add functionality, IEnumerable<ModelValidationResult> Validate(object container) and IEnumerable<ModelClientValidationRule> GetClientValidationRules().  Adding logic to the server-side Validate() method is pretty straightforward, and for this post I’m going to focus on GetClientValidationRules(). Adding a Client Validation Rule Adding client validation is now incredibly easy because jquery.validate is very powerful and already comes with a ton of validators (including date and regular expressions for our email example).  Teamed with the new unobtrusive validation javascript support we can make short work of our ModelClientValidationDateRule: public class ModelClientValidationDateRule : ModelClientValidationRule { public ModelClientValidationDateRule(string errorMessage) { ErrorMessage = errorMessage; ValidationType = "date"; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If your validation has additional parameters you can the ValidationParameters IDictionary<string,object> to include them.  There is a little bit of conventions magic going on here, but the distilled version is that we are defining a “date” validation type, which will be included as html5 data-* attributes (specifically data-val-date).  Then jquery.validate.unobtrusive takes this attribute and basically passes it along to jquery.validate, which knows how to handle date validation. Finishing our DataTypeAttribute Adapter Now that we have a model client validation rule, we can return it in the GetClientValidationRules() method of our DataTypeAttributeAdapter created above.  Basically I want to say if DataType.Date was provided, then return the date rule with a given error message (using ValidationAttribute.FormatErrorMessage()).  The entire adapter is below: public class DataTypeAttributeAdapter : DataAnnotationsModelValidator<DataTypeAttribute> { public DataTypeAttributeAdapter(ModelMetadata metadata, ControllerContext context, DataTypeAttribute attribute) : base(metadata, context, attribute) { }   public override System.Collections.Generic.IEnumerable<ModelClientValidationRule> GetClientValidationRules() { if (Attribute.DataType == DataType.Date) { return new[] { new ModelClientValidationDateRule(Attribute.FormatErrorMessage(Metadata.GetDisplayName())) }; }   return base.GetClientValidationRules(); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Putting it all together Now that we have an adapter for the DataTypeAttribute, we just need to tell ASP.NET MVC to use it.  The easiest way to do this is to use the built in DataAnnotationsModelValidatorProvider by calling RegisterAdapter() in your global.asax startup method. DataAnnotationsModelValidatorProvider.RegisterAdapter(typeof(DataTypeAttribute), typeof(DataTypeAttributeAdapter)); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Show and Tell Let’s see this in action using a clean ASP.NET MVC 3 project.  First make sure to reference the jquery, jquery.vaidate and jquery.validate.unobtrusive scripts that you will need for client validation. Next, let’s make a model class (note we are using the same built-in DataType() attribute that comes with System.ComponentModel.DataAnnotations). public class DataTypeEntity { [DataType(DataType.Date, ErrorMessage = "Please enter a valid date (ex: 2/14/2011)")] public DateTime DateTime { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Then we make a create page with a strongly-typed DataTypeEntity model, the form section is shown below (notice we are just using EditorForModel): @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>Fields</legend>   @Html.EditorForModel()   <p> <input type="submit" value="Create" /> </p> </fieldset> } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The final step is to register the adapter in our global.asax file: DataAnnotationsModelValidatorProvider.RegisterAdapter(typeof(DataTypeAttribute), typeof(DataTypeAttributeAdapter)); Now we are ready to run the page: Looking at the datetime field’s html, we see that our adapter added some data-* validation attributes: <input type="text" value="1/1/0001" name="DateTime" id="DateTime" data-val-required="The DateTime field is required." data-val-date="Please enter a valid date (ex: 2/14/2011)" data-val="true" class="text-box single-line valid"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here data-val-required was added automatically because DateTime is non-nullable, and data-val-date was added by our validation adapter.  Now if we try to add an invalid date: Our custom error message is displayed via client-side validation as soon as we tab out of the box.  If we didn’t include a custom validation message, the default DataTypeAttribute “The field {0} is invalid” would have been shown (of course we can change the default as well).  Note we did not specify server-side validation, but in this case we don’t have to because an invalid date will cause a server-side error during model binding. Conclusion I really like how easy it is to register new data annotations model validators, whether they are your own or, as in this post, supplements to existing validation attributes.  I’m still debating about whether adding the validation directly in the DataType attribute is the correct place to put it versus creating a dedicated “Date” validation attribute, but it’s nice to know either option is available and, as we’ve seen, simple to implement. I’m also working through the nascent stages of an open source project that will create validation attribute extensions to the existing data annotations providers using similar techniques as seen above (examples: Email, Url, EqualTo, Min, Max, CreditCard, etc).  Keep an eye on this blog and subscribe to my twitter feed (@srkirkland) if you are interested for announcements.

    Read the article

  • Lessons on Software Development – From Bruce Lee!

    - by Jackie Goldstein
    While we as software developers are used to learning lessons and adopting techniques from other disciplines, it is not often that we look to the martial arts for new ideas on development approaches.  However, this blog post does just that. The author end with the following thought: In the end, follow Bruce Lee’s advice: Examine what others have to offer, take what is useful, and adapt it if necessary. I’ll close with an old quote: “The style doesn’t make the fighter, the fighter makes the style...(read more)

    Read the article

  • S#arp Architecture 1.5 released

    - by AlecWhittington
    The past two weeks have been wonderful for me, spending 12 days on Oahu, Hawaii. Then followed up with the S#arp Architecture 1.5 release. It has been a short 4 months since taking over as the project lead and this is my first major milestone. With this release, we advance S# even more forward with the ASP.NET MVC 2 enhancements. What's is S#? Pronounced "Sharp Architecture," this is a solid architectural foundation for rapidly building maintainable web applications leveraging the ASP.NET MVC framework...(read more)

    Read the article

  • Anunciando Windows Azure Mobile Services (Serviços Móveis da Windows Azure)

    - by Leniel Macaferi
    Estou animado para anunciar uma nova capacidade que estamos adicionando à Windows Azure hoje: Windows Azure Mobile Services (Serviços Móveis da Windows Azure) Os Serviços Móveis da Windows Azure tornam incrivelmente fácil conectar um backend da nuvem escalável em suas aplicações clientes e móveis. Estes serviços permitem que você facilmente armazene dados estruturados na nuvem que podem abranger dispositivos e usuários, integrando tais dados com autenticação do usuário. Você também pode enviar atualizações para os clientes através de notificações push. O lançamento de hoje permite que você adicione essas capacidades em qualquer aplicação Windows 8 em literalmente minutos, e fornece uma maneira super produtiva para que você transforme rapidamente suas ideias em aplicações. Também vamos adicionar suporte para permitir esses mesmos cenários para o Windows Phone, iOS e dispositivos Android em breve. Leia este tutorial inicial (em Inglês) que mostra como você pode construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) que é habilitada para a nuvem usando os Serviços Móveis da Windows Azure. Ou assista este vídeo (em Inglês) onde mostro como construí-la passo a passo. Começando Se você ainda não possui uma conta na Windows Azure, você pode se inscrever usando uma assinatura gratuita sem compromisso. Uma vez inscrito, clique na seção "preview features" logo abaixo da tab "account" (conta) no website www.windowsazure.com e ative sua conta para ter acesso ao preview dos "Mobile Services" (Serviços Móveis). Instruções sobre como ativar estes novos recursos podem ser encontradas aqui (em Inglês). Depois de habilitar os Serviços Móveis, entre no Portal da Windows Azure, clique no botão "New" (Novo) e escolha o novo ícone "Mobile Services" (Serviços Móveis) para criar o seu primeiro backend móvel. Uma vez criado, você verá uma página de início rápido como a mostrada a seguir com instruções sobre como conectar o seu serviço móvel a uma aplicação Windows 8 cliente já existente, a qual você já tenha começado a implementar, ou como criar e conectar uma nova aplicação Windows 8 cliente ao backend móvel: Leia este tutorial inicial (em Inglês) com explicações passo a passo sobre como construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) que armazena os dados na Windows Azure. Armazenamento Dados na Nuvem Armazenar dados na nuvem com os Serviços Móveis da Windows Azure é incrivelmente fácil. Quando você cria um Serviço Móvel da Windows Azure, nós automaticamente o associamos com um banco de dados SQL dentro da Windows Azure. O backend do Serviço Móvel da Windows Azure então fornece suporte nativo para permitir que aplicações remotas armazenem e recuperem dados com segurança através dele (usando end-points REST seguros, através de um formato OData baseado em JSON) - sem que você tenha que escrever ou implantar qualquer código personalizado no servidor. Suporte integrado para o gerenciamento do backend é fornecido dentro do Portal da Windows Azure para a criação de novas tabelas, navegação pelos dados, criação de índices, e controle de permissões de acesso. Isto torna incrivelmente fácil conectar aplicações clientes na nuvem, e permite que os desenvolvedores de aplicações desktop que não têm muito conhecimento sobre código que roda no servidor sejam produtivos desde o início. Eles podem se concentrar na construção da experiência da aplicação cliente, tirando vantagem dos Serviços Móveis da Windows Azure para fornecer os serviços de backend da nuvem que se façam necessários.  A seguir está um exemplo de código Windows 8 C#/XAML do lado do cliente que poderia ser usado para consultar os dados de um Serviço Móvel da Windows Azure. Desenvolvedores de aplicações que rodam no cliente e que usam C# podem escrever consultas como esta usando LINQ e objetos fortemente tipados POCO, os quais serão mais tarde traduzidos em consultas HTTP REST que são executadas em um Serviço Móvel da Windows Azure. Os desenvolvedores não precisam escrever ou implantar qualquer código personalizado no lado do servidor para permitir que o código do lado do cliente mostrado a seguir seja executado de forma assíncrona preenchendo a interface (UI) do cliente: Como os Serviços Móveis fazem parte da Windows Azure, os desenvolvedores podem escolher mais tarde se querem aumentar ou estender sua solução adicionando funcionalidades no lado do servidor bem como lógica de negócio mais avançada, se quiserem. Isso proporciona o máximo de flexibilidade, e permite que os desenvolvedores ampliem suas soluções para atender qualquer necessidade. Autenticação do Usuário e Notificações Push Os Serviços Móveis da Windows Azure também tornam incrivelmente fácil integrar autenticação/autorização de usuários e notificações push em suas aplicações. Você pode usar esses recursos para habilitar autenticação e controlar as permissões de acesso aos dados que você armazena na nuvem de uma maneira granular. Você também pode enviar notificações push para os usuários/dispositivos quando os dados são alterados. Os Serviços Móveis da Windows Azure suportam o conceito de "scripts do servidor" (pequenos pedaços de script que são executados no servidor em resposta a ações), os quais tornam a habilitação desses cenários muito fácil. A seguir estão links para alguns tutoriais (em Inglês) no formato passo a passo para cenários comuns de autenticação/autorização/push que você pode utilizar com os Serviços Móveis da Windows Azure e aplicações Windows 8: Habilitando Autenticação do Usuário Autorizando Usuários  Começando com Push Notifications Push Notifications para múltiplos Usuários Gerencie e Monitore seu Serviço Móvel Assim como todos os outros serviços na Windows Azure, você pode monitorar o uso e as métricas do backend de seu Serviço Móvel usando a tab "Dashboard" dentro do Portal da Windows Azure. A tab Dashboard fornece uma visão de monitoramento que mostra as chamadas de API, largura de banda e ciclos de CPU do servidor consumidos pelo seu Serviço Móvel da Windows Azure. Você também usar a tab "Logs" dentro do portal para ver mensagens de erro.  Isto torna fácil monitorar e controlar como sua aplicação está funcionando. Aumente a Capacidade de acordo com o Crescimento do Seu Negócio Os Serviços Móveis da Windows Azure agora permitem que cada cliente da Windows Azure crie e execute até 10 Serviços Móveis de forma gratuita, em um ambiente de hospedagem compartilhado com múltiplos banco de dados (onde o backend do seu Serviço Móvel será um dos vários aplicativos sendo executados em um conjunto compartilhado de recursos do servidor). Isso fornece uma maneira fácil de começar a implementar seus projetos sem nenhum custo algum (nota: cada conta gratuita da Windows Azure também inclui um banco de dados SQL de 1GB que você pode usar com qualquer número de aplicações ou Serviços Móveis da Windows Azure). Se sua aplicação cliente se tornar popular, você pode clicar na tab "Scale" (Aumentar Capacidade) do seu Serviço Móvel e mudar de "Shared" (Compartilhado) para o modo "Reserved" (Reservado). Isso permite que você possa isolar suas aplicações de maneira que você seja o único cliente dentro de uma máquina virtual. Isso permite que você dimensione elasticamente a quantidade de recursos que suas aplicações consomem - permitindo que você aumente (ou diminua) sua capacidade de acordo com o tráfego de dados: Com a Windows Azure você paga por capacidade de processamento por hora - o que te permite dimensionar para cima e para baixo seus recursos para atender apenas o que você precisa. Isso permite um modelo super flexível que é ideal para novos cenários de aplicações móveis, bem como para novas empresas que estão apenas começando. Resumo Eu só toquei na superfície do que você pode fazer com os Serviços Móveis da Windows Azure - há muito mais recursos para explorar. Com os Serviços Móveis da Windows Azure, você será capaz de construir cenários de aplicações móveis mais rápido do que nunca, permitindo experiências de usuário ainda melhores - conectando suas aplicações clientes na nuvem. Visite o centro de desenvolvimento dos Serviços Móveis da Windows Azure (em Inglês) para aprender mais, e construa sua primeira aplicação Windows 8 conectada à Windows Azure hoje. E leia este tutorial inicial (em Inglês) com explicações passo a passo que mostram como você pode construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) habilitada para a nuvem usando os Serviços Móveis da Windows Azure. Espero que ajude, - Scott P.S. Além do blog, eu também estou utilizando o Twitter para atualizações rápidas e para compartilhar links. Siga-me em: twitter.com/ScottGu Texto traduzido do post original por Leniel Macaferi.

    Read the article

  • Localization in ASP.NET MVC 2 using ModelMetadata

    - by rajbk
    This post uses an MVC 2 RTM application inside VS 2010 that is targeting the .NET Framework 4. .NET 4 DataAnnotations comes with a new Display attribute that has several properties including specifying the value that is used for display in the UI and a ResourceType. Unfortunately, this attribute is new and is not supported in MVC 2 RTM. The good news is it will be supported and is currently available in the MVC Futures release. The steps to get this working are shown below: Download the MVC futures library   Add a reference to the Microsoft.Web.MVC.AspNet4 dll.   Add a folder in your MVC project where you will store the resx files   Open the resx file and change “Access Modifier” to “Public”. This allows the resources to accessible from other assemblies. Internaly, it changes the “Custom Tool” used to generate the code behind from  ResXFileCodeGenerator to “PublicResXFileCodeGenerator”    Add your localized strings in the resx.   Register the new ModelMetadataProvider protected void Application_Start() { AreaRegistration.RegisterAllAreas();   RegisterRoutes(RouteTable.Routes);   //Add this ModelMetadataProviders.Current = new DataAnnotations4ModelMetadataProvider(); DataAnnotations4ModelValidatorProvider.RegisterProvider(); }   Use the Display attribute in your Model public class Employee { [Display(Name="ID")] public int ID { get; set; }   [Display(ResourceType = typeof(Common), Name="Name")] public string Name { get; set; } } Use the new HTML UI Helpers in your strongly typed view: <%: Html.EditorForModel() %> <%: Html.EditorFor(m => m) %> <%: Html.LabelFor(m => m.Name) %> ..and you are good to go. Adventure is out there!

    Read the article

  • Automatic Properties, Collection Initializers, and Implicit Line Continuation support with VB 2010

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] This is the eighteenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. A few days ago I blogged about two new language features coming with C# 4.0: optional parameters and named arguments.  Today I’m going to post about a few of my favorite new features being added to VB with VS 2010: Auto-Implemented Properties, Collection Initializers, and Implicit Line Continuation support. Auto-Implemented Properties Prior to VB 2010, implementing properties within a class using VB required you to explicitly declare the property as well as implement a backing field variable to store its value.  For example, the code below demonstrates how to implement a “Person” class using VB 2008 that exposes two public properties - “Name” and “Age”:   While explicitly declaring properties like above provides maximum flexibility, I’ve always found writing this type of boiler-plate get/set code tedious when you are simply storing/retrieving the value from a field.  You can use VS code snippets to help automate the generation of it – but it still generates a lot of code that feels redundant.  C# 2008 introduced a cool new feature called automatic properties that helps cut down the code quite a bit for the common case where properties are simply backed by a field.  VB 2010 also now supports this same feature.  Using the auto-implemented properties feature of VB 2010 we can now implement our Person class using just the code below: When you declare an auto-implemented property, the VB compiler automatically creates a private field to store the property value as well as generates the associated Get/Set methods for you.  As you can see above – the code is much more concise and easier to read. The syntax supports optionally initializing the properties with default values as well if you want to: You can learn more about VB 2010’s automatic property support from this MSDN page. Collection Initializers VB 2010 also now supports using collection initializers to easily create a collection and populate it with an initial set of values.  You identify a collection initializer by declaring a collection variable and then use the From keyword followed by braces { } that contain the list of initial values to add to the collection.  Below is a code example where I am using the new collection initializer feature to populate a “Friends” list of Person objects with two people, and then bind it to a GridView control to display on a page: You can learn more about VB 2010’s collection initializer support from this MSDN page. Implicit Line Continuation Support Traditionally, when a statement in VB has been split up across multiple lines, you had to use a line-continuation underscore character (_) to indicate that the statement wasn’t complete.  For example, with VB 2008 the below LINQ query needs to append a “_” at the end of each line to indicate that the query is not complete yet: The VB 2010 compiler and code editor now adds support for what is called “implicit line continuation support” – which means that it is smarter about auto-detecting line continuation scenarios, and as a result no longer needs you to explicitly indicate that the statement continues in many, many scenarios.  This means that with VB 2010 we can now write the above code with no “_” at all: The implicit line continuation feature also works well when editing XML Literals within VB (which is pretty cool). You can learn more about VB 2010’s Implicit Line Continuation support and many of the scenarios it supports from this MSDN page (scroll down to the “Implicit Line Continuation” section to find details). Summary The above three VB language features are but a few of the new language and code editor features coming with VB 2010.  Visit this site to learn more about some of the other VB language features coming with the release.  Also subscribe to the VB team’s blog to learn more and stay up-to-date with the posts they the team regularly publishes. Hope this helps, Scott

    Read the article

  • Cleaner HTML Markup with ASP.NET 4 Web Forms - Client IDs (VS 2010 and .NET 4.0 Series)

    - by ScottGu
    This is the sixteenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post is the first of a few blog posts I’ll be doing that talk about some of the important changes we’ve made to make Web Forms in ASP.NET 4 generate clean, standards-compliant, CSS-friendly markup.  Today I’ll cover the work we are doing to provide better control over the “ID” attributes rendered by server controls to the client. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Clean, Standards-Based, CSS-Friendly Markup One of the common complaints developers have often had with ASP.NET Web Forms is that when using server controls they don’t have the ability to easily generate clean, CSS-friendly output and markup.  Some of the specific complaints with previous ASP.NET releases include: Auto-generated ID attributes within HTML make it hard to write JavaScript and style with CSS Use of tables instead of semantic markup for certain controls (in particular the asp:menu control) make styling ugly Some controls render inline style properties even if no style property on the control has been set ViewState can often be bigger than ideal ASP.NET 4 provides better support for building standards-compliant pages out of the box.  The built-in <asp:> server controls with ASP.NET 4 now generate cleaner markup and support CSS styling – and help address all of the above issues.  Markup Compatibility When Upgrading Existing ASP.NET Web Forms Applications A common question people often ask when hearing about the cleaner markup coming with ASP.NET 4 is “Great - but what about my existing applications?  Will these changes/improvements break things when I upgrade?” To help ensure that we don’t break assumptions around markup and styling with existing ASP.NET Web Forms applications, we’ve enabled a configuration flag – controlRenderingCompatbilityVersion – within web.config that let’s you decide if you want to use the new cleaner markup approach that is the default with new ASP.NET 4 applications, or for compatibility reasons render the same markup that previous versions of ASP.NET used:   When the controlRenderingCompatbilityVersion flag is set to “3.5” your application and server controls will by default render output using the same markup generation used with VS 2008 and .NET 3.5.  When the controlRenderingCompatbilityVersion flag is set to “4.0” your application and server controls will strictly adhere to the XHTML 1.1 specification, have cleaner client IDs, render with semantic correctness in mind, and have extraneous inline styles removed. This flag defaults to 4.0 for all new ASP.NET Web Forms applications built using ASP.NET 4. Any previous application that is upgraded using VS 2010 will have the controlRenderingCompatbilityVersion flag automatically set to 3.5 by the upgrade wizard to ensure backwards compatibility.  You can then optionally change it (either at the application level, or scope it within the web.config file to be on a per page or directory level) if you move your pages to use CSS and take advantage of the new markup rendering. Today’s Cleaner Markup Topic: Client IDs The ability to have clean, predictable, ID attributes on rendered HTML elements is something developers have long asked for with Web Forms (ID values like “ctl00_ContentPlaceholder1_ListView1_ctrl0_Label1” are not very popular).  Having control over the ID values rendered helps make it much easier to write client-side JavaScript against the output, makes it easier to style elements using CSS, and on large pages can help reduce the overall size of the markup generated. New ClientIDMode Property on Controls ASP.NET 4 supports a new ClientIDMode property on the Control base class.  The ClientIDMode property indicates how controls should generate client ID values when they render.  The ClientIDMode property supports four possible values: AutoID—Renders the output as in .NET 3.5 (auto-generated IDs which will still render prefixes like ctrl00 for compatibility) Predictable (Default)— Trims any “ctl00” ID string and if a list/container control concatenates child ids (example: id=”ParentControl_ChildControl”) Static—Hands over full ID naming control to the developer – whatever they set as the ID of the control is what is rendered (example: id=”JustMyId”) Inherit—Tells the control to defer to the naming behavior mode of the parent container control The ClientIDMode property can be set directly on individual controls (or within container controls – in which case the controls within them will by default inherit the setting): Or it can be specified at a page or usercontrol level (using the <%@ Page %> or <%@ Control %> directives) – in which case controls within the pages/usercontrols inherit the setting (and can optionally override it): Or it can be set within the web.config file of an application – in which case pages within the application inherit the setting (and can optionally override it): This gives you the flexibility to customize/override the naming behavior however you want. Example: Using the ClientIDMode property to control the IDs of Non-List Controls Let’s take a look at how we can use the new ClientIDMode property to control the rendering of “ID” elements within a page.  To help illustrate this we can create a simple page called “SingleControlExample.aspx” that is based on a master-page called “Site.Master”, and which has a single <asp:label> control with an ID of “Message” that is contained with an <asp:content> container control called “MainContent”: Within our code-behind we’ll then add some simple code like below to dynamically populate the Label’s Text property at runtime:   If we were running this application using ASP.NET 3.5 (or had our ASP.NET 4 application configured to run using 3.5 rendering or ClientIDMode=AutoID), then the generated markup sent down to the client would look like below: This ID is unique (which is good) – but rather ugly because of the “ct100” prefix (which is bad). Markup Rendering when using ASP.NET 4 and the ClientIDMode is set to “Predictable” With ASP.NET 4, server controls by default now render their ID’s using ClientIDMode=”Predictable”.  This helps ensure that ID values are still unique and don’t conflict on a page, but at the same time it makes the IDs less verbose and more predictable.  This means that the generated markup of our <asp:label> control above will by default now look like below with ASP.NET 4: Notice that the “ct100” prefix is gone. Because the “Message” control is embedded within a “MainContent” container control, by default it’s ID will be prefixed “MainContent_Message” to avoid potential collisions with other controls elsewhere within the page. Markup Rendering when using ASP.NET 4 and the ClientIDMode is set to “Static” Sometimes you don’t want your ID values to be nested hierarchically, though, and instead just want the ID rendered to be whatever value you set it as.  To enable this you can now use ClientIDMode=static, in which case the ID rendered will be exactly the same as what you set it on the server-side on your control.  This will cause the below markup to be rendered with ASP.NET 4: This option now gives you the ability to completely control the client ID values sent down by controls. Example: Using the ClientIDMode property to control the IDs of Data-Bound List Controls Data-bound list/grid controls have historically been the hardest to use/style when it comes to working with Web Form’s automatically generated IDs.  Let’s now take a look at a scenario where we’ll customize the ID’s rendered using a ListView control with ASP.NET 4. The code snippet below is an example of a ListView control that displays the contents of a data-bound collection — in this case, airports: We can then write code like below within our code-behind to dynamically databind a list of airports to the ListView above: At runtime this will then by default generate a <ul> list of airports like below.  Note that because the <ul> and <li> elements in the ListView’s template are not server controls, no IDs are rendered in our markup: Adding Client ID’s to Each Row Item Now, let’s say that we wanted to add client-ID’s to the output so that we can programmatically access each <li> via JavaScript.  We want these ID’s to be unique, predictable, and identifiable. A first approach would be to mark each <li> element within the template as being a server control (by giving it a runat=server attribute) and by giving each one an id of “airport”: By default ASP.NET 4 will now render clean IDs like below (no ctl001-like ids are rendered):   Using the ClientIDRowSuffix Property Our template above now generates unique ID’s for each <li> element – but if we are going to access them programmatically on the client using JavaScript we might want to instead have the ID’s contain the airport code within them to make them easier to reference.  The good news is that we can easily do this by taking advantage of the new ClientIDRowSuffix property on databound controls in ASP.NET 4 to better control the ID’s of our individual row elements. To do this, we’ll set the ClientIDRowSuffix property to “Code” on our ListView control.  This tells the ListView to use the databound “Code” property from our Airport class when generating the ID: And now instead of having row suffixes like “1”, “2”, and “3”, we’ll instead have the Airport.Code value embedded within the IDs (e.g: _CLE, _CAK, _PDX, etc): You can use this ClientIDRowSuffix approach with other databound controls like the GridView as well. It is useful anytime you want to program row elements on the client – and use clean/identified IDs to easily reference them from JavaScript code. Summary ASP.NET 4 enables you to generate much cleaner HTML markup from server controls and from within your Web Forms applications.  In today’s post I covered how you can now easily control the client ID values that are rendered by server controls.  In upcoming posts I’ll cover some of the other markup improvements that are also coming with the ASP.NET 4 release. Hope this helps, Scott

    Read the article

  • Windows Phone 7 development: Using isolated storage

    - by DigiMortal
    In my previous posting about Windows Phone 7 development I showed how to use WebBrowser control in Windows Phone 7. In this posting I make some other improvements to my blog reader application and I will show you how to use isolated storage to store information to phone. Why isolated storage? Isolated storage is place where your application can save its data and settings. The image on right (that I stole from MSDN library) shows you how application data store is organized. You have no other options to keep your files besides isolated storage because Windows Phone 7 does not allow you to save data directly to other file system locations. From MSDN: “Isolated storage enables managed applications to create and maintain local storage. The mobile architecture is similar to the Silverlight-based applications on Windows. All I/O operations are restricted to isolated storage and do not have direct access to the underlying operating system file system. Ultimately, this helps to provide security and prevents unauthorized access and data corruption.” Saving files from web to isolated storage I updated my RSS-reader so it reads RSS from web only if there in no local file with RSS. User can update RSS-file by clicking a button. Also file is created when application starts and there is no RSS-file. Why I am doing this? I want my application to be able to work also offline. As my code needs some more refactoring I provide it with some next postings about Windows Phone 7. If you want it sooner then please leave me a comment here. Here is the code for my RSS-downloader that downloads RSS-feed and saves it to isolated storage file calles rss.xml. public class RssDownloader {     private string _url;     private string _fileName;       public delegate void DownloadCompleteDelegate();     public event DownloadCompleteDelegate DownloadComplete;       public RssDownloader(string url, string fileName)     {         _url = url;         _fileName = fileName;     }       public void Download()     {         var request = (HttpWebRequest)WebRequest.Create(_url);         var result = (IAsyncResult)request.BeginGetResponse(ResponseCallback, request);            }       private void ResponseCallback(IAsyncResult result)     {         var request = (HttpWebRequest)result.AsyncState;         var response = request.EndGetResponse(result);           using(var stream = response.GetResponseStream())         using(var reader = new StreamReader(stream))         using(var appStorage = IsolatedStorageFile.GetUserStoreForApplication())         using(var file = appStorage.OpenFile("rss.xml", FileMode.OpenOrCreate))         using(var writer = new StreamWriter(file))         {             writer.Write(reader.ReadToEnd());         }           if (DownloadComplete != null)             DownloadComplete();     } } Of course I modified RSS-source for my application to use rss.xml file from isolated storage. As isolated storage files also base on streams we can use them everywhere where streams are expected. Reading isolated storage files As isolated storage files are opened as streams you can read them like usual files in your usual applications. The next code fragment shows you how to open file from isolated storage and how to read it using XmlReader. Previously I used response stream in same place. using(var appStorage = IsolatedStorageFile.GetUserStoreForApplication()) using(var file = appStorage.OpenFile("rss.xml", FileMode.Open)) {     var reader = XmlReader.Create(file);                      // more code } As you can see there is nothing complex. If you have worked with System.IO namespace objects then you will find isolated storage classes and methods to be very similar to these. Also mention that application storage and isolated storage files must be disposed after you are not using them anymore.

    Read the article

  • Simple MSBuild Configuration: Updating Assemblies With A Version Number

    - by srkirkland
    When distributing a library you often run up against versioning problems, once facet of which is simply determining which version of that library your client is running.  Of course, each project in your solution has an AssemblyInfo.cs file which provides, among other things, the ability to set the Assembly name and version number.  Unfortunately, setting the assembly version here would require not only changing the version manually for each build (depending on your schedule), but keeping it in sync across all projects.  There are many ways to solve this versioning problem, and in this blog post I’m going to try to explain what I think is the easiest and most flexible solution.  I will walk you through using MSBuild to create a simple build script, and I’ll even show how to (optionally) integrate with a Team City build server.  All of the code from this post can be found at https://github.com/srkirkland/BuildVersion. Create CommonAssemblyInfo.cs The first step is to create a common location for the repeated assembly info that is spread across all of your projects.  Create a new solution-level file (I usually create a Build/ folder in the solution root, but anywhere reachable by all your projects will do) called CommonAssemblyInfo.cs.  In here you can put any information common to all your assemblies, including the version number.  An example CommonAssemblyInfo.cs is as follows: using System.Reflection; using System.Resources; using System.Runtime.InteropServices;   [assembly: AssemblyCompany("University of California, Davis")] [assembly: AssemblyProduct("BuildVersionTest")] [assembly: AssemblyCopyright("Scott Kirkland & UC Regents")] [assembly: AssemblyConfiguration("")] [assembly: AssemblyTrademark("")]   [assembly: ComVisible(false)]   [assembly: AssemblyVersion("1.2.3.4")] //Will be replaced   [assembly: NeutralResourcesLanguage("en-US")] .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Cleanup AssemblyInfo.cs & Link CommonAssemblyInfo.cs For each of your projects, you’ll want to clean up your assembly info to contain only information that is unique to that assembly – everything else will go in the CommonAssemblyInfo.cs file.  For most of my projects, that just means setting the AssemblyTitle, though you may feel AssemblyDescription is warranted.  An example AssemblyInfo.cs file is as follows: using System.Reflection;   [assembly: AssemblyTitle("BuildVersionTest")] .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Next, you need to “link” the CommonAssemblyinfo.cs file into your projects right beside your newly lean AssemblyInfo.cs file.  To do this, right click on your project and choose Add | Existing Item from the context menu.  Navigate to your CommonAssemblyinfo.cs file but instead of clicking Add, click the little down-arrow next to add and choose “Add as Link.”  You should see a little link graphic similar to this: We’ve actually reduced complexity a lot already, because if you build all of your assemblies will have the same common info, including the product name and our static (fake) assembly version.  Let’s take this one step further and introduce a build script. Create an MSBuild file What we want from the build script (for now) is basically just to have the common assembly version number changed via a parameter (eventually to be passed in by the build server) and then for the project to build.  Also we’d like to have a flexibility to define what build configuration to use (debug, release, etc). In order to find/replace the version number, we are going to use a Regular Expression to find and replace the text within your CommonAssemblyInfo.cs file.  There are many other ways to do this using community build task add-ins, but since we want to keep it simple let’s just define the Regular Expression task manually in a new file, Build.tasks (this example taken from the NuGet build.tasks file). <?xml version="1.0" encoding="utf-8"?> <Project ToolsVersion="4.0" DefaultTargets="Go" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <UsingTask TaskName="RegexTransform" TaskFactory="CodeTaskFactory" AssemblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll"> <ParameterGroup> <Items ParameterType="Microsoft.Build.Framework.ITaskItem[]" /> </ParameterGroup> <Task> <Using Namespace="System.IO" /> <Using Namespace="System.Text.RegularExpressions" /> <Using Namespace="Microsoft.Build.Framework" /> <Code Type="Fragment" Language="cs"> <![CDATA[ foreach(ITaskItem item in Items) { string fileName = item.GetMetadata("FullPath"); string find = item.GetMetadata("Find"); string replaceWith = item.GetMetadata("ReplaceWith"); if(!File.Exists(fileName)) { Log.LogError(null, null, null, null, 0, 0, 0, 0, String.Format("Could not find version file: {0}", fileName), new object[0]); } string content = File.ReadAllText(fileName); File.WriteAllText( fileName, Regex.Replace( content, find, replaceWith ) ); } ]]> </Code> </Task> </UsingTask> </Project> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If you glance at the code, you’ll see it’s really just going a Regex.Replace() on a given file, which is exactly what we need. Now we are ready to write our build file, called (by convention) Build.proj. <?xml version="1.0" encoding="utf-8"?> <Project ToolsVersion="4.0" DefaultTargets="Go" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <Import Project="$(MSBuildProjectDirectory)\Build.tasks" /> <PropertyGroup> <Configuration Condition="'$(Configuration)' == ''">Debug</Configuration> <SolutionRoot>$(MSBuildProjectDirectory)</SolutionRoot> </PropertyGroup>   <ItemGroup> <RegexTransform Include="$(SolutionRoot)\CommonAssemblyInfo.cs"> <Find>(?&lt;major&gt;\d+)\.(?&lt;minor&gt;\d+)\.\d+\.(?&lt;revision&gt;\d+)</Find> <ReplaceWith>$(BUILD_NUMBER)</ReplaceWith> </RegexTransform> </ItemGroup>   <Target Name="Go" DependsOnTargets="UpdateAssemblyVersion; Build"> </Target>   <Target Name="UpdateAssemblyVersion" Condition="'$(BUILD_NUMBER)' != ''"> <RegexTransform Items="@(RegexTransform)" /> </Target>   <Target Name="Build"> <MSBuild Projects="$(SolutionRoot)\BuildVersionTest.sln" Targets="Build" /> </Target>   </Project> Reviewing this MSBuild file, we see that by default the “Go” target will be called, which in turn depends on “UpdateAssemblyVersion” and then “Build.”  We go ahead and import the Bulid.tasks file and then setup some handy properties for setting the build configuration and solution root (in this case, my build files are in the solution root, but we might want to create a Build/ directory later).  The rest of the file flows logically, we setup the RegexTransform to match version numbers such as <major>.<minor>.1.<revision> (1.2.3.4 in our example) and replace it with a $(BUILD_NUMBER) parameter which will be supplied externally.  The first target, “UpdateAssemblyVersion” just runs the RegexTransform, and the second target, “Build” just runs the default MSBuild on our solution. Testing the MSBuild file locally Now we have a build file which can replace assembly version numbers and build, so let’s setup a quick batch file to be able to build locally.  To do this you simply create a file called Build.cmd and have it call MSBuild on your Build.proj file.  I’ve added a bit more flexibility so you can specify build configuration and version number, which makes your Build.cmd look as follows: set config=%1 if "%config%" == "" ( set config=debug ) set version=%2 if "%version%" == "" ( set version=2.3.4.5 ) %WINDIR%\Microsoft.NET\Framework\v4.0.30319\msbuild Build.proj /p:Configuration="%config%" /p:build_number="%version%" .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now if you click on the Build.cmd file, you will get a default debug build using the version 2.3.4.5.  Let’s run it in a command window with the parameters set for a release build version 2.0.1.453.   Excellent!  We can now run one simple command and govern the build configuration and version number of our entire solution.  Each DLL produced will have the same version number, making determining which version of a library you are running very simple and accurate. Configure the build server (TeamCity) Of course you are not really going to want to run a build command manually every time, and typing in incrementing version numbers will also not be ideal.  A good solution is to have a computer (or set of computers) act as a build server and build your code for you, providing you a consistent environment, excellent reporting, and much more.  One of the most popular Build Servers is JetBrains’ TeamCity, and this last section will show you the few configuration parameters to use when setting up a build using your MSBuild file created earlier.  If you are using a different build server, the same principals should apply. First, when setting up the project you want to specify the “Build Number Format,” often given in the form <major>.<minor>.<revision>.<build>.  In this case you will set major/minor manually, and optionally revision (or you can use your VCS revision number with %build.vcs.number%), and then build using the {0} wildcard.  Thus your build number format might look like this: 2.0.1.{0}.  During each build, this value will be created and passed into the $BUILD_NUMBER variable of our Build.proj file, which then uses it to decorate your assemblies with the proper version. After setting up the build number, you must choose MSBuild as the Build Runner, then provide a path to your build file (Build.proj).  After specifying your MSBuild Version (equivalent to your .NET Framework Version), you have the option to specify targets (the default being “Go”) and additional MSBuild parameters.  The one parameter that is often useful is manually setting the configuration property (/p:Configuration="Release") if you want something other than the default (which is Debug in our example).  Your resulting configuration will look something like this: [Under General Settings] [Build Runner Settings]   Now every time your build is run, a newly incremented build version number will be generated and passed to MSBuild, which will then version your assemblies and build your solution.   A Quick Review Our goal was to version our output assemblies in an automated way, and we accomplished it by performing a few quick steps: Move the common assembly information, including version, into a linked CommonAssemblyInfo.cs file Create a simple MSBuild script to replace the common assembly version number and build your solution Direct your build server to use the created MSBuild script That’s really all there is to it.  You can find all of the code from this post at https://github.com/srkirkland/BuildVersion. Enjoy!

    Read the article

  • Problem converting FBX file into XNB

    - by Dado
    I create a Monogame Content Project to convert assets into XNB. For FBX file without texture there is no problem: the file is correctly converted and when I load XNB into my project everything is ok. The problem occours when i have associated to fbx file a texture map: in this case both FBX and PNG files are converted to XNB but when i try to load these XNB files into my project the following problem occours: "ContentLoadException: Could not load Models/maze1 asset as a non-content file!" Note: maze1 is the XNB file that was converted from FBX. How can I solve this problem? Thank you in advance

    Read the article

  • using ‘using’ and scope. Not try finally!

    - by Edward Boyle
    An object that implements IDisposable has, you guessed it, a Dispose() method. In the code you write you should both declare and instantiate any object that implements IDisposable with the using statement. The using statement allows you to set the scope of an object and when your code exits that scope, the object will be disposed of. Note that when an exception occurs, this will pull your code out of scope, so it still forces a Dispose() using (mObject o = new mObject()) { // do stuff } //<- out of Scope, object is disposed. // Note that you can also use multiple objects using // the using statement if of the same type: using (mObject o = new mObject(), o2 = new mObject(), o3 = new mObject()) { // do stuff } //<- out of Scope, objects are disposed. What about try{ }finally{}? It is not needed when you use the using statement. Additionally, using is preferred, Microsoft’s own documents put it this way: As a rule, when you use an IDisposable object, you should declare and instantiate it in a using statement. When I started out in .NET I had a very bad habit of not using the using statement. As a result I ran into what many developers do: #region BAD CODE - DO NOT DO try { mObject o = new mObject(); //do stuff } finally { o.Dispose(); // error - o is out of scope, no such object. } // and here is what I find on blogs all over the place as a solution // pox upon them for creating bad habits. mObject o = new mObject(); try { //do stuff } finally { o.Dispose(); } #endregion So when should I use the using statement? Very simple rule, if an object implements IDisposable, use it. This of course does not apply if the object is going to be used as a global object outside of a method. If that is the case, don’t forget to dispose of the object in code somewhere. It should be made clear that using the try{}finally{} code block is not going to break your code, nor cause memory leaks. It is perfectly acceptable coding practice, just not best coding practice in C#. This is how VB.NET developers must code, as there is no using equivalent for them to use.

    Read the article

  • Microsoft’s Contribution to jQuery – Client Templating

    - by joelvarty
    I am interested to see the community’s response to Microsoft’s contributions to jQuery.  I have been using jTemplates on and off in my apps for a while, but I will certainly check out the new templating plugins put forth by MS and explained here by Scott Guthrie. It may be that some are against the very idea of a company like Microsoft being involved with jQuery, and Scott explains the process with the following: “jQuery has a fantastic developer community, and a very open way to propose suggestions and make contributions.  Microsoft is following the same process to contribute to jQuery as any other member of the community.” I think we can take this in one of two ways:  It’s great that Microsoft sees themselves as a part of a greater community that they can support. It’s the first step in Microsoft’s attempt to usurp the community and have greater control over the web, it’s standards, and it’s developer community. Personally, I believe Microsoft sees the world (and the web) differently from how they did back when IE had more than %80 of the browser market.  Now, in order to keep it’s development products relevant, they are pushing Asp.Net (as they have been for a few years) towards a more open strategy that’s more “web-like” in my opinion. These contributions to jQuery are a good thing, I think.  Now, let’s go try out these new plug-ins and see if they stack up… more later - joel

    Read the article

< Previous Page | 165 166 167 168 169 170 171 172 173 174 175 176  | Next Page >