Search Results

Search found 4962 results on 199 pages for 'andy white'.

Page 17/199 | < Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • In Which We Demystify A Few Docupresentment Settings And Learn the Ethos of the Author

    - by Andy Little
    It's no secret that Docupresentment (part of the Oracle Documaker suite) is powerful tool for integrating on-demand and interactive applications for publishing with the Oracle Documaker framework.  It's also no secret there are are many details with respect to the configuration of Docupresentment that can elude even the most erudite of of techies.  To be sure, Docupresentment will work for you right out of the box, and in most cases will suit your needs without toying with a configuration file.  But, where's the adventure in that?   With this inaugural post to That's The Way, I'm going to introduce myself, and what my aim is with this blog.  If you didn't figure it out already by checking out my profile, my name is Andy and I've been with Oracle (nee Skywire Software nee Docucorp nee Formmaker) since the formative years of 1998.  Strangely, it doesn't seem that long ago, but it's certainly a lifetime in the age of technology.  I recall running a BBS from my parent's basement on a 1200 baud modem, and the trepidation and sweaty-palmed excitement of upgrading to the power and speed of 2400 baud!  Fine, I'll admit that perhaps I'm inflating the experience a bit, but I was kid!  This is the stuff of War Games and King's Quest I and the demise of TI-99 4/A.  Exciting times.  So fast-forward a bit and I'm 12 years into a career in the world of document automation and publishing working for the best (IMHO) software company on the planet.  With That's The Way I hope to shed a little light and peek under the covers of some of the more interesting aspects of implementations involving the tech space within the Oracle Insurance Global Business Unit (IGBU), which includes Oracle Documaker, Rating & Underwriting, and Policy Administration to name a few.  I may delve off course a bit, and you'll likely get a dose of humor (at least in my mind) but I hope you'll glean at least a tidbit of usefulness with each post.  Feel free to comment as I'm a fairly conversant guy and happy to talk -- it's stopping the talking that's the hard part... So, back to our regularly-scheduled post, already in progress.  By this time you've visited Oracle's E-Delivery site and acquired your properly-licensed version of Oracle Documaker.  Wait -- you didn't find it?  Understandable -- navigating the voluminous download library within Oracle can be a daunting task.  It's pretty simple once you’ve done it a few times.  Login to the e-delivery site, and accept the license terms and restrictions.  Then, you’ll be able to select the Oracle Insurance Applications product pack and your appropriate platform. Click Go and you’ll see a list of applicable products, and you’ll click on Oracle Documaker Media Pack (as I went to press with this article the version is 11.4): Finally, click the Download button next to Docupresentment (again, version at press time is 2.2 p5). This should give you a ZIP file that contains the installation packages for the Docupresentment Server and Client, cryptically named IDSServer22P05W32.exe and IDSClient22P05W32.exe. At this time, I’d like to take a little detour and explain that the world of Oracle, like most technical companies, is rife with acronyms.  One of the reasons Skywire Software was a appealing to Oracle was our use of many acronyms, including the occasional use of multiple acronyms with the same meaning.  I apologize in advance and will try to point these out along the way.  Here’s your first sticky note to go along with that: IDS = Internet Document Server = Docupresentment Once you’ve completed the installation, you’ll have a shiny new Docupresentment server and client, and if you installed the default location it will be living in c:\docserv. Unix users, I’m one of you!  You’ll find it by default in  ~/docupresentment/docserv.  Forging onward with the meat of this post is learning about some special configuration options.  By now you’ve read the documentation included with the download (specifically ids_book.pdf) which goes into some detail of the rubric of the configuration file and in fact there’s even a handy utility that provides an interface to the configuration file (see Running IDSConfig in the documentation).  But who wants to deal with a configuration utility when we have the tools and technology to edit the file <gasp> by hand! I shall now proceed with the standard Information Technology Under the Hood Disclaimer: Please remember to back up any files before you make changes.  I am not responsible for any havoc you may wreak! Go to your installation directory, and locate your docserv.xml file.  Open it in your favorite XML editor.  I happen to be fond of Notepad++ with the XML Tools plugin.  Almost immediately you will behold the splendor of the configuration file.  Just take a moment and let that sink in.  Ok – moving on.  If you reviewed the documentation you know that inside the root <configuration> node there are multiple <section> nodes, each containing a specific group of settings.  Let’s take a look at <section name=”DocumentServer”>: There are a few entries I’d like to discuss.  First, <entry name=”StartCommand”>. This should be pretty self-explanatory; it’s the name of the executable that’s run when you fire up Docupresentment.  Immediately following that is <entry name=”StartArguments”> and as you might imagine these are the arguments passed to the executable.  A few things to point out: The –Dids.configuration=docserv.xml parameter specifies the name of your configuration file. The –Dlogging.configuration=logconf.xml parameter specifies the name of your logging configuration file (this uses log4j so bone up on that before you delve here). The -Djava.endorsed.dirs=lib/endorsed parameter specifies the path where 3rd party Java libraries can be located for use with Docupresentment.  More on that in another post. The <entry name=”Instances”> allows you to specify the number of instances of Docupresentment that will be started.  By default this is two, and generally two instances per CPU is adequate, however you will always need to perform load testing to determine the sweet spot based on your hardware and types of transactions.  You may have many, many more instances than 2. Time for a sidebar on instances.  An instance is nothing more than a separate process of Docupresentment.  The Docupresentment service that you fire up with docserver.bat or docserver.sh actually starts a watchdog process, which is then responsible for starting up the actual Docupresentment processes.  Each of these act independently from one another, so if one crashes, it does not affect any others.  In the case of a crashed process, the watchdog will start up another instance so the number of configured instances are always running.  Bottom line: instance = Docupresentment process. And now, finally, to the settings which gave me pause on an not-too-long-ago implementation!  Docupresentment includes a feature that watches configuration files (such as docserv.xml and logconf.xml) and will automatically restart its instances to load the changes.  You can configure the time that Docupresentment waits to check these files using the setting <entry name=”FileWatchTimeMillis”>.  By default the number is 12000ms, or 12 seconds.  You can save yourself a few CPU cycles by extending this time, or by disabling  the check altogether by setting the value to 0.  This may or may not be appropriate for your environment; if you have 100% uptime requirements then you probably don’t want to bring down an entire set of processes just to accept a new configuration value, so it’s best to leave this somewhere between 12 seconds to a few minutes.  Another point to keep in mind: if you are using Documaker real-time processing under Docupresentment the Master Resource Library (MRL) files and INI options are cached, and if you need to affect a change, you’ll have to “restart” Docupresentment.  Touching the docserv.xml file is an easy way to do this (other methods including using the RSS request, but that’s another post). The next item up: <entry name=”FilePurgeTimeSeconds”>.  You may already know that the Docupresentment system can generate many temporary files based on certain request types that are processed through the system.  What you may not know is how those files are cleaned up.  There are many rules in Docupresentment that cause the creation of temporary files.  When these files are created, Docupresentment writes an entry into a properties file called the file cache.  This file contains the name, creation date, and expiration time of each temporary file created by each instance of Docupresentment.  Periodically Docupresentment will check the file cache to determine if there are files that are past the expiration time, not unlike that block of cheese festering away in the back of my refrigerator.  However, unlike my ‘fridge cleaning tendencies, Docupresentment is quick to remove files that are past their expiration time.  You, my friend, have the power to control how often Docupresentment inspects the file cache.  Simply set the value for <entry name=”FilePurgeTimeSeconds”> to the number of seconds appropriate for your requirements and you’re set.  Note that file purging happens on a separate thread from normal request processing, so this shouldn’t interfere with response times unless the CPU happens to be really taxed at the point of cache processing.  Finally, after all of this, we get to the final setting I’m going to address in this post: <entry name=”FilePurgeList”>.  The default is “filecache.properties”.  This establishes the root name for the Docupresentment file cache that I mentioned previously.  Docupresentment creates a separate cache file for each instance based on this setting.  If you have two instances, you’ll see two files created: filecache.properties.1 and filecache.properties.2.  Feel free to open these up and check them out. I hope you’ve enjoyed this first foray into the configuration file of Docupresentment.  If you did enjoy it, feel free to drop a comment, I welcome feedback.  If you have ideas for other posts you’d like to see, please do let me know.  You can reach me at [email protected]. ‘Til next time! ###

    Read the article

  • Sax Parser Character Array to Integer??

    - by Andy Barlow
    Hello, I am trying to get the contents of tags into variables in my java Sax parser. However, the Characters method only returns Char arrays. Is there anyway to get the Char array into an Int??? public void characters(char ch[], int start, int length) { if(this.in_total_results) { // my INT varialble would be nice here! } } Can anyone help at all? Kind regards, Andy

    Read the article

  • tweepy documentation

    - by andy
    Hi everybody I just began working on a little twitter-app using tweepy. is there any kind of useful (and complete) documentation for tweepy? I googled like hell but didn't find anything. greetings, Andy

    Read the article

  • integrating ckeditor

    - by Andy
    Hey guys, How to integrate ckeditor with mediawiki ....iam very new to this wiki thing ,...Can you plz guide me ...didnt find any worthful doc on web !!!! Cheers, Andy !

    Read the article

  • CSShover.htc file fixes problems on IE and creates them in Chrome

    - by Andy
    Hi, I have attached a CSShover.htc file on my site to rectify the inherent problems in IE when creating a horizontal SPRYmenu in dreamweaver. The file has worked tremendously and displays fine on mozilla and IE. However on Chrome (my default browser) the menu skips accross the page by about 20px. The menu is quite wide in total at 975px. The menu still works on chrome but i would just like that the page displays the same on all browsers. Please help with your suggestions; Andy

    Read the article

  • Dojo script (fx.xd.js) not working IE

    - by Andy Walpole
    Hi folks, I've been teaching myself Dojo over the last few days... However, if you look at the following page: http://www.mechanic-one.suburban-glory.com/ You'll see that the simple script in the header doesn't work in IE I get the following message: Message: 'duration' is null or not an object Line: 8 Char: 622 Code: 0 URI: htt p://ajax.googleapis.com/ajax/libs/dojo/1.3.2/dojo/fx.xd.js Do you have any ideas why this is so? Andy

    Read the article

  • How to run Cg vertex/fragment shader on CPU?

    - by Andy
    Hi all, I'm playing about with some vertex and fragment shaders using Cg on my little netbook (running Linux). Clearly I'm going to frequently hit resource limits for my graphics controller, so was wondering if there's a nice way to run the shaders on the CPU, just to test them. Something like D3D's refrast... TIA Andy

    Read the article

  • listview Header check-box

    - by Andy
    Hi , I'm having a windows form which contains listview control , where listView1.View = View.Details; and listView1.CheckBoxes = true; then added a column with HeaderName as "FileName". listView1.Columns.Add("File Name", 200, HorizontalAlignment.Left); Here I would like to have check box in the Header of listview , ie FileName. Can anyone help me with this. Thanks in advance. andy

    Read the article

  • What's the best way to mix Ruby and other languages? (Especially C++)

    - by Andy
    Hi, I'm learning Ruby, and I'm starting to play with building extensions in C. I have Programming Ruby The Pragmatic Programmers' Guide and so I can follow that for the basic nuts and bolts. What I was wondering is if there already existed some nifty frameworks/whatever to help interoperability between Ruby and other languages, with C++ being the most important for me. I've tried googling, but the results focus on language comparisons, rather than language interoperability. TIA, Andy

    Read the article

  • Inter process communication C# <--> C++ for game debugging engine.

    - by Andy
    I am working on a debugger project for a game's scripting engine. I'm hoping to write the debugger's GUI in C#. The actual debugging engine, however, is embedded in the game itself and is written in a mixture of C, C++, and assembly patches. What's the best way to handle communication between the debugger GUI and the debugging engine? The two will be running in separate processes. Thanks! Andy

    Read the article

  • JavaFX 2.0 - How to change legend color of a LineChart dynamically?

    - by marie
    I am trying to style my JavaFX linechart but I have some trouble with the legend. I know how to change the legend color of a line chart in the css file: .default-color0.chart-series-line { -fx-stroke: #FF0000, white; } .default-color1.chart-series-line { -fx-stroke: #00FF00, white; } .default-color2.chart-series-line { -fx-stroke: #0000FF, white; } .default-color0.chart-line-symbol { -fx-background-color: #FF0000, white; } .default-color1.chart-line-symbol { -fx-background-color: #00FF00, white; } .default-color2.chart-line-symbol { -fx-background-color: #0000FF, white; } But this is not enough for my purposes. I have three or more colored toggle buttons and a series of data for every button. The data should be displayed in the same color the button has after I have selected the button. This should be possible with a multiselection of the buttons, so that more than one series of data can be displayed simultaneously. For the chart lines I have managed it by changing the style after I clicked the button: .. dataList.add(series); .. series.getNode().setStyle("-fx-stroke: rgba(" + rgba + ")"); If I deselect the button I remove the data from the list. dataList.remove(series); That is working fine for the strokes, but how can I do the same for the legend? You can see an example below. First I clicked the red button, thus the stroke and the legend is red (default-color0). After that I clicked the blue button. Here you can see the problem. The stroke is blue but the legend is green, because default color1 is used and I do not know how to change the legend color.

    Read the article

  • How to Implement Overlay blend method using opengles 1.1

    - by Cylon
    Blow is the algorithm of overlay. and i want using it on iphone, but iphone 3g only support opengles 1.1, can not using glsl. can i using blend function or texture combine to implement it. thank you /////////Reference from OpenGL Shading® Language Third Edition /////////// 19.6.12 Overlay OVERLAY first computes the luminance of the base value. If the luminance value is less than 0.5, the blend and base values are multiplied together. If the luminance value is greater than 0.5, a screen operation is performed. The effect is that the base value is mixed with the blend value, rather than being replaced. This allows patterns and colors to overlay the base image, but shadows and highlights in the base image are preserved. A discontinuity occurs where luminance = 0.5. To provide a smooth transition, we actually do a linear blend of the two equations for luminance in the range [0.45,0.55]. float luminance = dot(base, lumCoeff); if (luminance < 0.45) result = 2.0 * blend * base; else if (luminance 0.55) result = white - 2.0 * (white - blend) * (white - base); else { vec4 result1 = 2.0 * blend * base; vec4 result2 = white - 2.0 * (white - blend) * (white - base); result = mix(result1, result2, (luminance - 0.45) * 10.0); }

    Read the article

  • Keeping up with New Releases

    - by Jeremy Smyth
    You can keep up with the latest developments in MySQL software in a number of ways, including various blogs and other channels. However, for the most correct (if somewhat dry and factual) information, you can go directly to the source.  Major Releases  For every major release, the MySQL docs team creates and maintains a "nutshell" page containing the significant changes in that release. For the current GA release (whatever that is) you'll find it at this location: https://dev.mysql.com/doc/mysql/en/mysql-nutshell.html  At the moment, this redirects to the summary notes for MySQL 5.6. The notes for MySQL 5.7 are also available at that website, at the URL http://dev.mysql.com/doc/refman/5.7/en/mysql-nutshell.html, and when eventually that version goes GA, it will become the currently linked notes from the URL shown above. Incremental Releases  For more detail on each incremental release, you can have a look at the release notes for each revision. For MySQL 5.6, the release notes are stored at the following location: http://dev.mysql.com/doc/relnotes/mysql/5.6/en/ At the time I write this, the topmost entry is a link for MySQL 5.6.15. Each linked page shows the changes in that particular version, so if you are currently running 5.6.11 and are interested in what bugs were fixed in versions since then, you can look at each subsequent release and see all changes in glorious detail. One really clever thing you can do with that site is do an advanced Google search to find exactly when a feature was released, and find out its release notes. By using the preceding link in a "site:" directive in Google, you can search only within those pages for an entry. For example, the following Google search shows pages within the release notes that reference the --slow-start-timeout option:     site:http://dev.mysql.com/doc/relnotes/mysql/ "--slow-start-timeout" By running that search, you can see that the option was added in MySQL 5.6.5 and also rolled into MySQL 5.5.20.   White Papers Also, with each major release you can usually find a white paper describing what's new in that release. In MySQL 5.6 there was a "What's new" whitepaper at this location: http://www.mysql.com/why-mysql/white-papers/whats-new-mysql-5-6/ You'll find other white papers at: http://www.mysql.com/why-mysql/white-papers/ Search the page for "5.6" to see any papers dealing specificallly with that version.

    Read the article

  • Why is Spritebatch drawing my Textures out of order?

    - by Andrew
    I just started working with XNA Studio after programming 2D games in java. Because of this, I have absolutely no experience with Spritebatch and sprite sorting. In java, I could just layer the images by calling the draw methods in order. For a while, my Spritebatch was working fine in deferred sorting mode, but when I made a change to one of my textures, it suddenly started drawing them out of order. I have searched for a solution to this problem, but nothing seems to work. I have tried adding layer depths to the sprites and changing the sort mode to BackToFront or FrontToBack or even immediate, but nothing seems to work. Here is my drawing code: protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Gray); Game1.spriteBatch.Begin(SpriteSortMode.Deferred, BlendState.AlphaBlend, SamplerState.PointClamp, null, null); for (int x = 0; x < 5; x++) { for (int y = 0; y < 5; y++) { region[x, y].draw(((float)w / aw)); // Draws the Tile-Based background } } player.draw(spriteBatch, ((float)w / aw));//draws the character (This method is where the problem occurs) enemy.draw(spriteBatch, (float)w/aw); // draws a basic enemy Game1.spriteBatch.End(); base.Draw(gameTime); } player.draw method: public void draw(SpriteBatch sb, float ratio){ //draws the player base (The character without hair or equipment) sb.Draw(playerbase[0], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White,0,Vector2.Zero,SpriteEffects.None,0); //draws the player's hair sb.Draw(playerbase[3], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White, 0, Vector2.Zero, SpriteEffects.None, 0); //draws the player's shirt sb.Draw(equipment[0], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White, 0, Vector2.Zero, SpriteEffects.None, 0); //draws the player's pants sb.Draw(equipment[1], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White, 0, Vector2.Zero, SpriteEffects.None, 0); //draws the player's shoes sb.Draw(equipment[2], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White, 0, Vector2.Zero, SpriteEffects.None, 0); } the game has a top-down perspective much like the early legend of zelda games. It draws sections of the texture depending on which direction the character is facing and the animation frame. However, instead of drawing the character in the order the draw methods are called, it ends up drawing the character out of order. Please help me with this problem.

    Read the article

  • Jquery Slidetoggle open 1 div and close another

    - by Stephen
    I'm trying to close one div when clicking on another div . Currently, it opens multiple divs at one time. JQUERY: $(document).ready(function() { $(".dropdown dt a").click(function() { var dropID = $(this).closest("dl").attr("id"); $("#"+dropID+" dd ul").slideToggle(200); return false; }); $(".dropdown dd ul li a").click(function() { var dropID = $(this).closest("dl").attr("id"); var text = $(this).html(); var selVal = $(this).find(".dropdown_value").html(); $("#"+dropID+" dt a").html(text); $("#"+dropID+" dd ul").hide(); return false; }); $("dl[class!=dropdown]").click(function() { $(".dropdown dd ul").hide(); return false; }); $("id!=quotetoolContainer").click(function() { $(".dropdown dd ul").hide(); return false; }); $('body').click(function() { $(".dropdown dd ul").hide(); return false; }); $('.productSelection').children().hover(function() { $(this).siblings().stop().fadeTo(200,0.5); }, function() { $(this).siblings().stop().fadeTo(200,1); }); }); HTML: <div id="quotetoolContainer"> <div class="top"></div> <div id="quotetool"> <h2>Instant Price Calculator</h2> <p>Document Type</p> <dl id="docType" class="dropdown"> <dt><a href="#"><span>Select a Document Type</span></a></dt> <dd> <ul> <li><a href="#" id="1">Datasheets<span class="value">Datasheets</span></a></li> <li><a href="#">Manuals<span class="value">Manuals</span></a></li> <li><a href="#">Brochures<span class="value">Brochures</span></a></li> <li><a href="#">Newsletters<span class="value">Newsletters</span></a></li> <li><a href="#">Booklets<span class="value">Booklets</span></a></li> </ul> </dd> </dl> <p>Flat Size</p> <dl id="flatSize" class="dropdown"> <dt><a href="#">8.5" x 11"<span class="value">8.5" x 11"</span></a></dt> <dd> <ul> <li><a href="#">8.5" x 11"<span class="value">8.5" x 11"</span></a></li> <li><a href="#">11" x 17"<span class="value">11" x 17"</span></a></li> </ul> </dd> </dl> <p>Full Color or Black &amp; White?</p> <dl id="color" class="dropdown"> <dt><a href="#">Full Color<span class="value">Full Color</span></a></dt> <dd> <ul> <li><a href="#">Full Color<span class="value">Full Color</span></a></li> <li><a href="#">Black &amp; White<span class="value">Black &amp; White</span></a></li> </ul> </dd> </dl> <p>Paper</p> <dl id="paper" class="dropdown"> <dt><a href="#">Value White Paper (20 lb.)<span class="value">Value White Paper (20 lb.)</span></a></dt> <dd> <ul> <li><a href="#">Value White Paper (20 lb.)<span class="value">Value White Paper (20 lb.)</span></a></li> <li><a href="#">Premium White Paper (28 lb.)<span class="value">Premium White Paper (28 lb.)</span></a></li> <li><a href="#">Glossy White Text (80 lb.) - Recycled<span class="value">Glossy White Text (80 lb.) - Recycled</span></a></li> <li><a href="#">Glossy White Cover (80 lb.) - Recycled<span class="value">Glossy White Cover (80 lb.) - Recycled</span></a></li> </ul> </dd> </dl> <p>Folding</p> <dl id="folding" class="dropdown"> <dt><a href="#">Fold in Half<span class="value">Fold in Half</span></a></dt> <dd> <ul> <li><a href="#">Fold in Half<span class="value">Fold in Half</span></a></li> <li><a href="#">Tri-Fold<span class="value">Tri-Fold</span></a></li> <li><a href="#">Z-Fold<span class="value">Z-Fold</span></a></li> <li><a href="#">Double-Parallel Fold<span class="value">Double-Parallel Fold</span></a></li> </ul> </dd> </dl> <p>Three-Hole Drill</p> <dl id="drill" class="dropdown"> <dt><a href="#">No<span class="value">No</span></a></dt> <dd> <ul> <li><a href="#">No<span class="value">No</span></a></li> <li><a href="#">Yes<span class="value">Yes</span></a></li> </ul> </dd> </dl> <p>Qty</p> <dl id="quantity" class="dropdown"> <dt><a href="#">50<span class="value">50</span></a></dt> <dd> <ul> <li><a href="#">50<span class="value">50</span></a></li> <li><a href="#">100<span class="value">100</span></a></li> <li><a href="#">150<span class="value">150</span></a></li> <li><a href="#">200<span class="value">200</span></a></li> <li><a href="#">250<span class="value">250</span></a></li> <li><a href="#">500<span class="value">500</span></a></li> <li><a href="#">750<span class="value">750</span></a></li> <li><a href="#">1,000<span class="value">1,000</span></a></li> <li><a href="#">1,500<span class="value">1,500</span></a></li> <li><a href="#">2,000<span class="value">2,000</span></a></li> <li><a href="#">2,500<span class="value">2,500</span></a></li> <li><a href="#">3,000<span class="value">3,000</span></a></li> <li><a href="#">3,500<span class="value">3,500</span></a></li> <li><a href="#">4,000<span class="value">4,000</span></a></li> <li><a href="#">4,500<span class="value">4,500</span></a></li> <li><a href="#">5,000<span class="value">5,000</span></a></li> <li><a href="#">5,500<span class="value">5,500</span></a></li> <li><a href="#">6,000<span class="value">6,000</span></a></li> <li><a href="#">6,500<span class="value">6,500</span></a></li> <li><a href="#">7,000<span class="value">7,000</span></a></li> <li><a href="#">7,500<span class="value">7,500</span></a></li> <li><a href="#">8,000<span class="value">8,000</span></a></li> <li><a href="#">8,500<span class="value">8,500</span></a></li> <li><a href="#">9,000<span class="value">9,000</span></a></li> <li><a href="#">9,500<span class="value">9,500</span></a></li> <li><a href="#">10,000<span class="value">10,000</span></a></li> <li><a href="#">12,500<span class="value">12,500</span></a></li> <li><a href="#">15,000<span class="value">15,000</span></a></li> <li><a href="#">17,500<span class="value">17,500</span></a></li> <li><a href="#">20,000<span class="value">20,000</span></a></li> </ul> </dd> </dl> <div id="priceTotal"> <div class="priceText">Your Price:</div> <div class="price">$29.00</div> <div class="clear"></div> </div> <div id="buttonQuoteStart"><a href="#" title="Start Printing">Start Printing</a></div> </div> <div class="bottom"></div> </div>

    Read the article

  • Is there a bash shortcut for traversing similar directory structures?

    - by Steve Weet
    The Korn shell used to have a very useful option to cd for traversing similar directory structures e.g. given the following directorys /home/sweet/dev/projects/trunk/projecta/app/models /home/andy/dev/projects/trunk/projecta/app/models Then if you were in the /home/sweet.... directory then you could change to the equivalent directory in andy's structure by typing cd sweet andy So if ksh saw 2 arguments then it would scan the current directory path for the first value, replace it with the second and cd there. Is anyone aware of similar functionality in bash. EDIT 1 Following on from Michal's excellent answer I have now created the following bash function called scd (For Sideways cd) function scd { cd "${PWD/$1/$2}" } EDIT 2 Thanks to @digitalross I can now reproduce the ksh functionality exactly with the code from below (With the addition of a pwd to tell you where you have changed to) cd () { if [ "x$2" != x ]; then builtin cd ${PWD/$1/$2} pwd else builtin cd "$@" fi }

    Read the article

  • SQL: Find difference between dates with grouping

    - by ajbeaven
    I have a problem that seems similar to this fellow - I just want to display the data slightly differently. I'm pretty terrible with SQL so can't modify it to suit, but perhaps someone else can. My table looks similar to this (date format is dd/mm/yyyy): ID User Date_start Role 1 Andy 01/04/2010 A 2 Andy 10/04/2010 B 3 Andy 20/04/2010 A 4 John 02/05/2010 A I want to show the total number of days that anyone was in a certain role. Users stay in the role until there is another entry into the table. Users can only be in one role at a time. So the summary data would look like this (assuming that the date is 04/05/2010): A: 26 days B: 10 days Thanks for any help :)

    Read the article

  • Exchange 2007 restore - Backup Exec Unable to Attach to a resource

    - by Andy
    I have been struggling with this one for months! Grateful for any advice. The setup is a windows 2003 server network, 4xservers on the domain. Two exchange 2007 servers (only one with mailboxes still on). Backup Exec (12.5) on a non-exchange server with agents on the others. Backup exec runs a full backup of exchange across the network well, at pretty reasonable speeds. However, when you try any kind of restore (individual emails, mailboxes or whole system restore - all to same location or to alternate server, RSG etc) the following message is received within about 10-15 secs of starting the job: Job ended: 24 December 2010 at 13:28:32 Completed status: Failed Final error: 0xe000848c - Unable to attach to a resource. Make sure that all selected resources exist and are online, and then try again. If the server or resource no longer exists, remove it from the selection list. Edit the selection list properties, click the View Selection Details tab, and then remove the resource. Final error category: Resource Errors For additional information regarding this error refer to link V-79-57344-33932 Things I have already tried: Changed account to main administrator account (with all permissions) checked versions of ese.dll on both servers - both the same Checked all VSS writers on both servers are stable / normal restoring to different locations Any advice anyone could give would be much appreciated. Many thanks, Andy

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >