Search Results

Search found 2601 results on 105 pages for 'commit'.

Page 17/105 | < Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >

  • Someone used or hacked my computer to commit a crime? what defense do I have?

    - by srguws
    Hello, I need IMMEDIATE Help on a computer crime that I was arrested for. It may involve my computer, my ip, and my ex-girlfriend being the true criminal. The police do not tell you much they are very vague. I was charged though! So my questions are: -If someone did use my computer at my house and business and post a rude craigslist ad about a friend of my girlfriend at the time from a fake email address, how can I be the ONLY one as a suspect. Also how can I be charged. I noticed the last few days there are many ways to use other peoples computers, connections, etc. Here are a few things I found: You can steal or illegally use an ip addresss or mac address. Dynamic Ip is less secure and more vulnerable than static. People can sidejack and spoof your Mac, Ip, etc. There is another thing called arp spoofing. I am sure this is more things, but how can I prove that this happened to me or didnt happen to me. -The police contacted Craigslist, the victim, aol, and the two isp companies. They say they traced the IP's to my business and my home. My ex was who I lived with and had a business with has access to the computers and the keys to bothe buildings. My brother also lives and works with me. My business has many teenagers who use the computer and wifi. My brother is a college kid and also has friends over the house and they use the computer freely. So how can they say it was me because of an angry ex girlfriend.

    Read the article

  • The case of the phantom ADF developer (and other yarns)

    - by Chris Muir
    A few years of ADF experience means I see common mistakes made by different developers, some I regularly make myself.  This post is designed to assist beginners to Oracle JDeveloper Application Development Framework (ADF) avoid a common ADF pitfall, the case of the phantom ADF developer [add Scooby-Doo music here]. ADF Business Components - triggers, default table values and instead of views. Oracle's JDeveloper tutorials help with the A-B-Cs of ADF development, typically built on the nice 'n safe demo schema provided by with the Oracle database such as the HR demo schema. However it's not too long until ADF beginners, having built up some confidence from learning with the tutorials and vanilla demo schemas, start building ADF Business Components based upon their own existing database schema objects.  This is where unexpected problems can sneak in. The crime Developers may encounter a surprising error at runtime when editing a record they just created or updated and committed to the database, based on their own existing tables, namely the error: JBO-25014: Another user has changed the row with primary key oracle.jbo.Key[x] ...where X is the primary key value of the row at hand.  In a production environment with multiple users this error may be legit, one of the other users has updated the row since you queried it.  Yet in a development environment this error is just plain confusing.  If developers are isolated in their own database, creating and editing records they know other users can't possibly be working with, or all the other developers have gone home for the day, how is this error possible? There are no other users?  It must be the phantom ADF developer! [insert dramatic music here] The following picture is what you'll see in the Business Component Browser, and you'll receive a similar error message via an ADF Faces page: A false conclusion What can possibly cause this issue if it isn't our phantom ADF developer?  Doesn't ADF BC implement record locking, locking database records when the row is modified in the ADF middle-tier by a user?  How can our phantom ADF developer even take out a lock if this is the case?  Maybe ADF has a bug, maybe ADF isn't implementing record locking at all?  Shouldn't we see the error "JBO-26030: Failed to lock the record, another user holds the lock" as we attempt to modify the record, why do we see JBO-25014? : Let's verify that ADF is in fact issuing the correct SQL LOCK-FOR-UPDATE statement to the database. First we need to verify ADF's locking strategy.  It is determined by the Application Module's jbo.locking.mode property.  The default (as of JDev 11.1.1.4.0 if memory serves me correct) and recommended value is optimistic, and the other valid value is pessimistic. Next we need a mechanism to check that ADF is issuing the LOCK statements to the database.  We could ask DBAs to monitor locks with OEM, but optimally we'd rather not involve overworked DBAs in this process, so instead we can use the ADF runtime setting –Djbo.debugoutput=console.  At runtime this options turns on instrumentation within the ADF BC layer, which among a lot of extra detail displayed in the log window, will show the actual SQL statement issued to the database, including the LOCK statement we're looking to confirm. Setting our locking mode to pessimistic, opening the Business Components Browser of a JSF page allowing us to edit a record, say the CHARGEABLE field within a BOOKINGS record where BOOKING_NO = 1206, upon editing the record see among others the following log entries: [421] Built select: 'SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings'[422] Executing LOCK...SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings WHERE BOOKING_NO=:1 FOR UPDATE NOWAIT[423] Where binding param 1: 1206  As can be seen on line 422, in fact a LOCK-FOR-UPDATE is indeed issued to the database.  Later when we commit the record we see: [441] OracleSQLBuilder: SAVEPOINT 'BO_SP'[442] OracleSQLBuilder Executing, Lock 1 DML on: BOOKINGS (Update)[443] UPDATE buf Bookings>#u SQLStmtBufLen: 210, actual=62[444] UPDATE BOOKINGS Bookings SET CHARGEABLE=:1 WHERE BOOKING_NO=:2[445] Update binding param 1: N[446] Where binding param 2: 1206[447] BookingsView1 notify COMMIT ... [448] _LOCAL_VIEW_USAGE_model_Bookings_ResourceTypesView1 notify COMMIT ... [449] EntityCache close prepared statement ....and as a result the changes are saved to the database, and the lock is released. Let's see what happens when we use the optimistic locking mode, this time to change the same BOOKINGS record CHARGEABLE column again.  As soon as we edit the record we see little activity in the logs, nothing to indicate any SQL statement, let alone a LOCK has been taken out on the row. However when we save our records by issuing a commit, the following is recorded in the logs: [509] OracleSQLBuilder: SAVEPOINT 'BO_SP'[510] OracleSQLBuilder Executing doEntitySelect on: BOOKINGS (true)[511] Built select: 'SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings'[512] Executing LOCK...SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings WHERE BOOKING_NO=:1 FOR UPDATE NOWAIT[513] Where binding param 1: 1205[514] OracleSQLBuilder Executing, Lock 2 DML on: BOOKINGS (Update)[515] UPDATE buf Bookings>#u SQLStmtBufLen: 210, actual=62[516] UPDATE BOOKINGS Bookings SET CHARGEABLE=:1 WHERE BOOKING_NO=:2[517] Update binding param 1: Y[518] Where binding param 2: 1205[519] BookingsView1 notify COMMIT ... [520] _LOCAL_VIEW_USAGE_model_Bookings_ResourceTypesView1 notify COMMIT ... [521] EntityCache close prepared statement Again even though we're seeing the midtier delay the LOCK statement until commit time, it is in fact occurring on line 412, and released as part of the commit issued on line 419.  Therefore with either optimistic or pessimistic locking a lock is indeed issued. Our conclusion at this point must be, unless there's the unlikely cause the LOCK statement is never really hitting the database, or the even less likely cause the database has a bug, then ADF does in fact take out a lock on the record before allowing the current user to update it.  So there's no way our phantom ADF developer could even modify the record if he tried without at least someone receiving a lock error. Hmm, we can only conclude the locking mode is a red herring and not the true cause of our problem.  Who is the phantom? At this point we'll need to conclude that the error message "JBO-25014: Another user has changed" is somehow legit, even though we don't understand yet what's causing it. This leads onto two further questions, how does ADF know another user has changed the row, and what's been changed anyway? To answer the first question, how does ADF know another user has changed the row, the Fusion Guide's section 4.10.11 How to Protect Against Losing Simultaneous Updated Data , that details the Entity Object Change-Indicator property, gives us the answer: At runtime the framework provides automatic "lost update" detection for entity objects to ensure that a user cannot unknowingly modify data that another user has updated and committed in the meantime. Typically, this check is performed by comparing the original values of each persistent entity attribute against the corresponding current column values in the database at the time the underlying row is locked. Before updating a row, the entity object verifies that the row to be updated is still consistent with the current state of the database.  The guide further suggests to make this solution more efficient: You can make the lost update detection more efficient by identifying any attributes of your entity whose values you know will be updated whenever the entity is modified. Typical candidates include a version number column or an updated date column in the row.....To detect whether the row has been modified since the user queried it in the most efficient way, select the Change Indicator option to compare only the change-indicator attribute values. We now know that ADF BC doesn't use the locking mechanism at all to protect the current user against updates, but rather it keeps a copy of the original record fetched, separate to the user changed version of the record, and it compares the original record against the one in the database when the lock is taken out.  If values don't match, be it the default compare-all-columns behaviour, or the more efficient Change Indicator mechanism, ADF BC will throw the JBO-25014 error. This leaves one last question.  Now we know the mechanism under which ADF identifies a changed row, what we don't know is what's changed and who changed it? The real culprit What's changed?  We know the record in the mid-tier has been changed by the user, however ADF doesn't use the changed record in the mid-tier to compare to the database record, but rather a copy of the original record before it was changed.  This leaves us to conclude the database record has changed, but how and by who? There are three potential causes: Database triggers The database trigger among other uses, can be configured to fire PLSQL code on a database table insert, update or delete.  In particular in an insert or update the trigger can override the value assigned to a particular column.  The trigger execution is actioned by the database on behalf of the user initiating the insert or update action. Why this causes the issue specific to our ADF use, is when we insert or update a record in the database via ADF, ADF keeps a copy of the record written to the database.  However the cached record is instantly out of date as the database triggers have modified the record that was actually written to the database.  Thus when we update the record we just inserted or updated for a second time to the database, ADF compares its original copy of the record to that in the database, and it detects the record has been changed – giving us JBO-25014. This is probably the most common cause of this problem. Default values A second reason this issue can occur is another database feature, default column values.  When creating a database table the schema designer can define default values for specific columns.  For example a CREATED_BY column could be set to SYSDATE, or a flag column to Y or N.  Default values are only used by the database when a user inserts a new record and the specific column is assigned NULL.  The database in this case will overwrite the column with the default value. As per the database trigger section, it then becomes apparent why ADF chokes on this feature, though it can only specifically occur in an insert-commit-update-commit scenario, not the update-commit-update-commit scenario. Instead of trigger views I must admit I haven't double checked this scenario but it seems plausible, that of the Oracle database's instead of trigger view (sometimes referred to as instead of views).  A view in the database is based on a query, and dependent on the queries complexity, may support insert, update and delete functionality to a limited degree.  In order to support fully insertable, updateable and deletable views, Oracle introduced the instead of view, that gives the view designer the ability to not only define the view query, but a set of programmatic PLSQL triggers where the developer can define their own logic for inserts, updates and deletes. While this provides the database programmer a very powerful feature, it can cause issues for our ADF application.  On inserting or updating a record in the instead of view, the record and it's data that goes in is not necessarily the data that comes out when ADF compares the records, as the view developer has the option to practically do anything with the incoming data, including throwing it away or pushing it to tables which aren't used by the view underlying query for fetching the data. Readers are at this point reminded that this article is specifically about how the JBO-25014 error occurs in the context of 1 developer on an isolated database.  The article is not considering how the error occurs in a production environment where there are multiple users who can cause this error in a legitimate fashion.  Assuming none of the above features are the cause of the problem, and optimistic locking is turned on (this error is not possible if pessimistic locking is the default mode *and* none of the previous causes are possible), JBO-25014 is quite feasible in a production ADF application if 2 users modify the same record. At this point under project timelines pressure, the obvious fix for developers is to drop both database triggers and default values from the underlying tables.  However we must be careful that these legacy constructs aren't used and assumed to be in place by other legacy systems.  Dropping the database triggers or default value that the existing Oracle Forms  applications assumes and requires to be in place could cause unexpected behaviour and bugs in the Forms application.  Proficient software engineers would recognize such a change may require a partial or full regression test of the existing legacy system, a potentially costly and timely exercise, not ideal. Solving the mystery once and for all Luckily ADF has built in functionality to deal with this issue, though it's not a surprise, as Oracle as the author of ADF also built the database, and are fully aware of the Oracle database's feature set.  At the Entity Object attribute level, the Refresh After Insert and Refresh After Update properties.  Simply selecting these instructs ADF BC after inserting or updating a record to the database, to expect the database to modify the said attributes, and read a copy of the changed attributes back into its cached mid-tier record.  Thus next time the developer modifies the current record, the comparison between the mid-tier record and the database record match, and JBO-25014: Another user has changed" is no longer an issue. [Post edit - as per the comment from Oracle's Steven Davelaar below, as he correctly points out the above solution will not work for instead-of-triggers views as it relies on SQL RETURNING clause which is incompatible with this type of view] Alternatively you can set the Change Indicator on one of the attributes.  This will work as long as the relating column for the attribute in the database itself isn't inadvertently updated.  In turn you're possibly just masking the issue rather than solving it, because if another developer turns the Change Indicator back on the original issue will return.

    Read the article

  • SVN - Server sent unexpected return value (500 Internal Server Error)

    - by person
    I'm using RabbitVCS to work with Google Code, and I just recently started having problems with trying to commit. Whenever I try to commit, it says... Commit failed Server sent unexpected return value (500 Internal Server Error) in response to Checkout request for (some file that is involved in the commit. The file it fails on isn't consistent). I have no idea what is wrong, any help is appreciated, thanks.

    Read the article

  • SVN tool to rebase a branch in git style

    - by timmow
    Are there any tools available that will let me rebase in git style an SVN branch onto a new parent? So, in the following situation, I create a feature branch, and there are commits to the trunk E---F---G Feature / A---B---C---D--H--I trunk I'm looking for a tool which copies the trunk, and applies the commits one by one, letting me resolve any conflicts if any exist - but each commit retains the same commit message, and is still a separate commit. E'---F'---G' Feature / A---B---C---D--H--I trunk So commit E' will be a commit with the same changes as E, except in the case of E causing a conflict, in which case E' will differ from E in that E' has the conflicts resolved, and the same commit message as E. I'm looking for this as it helps in keeping branches up to date with trunk - the svnmerge.py / mergeinfo way does not help, as you still need to resolve your changes when you merge back to trunk.

    Read the article

  • Exception Handling

    - by raghu.yadav
    Here is the few links on which andre had demonstrateddifferences-of-handling-jboexception-in handling-exceptions-in-oracle-ui-shell However in this post we can see how to display exception in popup being in the same page. I use similar usecase as andre however we'll not be using Exception Handling property from taskflow, instead we use popup and invoke the same programmatically. This is a dynamic region example where user can select jobs or locations links to edit the records of corresponding tables being in the same page and click commit to save changes. To generate exception we deliberately change commit to CommitAction in commit action binding code created in the bean (same as andre) and catch the exception and add brief description of exception into #{pageFlowScope.message}. Drop Popup component after Commit button and add dialog within in popup button, bind the popup component to backing bean and invoke the same in catch clause as shown below. public String Commit() { try{ BindingContainer bindings = getBindings(); OperationBinding operationBinding = bindings.getOperationBinding("CommitAction"); Object result = operationBinding.execute(); if (!operationBinding.getErrors().isEmpty()) { return null; } }catch (NullPointerException e) { setELValue("#{pageFlowScope.message}", "NullPointerException..."); e.printStackTrace(); String popupId = this.getPopup().getClientId(FacesContext.getCurrentInstance()); PatternsPublicUtil.invokePopup(popupId); } return null; } } private void setELValue(String el, String value) { FacesContext facesContext = FacesContext.getCurrentInstance(); ELContext elContext = facesContext.getELContext(); ExpressionFactory expressionFactory = facesContext.getApplication().getExpressionFactory(); ValueExpression valueExp = expressionFactory.createValueExpression(elContext, el, Object.class); valueExp.setValue(elContext, value); } .

    Read the article

  • Create a Remote Git Repository from an Existing XCode Repository

    - by codeWithoutFear
    Introduction Distributed version control systems (VCS’s), like Git, provide a rich set of features for managing source code.  Many development tools, including XCode, provide built-in support for various VCS’s.  These tools provide simple configuration with limited customization to get you up and running quickly while still providing the safety net of basic version control. I hate losing (and re-doing) work.  I have OCD when it comes to saving and versioning source code.  Save early, save often, and commit to the VCS often.  I also hate merging code.  Smaller and more frequent commits enable me to minimize merge time and effort as well. The work flow I prefer even for personal exploratory projects is: Make small local changes to the codebase to create an incrementally improved (and working) system. Commit these changes to the local repository.  Local repositories are quick to access, function even while offline, and provides the confidence to continue making bold changes to the system.  After all, I can easily recover to a recent working state. Repeat 1 & 2 until the codebase contains “significant” functionality and I have connectivity to the remote repository. Push the accumulated changes to the remote repository.  The smaller the change set, the less likely extensive merging will be required.  Smaller is better, IMHO. The remote repository typically has a greater degree of fault tolerance and active management dedicated to it.  This can be as simple as a network share that is backed up nightly or as complex as dedicated hardware with specialized server-side processing and significant administrative monitoring. XCode’s out-of-the-box Git integration enables steps 1 and 2 above.  Time Machine backups of the local repository add an additional degree of fault tolerance, but do not support collaboration or take advantage of managed infrastructure such as on-premises or cloud-based storage. Creating a Remote Repository These are the steps I use to enable the full workflow identified above.  For simplicity the “remote” repository is created on the local file system.  This location could easily be on a mounted network volume. Create a Test Project My project is called HelloGit and is located at /Users/Don/Dev/HelloGit.  Be sure to commit all outstanding changes.  XCode always leaves a single changed file for me after the project is created and the initial commit is submitted. Clone the Local Repository We want to clone the XCode-created Git repository to the location where the remote repository will reside.  In this case it will be /Users/Don/Dev/RemoteHelloGit. Open the Terminal application. Clone the local repository to the remote repository location: git clone /Users/Don/Dev/HelloGit /Users/Don/Dev/RemoteHelloGit Convert the Remote Repository to a Bare Repository The remote repository only needs to contain the Git database.  It does not need a checked out branch or local files. Go to the remote repository folder: cd /Users/Don/Dev/RemoteHelloGit Indicate the repository is “bare”: git config --bool core.bare true Remove files, leaving the .git folder: rm -R * Remove the “origin” remote: git remote rm origin Configure the Local Repository The local repository should reference the remote repository.  The remote name “origin” is used by convention to indicate the originating repository.  This is set automatically when a repository is cloned.  We will use the “origin” name here to reflect that relationship. Go to the local repository folder: cd /Users/Don/Dev/HelloGit Add the remote: git remote add origin /Users/Don/Dev/RemoteHelloGit Test Connectivity Any changes made to the local Git repository can be pushed to the remote repository subject to the merging rules Git enforces. Create a new local file: date > date.txt /li> Add the new file to the local index: git add date.txt Commit the change to the local repository: git commit -m "New file: date.txt" Push the change to the remote repository: git push origin master Now you can save, commit, and push/pull to your OCD hearts’ content! Code without fear! --Don

    Read the article

  • What is a correct/polite way to inherit from an abandoned open-source project for a new open-source project?

    - by Kabumbus
    My team just tried to contact some guys from an old open source project hosted on code.google.com. We told them that we'd like to join their project and commit to it — at least to some branch of it — but no one responded to us. We tried everyone, owners and committers; no one was in any way active, and no one replied. But we have some code to commit and we really would love to continue work on that project. So we need to create a new project. We came up with a name for it which is close to but not a duplicate of the name of the project we want to inherit from. How should we do our first commit, and what should the commit message be? Should we just copy their code to our repository with a comment like "we inherited this code, we found it here under such and such a license ... now we're upgrading it to this more/less strict license ..."? Or should we just use their code as our first commit, with updates saying "we inherited from ... we made such and such changes ..."?

    Read the article

  • Mercurial Editor: "abort: The system cannot find the file specified"

    - by Killroy
    I have a problem getting Mercurial to recognise my editor. I have a file, c:\windows\notepad.exe and typing "notepad" at the command prompt works. I can commit by using the "-m" argument to supply the commit title. But a simple "hg commit" brings up the error. A call to "hg --traceback commit" brings up: Traceback (most recent call last): File "mercurial\dispatch.pyc", line 47, in _runcatch File "mercurial\dispatch.pyc", line 466, in _dispatch File "mercurial\dispatch.pyc", line 336, in runcommand File "mercurial\dispatch.pyc", line 517, in _runcommand File "mercurial\dispatch.pyc", line 471, in checkargs File "mercurial\dispatch.pyc", line 465, in <lambda> File "mercurial\util.pyc", line 401, in check File "mercurial\commands.pyc", line 708, in commit File "mercurial\cmdutil.pyc", line 1150, in commit File "mercurial\commands.pyc", line 706, in commitfunc File "mercurial\localrepo.pyc", line 836, in commit File "mercurial\cmdutil.pyc", line 1155, in commiteditor File "mercurial\cmdutil.pyc", line 1184, in commitforceeditor File "mercurial\ui.pyc", line 361, in edit File "mercurial\util.pyc", line 383, in system File "subprocess.pyc", line 470, in call File "subprocess.pyc", line 621, in __init__ File "subprocess.pyc", line 830, in _execute_child WindowsError: [Error 2] The system cannot find the file specified abort: The system cannot find the file specified I've tried setting the HGEDITOR environment variable, setting "visual =" and "editor =" in the Mercurial.ini file. I tried full path as well as command only. I also tried copying the notepad.exe file into both the current folder as well as the mercurial folder. Ideally I would like to use the editor at this location "C:\PortableApps\Notepad++Portable\Notepad++Portable.exe", but at this stage I would be happy with any editor!

    Read the article

  • plugin from github not successfully installing

    - by JohnMerlino
    Hey all, I tried to install the highcharts-rails plugin from github as specified in the instructions: Installation Get the plugin: script/plugin install git://github.com/loudpixel/highcharts-rails.git Run the rake setup: rake highcharts_rails:install But when I run the script/plugin install... It installs a couple of files only and not all the required files, I presume, because when I run rake highcharts_rails:install I get the following: rake aborted! Don't know how to build task 'highcharts_rails:install' All it installed for me was: jquery.js jrails.js jquery-ui.js I noticed on the site http://github.com/loudpixel/highcharts-rails It has all this: file MIT-LICENSE February 08, 2010 Initial commit [abbottry] file README.md February 09, 2010 Added installation section to README [jsiarto] file Rakefile February 08, 2010 Initial commit [abbottry] directory generators/ February 08, 2010 Initial commit [abbottry] file init.rb February 08, 2010 Initial commit [abbottry] directory javascripts/ February 08, 2010 Added jquery 1.3.2 script [abbottry] directory lib/ February 08, 2010 Initial commit [abbottry] directory tasks/ February 08, 2010 Incorrect path to plugin for rake task [abbottry] directory test/ February 08, 2010 Initial commit [abbottry] file uninstall.rb February 08, 2010 Initial commit [abbottry] So I'm not sure what I'm doing wrong to not get these files installed properly. Thanks for any response.

    Read the article

  • Should I commit WEB-INF into version control, or rather construct it with ant?

    - by webwesen
    ant "war" task does just that - creates WEB-INF along with META-INF, depending on task attributes. what is considered a best practice? keeping all my libs elsewhere for re-use, like log4j and then build them with "war" task or have everything (including jars) checked-in under WEB-INF? I have multiple apps that could re-use same libs, images, htmls, etc. Our developers use RAD7/Eclipse. I'd appreciate any examples with opensource Java Web Apps repo layouts. thanks!

    Read the article

  • Should commit messages be written in present or past tense?

    - by user68759
    So which is it that you think is better and more intuitive? Fixed the XXX bug in YYY Fix the XXX bug in YYY Fixes the XXX bug in YYY Fixing the XXX bug in YYY Please provide your rationales. Note I am asking from your general perspective, meaning you should not try to associate this with your preferred svn/cvs tools or programming languages, but rather think of it as something that should/can be applied to any tools and programming languages.

    Read the article

  • Can I commit changes to actual database while debugging C# in Visual Studio?

    - by nathant23
    I am creating a C# application using Visual Studio that uses an SQLExpress database. When I hit f5 to debug the application and make changes to the database I believe what is happening is there is a copy of the database in the bin/debug folder that changes are being made to. However, when I stop the debugging and then hit f5 the next time a new copy of the database is being put in the bin/debug folder so that all the changes made the last time are gone. My question is: Is there a way that when I am debugging the application I can have it make changes to the actual database and those changes are actually saved or will it only make changes to the copy in the bin/debug folder (if that is what is actually happening)? I've seen similar questions, but I couldn't find an answer that said if it's possible to make those changes persistent in the actual .mdf file. The reason I ask is because as I build this application I am continuously adding pieces and testing to make sure they all work together. When I put in test data I am using actual data that I would like to stay in the database. This would just help me not have to reenter the data later. Thanks in advance for any help or information that could help me better understand the process.

    Read the article

  • Are there SqlExceptions which throw but commit their data anyway?

    - by Jonn
    I've recently encountered the error: System.Data.SqlClient.SqlException: The transaction log for database 'mydatabase' is full. To find out why space in the log cannot be reused, see the log_reuse_wait_desc column in sys.databases on one of my windows services. It's supposed to retry after catching an Sql Exception, what I didn't expect was that it seemed like the data was still going through (I'm using an SqlBulkCopy btw) regardless of it throwing an exception. I've never encountered this scenario before. I'd like to know if there are other scenarios where such a thing like this might happen, and if this thing is entirely possible at all in the first place? PS. If anyone knows the error code to the above exception, that would help a great deal as well.

    Read the article

  • setting the PATH for Git (not for me)

    - by Iain
    Hi, I'm running OSX 10.6.5 with Git 1.7.1 I have git installed in a non-standard location (though that really should be the standard on a mac;-) in /Library/Frameworks/Git.framework. My own PATH is set fine, git works fine, until... I set up a pre-commit hook with a Ruby script: $ git commit -m "added some Yard documentation" .git/hooks/pre-commit: line 1: #!/usr/bin/env: No such file or directory The pre-commit.sample runs ok, so it appears that git can't find /usr/bin/env, or much else as I've tried shebanging it directly to ruby etc. Just /bin/sh is ok. So, where does Git get it's PATH? because it's not using mine or this wouldn't be happening. And more to the point, how do I get it to see /usr/bin/env ? I've tested the ruby script already, it works. Just to add: $ cat /etc/paths /usr/bin /bin /usr/sbin /sbin /usr/local/bin $ cat /etc/paths.d/git /Library/Frameworks/Git.framework/Programs The first few lines of the Ruby script (which runs via ./pre-commit or ruby pre-commit) #!/usr/bin/env ruby -wKU class String def expand_path File.expand_path self end def parent_dir File.dirname self.expand_path end end

    Read the article

  • git filter-branch chmod

    - by Evan Purkhiser
    I accidental had my umask set incorrectly for the past few months and somehow didn't notice. One of my git repositories has many files marked as executable that should be just 644. This repo has one main master branch, and about 4 private feature branches (that I keep rebased on top of the master). I've corrected the files in my master branch by running find -type f -exec chmod 644 {} \; and committing the changes. I then rebased my feature branches onto master. The problem is there are newly created files in the feature branches that are only in that branch, so they weren't corrected by my massive chmod commit. I didn't want to create a new commit for each feature branch that does the same thing as the commit I made on master. So I decided it would be best to go back through to each commit where a file was made and set the permissions. This is what I tried: git filter-branch -f --tree-filter 'chmod 644 `git show --diff-filter=ACR --pretty="format:" --name-only $GIT_COMMIT`; git add .' master.. It looked like this worked, but upon further inspection I noticed that the every commit after a commit containing a new file with the proper permissions of 644 would actually revert the change with something like: diff --git a b old mode 100644 new mode 100755 I can't for the life of me figure out why this is happening. I think I must be mis-understanding how git filter-branch works. My Solution I've managed to fix my problem using this command: git filter-branch -f --tree-filter 'FILES="$FILES "`git show --diff-filter=ACMR --pretty="format:" --name-only $GIT_COMMIT`; chmod 644 $FILES; true' development.. I keep adding onto the FILES variable to ensure that in each commit any file created at some point has the proper mode. However, I'm still not sure I really understand why git tracks the file mode for each commit. I had though that since I had fixed the mode of the file when it was first created that it would stay that mode unless one of my other commits explicit changed it to something else. That did not appear to the be the case. The reason I thought that this would work is from my understanding of rebase. If I go back to HEAD~5 and change a line of code, that change is propagated through, it doesn't just get changed back in HEAD~4.

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • tortoisehg and subrepos

    - by adrianm
    I can't get Tortoisehg (1.0) to work with subrepos I have a directory structure like this: root .hg .hgsub .hgsubstate Customer1 Project1 .hg foo.txt Project2 .hg Customer2 Project3 .hg the .hgsub file under root looks like Customer1\Project1=Customer1\Project1 Customer1\Project2=Customer1\Project2 Customer2\Project3=Customer2\Project3 If modify the file Customer1\Project1\foo.txt and commit from the root it works >hg ci -m "command line commit" committing subrepository customer1\project1 in Tortoisehg customer1\project1 is displayed with status S (subrepo) but when commiting I get a message abort: customer1/project1: no match under directory! Is this scenario not supported or am I doing something wrong? The doc says: "TortoiseHg 1.0 introduced rudimentary support for subrepositories, and only in the commit / status tool. When Mercurial considers a subrepo as dirty, it will appear in the commit tool as a special entry in the file list with a status of S. If a subrepo is included in the file list of a commit, the subrepo is committed along with the other changes, updating the .hgsubstate file in the main repository root."

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >