Search Results

Search found 13145 results on 526 pages for 'little ancient forest kami'.

Page 175/526 | < Previous Page | 171 172 173 174 175 176 177 178 179 180 181 182  | Next Page >

  • DBCC CHECKDB on VVLDB and latches (Or: My Pain is Your Gain)

    - by Argenis
      Does your CHECKDB hurt, Argenis? There is a classic blog series by Paul Randal [blog|twitter] called “CHECKDB From Every Angle” which is pretty much mandatory reading for anybody who’s even remotely considering going for the MCM certification, or its replacement (the Microsoft Certified Solutions Master: Data Platform – makes my fingers hurt just from typing it). Of particular interest is the post “Consistency Options for a VLDB” – on it, Paul provides solid, timeless advice (I use the word “timeless” because it was written in 2007, and it all applies today!) on how to perform checks on very large databases. Well, here I was trying to figure out how to make CHECKDB run faster on a restored copy of one of our databases, which happens to exceed 7TB in size. The whole thing was taking several days on multiple systems, regardless of the storage used – SAS, SATA or even SSD…and I actually didn’t pay much attention to how long it was taking, or even bothered to look at the reasons why - as long as it was finishing okay and found no consistency errors. Yes – I know. That was a huge mistake, as corruption found in a database several days after taking place could only allow for further spread of the corruption – and potentially large data loss. In the last two weeks I increased my attention towards this problem, as we noticed that CHECKDB was taking EVEN LONGER on brand new all-flash storage in the SAN! I couldn’t really explain it, and were almost ready to blame the storage vendor. The vendor told us that they could initially see the server driving decent I/O – around 450Mb/sec, and then it would settle at a very slow rate of 10Mb/sec or so. “Hum”, I thought – “CHECKDB is just not pushing the I/O subsystem hard enough”. Perfmon confirmed the vendor’s observations. Dreaded @BlobEater What was CHECKDB doing all the time while doing so little I/O? Eating Blobs. It turns out that CHECKDB was taking an extremely long time on one of our frankentables, which happens to be have 35 billion rows (yup, with a b) and sucks up several terabytes of space in the database. We do have a project ongoing to purge/split/partition this table, so it’s just a matter of time before we deal with it. But the reality today is that CHECKDB is coming to a screeching halt in performance when dealing with this particular table. Checking sys.dm_os_waiting_tasks and sys.dm_os_latch_stats showed that LATCH_EX (DBCC_OBJECT_METADATA) was by far the top wait type. I remembered hearing recently about that wait from another post that Paul Randal made, but that was related to computed-column indexes, and in fact, Paul himself reminded me of his article via twitter. But alas, our pathologic table had no non-clustered indexes on computed columns. I knew that latches are used by the database engine to do internal synchronization – but how could I help speed this up? After all, this is stuff that doesn’t have a lot of knobs to tweak. (There’s a fantastic level 500 talk by Bob Ward from Microsoft CSS [blog|twitter] called “Inside SQL Server Latches” given at PASS 2010 – and you can check it out here. DISCLAIMER: I assume no responsibility for any brain melting that might ensue from watching Bob’s talk!) Failed Hypotheses Earlier on this week I flew down to Palo Alto, CA, to visit our Headquarters – and after having a great time with my Monkey peers, I was relaxing on the plane back to Seattle watching a great talk by SQL Server MVP and fellow MCM Maciej Pilecki [twitter] called “Masterclass: A Day in the Life of a Database Transaction” where he discusses many different topics related to transaction management inside SQL Server. Very good stuff, and when I got home it was a little late – that slow DBCC CHECKDB that I had been dealing with was way in the back of my head. As I was looking at the problem at hand earlier on this week, I thought “How about I set the database to read-only?” I remembered one of the things Maciej had (jokingly) said in his talk: “if you don’t want locking and blocking, set the database to read-only” (or something to that effect, pardon my loose memory). I immediately killed the CHECKDB which had been running painfully for days, and set the database to read-only mode. Then I ran DBCC CHECKDB against it. It started going really fast (even a bit faster than before), and then throttled down again to around 10Mb/sec. All sorts of expletives went through my head at the time. Sure enough, the same latching scenario was present. Oh well. I even spent some time trying to figure out if NUMA was hurting performance. Folks on Twitter made suggestions in this regard (thanks, Lonny! [twitter]) …Eureka? This past Friday I was still scratching my head about the whole thing; I was ready to start profiling with XPERF to see if I could figure out which part of the engine was to blame and then get Microsoft to look at the evidence. After getting a bunch of good news I’ll blog about separately, I sat down for a figurative smack down with CHECKDB before the weekend. And then the light bulb went on. A sparse column. I thought that I couldn’t possibly be experiencing the same scenario that Paul blogged about back in March showing extreme latching with non-clustered indexes on computed columns. Did I even have a non-clustered index on my sparse column? As it turns out, I did. I had one filtered non-clustered index – with the sparse column as the index key (and only column). To prove that this was the problem, I went and setup a test. Yup, that'll do it The repro is very simple for this issue: I tested it on the latest public builds of SQL Server 2008 R2 SP2 (CU6) and SQL Server 2012 SP1 (CU4). First, create a test database and a test table, which only needs to contain a sparse column: CREATE DATABASE SparseColTest; GO USE SparseColTest; GO CREATE TABLE testTable (testCol smalldatetime SPARSE NULL); GO INSERT INTO testTable (testCol) VALUES (NULL); GO 1000000 That’s 1 million rows, and even though you’re inserting NULLs, that’s going to take a while. In my laptop, it took 3 minutes and 31 seconds. Next, we run DBCC CHECKDB against the database: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; This runs extremely fast, as least on my test rig – 198 milliseconds. Now let’s create a filtered non-clustered index on the sparse column: CREATE NONCLUSTERED INDEX [badBadIndex] ON testTable (testCol) WHERE testCol IS NOT NULL; With the index in place now, let’s run DBCC CHECKDB one more time: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; In my test system this statement completed in 11433 milliseconds. 11.43 full seconds. Quite the jump from 198 milliseconds. I went ahead and dropped the filtered non-clustered indexes on the restored copy of our production database, and ran CHECKDB against that. We went down from 7+ days to 19 hours and 20 minutes. Cue the “Argenis is not impressed” meme, please, Mr. LaRock. My pain is your gain, folks. Go check to see if you have any of such indexes – they’re likely causing your consistency checks to run very, very slow. Happy CHECKDBing, -Argenis ps: I plan to file a Connect item for this issue – I consider it a pretty serious bug in the engine. After all, filtered indexes were invented BECAUSE of the sparse column feature – and it makes a lot of sense to use them together. Watch this space and my twitter timeline for a link.

    Read the article

  • DRY and SRP

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/06/11/dry-and-srp.aspxKent Beck’s XP Simplicity Rules (aka Four Rules of Simple Design) are a prioritized list of rules that when applied to your code generally yield a great design.  As you’ll see from the above link the list has slightly evolved over time.  I find today they are usually listed as: All Tests Pass Don’t Repeat Yourself (DRY) Express Intent Minimalistic These are prioritized.  If your code doesn’t work (rule 1) then everything else is forfeit.  Go back to rule one and get the code working before worrying about anything else. Over the years the community have debated whether the priority of rules 2 and 3 should be reversed.  Some say a little duplication in the code is OK as long as it helps express intent.  I’ve debated it myself.  This recent post got me thinking about this again, hence this post.   I don’t think it is fair to compare “Expressing Intent” against “DRY”.  This is a comparison of apples to oranges.  “Expressing Intent” is a principal of code quality.  “Repeating Yourself” is a code smell.  A code smell is merely an indicator that there might be something wrong with the code.  It takes further investigation to determine if a violation of an underlying principal of code quality has actually occurred. For example “using nouns for method names”, “using verbs for property names”, or “using Booleans for parameters” are all code smells that indicate that code probably isn’t doing a good job at expressing intent.  They are usually very good indicators.  But what principle is the code smell of Duplication pointing to and how good of an indicator is it? Duplication in the code base is bad for a couple reasons.  If you need to make a change and that needs to be made in a number of locations it is difficult to know if you have caught all of them.  This can lead to bugs if/when one of those locations is overlooked.  By refactoring the code to remove all duplication there will be left with only one place to change, thereby eliminating this problem. With most projects the code becomes the single source of truth for a project.  If a production code base is inconsistent with a five year old requirements or design document the production code that people are currently living with is usually declared as the current reality (or truth).  Requirement or design documents at this age in a project life cycle are usually of little value. Although comparing production code to external documentation is usually straight forward, duplication within the code base muddles this declaration of truth.  When code is duplicated small discrepancies will creep in between the two copies over time.  The question then becomes which copy is correct?  As different factions debate how the software should work, trust in the software and the team behind it erodes. The code smell of Duplication points to a violation of the “Single Source of Truth” principle.  Let me define that as: A stakeholder’s requirement for a software change should never cause more than one class to change. Violation of the Single Source of Truth principle will always result in duplication in the code.  However, the inverse is not always true.  Duplication in the code does not necessarily indicate that there is a violation of the Single Source of Truth principle. To illustrate this, let’s look at a retail system where the system will (1) send a transaction to a bank and (2) print a receipt for the customer.  Although these are two separate features of the system, they are closely related.  The reason for printing the receipt is usually to provide an audit trail back to the bank transaction.  Both features use the same data:  amount charged, account number, transaction date, customer name, retail store name, and etcetera.  Because both features use much of the same data, there is likely to be a lot of duplication between them.  This duplication can be removed by making both features use the same data access layer. Then start coming the divergent requirements.  The receipt stakeholder wants a change so that the account number has the last few digits masked out to protect the customer’s privacy.  That can be solve with a small IF statement whilst still eliminating all duplication in the system.  Then the bank wants to take a picture of the customer as well as capture their signature and/or PIN number for enhanced security.  Then the receipt owner wants to pull data from a completely different system to report the customer’s loyalty program point total. After a while you realize that the two stakeholders have somewhat similar, but ultimately different responsibilities.  They have their own reasons for pulling the data access layer in different directions.  Then it dawns on you, the Single Responsibility Principle: There should never be more than one reason for a class to change. In this example we have two stakeholders giving two separate reasons for the data access class to change.  It is clear violation of the Single Responsibility Principle.  That’s a problem because it can often lead the project owner pitting the two stakeholders against each other in a vein attempt to get them to work out a mutual single source of truth.  But that doesn’t exist.  There are two completely valid truths that the developers need to support.  How is this to be supported and honour the Single Responsibility Principle?  The solution is to duplicate the data access layer and let each stakeholder control their own copy. The Single Source of Truth and Single Responsibility Principles are very closely related.  SST tells you when to remove duplication; SRP tells you when to introduce it.  They may seem to be fighting each other, but really they are not.  The key is to clearly identify the different responsibilities (or sources of truth) over a system.  Sometimes there is a single person with that responsibility, other times there are many.  This can be especially difficult if the same person has dual responsibilities.  They might not even realize they are wearing multiple hats. In my opinion Single Source of Truth should be listed as the second rule of simple design with Express Intent at number three.  Investigation of the DRY code smell should yield to the proper application SST, without violating SRP.  When necessary leave duplication in the system and let the class names express the different people that are responsible for controlling them.  Knowing all the people with responsibilities over a system is the higher priority because you’ll need to know this before you can express it.  Although it may be a code smell when there is duplication in the code, it does not necessarily mean that the coder has chosen to be expressive over DRY or that the code is bad.

    Read the article

  • Visiting the Fire Station in Coromandel

    Hm, I just tried to remember how we actually came up with this cool idea... but it's already too blurred and it doesn't really matter after all. Anyway, if I remember correctly (IIRC), it happened during one of the Linux meetups at Mugg & Bean, Bagatelle where Ajay and I brought our children along and we had a brief conversation about how cool it would be to check out one of the fire stations here in Mauritius. We both thought that it would be a great experience and adventure for the little ones. An idea takes shape And there we go, down the usual routine these... having an idea, checking out the options and discussing who's doing what. Except this time, it was all up to Ajay, and he did a fantastic job. End of August, he told me that he got in touch with one of his friends which actually works as a fire fighter at the station in Coromandel and that there could be an option to come and visit them (soon). A couple of days later - Confirmed! Be there, and in time... What time? Anyway, doesn't really matter... Everything was settled and arranged. I asked the kids on Friday afternoon if they might be interested to see the fire engines and what a fire fighter is doing. Of course, they were all in! Getting up early on Sunday morning isn't really a regular exercise for all of us but everything went smooth and after a short breakfast it was time to leave. Where are we going? Are we there yet? Now, we are in Bambous. Why do you go this way? The kids were so much into it. Absolutely amazing to see their excitement. Are we there yet? Well, we went through the sugar cane fields towards Chebel and then down into the industrial zone at Coromandel. Honestly, I had a clue where the fire station is located but having Google Maps in reach that shouldn't be a problem in case that we might get lost. But my worries were washed away when our children guided us... "There! Over there are the fire engines! We have to turn left, dad." - No comment, the kids were right! As we were there a little bit too early, we parked the car and the kids started to explore the area and outskirts of the fire station. Some minutes later, as if we had placed an order a unit of two cars had to go out for an alarm and the kids could witness them leaving as closely as possible. Sirens on and wow!!! Ladder truck L32 - MAN truck with Rosenbauer built-up and equipment by Metz Taking the tour Ajay arrived shortly after that and guided us finally inside the station to meet with his pal. The three guys were absolutely well-prepared and showed us around in the hall, explaining that there two units out at the moment. But the ladder truck (with max. 32m expandable height) was still around we all got a great insight into the technique and equipment on the vehicle. It was amazing to see all three kids listening to Mambo as give some figures about the truck and how the fire fighters are actually it. The children and 'our' fire fighters of the day had great fun with the various fire engines Absolutely fantastic that the children were allowed to experience this - we had so much fun! Ajay's son brought two of his toy fire engines along, shared them with ours, and they all played very well together. As a parent it was really amazing to see them at such an ease. Enough theory Shortly afterwards the ladder truck was moved outside, got stabilised and ready to go for 'real-life' exercising. With the additional equipment of safety helmets, security belts and so on, we all got a first-hand impression about how it could be as a fire-fighter. Actually, I was totally amazed by the curiousity and excitement of my BWE. She was really into it and asked lots of interesting questions - in general but also technical. And while our fighters were busy with Ajay and family, I gave her some more details and explanations about the truck, the expandable ladder, the safety cage at the top and other equipment available. Safety first! No exceptions and always be prepared for the worst case... Also, the equipped has been checked prior to excuse - This is your life saver... Hooked up and ready to go... ...of course not too high. This is just a demonstration - and 32 meters above ground isn't for everyone. Well, after that it was me that had the asking looks on me, and I finally revealed to the local fire fighters that I was in the auxiliary fire brigade, more precisely in the hazard department, for more than 10 years. So not a professional fire fighter but at least a passionate and educated one as them. Inside the station Our fire fighters really took their time to explain their daily job to kids, provided them access to operation seat on the ladder truck and how the truck cabin is actually equipped with the different radios and so on. It was really a great time. Later on we had a brief tour through the building itself, and again all of our questions were answered. We had great fun and started to joke about bits and pieces. For me it was also very interesting to see the comparison between the fire station here in Mauritius and the ones I have been to back in Germany. Amazing to see them completely captivated in the play - the children had lots of fun! Also, that there are currently ten fire stations all over the island, plus two additional but private ones at the airport and at the harbour. The newest one is actually down in Black River on the west coast because the time from Quatre Bornes takes too long to have any chance of an effective alarm at all. IMHO, a very good decision as time is the most important factor in getting fire incidents under control. After all it was great experience for all of us, especially for the children to see and understand that their toy trucks are only copies of the real thing and that the job of a (professional) fire fighter is very important in our society. Don't forget that those guys run into the danger zone while you're trying to get away from it as much as possible. Another unit just came back from a grass fire - and shortly after they went out again. No time to rest, too much to do! Mauritian Fire Fighters now and (maybe) in the future... Thank you! It was an honour to be around! Thank you to Ajay for organising and arranging this Sunday morning event, and of course of Big Thank You to the three guys that took some time off to have us at the Fire Station in Coromandel and guide us through their daily job! And remember to call 115 in case of emergencies!

    Read the article

  • Why you need to learn async in .NET

    - by PSteele
    I had an opportunity to teach a quick class yesterday about what’s new in .NET 4.0.  One of the topics was the TPL (Task Parallel Library) and how it can make async programming easier.  I also stressed that this is the direction Microsoft is going with for C# 5.0 and learning the TPL will greatly benefit their understanding of the new async stuff.  We had a little time left over and I was able to show some code that uses the Async CTP to accomplish some stuff, but it wasn’t a simple demo that you could jump in to and understand so I thought I’d thrown one together and put it in a blog post. The entire solution file with all of the sample projects is located here. A Simple Example Let’s start with a super-simple example (WindowsApplication01 in the solution). I’ve got a form that displays a label and a button.  When the user clicks the button, I want to start displaying the current time for 15 seconds and then stop. What I’d like to write is this: lblTime.ForeColor = Color.Red; for (var x = 0; x < 15; x++) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); Thread.Sleep(1000); } lblTime.ForeColor = SystemColors.ControlText; (Note that I also changed the label’s color while counting – not quite an ILM-level effect, but it adds something to the demo!) As I’m sure most of my readers are aware, you can’t write WinForms code this way.  WinForms apps, by default, only have one thread running and it’s main job is to process messages from the windows message pump (for a more thorough explanation, see my Visual Studio Magazine article on multithreading in WinForms).  If you put a Thread.Sleep in the middle of that code, your UI will be locked up and unresponsive for those 15 seconds.  Not a good UX and something that needs to be fixed.  Sure, I could throw an “Application.DoEvents()” in there, but that’s hacky. The Windows Timer Then I think, “I can solve that.  I’ll use the Windows Timer to handle the timing in the background and simply notify me when the time has changed”.  Let’s see how I could accomplish this with a Windows timer (WindowsApplication02 in the solution): public partial class Form1 : Form { private readonly Timer clockTimer; private int counter;   public Form1() { InitializeComponent(); clockTimer = new Timer {Interval = 1000}; clockTimer.Tick += UpdateLabel; }   private void UpdateLabel(object sender, EventArgs e) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); counter++; if (counter == 15) { clockTimer.Enabled = false; lblTime.ForeColor = SystemColors.ControlText; } }   private void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; counter = 0; clockTimer.Start(); } } Holy cow – things got pretty complicated here.  I use the timer to fire off a Tick event every second.  Inside there, I can update the label.  Granted, I can’t use a simple for/loop and have to maintain a global counter for the number of iterations.  And my “end” code (when the loop is finished) is now buried inside the bottom of the Tick event (inside an “if” statement).  I do, however, get a responsive application that doesn’t hang or stop repainting while the 15 seconds are ticking away. But doesn’t .NET have something that makes background processing easier? The BackgroundWorker Next I try .NET’s BackgroundWorker component – it’s specifically designed to do processing in a background thread (leaving the UI thread free to process the windows message pump) and allows updates to be performed on the main UI thread (WindowsApplication03 in the solution): public partial class Form1 : Form { private readonly BackgroundWorker worker;   public Form1() { InitializeComponent(); worker = new BackgroundWorker {WorkerReportsProgress = true}; worker.DoWork += StartUpdating; worker.ProgressChanged += UpdateLabel; worker.RunWorkerCompleted += ResetLabelColor; }   private void StartUpdating(object sender, DoWorkEventArgs e) { var workerObject = (BackgroundWorker) sender; for (int x = 0; x < 15; x++) { workerObject.ReportProgress(0); Thread.Sleep(1000); } }   private void UpdateLabel(object sender, ProgressChangedEventArgs e) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); }   private void ResetLabelColor(object sender, RunWorkerCompletedEventArgs e) { lblTime.ForeColor = SystemColors.ControlText; }   private void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; worker.RunWorkerAsync(); } } Well, this got a little better (I think).  At least I now have my simple for/next loop back.  Unfortunately, I’m still dealing with event handlers spread throughout my code to co-ordinate all of this stuff in the right order. Time to look into the future. The async way Using the Async CTP, I can go back to much simpler code (WindowsApplication04 in the solution): private async void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; for (var x = 0; x < 15; x++) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); await TaskEx.Delay(1000); } lblTime.ForeColor = SystemColors.ControlText; } This code will run just like the Timer or BackgroundWorker versions – fully responsive during the updates – yet is way easier to implement.  In fact, it’s almost a line-for-line copy of the original version of this code.  All of the async plumbing is handled by the compiler and the framework.  My code goes back to representing the “what” of what I want to do, not the “how”. I urge you to download the Async CTP.  All you need is .NET 4.0 and Visual Studio 2010 sp1 – no need to set up a virtual machine with the VS2011 beta (unless, of course, you want to dive right in to the C# 5.0 stuff!).  Starting playing around with this today and see how much easier it will be in the future to write async-enabled applications.

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • first install for windows eight.....da beta

    - by raysmithequip
    The W8 preview is now installed and I am enjoying it.  I remember the learning curve of my first unix machine back in the eighties, this ain't that.It is normal for me to do the first os install with a keyboard and low end monitor...you never know what you'll encounter out in the field.  The OS took like a fish to water.  I used a low end INTEL motherboard dp55w I gathered on the cheap, an 1157 i5 from the used bin a pair of 6 gig ddr3 sticks, a rosewell 550 watt power supply a cheap used twenty buck sub 200g wd sata drive, a half working dvd burner and an asus fanless nvidia vid card, not a great one but Sub 50.00 on newey eggey...I did have to hunt the ms forums for a key and of course to activate the thing, if dos would of needed this outmoded ritual, we would still be on cpm and osborne would be a household name, of course little do people know that this ritual was common as far back as the seventies on att unix installs....not, but it was possible, I used to joke about when I ran a bbs, what hell would of been wrought had dos 3.2 machines been required to dial into my bbs to send fido mail to ms and wait for an acknowledgement.  All in all the thing was pushing a seven on the ms richter scale, not including the vid card, sadly it came in at just a tad over three....I wanted to evaluate it for a possible replacement on critical machines that in the past went down due to a vid card fan failure....you have no idea what a customer thinks when you show them a failed vid card fan..."you mean that little plastic piece of junk caused all this!!??!!!"...yea man.  Some production machines don't need any sort of vid, I will at least keep it on the maybe list for those, MTBF is a very important factor, some big box stores should put percentage of failure rate within 24 month estimates on the outside of the carton for sure.  And a warning that the power supplies are already at their limit.  Let's face it, today even 550w can be iffy.A few neat eye candy improvements over the earlier windows is nice, the metro screen is nice, anyone who has used a newer phone recently will intuitively drag their fingers across the screen....lot of good that was with no mouse or touch screen though.  Lucky me, I have been using windows since day one, I still have a copy of win 2.0 (and every other version) for no good reason.  Still the old ix collection of disks is much larger, recompiling any kernal is another silly ritual, same machine, different day, same recompile...argh. Rh is my all time fav, mandrake was always missing something, like it rewrote the init file or something, novell is ok as long as you stay on the beaten path and of course ubuntu normally recompiles with the same errors consistantly....makes life easy that way....no errors on windows eight, just a screen that did not match the installed hardware, natuarally I alt tabbed right out of it, then hit the flag key to find the start menu....no start button. I miss the start button already. Keyboard cowboy funnin and I was browsing the harddrive, nothing stunning there, I like that, means I can find stuff. Only I can't find what I want, the start button....the start menu is that first screen for touch tablets. No biggie for useruser, that is where they will want to be, I can see that. Admins won't want to be there, it is easy enough to get the control panel a bazzilion other ways though, just not the start button. (see a pattern here?). Personally, from the keyboard I find it fun to hit the carets along the location bar at the top of the explorer screen with tabs and arrows and choose SHOW ALL CONTROL PANEL ITEMS, or thereabouts. Bottom line, I love seven and I'll love eight even more!...very happy I did not have to follow the normal rule of thumb (a customer watching me build a system and asking questions said "oh I get it, so every piece you put in there is basically a hundred bucks, right?)...ok, sure, pretty much, more or less, well, ya dude.  It will be WAY past october till I get a real touch screen but I did pick up a pair of cheap tatungs so I can try the NEW main start screen, I parse a lot of folders and have a vision of how a pair of touch screens will be easier than landing a rover on mars.  Ok.  fine, they are way smallish, and I don't expect multitouch to work but we are talking a few percent of a new 21 inch viewsonic touch screen.  Will this OS be a game changer?  I don't know.  Bottom line with all the pads and droids in the world, it is more of a catch up move at first glance.  Not something ms is used to.  An app store?  I can see ms's motivation, the others have it.  I gather there will not be gadgets there, go ahead and see what ms did  to the once populated gadget page...go ahead, google gadgets and take a gander, used to hundreds of gadgets, they are already gone.  They replaced gadgets?  sort of, I'll drop that, it's a bit of a sore point for me.  More of interest was what happened when I downloaded stuff off codeplex and some other normal programs that I like, like orbitron, top o' my list!!...cardware it is...anyways, click on the exe, get a screen, normal for windows, this one indicated that I was not running a normal windows program and had a button for  exit the install, naw, I hit details, a hidden run program anyways came into view....great, my path to the normal windows has detected a program tha.....yea ok, acl is on, fine, moving along I got orbitron installed in record time and was tracking the iss on the newest Microsoft OS, beta of course, felt like the first time I setup bsd all those year ago...FUN!!...I suppose I gotta start to think about budgeting for the real os when it comes out in october, by then I should have a rasberry pi and be done with fedora remixed.  Of course that sounds like fun too!!  I would use this OS on a tablet or phone.  I don't like the idea of being hearded to an app store, don't like that on anything, we are americans and want real choices not marketed hype, lest you are younger with opm (other peoples money).   This os would be neat on a zune, but I suspect the zune is a gonner, I am rooting for microsoft, after all their default password is not admin anymore, nor alpine,  it's blank. Others force a password, my first fawn password was so long I could not even log into it with the password in front of me, who the heck uses %$# anyways, and if I was writing a brute force attack what the heck kinda impasse is that anyways at .00001 microseconds of a code execution cycle (just a non qualified number, not a real clock speed)....AI is where it will be before too long, MS is on that path, perhaps soon someone will sit down and write an app for the kinect that watches your eyes while you scan the new main start screen, clicking on the big E icon when you blink.....boy is that going to be fun!!!! sure. Blink,dammit,blink,dammit...... OPM no doubt.I like windows eight, we are moving forwards, better keep a close eye on ubuntu.  The real clinch comes when open source becomes paid source......don't blink, I already see plenty of very expensive 'ix apps, some even in app stores already.  more to come.......

    Read the article

  • DevConnections Spring 2010 Speaker Evals and Tips

    As a conference speaker, I always look forward to hearing from attendees whether they felt my sessions were valuable and worth their time.  Its always gratifying  get a high score, but of course its the (preferably constructive) criticism thats key to continued improvement.  Im by no means the best technical presenter around, and Im always looking for ways to improve. Ive recently spoken at a few events, including TechEd and an Ohio event called Stir Trek.  DevConnections was actually back in April, but theyre just getting their final evals out to speakers.  TechEd, of course, does online evals so immediately after your talks you can see what people think.  Ill try and post my TechEd evals in the next week or so. I gave 3 talks at DevConnections Spring 2010 / VS2010 Launch which I discussed in this previous blog post.  In this follow-up, Im just going to share some eval info and my thoughts on it, albeit a couple of months later. Pragmatic ASP.NET Tips, Tricks, and Tools Evals Turned In: 27 Overall Eval: 3.74 Average Score: 3.47 89% found the technical level Just Right.  7.4% thought it was too basic (3.6% did not respond).  Since nobody thought the content was Too complex, I could perhaps have added some more complex material, but having about 90% say its Just Right is pretty good. 92% said at least 50% of the material was new to them.  36% said 75% or more was new.  Thats also pretty good, I think. 77.8% can use the information immediately; 15% can use it within 2-6 months (7.2 % no response). Overall 78% rated the session Excellent, 18% Good, 4% Fair. All comments (9): Steve did a great job Excellent session! It was good. Im now super excited to attend Steves other sessions later today.  Very useful. One of the best speakers here.  Bring him back to future conferences please. Continue to have this session with new and old stuff.  I always find something I did not know about. Excellent!  This was the best session Ive seen all week. Did not increase font on all pages could not see. For Steve to have had more sessions. Note to self make the fonts bigger across the board.  Otherwise, this is all good for my ego. :)  This is always a very popular session and one I really enjoy giving.  Tips and Tricks talks are pretty easy because you dont have to go in depth with any particular thing, and theyre almost always with existing technology so youre not dealing with betas, lack of documentation, and other issues.  Its an easy session to do well, in my experience, and one which I think attendees definitely appreciate.   Whats New in ASP.NET MVC 2 Evals Turned In: 23 Overall Eval: 3.77 Average Score: 3.47 (wow, I cant believe I scored better on this talk than the tips and tricks talk, which Ive given many times and was more excited about) 96% found the technical level Just Right.  90% found 50% or more of the material to be new.  43% can use the info immediately, and another 43% can use it within 2-6 months I guess that speaks to adoption rates of MVC 2 among my attendees Overall 74% said the session was Excellent, 22% Good.  4% No Response. All Comments (6): Great job, thank you. Great speaker! Really good, a little lost in the code at some points, but great information. Speaker needs to repeat questions from audience for everyone to hear. Exceeded my expectations. Great speaker, very informative. I really do try to religiously repeat questions from the audience for everyone to hear, but obviously I didnt do it 100% of the time.  Note to self remember to repeat questions.  That and making fonts big are really basic speaker best practices, which just goes to prove that fundamentals are always something that can be perfected.   SOLIDify Your ASP.NET MVC 2 Application Evals Turned In: 8 (!) Overall Eval: 3.63 Average Score: 3.47 As I recall this was one of the last talks of the day / show, which might account for the low number of evals turned in.  I dont recall speaking to an empty room for this talk, although it certainly wasnt as crowded as the tips and tricks talk. 100% found the technical level Just Right.  100% found at least half the material new.  62.5% can use it at once and 37.5% within 2-6 months.  62.5% rated the session Excellent overall; 37.5% Good.  Im thinking there were 5 evals with all 4s checked and 3 with all 3s checked (4 = Excellent, 3 = Good) All Comments (3): This covered many topics Ive read about recently, and it helped reinforce them. It was a nice overview of the solid principle, but I thought there might be specifics for MVC2.  I am glad there is not. Move a little slower. Ok, so another fundamental dont go too fast.  Looks like I got one fundamental tip from the comments of each talk. My Take-Aways Remember the fundamentals.  Its worth going through a checklist prior to presenting to make sure these things are fresh in your mind.  Increase all font sizes.  Repeat all questions from audience members without microphones (this is also a great way to stall for time, btw).  Resist the urge to move too quickly especially if youre nervous or short of time.  Writing this up in a blog post also further reinforces these fundamentals for me, which is one of the main reasons why I do it I retain things better when I write them, and even moreso when I write them for public consumption since I have to really think about what Im saying.  And maybe a few of you find this interesting or helpful, which is a bonus. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Top 10 Browser Productivity Tips

    - by Renso
    Originally posted on: http://geekswithblogs.net/renso/archive/2013/10/14/top-10-browser-productivity-tips.aspxYou don’t have to be a geek to be a productive browser user. The tips below have been selected by actions users take most of the time to navigate a web-site but use long-standing keyboard or mouse actions to get them done, when there are keyboard short-cuts you can use instead. Since you hands are already on the keyboard it is almost always faster to sue a keyboard shortcut to get something done that you usually used the mouse for. For example right-clicking on something to copy it and then doing to same for pasting something is very time consuming, keyboard shortcuts have been created that simplify the task. All it takes are a few memory brain cells to remember them. Here are the tips, in no particular order:   Tip 1 Hold down the spacebar on your keyboard to page to the end of your web page rather than using your mouse. This is really a slow way of doing it. If you want to page one page at a time, hit the spacebar once, and again to page again. But if you want to page all the way to the end of the web page simply hit Ctrl+End (that is hold down the Ctrl key and hit the End button on your keyboard). To get to the top of your web page, simply hit Ctrl + Home to go all the way to the top of your web page. Tip 2 Where are my downloads? Some folks run downloads again-and-again because they do not know where the last one went and they do not see the popup, or browser note on their web page in the footer, etc. Simply hit Ctrl+J. Works in most browsers. Tip 3 Selecting a US state from a drop down box. Don’t use the mouse, takes just way too long to scroll. When you tab to the drop down box or click on it with your mouse, simply hit the first character of the state and it will be selected. For Texas for example hit the letter “T” twice on your keyboard to get to it. The same concept can be applied to any drop down box that is alphabetical or numerically sorted. Tip 4 Fixing spelling errors. All modern-day browsers support this now. You see the red wavy lines underscoring a word, yes it is a spelling error. How do you fix it? Don’t overtype it or try and fix it manually, fist right-click on it and a list of suggestions comes up. If it does not show up, like my name “Renso” and you know how to spell your name as in this example, look further down the list of options (the little window popup that appears when you right click) and you should see an option to “Add to Dictionary”. Be warned, when you add it, it only adds it to the browser you’re using’s dictionary. If you use Google Chrome, Firefox and IE, each one will have their own list. Tip 5 So you have trouble seeing the text on the screen. Or you are looking at a photo, for example in Facebook. You want to zoom in to read better or zoom into a photo a bit more. Hit Ctrl++ (hold down Ctrl key and hit the plus key – actually it’s the equal key but it is easier to remember that it is plus for bigger). Hit the minus to zoom out. Now you can’t remember what the original size was since you were so excited to hit it 20 times, or was that 21… Simply hit Ctrl+0 (that is zero) and it will reset it to the default. Tip 6 So you closed a couple of tabs in your browser. Suddenly you remember something you wanted to double-check something on one of the tabs, you cannot remember the URL ad the tab is gone forever, or is it? Simply hit Ctrl+Shift+t and it will bring back your tabs one by one each time you click the T. This has also been a great way for me to quickly close some tabs because I don’t want my boss to see I’m shopping and then hitting Ctrl+Shift+t to quickly get it back and complete my check-put and purchase. Or, for parents, when you walk into your daughter’s room and you see she quickly clicks and closes a window/tab in here browser. Not to worry my little darling, daddy will Ctrl+Shift+t and see what boys on Facebook you were talking too… Tip 7 The web browser is frozen on your PC/Laptop/Whatever, in this example it may be your Internet Explorer browser. I don’t mention Firefox or Chrome here because it probably never happens in their world. You cannot close it, it won’t respond to anything you have done s far except for the next step you are about to take, which is throw your two-day old coffee on your keyboard. This happens especially on sites that want to force you to complete a purchase order. Hit Ctrl+Alt+Del on your keyboard on any version of windows, select TASK MANAGER. In the  First Tab, which is the Process Tab, look for the item in question. In this example you should see Internet Explorer. Right-click it and select “End Task”. It will force the thread out of memory and terminate that process. You can of course do this with any program running under your account. Tip 8 This is a personal favorite of mine. To select words in the paragraph without using the mouse. You don’t want to select one character at a time like when you use the Ctrl+arrows as it can be very slow if you want to select a lot of text. You also want to select whole words. Simply use the Ctrl+Shift_arrow (right or left depending which direction you want to go. Tip 9 I was a bit reluctant to add this one, but being in the professional services industry still come across many-a-folk that simply can’t copy-and-paste them-all text or images that reside on them screens, y’all. Ctrl+c to copy and Ctrl+v to paste it. Works a lot faster than using the mouse. You may be asking: “Well why in the devil did they not use Ctrl+p for paste…. because that is for printing. This is of course not limited to the browser world, it applies to almost any piece of software running on PC or Mac. Go try it on an image on your browser, right-click it and select copy. Open a word document and Ctrl+v to paste the image in there. Please consider copyright laws. Tip 10 Getting rid of annoying ads. Now this only works when you load a web page, meaning when you get back to the same page later you will have to do this again and you will need to learn a tool to do it, WELL WORTH IT. For example, I use GrooveShark to listen to music but I don’t like the ads they show. Install a tool like Firebug for Firefox or use the Ctrl+Shift+I on Chrome to bring up the developer toolbar. Shows at the bottom of the page. With Firefox, once you have installed Firebug as an add-on, a yellow bug should appear on the top right-hand-side of your browser, click on it to display the developer toolbar. You will need to learn how to use it, but once you know how to select an item/section on the window (usually just right-click the add you don’t want to see and select “Inspect Element”, the developer toolbar will appear (if not already there)) and then simply hit delete and it will remove the add from the screen. If you don’t know HTML you may need to play with it a bit, but once you understand how it works can open up a whole new world for you on how web pages actually work. If you can think of any others that have saved you a ton of time please let me know so I can add them to a top 99 list.

    Read the article

  • Corsair Hackers Reboot

    It wasn't easy for me to attend but it was absolutely worth to go. The Linux User Group of Mauritius (LUGM) organised another get-together for any open source enthusiast here on the island. Strangely named "Corsair Hackers Reboot" but it stands for a positive cause: "Corsair Hackers Reboot Event A collaborative activity involving LUGM, UoM Computer Club, Fortune Way Shopping Mall and several geeks from around the island, striving to put FOSS into homes & offices. The public is invited to discover and explore Free Software & Open Source." And it was a good opportunity for me and the kids to visit the east coast of Mauritius, too. Perfect timing It couldn't have been better... Why? Well, for two important reasons (in terms of IT): End of support for Microsoft Windows XP - 08.04.2014 Release of Ubuntu 14.04 Long Term Support - 17.04.2014 Quite funnily, those two IT dates weren't the initial reasons and only during the weeks of preparations we put those together. And therefore it was even more positive to promote the use of Linux and open source software in general to a broader audience. Getting there ... Thanks to the new motor way M3 and all the additional road work which has been completed recently it was very simple to get across the island in a very quick and relaxed manner. Compared to my trips in the early days of living in Mauritius (and riding on a scooter) it was very smooth and within less than an hour we hit Centrale de Flacq. Well, being in the city doesn't necessarily mean that one has arrived at the destination. But thanks to modern technology I had a quick look on Google Maps, and we finally managed to get a parking behind the huge bus terminal in Flacq. From there it was just a short walk to Fortune Way. The children were trying to count the number of buses... Well, lots and lots of buses - really impressive actually. What was presented? There were different areas set up. Right at the entrance one's attention was directly drawn towards the elevated hacker's stage. Similar to rock stars performing their gig there was bunch of computers, laptops and networking equipment in order to cater the right working conditions for coding/programming challenge(s) on the one hand and for the pen-testing or system hacking competition on the other hand. Personally, I was very impresses that actually Nitin took care of the pen-testing competition. He hardly started one year back with Linux in general, and Kali Linux specifically. Seeing his personal development from absolute newbie to a decent Linux system administrator within such a short period of time, is really impressive. His passion to open source software made him a living. Next, clock-wise seen, was the Kid's Corner with face-painting as the main attraction. Additionally, there were numerous paper print outs to colour. Plus a decent workstation with the educational suite GCompris. Of course, my little ones were into that. They already know GCompris since a while as they are allowed to use it on an IGEL thin client terminal here at home. To simplify my life, I set up GCompris as full-screen guest session on the server, and they can pass the login screen without any further obstacles. And because it's a thin client hooked up to a XDMCP remote session I don't have to worry about the hardware on their desk, too. The next section was the main attraction of the event: BYOD - Bring Your Own Device Well, compared to the usual context of BYOD the corsairs had a completely different intention. Here, you could bring your own laptop and a team of knowledgeable experts - read: geeks and so on - offered to fully convert your system on any Linux distribution of your choice. And even though I came later, I was told that the USB pen drives had been in permanent use. From being prepared via dd command over launching LiveCD session to finally installing a fresh Linux system on bare metal. Most interestingly, I did a similar job already a couple of months ago, while upgrading an existing Windows XP system to Xubuntu 13.10. So far, the female owner is very happy and enjoys her system almost every evening to go shopping online, checking mails, and reading latest news from the Anime world. Back to the Hackers event, Ish told me that they managed approximately 20 conversion during the day. Furthermore, Ajay and others gladly assisted some visitors with some tricky issues and by the end of the day you can call is a success. While I was around, there was a elderly male visitor that got a full-fledged system conversion to a Linux system running completely in French language. A little bit more to the centre it was Yasir's turn to demonstrate his Arduino hardware that he hooked up with an experimental electrical circuit board connected to an LCD matrix display. That's the real spirit of hacking, and he showed some minor adjustments on the fly while demo'ing the system. Also, very interesting there was a thermal sensor around. Personally, I think that platforms like the Arduino as well as the Raspberry Pi have a great potential at a very affordable price in order to bring a better understanding of electronics as well as computer programming to a broader audience. It would be great to see more of those experiments during future activities. And last but not least there were a small number of vendors. Amongst them was Emtel - once again as sponsor of the general internet connectivity - and another hardware supplier from Riche Terre shopping mall. They had a good collection of Android related gimmicks, like a autonomous web cam that can convert any TV with HDMI connector into an online video chat system given WiFi. It's actually kind of awesome to have a Skype or Google hangout video session on the big screen rather than on the laptop. Some pictures of the event LUGM: Great conversations on Linux, open source and free software during the Corsair Hackers Reboot LUGM: Educational workstation running GCompris suite attracted the youngest attendees of the day. Of course, face painting had to be done prior to hacking... LUGM: Nadim demoing some Linux specifics to interested visitors. Everyone was pretty busy during the whole day LUGM: The hacking competition, here pen-testing a wireless connection and access point between multiple machines LUGM: Well prepared workstations to be able to 'upgrade' visitors' machines to any Linux operating system Final thoughts Gratefully, during the preparations of the event I was invited to leave some comments or suggestions, and the team of the LUGM did a great job. The outdoor banner was a eye-catcher, the various flyers and posters for the event were clearly written and as far as I understood from the quick chats I had with Ish, Nadim, Nitin, Ajay, and of course others all were very happy about the event execution. Great job, LUGM! And I'm already looking forward to the next Corsair Hackers Reboot event ... Crossing fingers: Very soon and hopefully this year again :) Update: In the media The event had been announced in local media, too. L'Express: Salon informatique: Hacking Challenge à Flacq

    Read the article

  • 5 Ways Android Still Disappoints (Me)

    - by TStewartDev
    Let me make this clear: I'm annoyed with Apple. I don't like their current policies and I don't like where Steve Jobs is taking the company. In general, I don't like it when any one company gets too much control in a market. When that happens, the leading company dictates the game and as consumers, our options all but disappear. That said, I'm still going to buy a new iPhone next week. My Apple-hating friends seem to desperately want me to go Android instead, but frankly, it's not good enough for me, and here are the reasons why. The Modern WinMo One of the reasons that Microsoft has identified for Windows Mobile's rapid decline is the breadth of hardware. They exercised little control over manufacturer's implementations. In theory, that sounds great. We as consumers have lots of choice. In practice, though, it meant among other things that updates to the devices were left up to the manufacturers. As a result, that rarely happened. (I'm still bitter at Toshiba for leaving me hanging back in 2002.) And now, Google is doing the same thing with Android. Case in point: my wife has a Motorola Backflip that we bought in April. It was released in March. Motorola says it will get Android 2.1 "sometime in Q3". Great. Meanwhile, I pull down the latest version of iPhone OS (now iOS) and install it the same day it's released. You may say that I can't judge Android by one lazy manufacturer. Yup, I sure can. With Apple, my original iPhone has been supported perfectly for 3 years. With Android, I will have to wait for upgrades after Google releases them, possibly indefinitely. Not cool. AT&T We signed a new contract with AT&T in April to get my wife's phone. I've had a reasonable experience with them. I don't imagine my experience with Verizon would be any better, and I'm relatively confident that Sprint doesn't have the coverage it takes to work well for us. The fact is, AT&T, for whatever reason, doesn't have jack for Android phones. May not be Android's fault, but it's still a shortcoming that prevents me from having it just like the iPhone's exclusivity keeps some folks on other networks from having it. Innovation? What Innovation? Android has a nice dashboard and a great notification system and… nothing else original. I keep reading about how disappointing the iPhone is nowadays. "It has no innovation," people say. Who does? Android has modeled its behavior after the iPhone. That's fine, but if all you've got is a similar product and I'm invested both skill-wise and app-wise in my current platform, why should I change? Microsoft's new Windows Phone 7 looks somewhat innovative, and I'm pretty excited to see what they'll bring to the table, but that's another six months away, at least. I've got a 3 year old phone that has some annoying issues now (thanks to recent encounters with water). I need a new phone now. Is This Going to Work? There's no shortage of criticism of Apple over its App Store policies, and I've vented my own anger about it. However, I will give them credit: their screening of apps has done a great job of weeding out the crap and gives an excellent indication that the app will work on my device. How about Android? Nope. It might work on your phone. Maybe. You'll have to try it to see. Get burned by it? Well, write a nasty review to try to keep others from making the mistake you did. If you don't mind doing that stuff, then Android is the platform for you. Personally, I'd rather have a receptionist screening out the telemarketing and survey calls than hang up on them myself, but that's your call. Slow, Slowing, Slower All this yapping about multitasking. This is an area I've been on Apple's side from the beginning. Sorry folks, but this is the number one reason I hated Windows Mobile: the longer you use it, the slower it gets because it doesn't kill apps. I'm with Steve Jobs on this one: if you see a task manager, we're doing it wrong. I don't want to have to manually kill apps. I hate doing that on Windows let alone on a mobile device. To me, priority one should be keeping the device speedy. Waiting for your device to respond is unacceptable. Bonus! Taken from iPhone Letdown? 8 Things Apple Didn't Announce, here are my responses: 4G Yeah, let me know if your area actually has it. I live in Lincoln, Nebraska. No carrier is going to have 4G here for at least 3 years. Meanwhile, you still get to pay for it. Yay! Cloud iTunes/OTA Sync You got me here. Of course, whether or not your Android device will be able to do it is always a good question. 3G Video Chat You got me here, too. I'm sure you spent countless hours in front of your phone with video chat. Also, I can't wait for the "No Video Chat While Driving" laws. Mobile Hotspot This is a neat feature, but as the author points out, it's left up to the carrier whether to implement it or not. Pretty sure any Android phones that come to AT&T won't have this enabled in the foreseeable future. Is Verizon even allowing this? I just figured Sprint was because they're failing so hard at keeping customers. Free MobileMe I use Google's services with my iPhone. The only people I know who use MobileMe are Apple fanboys and fangirls. If you choose to pay for a service that you can get for free, that's your decision, not Apple's. Voice Input Voice input has been available on phones (even "dumb" phones) for years now. iPhone does have the ability, though limited. Why don't I hear people telling their phones what to do? Maybe because it's still easier to use your fingers than talk to it. Get back to me when this becomes an important feature. Free Navigation Maybe this will be a bigger deal to me now that I'm getting a phone with GPS, but when using my buddy's 3gs, Google maps has worked just fine. Maybe I just don't trust turn-by-turn navigation enough to want it. Dashboard The only legitimate complaint on this list, to me. iPhone's home screen is pathetic, doubly so for the iPad. What a waste of perfectly usable space. I also want to add notifications to this list. Android's notification panel is far superior to the iPhone's. I don't want to hunt all over my screen to find little red dots. Put 'em in one place, Apple.

    Read the article

  • Why people don't patch and upgrade?!?

    - by Mike Dietrich
    Discussing the topic "Why Upgrade" or "Why not Upgrade" is not always fun. Actually the arguments repeat from customer to customer. Typically we hear things such as: A PSU or Patch Set introduces new bugs A new PSU or Patch Set introduces new features which lead to risk and require application verification  Patching means risk Patching changes the execution plans Patching requires too much testing Patching is too much work for our DBAs Patching costs a lot of money and doesn't pay out And to be very honest sometimes it's hard for me to stay calm in such discussions. Let's discuss some of these points a bit more in detail. A PSU or Patch Set introduces new bugsWell, yes, that is true as no software containing more than some lines of code is bug free. This applies to Oracle's code as well as too any application or operating system code. But first of all, does that mean you never patch your OS because the patch may introduce new flaws? And second, what is the point of saying "it introduces new bugs"? Does that mean you will never get rid of the mean issues we know about and we fixed already? Scroll down from MOS Note:161818.1 to the patch release you are on, no matter if it's 10.2.0.4 or 11.2.0.3 and check for the Known Issues And Alerts.Will you take responsibility to know about all these issues and refuse to upgrade to 11.2.0.4? I won't. A new PSU or Patch Set introduces new featuresOk, we can discuss that. Offering new functionality within a database patch set is a dubious thing. It has advantages such as in 11.2.0.4 where we backported Database Redaction to. But this is something you will only use once you have an Advanced Security license. I interpret that statement I've heard quite often from customers in a different way: People don't want to get surprises such as new behaviour. This certainly gives everybody a hard time. And we've had many examples in the past (SESSION_CACHED_CURSROS in 10.2.0.4,  _DATAFILE_WRITE_ERRORS_CRASH_INSTANCE in 11.2.0.2 and others) where those things weren't documented, not even in the README. Thanks to many friends out there I learned about those as well. So new behaviour is the topic people consider as risky - not really new features. And just to point this out: A PSU never brings in new features or new behaviour by definition! Patching means riskDoes it really mean risk? Yes, there were issues in the past (and sometimes in the present as well) where a patch didn't get installed correctly. But personally I consider it way more risky to not patch. Keep that in mind: The day Oracle publishes an PSU (or CPU) containing security fixes all the great security experts out there go public with their findings as well. So from that day on even my grandma can find out about those issues and try to attack somebody. Now a lot of people say: "My database does not face the internet." And I will answer: "The enemy is sitting already behind your firewalls. And knows potentially about these things." My statement: Not patching introduces way more risk to your environment than patching. Seriously! Patching changes the execution plansDo they really? I agree - there's a very small risk for this happening with Patch Sets. But not with PSUs or CPUs as they contain no optimizer fixes changing behaviour (but they may contain fixes curing wrong-query-result-bugs). But what's the point of a changing execution plan? In Oracle Database 11g it is so simple to be prepared. SQL Plan Management is a free EE feature - so once that occurs you'll put the plan into the Plan Baseline. Basta! Yes, you wouldn't like to get such surprises? Than please use the SQL Performance Analyzer (SPA) from Real Application Testing and you'll detect that easily upfront in minutes. And not to forget this, a plan change can also be very positive!Yes, there's a little risk with a database patchset - and we have many possibilites to detect this before patching. Patching requires too much testingWell, does it really? I have seen in the past 12 years how people test. There are very different efforts and approaches on this. I have seen people spending a hell of money on licenses or on project team staffing. And I have seen people sailing blindly without any tests just going the John-Wayne-approach.Proper tools will allow you to test easily without too much efforts. See the paragraph above. We have used Real Application Testing in so many customer projects reducing the amount of work spend on testing by over 50%. But apart from that at some point you will have to stop testing. If you don't you'll get lost and you'll burn money. There's no 100% guaranty. You will have to deal with a little risk as reaching the final 5% of certainty will cost you the same as it did cost to reach 95%. And doing this will lead to abnormal long product cycles that you'll run behind forever. And this will cost even more money. Patching is too much work for our DBAsPatching is a lot of work. I agree. And it's no fun work. It's boring, annoying. You don't learn much from that. That's why you should try to automate this task. Use the Database's Lifecycle Management Pack. And don't cry about the fact that it costs money. Yes it does. But it will ease the process and you'll save a lot of costs as you don't waste your valuable time with patching. Or use Oracle Database 12c Oracle Multitenant and patch either by unplug/plug or patch an entire container database with all PDBs with one patch in one task. We have customer reference cases proofing it saved them 75% of time, effort and cost since they've used Lifecycle Management Pack. So why don't you use it? Patching costs a lot of money and doesn't pay outWell, see my statements in the paragraph above. And it pays out as flying with a database with 100 known critical flaws in it which are already fixed by Oracle (such as in the Oct 2013 PSU for Oracle Database 12c) will cost ways more in case of failure or even data loss. Bet with me? Let me finally ask you some questions. What cell phone are you using and which OS does it run? Do you have an iPhone 5 and did you upgrade already to iOS 7.0.3? I've just encountered on mine that the alarm (which I rely on when traveling) has gotten now a dependency on the physical switch "sound on/off". If it is switched to "off" physically the alarm rings "silently". What a wonderful example of a behaviour change coming in with a patch set. Will this push you to stay with iOS5 or iOS6? No, because those have security flaws which won't be fixed anymore. What browser are you surfing with? Do you use Mozilla 3.6? Well, congratulations to all the hackers. It will be easy for them to attack you and harm your system. I'd guess you have the auto updater on.  Same for Google Chrome, Safari, IE. Right? -Mike The T.htmtableborders, .htmtableborders td, .htmtableborders th {border : 1px dashed lightgrey ! important;} html, body { border: 0px; } body { background-color: #ffffff; } img, hr { cursor: default }

    Read the article

  • Why Is Vertical Resolution Monitor Resolution so Often a Multiple of 360?

    - by Jason Fitzpatrick
    Stare at a list of monitor resolutions long enough and you might notice a pattern: many of the vertical resolutions, especially those of gaming or multimedia displays, are multiples of 360 (720, 1080, 1440, etc.) But why exactly is this the case? Is it arbitrary or is there something more at work? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. The Question SuperUser reader Trojandestroy recently noticed something about his display interface and needs answers: YouTube recently added 1440p functionality, and for the first time I realized that all (most?) vertical resolutions are multiples of 360. Is this just because the smallest common resolution is 480×360, and it’s convenient to use multiples? (Not doubting that multiples are convenient.) And/or was that the first viewable/conveniently sized resolution, so hardware (TVs, monitors, etc) grew with 360 in mind? Taking it further, why not have a square resolution? Or something else unusual? (Assuming it’s usual enough that it’s viewable). Is it merely a pleasing-the-eye situation? So why have the display be a multiple of 360? The Answer SuperUser contributor User26129 offers us not just an answer as to why the numerical pattern exists but a history of screen design in the process: Alright, there are a couple of questions and a lot of factors here. Resolutions are a really interesting field of psychooptics meeting marketing. First of all, why are the vertical resolutions on youtube multiples of 360. This is of course just arbitrary, there is no real reason this is the case. The reason is that resolution here is not the limiting factor for Youtube videos – bandwidth is. Youtube has to re-encode every video that is uploaded a couple of times, and tries to use as little re-encoding formats/bitrates/resolutions as possible to cover all the different use cases. For low-res mobile devices they have 360×240, for higher res mobile there’s 480p, and for the computer crowd there is 360p for 2xISDN/multiuser landlines, 720p for DSL and 1080p for higher speed internet. For a while there were some other codecs than h.264, but these are slowly being phased out with h.264 having essentially ‘won’ the format war and all computers being outfitted with hardware codecs for this. Now, there is some interesting psychooptics going on as well. As I said: resolution isn’t everything. 720p with really strong compression can and will look worse than 240p at a very high bitrate. But on the other side of the spectrum: throwing more bits at a certain resolution doesn’t magically make it better beyond some point. There is an optimum here, which of course depends on both resolution and codec. In general: the optimal bitrate is actually proportional to the resolution. So the next question is: what kind of resolution steps make sense? Apparently, people need about a 2x increase in resolution to really see (and prefer) a marked difference. Anything less than that and many people will simply not bother with the higher bitrates, they’d rather use their bandwidth for other stuff. This has been researched quite a long time ago and is the big reason why we went from 720×576 (415kpix) to 1280×720 (922kpix), and then again from 1280×720 to 1920×1080 (2MP). Stuff in between is not a viable optimization target. And again, 1440P is about 3.7MP, another ~2x increase over HD. You will see a difference there. 4K is the next step after that. Next up is that magical number of 360 vertical pixels. Actually, the magic number is 120 or 128. All resolutions are some kind of multiple of 120 pixels nowadays, back in the day they used to be multiples of 128. This is something that just grew out of LCD panel industry. LCD panels use what are called line drivers, little chips that sit on the sides of your LCD screen that control how bright each subpixel is. Because historically, for reasons I don’t really know for sure, probably memory constraints, these multiple-of-128 or multiple-of-120 resolutions already existed, the industry standard line drivers became drivers with 360 line outputs (1 per subpixel). If you would tear down your 1920×1080 screen, I would be putting money on there being 16 line drivers on the top/bottom and 9 on one of the sides. Oh hey, that’s 16:9. Guess how obvious that resolution choice was back when 16:9 was ‘invented’. Then there’s the issue of aspect ratio. This is really a completely different field of psychology, but it boils down to: historically, people have believed and measured that we have a sort of wide-screen view of the world. Naturally, people believed that the most natural representation of data on a screen would be in a wide-screen view, and this is where the great anamorphic revolution of the ’60s came from when films were shot in ever wider aspect ratios. Since then, this kind of knowledge has been refined and mostly debunked. Yes, we do have a wide-angle view, but the area where we can actually see sharply – the center of our vision – is fairly round. Slightly elliptical and squashed, but not really more than about 4:3 or 3:2. So for detailed viewing, for instance for reading text on a screen, you can utilize most of your detail vision by employing an almost-square screen, a bit like the screens up to the mid-2000s. However, again this is not how marketing took it. Computers in ye olden days were used mostly for productivity and detailed work, but as they commoditized and as the computer as media consumption device evolved, people didn’t necessarily use their computer for work most of the time. They used it to watch media content: movies, television series and photos. And for that kind of viewing, you get the most ‘immersion factor’ if the screen fills as much of your vision (including your peripheral vision) as possible. Which means widescreen. But there’s more marketing still. When detail work was still an important factor, people cared about resolution. As many pixels as possible on the screen. SGI was selling almost-4K CRTs! The most optimal way to get the maximum amount of pixels out of a glass substrate is to cut it as square as possible. 1:1 or 4:3 screens have the most pixels per diagonal inch. But with displays becoming more consumery, inch-size became more important, not amount of pixels. And this is a completely different optimization target. To get the most diagonal inches out of a substrate, you want to make the screen as wide as possible. First we got 16:10, then 16:9 and there have been moderately successful panel manufacturers making 22:9 and 2:1 screens (like Philips). Even though pixel density and absolute resolution went down for a couple of years, inch-sizes went up and that’s what sold. Why buy a 19″ 1280×1024 when you can buy a 21″ 1366×768? Eh… I think that about covers all the major aspects here. There’s more of course; bandwidth limits of HDMI, DVI, DP and of course VGA played a role, and if you go back to the pre-2000s, graphics memory, in-computer bandwdith and simply the limits of commercially available RAMDACs played an important role. But for today’s considerations, this is about all you need to know. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • I Clobbered a Leopard with a Window Last Night

    - by D'Arcy Lussier
    I’ve had my 15” Mac Book Pro for a little over a year now, and its hands-down the best laptop I’ve ever owned…hardware wise. And I tried, I really really tried, to like OSX. I even bought Parallels so I could run Windows 7 and all my development tools while still trying to live in an OSX world. But in the end, I missed Windows too much. There were just too many shortcomings with OSX that kept me from being productive. For one thing, Office for Mac is *not* Office for Windows. The applications are written by different teams, and Excel on the Mac is just different enough to be painful. The VM experience was adequate, but my MBP would heat up like crazy when running it and the experience trying to get Windows apps to interact with an OSX file system was awkward. And I found I was in the VM more than I thought I’d be. iMovie is not as easy to use for doing simple movie editing as Windows Movie Maker. There’s no free blog editing software for OSX that’s on par with Windows Live Writer. And really, all I was using OSX for was Twitter (which I can use a Windows client for) and web browsing (also something Windows can provide obviously). So I had to ask myself – why am I forcing myself to use an operating system I don’t like, on a laptop that can support Windows 7? And so I paved my MBP and am happily running Windows 7 on it…and its fantastic! All the good stuff with the hardware is still there with the goodness of Win 7. Happy happy. I did run into some snags doing this though, and that’s really what this blog post is about – things to be aware of if you want to install Win 7 directly on your MBP metal. First, Ensure You Have Your Original Mac Install Disk This was a warning my buddy Dylan, who’s been running Win 7 on his MBP for a while now, gave me early on. The reason you need that original disk is that the hardware drivers you need are all located there. Apparently you can’t easily download them, so make sure you have them ahead of time. Second, Forget BootCamp The only reason you need BootCamp is if you still want the option to boot into OSX. If you don’t, then you don’t need BootCamp. In fact, you don’t even need BootCamp to install Win 7. What you *will* need though is a DVD with Win 7 burnt on it. Apple doesn’t support bootable USB drives. Well, actually they do for Mac Book Airs which don’t come with optical drives…but to get it working you’ll need to edit a system file of BootCamp so your make of MBP is included in an XML document, and even then you *still* are using BootCamp meaning you’ll be making an OSX partition. So don’t worry about BootCamp, just burn a Windows 7 disc, put it into the DVD drive, and restart your MBP. Third, Know The Secret Commands So after putting in the Windows 7 DVD and restarting your MBP, you’ll want to hold down the ‘C’ key during boot up. This tells the MBP that it should boot from the DVD drive instead of the hard drive. Interestingly, it appears you don’t have to do this if its the Mac OSX install disc (more on that in a second), but regardless – hold down C and Windows will start the install process. Next up is the partition process. You’ll notice that there’s a partition called ETI or something like that. This has to do with the drive format that Apple uses and how they partition their system drives. What I did – I blew it away! At first I didn’t, but I was told I couldn’t install Windows on the remaining space due to the different drive format. Blowing away the ETI partition (and all other partitions) allowed me to continue the Windows install. *REMEMBER –  No warranty is provided or implied, just telling you what I did and how I got it to work. Ok, so now Windows is installed and I’m rebooting. Everything looks good, but I need drivers! So I put in the OSX install DVD and run the BootCamp assistant which installs all the Windows drivers I need. Fantastic! Oh, I need to restart – no problem. OH NO, PROBLEM! I left the OSX install DVD in the drive and now the MBP wants to boot from the drive and install OSX! I’m not holding down the C key, what the heck?! Ok, well there must be a way to eject this disk…hmm…no physical button on the side…the eject button doesn’t seem to work on the keyboard…no little pin hole to insert something to force the disc out…well what the…?! It turns out, if you want to eject a disc at boot up, you need (and I kid you not) to plug a mouse into the laptop and hold down the right-click button while its booting. This ejected the disc for me. Seriously. Finally, Things You Should Be Aware Of Once you have Windows up and running there’s a few things you need to be aware of, mainly new keyboard shortcuts. For instance, on the Mac keyboard there is no Home, End, PageUp or PageDown. There’s also no obvious way to do something like select large amounts of text (like you would by holding Shift-Home at the end of a line of text for instance). So here’s some shortcuts you need to know: Home – fn + left arrow End – fn + right arrow Select a line of text as you would with the Home key – Shift + fn + left arrow Select a line of text as you would with the End key – Shift + fn + right arrow Page Up – fn + up arrow Page Down – fn + down arrow Also, you’ll notice that the awesome Mac track pad doesn’t respond to taps as clicks. No fear, this is just a setting that needs to be altered in the BootCamp control panel (that controls the Mac Hardware-specific settings within Windows, you can access it easily from the system tray icon) One other thing, battery life seems a bit lower than with OSX, but then again I’m also doing more than Twitter or web browsing on this thing now. Conclusion My laptop runs awesome now that I have Windows 7 on there. It’s obviously up to individual taste, but for me I just didn’t see benefits to living in an OSX world when everything I needed lived in Windows. And also, I finally am back to an operating system that doesn’t require me to eject a USB drive before physically removing it! It’s 2012 folks, how has this not been fixed?! D

    Read the article

  • How to Control Screen Layouts in LightSwitch

    - by ChrisD
    Visual Studio LightSwitch has a bunch of screen templates that you can use to quickly generate screens. They give you good starting points that you can customize further. When you add a new screen to your project you see a set of screen templates that you can choose from. These templates lay out all the related data you choose to put on a screen automatically for you. And don’t under estimate them; they do a great job of laying out controls in a smart way. For instance, a tab control will be used when you select more than one related set of data to display on a screen. However, you’re not limited to taking the layout as is. In fact, the screen designer is pretty flexible and allows you to create stacks of controls in a variety of configurations. You just need to visualize your screen as a series of containers that you can lay out in rows and columns. You then place controls or stacks of controls into these areas to align the screen exactly how you want. If you’re new in Visual Studio LightSwitch, you can see this tutorial. OK, Let’s start with a simple example. I have already designed my data entities for a simple order tracking system similar to the Northwind database. I also have added a Search Data  Screen to search my Products already. Now I will add a new Details Screen for my Products and make it the default screen via the “Add New Screen” dialog: The screen designer picks a simple layout for me based on the single entity I chose, in this case Product. Hit F5 to run the application, select a Product on the search screen to open the Product Details Screen. Notice that it’s pretty simple because my entity is simple. Click the “Customize” button in the top right of the screen so we can start tweaking it. The left side of the screen shows the containership of controls and data bindings (called the content tree) and the right side shows the live preview with data. Notice that we have a simple layout of two rows but only one row is populated (with a vertical stack of controls in this case). The bottom row is empty. You can envision the screen like this: Each container will display a group of data that you select. For instance in the above screen, the top row is set to a vertical stack control and the group of data to display is coming from Product. So when laying out screens you need to think in terms of containers of controls bound to groups of data. To change the data to which a container is bound, select the data item next to the container: You can select the “New Group” item in order to create more containers (or controls) within the current container. For instance to totally control the layout, select the Product in the top row and hit the delete key. This will delete the vertical stack and therefore all the controls on the screen. The content tree will still have two rows, but the rows are now both empty. If you want a layout of four containers (two rows and two columns) then select “New Group” for the data item and then change the vertical stack control to “Two Columns” for both of the rows as shown here: You can keep going on and on by selecting new groups and choosing between rows or columns. Here’s a layout with 8 containers, 4 rows and 2 columns: And here is a layout with 7 content areas; one row across the top of the screen and three rows with two columns below that: When you select Choose Content and select a data item like Product it will populate all the controls within the container (row or column in a vertical stack) however you have complete control on what to display within each group. You can delete fields you don’t want to display and/or change their controls. You can also change the size of controls and how they display by changing the settings in the properties window. If you are in the Screen Designer (and not the customization mode like we are here) you can also drag-drop data items from the left-hand side of the screen to the content tree. Note, however, that not all areas of the tree will allow you to drop a data item if there is a binding already set to a different set of data. For instance you can’t drop a Customer ID into the same group as a Product if they originate from different entities. To get around this, all you need to do is create a new group and content area as shown above. Let’s take a more complex example that deals with more than just product. I want to design a complex screen that displays Products and their Category, as well as all the OrderDetails for which that product is selected. This time I will create a new screen and select List and Details, select the Products screen data, and include the related OrderDetails. However I’m going to totally change the layout so that a Product grid is at the top left and below that is the selected Product detail. Below that will be the Category text fields and image in two columns below. On the right side I want the OrderDetails grid to take up the whole right side of the screen. All this can be done in customization mode while you’re debugging the application. To do this, I first deleted all the content items in the tree and then re-created the content tree as shown in the image below. I also set the image to be larger and the description textbox to be 5 rows using the property window below the live preview. I added the green lines to indicate the containers and show how it maps to the content tree (click to enlarge): I hope this demystifies the screen designer a little bit. Remember that screen templates are excellent starting points – you can take them as-is or customize them further. It takes a little fooling around with customizing screens to get them to do exactly what you want but there are a ton of possibilities once you get the hang of it. Stay tuned for more information on how to create your own screen templates that show up in the “Add New Screen” dialog. Enjoy! The tutorial that might be interested: Adding Custom Control In LightSwitch

    Read the article

  • Notes on implementing Visual Studio 2010 Navigate To

    - by cyberycon
    One of the many neat functions added to Visual Studio in VS 2010 was the Navigate To feature. You can find it by clicking Edit, Navigate To, or by using the keyboard shortcut Ctrl, (yes, that's control plus the comma key). This pops up the Navigate To dialog that looks like this: As you type, Navigate To starts searching through a number of different search providers for your term. The entries in the list change as you type, with most providers doing some kind of fuzzy or at least substring matching. If you have C#, C++ or Visual Basic projects in your solution, all symbols defined in those projects are searched. There's also a file search provider, which displays all matching filenames from projects in the current solution as well. And, if you have a Visual Studio package of your own, you can implement a provider too. Micro Focus (where I work) provide the Visual COBOL language inside Visual Studio (http://visualstudiogallery.msdn.microsoft.com/ef9bc810-c133-4581-9429-b01420a9ea40 ), and we wanted to provide this functionality too. This post provides some notes on the things I discovered mainly through trial and error, but also with some kind help from devs inside Microsoft. The expectation of Navigate To is that it searches across the whole solution, not just the current project. So in our case, we wanted to search for all COBOL symbols inside all of our Visual COBOL projects inside the solution. So first of all, here's the Microsoft documentation on Navigate To: http://msdn.microsoft.com/en-us/library/ee844862.aspx . It's the reference information on the Microsoft.VisualStudio.Language.NavigateTo.Interfaces Namespace, and it lists all the interfaces you will need to implement to create your own Navigate To provider. Navigate To uses Visual Studio's latest mechanism for integrating external functionality and services, Managed Extensibility Framework (MEF). MEF components don't require any registration with COM or any other registry entries to be found by Visual Studio. Visual Studio looks in several well-known locations for manifest files (extension.vsixmanifest). It then uses reflection to scan for MEF attributes on classes in the assembly to determine which functionality the assembly provides. MEF itself is actually part of the .NET framework, and you can learn more about it here: http://mef.codeplex.com/. To get started with Visual Studio and MEF you could do worse than look at some of the editor examples on the VSX page http://archive.msdn.microsoft.com/vsx . I've also written a small application to help with switching between development and production MEF assemblies, which you can find on Codeproject: http://www.codeproject.com/KB/miscctrl/MEF_Switch.aspx. The Navigate To interfaces Back to Navigate To, and summarizing the MSDN reference documentation, you need to implement the following interfaces: INavigateToItemProviderFactoryThis is Visual Studio's entry point to your Navigate To implementation, and you must decorate your implementation with the following MEF export attribute: [Export(typeof(INavigateToItemProviderFactory))]  INavigateToItemProvider Your INavigateToItemProviderFactory needs to return your implementation of INavigateToItemProvider. This class implements StartSearch() and StopSearch(). StartSearch() is the guts of your provider, and we'll come back to it in a minute. This object also needs to implement IDisposeable(). INavigateToItemDisplayFactory Your INavigateToItemProvider hands back NavigateToItems to the NavigateTo framework. But to give you good control over what appears in the NavigateTo dialog box, these items will be handed back to your INavigateToItemDisplayFactory, which must create objects implementing INavigateToItemDisplay  INavigateToItemDisplay Each of these objects represents one result in the Navigate To dialog box. As well as providing the description and name of the item, this object also has a NavigateTo() method that should be capable of displaying the item in an editor when invoked. Carrying out the search The lifecycle of your INavigateToItemProvider is the same as that of the Navigate To dialog. This dialog is modal, which makes your implementation a little easier because you know that the user can't be changing things in editors and the IDE while this dialog is up. But the Navigate To dialog DOES NOT run on the main UI thread of the IDE – so you need to be aware of that if you want to interact with editors or other parts of the IDE UI. When the user invokes the Navigate To dialog, your INavigateToItemProvider gets sent a TryCreateNavigateToItemProvider() message. Instantiate your INavigateToItemProvider and hand this back. The sequence diagram below shows what happens next. Your INavigateToItemProvider will get called with StartSearch(), and passed an INavigateToCallback. StartSearch() is an asynchronous request – you must return from this method as soon as possible, and conduct your search on a separate thread. For each match to the search term, instantiate a NavigateToItem object and send it to INavigateToCallback.AddItem(). But as the user types in the Search Terms field, NavigateTo will invoke your StartSearch() method repeatedly with the changing search term. When you receive the next StartSearch() message, you have to abandon your current search, and start a new one. You can't rely on receiving a StopSearch() message every time. Finally, when the Navigate To dialog box is closed by the user, you will get a Dispose() message – that's your cue to abandon any uncompleted searches, and dispose any resources you might be using as part of your search. While you conduct your search invoke INavigateToCallback.ReportProgress() occasionally to provide feedback about how close you are to completing the search. There does not appear to be any particular requirement to how often you invoke ReportProgress(), and you report your progress as the ratio of two integers. In my implementation I report progress in terms of the number of symbols I've searched over the total number of symbols in my dictionary, and send a progress report every 16 symbols. Displaying the Results The Navigate to framework invokes INavigateToItemDisplayProvider.CreateItemDisplay() once for each result you passed to the INavigateToCallback. CreateItemDisplay() is passed the NavigateToItem you handed to the callback, and must return an INavigateToItemDisplay object. NavigateToItem is a sealed class which has a few properties, including the name of the symbol. It also has a Tag property, of type object. This enables you to stash away all the information you will need to create your INavigateToItemDisplay, which must implement an INavigateTo() method to display a symbol in an editor IDE when the user double-clicks an entry in the Navigate To dialog box. Since the tag is of type object, it is up to you, the implementor, to decide what kind of object you store in here, and how it enables the retrieval of other information which is not included in the NavigateToItem properties. Some of the INavigateToItemDisplay properties are self-explanatory, but a couple of them are less obvious: Additional informationThe string you return here is displayed inside brackets on the same line as the Name property. In English locales, Visual Studio includes the preposition "of". If you look at the first line in the Navigate To screenshot at the top of this article, Book_WebRole.Default is the additional information for textBookAuthor, and is the namespace qualified type name the symbol appears in. For procedural COBOL code we display the Program Id as the additional information DescriptionItemsYou can use this property to return any textual description you want about the item currently selected. You return a collection of DescriptionItem objects, each of which has a category and description collection of DescriptionRun objects. A DescriptionRun enables you to specify some text, and optional formatting, so you have some control over the appearance of the displayed text. The DescriptionItems property is displayed at the bottom of the Navigate To dialog box, with the Categories on the left and the Descriptions on the right. The Visual COBOL implementation uses it to display more information about the location of an item, making it easier for the user to know disambiguate duplicate names (something there can be a lot of in large COBOL applications). Summary I hope this article is useful for anyone implementing Navigate To. It is a fantastic navigation feature that Microsoft have added to Visual Studio, but at the moment there still don't seem to be any examples on how to implement it, and the reference information on MSDN is a little brief for anyone attempting an implementation.

    Read the article

  • How do I make a jumping dolphin rotate realistically?

    - by Johnny
    I want to program a dolphin that jumps and rotates like a real dolphin. Jumping is not the problem, but I don't know how to make the rotation. At the moment, my dolphin rotates a little weird. But I want that it rotates like a real dolphin does. How can I improve the rotation? public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Texture2D image, water; float Gravity = 5.0F; float Acceleration = 20.0F; Vector2 Position = new Vector2(1200,720); Vector2 Velocity; float rotation = 0; SpriteEffects flip; Vector2 Speed = new Vector2(0, 0); public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; graphics.PreferredBackBufferWidth = 1280; graphics.PreferredBackBufferHeight = 720; } protected override void Initialize() { base.Initialize(); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); image = Content.Load<Texture2D>("cartoondolphin"); water = Content.Load<Texture2D>("background"); flip = SpriteEffects.None; } protected override void Update(GameTime gameTime) { float VelocityX = 0f; float VelocityY = 0f; float time = (float)gameTime.ElapsedGameTime.TotalSeconds; KeyboardState kbState = Keyboard.GetState(); if(kbState.IsKeyDown(Keys.Left)) { rotation = 0; flip = SpriteEffects.None; VelocityX += -5f; } if(kbState.IsKeyDown(Keys.Right)) { rotation = 0; flip = SpriteEffects.FlipHorizontally; VelocityX += 5f; } // jump if the dolphin is under water if(Position.Y >= 670) { if (kbState.IsKeyDown(Keys.A)) { if (flip == SpriteEffects.None) { rotation += 0.01f; VelocityY += 40f; } else { rotation -= 0.01f; VelocityY += 40f; } } } else { if (flip == SpriteEffects.None) { rotation -= 0.01f; VelocityY += -10f; } else { rotation += 0.01f; VelocityY += -10f; } } float deltaY = 0; float deltaX = 0; deltaY = Gravity * (float)gameTime.ElapsedGameTime.TotalSeconds; deltaX += VelocityX * (float)gameTime.ElapsedGameTime.TotalSeconds * Acceleration; deltaY += -VelocityY * (float)gameTime.ElapsedGameTime.TotalSeconds * Acceleration; Speed = new Vector2(Speed.X + deltaX, Speed.Y + deltaY); Position += Speed * (float)gameTime.ElapsedGameTime.TotalSeconds; Velocity.X = 0; if (Position.Y + image.Height/2 > graphics.PreferredBackBufferHeight) Position.Y = graphics.PreferredBackBufferHeight - image.Height/2; base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); spriteBatch.Begin(); spriteBatch.Draw(water, new Rectangle(0, graphics.PreferredBackBufferHeight -100, graphics.PreferredBackBufferWidth, 100), Color.White); spriteBatch.Draw(image, Position, null, Color.White, rotation, new Vector2(image.Width / 2, image.Height / 2), 1, flip, 1); spriteBatch.End(); base.Draw(gameTime); } } I changed my code a little. But I still have some trouble with the rotation. Here's the entire code. The dolphin looks at the wrong direction if I press the left or right key. For example, it looks down if I press the left key. What is wrong with the rotation? At the beginning, the dolphin looks at the left side, but after I pressed a key it just looks down or up. I deleted the "rotation += 0.01f;" lines in the code. Is that correct? public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Texture2D image, water; float Gravity = 5.0F; float Acceleration = 20.0F; Vector2 Position = new Vector2(1200,720); Vector2 Velocity; float rotation = 0; SpriteEffects flip; Vector2 Speed = new Vector2(0, 0); Vector2 prevPos; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; graphics.PreferredBackBufferWidth = 1280; graphics.PreferredBackBufferHeight = 720; } protected override void Initialize() { base.Initialize(); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); image = Content.Load<Texture2D>("cartoondolphin"); water = Content.Load<Texture2D>("background"); flip = SpriteEffects.None; } protected override void Update(GameTime gameTime) { float VelocityX = 0f; float VelocityY = 0f; float time = (float)gameTime.ElapsedGameTime.TotalSeconds; KeyboardState kbState = Keyboard.GetState(); if(kbState.IsKeyDown(Keys.Left)) { flip = SpriteEffects.None; VelocityX += -5f; } if(kbState.IsKeyDown(Keys.Right)) { flip = SpriteEffects.FlipHorizontally; VelocityX += 5f; } rotation = (float)Math.Atan2(Position.X - prevPos.X, Position.Y - prevPos.Y); prevPos = Position; // jump if the dolphin is under water if(Position.Y >= 670) { if (kbState.IsKeyDown(Keys.A)) { if (flip == SpriteEffects.None) { VelocityY += 40f; } else { VelocityY += 40f; } } } else { if (flip == SpriteEffects.None) { VelocityY += -10f; } else { VelocityY += -10f; } } float deltaY = 0; float deltaX = 0; deltaY = Gravity * (float)gameTime.ElapsedGameTime.TotalSeconds; deltaX += VelocityX * (float)gameTime.ElapsedGameTime.TotalSeconds * Acceleration; deltaY += -VelocityY * (float)gameTime.ElapsedGameTime.TotalSeconds * Acceleration; Speed = new Vector2(Speed.X + deltaX, Speed.Y + deltaY); Position += Speed * (float)gameTime.ElapsedGameTime.TotalSeconds; Velocity.X = 0; if (Position.Y + image.Height/2 > graphics.PreferredBackBufferHeight) Position.Y = graphics.PreferredBackBufferHeight - image.Height/2; base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); spriteBatch.Begin(); spriteBatch.Draw(water, new Rectangle(0, graphics.PreferredBackBufferHeight -100, graphics.PreferredBackBufferWidth, 100), Color.White); spriteBatch.Draw(image, Position, null, Color.White, rotation, new Vector2(image.Width / 2, image.Height / 2), 1, flip, 1); spriteBatch.End(); base.Draw(gameTime); } }

    Read the article

  • What are good design practices when working with Entity Framework

    - by AD
    This will apply mostly for an asp.net application where the data is not accessed via soa. Meaning that you get access to the objects loaded from the framework, not Transfer Objects, although some recommendation still apply. This is a community post, so please add to it as you see fit. Applies to: Entity Framework 1.0 shipped with Visual Studio 2008 sp1. Why pick EF in the first place? Considering it is a young technology with plenty of problems (see below), it may be a hard sell to get on the EF bandwagon for your project. However, it is the technology Microsoft is pushing (at the expense of Linq2Sql, which is a subset of EF). In addition, you may not be satisfied with NHibernate or other solutions out there. Whatever the reasons, there are people out there (including me) working with EF and life is not bad.make you think. EF and inheritance The first big subject is inheritance. EF does support mapping for inherited classes that are persisted in 2 ways: table per class and table the hierarchy. The modeling is easy and there are no programming issues with that part. (The following applies to table per class model as I don't have experience with table per hierarchy, which is, anyway, limited.) The real problem comes when you are trying to run queries that include one or many objects that are part of an inheritance tree: the generated sql is incredibly awful, takes a long time to get parsed by the EF and takes a long time to execute as well. This is a real show stopper. Enough that EF should probably not be used with inheritance or as little as possible. Here is an example of how bad it was. My EF model had ~30 classes, ~10 of which were part of an inheritance tree. On running a query to get one item from the Base class, something as simple as Base.Get(id), the generated SQL was over 50,000 characters. Then when you are trying to return some Associations, it degenerates even more, going as far as throwing SQL exceptions about not being able to query more than 256 tables at once. Ok, this is bad, EF concept is to allow you to create your object structure without (or with as little as possible) consideration on the actual database implementation of your table. It completely fails at this. So, recommendations? Avoid inheritance if you can, the performance will be so much better. Use it sparingly where you have to. In my opinion, this makes EF a glorified sql-generation tool for querying, but there are still advantages to using it. And ways to implement mechanism that are similar to inheritance. Bypassing inheritance with Interfaces First thing to know with trying to get some kind of inheritance going with EF is that you cannot assign a non-EF-modeled class a base class. Don't even try it, it will get overwritten by the modeler. So what to do? You can use interfaces to enforce that classes implement some functionality. For example here is a IEntity interface that allow you to define Associations between EF entities where you don't know at design time what the type of the entity would be. public enum EntityTypes{ Unknown = -1, Dog = 0, Cat } public interface IEntity { int EntityID { get; } string Name { get; } Type EntityType { get; } } public partial class Dog : IEntity { // implement EntityID and Name which could actually be fields // from your EF model Type EntityType{ get{ return EntityTypes.Dog; } } } Using this IEntity, you can then work with undefined associations in other classes // lets take a class that you defined in your model. // that class has a mapping to the columns: PetID, PetType public partial class Person { public IEntity GetPet() { return IEntityController.Get(PetID,PetType); } } which makes use of some extension functions: public class IEntityController { static public IEntity Get(int id, EntityTypes type) { switch (type) { case EntityTypes.Dog: return Dog.Get(id); case EntityTypes.Cat: return Cat.Get(id); default: throw new Exception("Invalid EntityType"); } } } Not as neat as having plain inheritance, particularly considering you have to store the PetType in an extra database field, but considering the performance gains, I would not look back. It also cannot model one-to-many, many-to-many relationship, but with creative uses of 'Union' it could be made to work. Finally, it creates the side effet of loading data in a property/function of the object, which you need to be careful about. Using a clear naming convention like GetXYZ() helps in that regards. Compiled Queries Entity Framework performance is not as good as direct database access with ADO (obviously) or Linq2SQL. There are ways to improve it however, one of which is compiling your queries. The performance of a compiled query is similar to Linq2Sql. What is a compiled query? It is simply a query for which you tell the framework to keep the parsed tree in memory so it doesn't need to be regenerated the next time you run it. So the next run, you will save the time it takes to parse the tree. Do not discount that as it is a very costly operation that gets even worse with more complex queries. There are 2 ways to compile a query: creating an ObjectQuery with EntitySQL and using CompiledQuery.Compile() function. (Note that by using an EntityDataSource in your page, you will in fact be using ObjectQuery with EntitySQL, so that gets compiled and cached). An aside here in case you don't know what EntitySQL is. It is a string-based way of writing queries against the EF. Here is an example: "select value dog from Entities.DogSet as dog where dog.ID = @ID". The syntax is pretty similar to SQL syntax. You can also do pretty complex object manipulation, which is well explained [here][1]. Ok, so here is how to do it using ObjectQuery< string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); The first time you run this query, the framework will generate the expression tree and keep it in memory. So the next time it gets executed, you will save on that costly step. In that example EnablePlanCaching = true, which is unnecessary since that is the default option. The other way to compile a query for later use is the CompiledQuery.Compile method. This uses a delegate: static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => ctx.DogSet.FirstOrDefault(it => it.ID == id)); or using linq static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => (from dog in ctx.DogSet where dog.ID == id select dog).FirstOrDefault()); to call the query: query_GetDog.Invoke( YourContext, id ); The advantage of CompiledQuery is that the syntax of your query is checked at compile time, where as EntitySQL is not. However, there are other consideration... Includes Lets say you want to have the data for the dog owner to be returned by the query to avoid making 2 calls to the database. Easy to do, right? EntitySQL string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)).Include("Owner"); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); CompiledQuery static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => (from dog in ctx.DogSet.Include("Owner") where dog.ID == id select dog).FirstOrDefault()); Now, what if you want to have the Include parametrized? What I mean is that you want to have a single Get() function that is called from different pages that care about different relationships for the dog. One cares about the Owner, another about his FavoriteFood, another about his FavotireToy and so on. Basicly, you want to tell the query which associations to load. It is easy to do with EntitySQL public Dog Get(int id, string include) { string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)) .IncludeMany(include); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); } The include simply uses the passed string. Easy enough. Note that it is possible to improve on the Include(string) function (that accepts only a single path) with an IncludeMany(string) that will let you pass a string of comma-separated associations to load. Look further in the extension section for this function. If we try to do it with CompiledQuery however, we run into numerous problems: The obvious static readonly Func<Entities, int, string, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, string, Dog>((ctx, id, include) => (from dog in ctx.DogSet.Include(include) where dog.ID == id select dog).FirstOrDefault()); will choke when called with: query_GetDog.Invoke( YourContext, id, "Owner,FavoriteFood" ); Because, as mentionned above, Include() only wants to see a single path in the string and here we are giving it 2: "Owner" and "FavoriteFood" (which is not to be confused with "Owner.FavoriteFood"!). Then, let's use IncludeMany(), which is an extension function static readonly Func<Entities, int, string, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, string, Dog>((ctx, id, include) => (from dog in ctx.DogSet.IncludeMany(include) where dog.ID == id select dog).FirstOrDefault()); Wrong again, this time it is because the EF cannot parse IncludeMany because it is not part of the functions that is recognizes: it is an extension. Ok, so you want to pass an arbitrary number of paths to your function and Includes() only takes a single one. What to do? You could decide that you will never ever need more than, say 20 Includes, and pass each separated strings in a struct to CompiledQuery. But now the query looks like this: from dog in ctx.DogSet.Include(include1).Include(include2).Include(include3) .Include(include4).Include(include5).Include(include6) .[...].Include(include19).Include(include20) where dog.ID == id select dog which is awful as well. Ok, then, but wait a minute. Can't we return an ObjectQuery< with CompiledQuery? Then set the includes on that? Well, that what I would have thought so as well: static readonly Func<Entities, int, ObjectQuery<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, ObjectQuery<Dog>>((ctx, id) => (ObjectQuery<Dog>)(from dog in ctx.DogSet where dog.ID == id select dog)); public Dog GetDog( int id, string include ) { ObjectQuery<Dog> oQuery = query_GetDog(id); oQuery = oQuery.IncludeMany(include); return oQuery.FirstOrDefault; } That should have worked, except that when you call IncludeMany (or Include, Where, OrderBy...) you invalidate the cached compiled query because it is an entirely new one now! So, the expression tree needs to be reparsed and you get that performance hit again. So what is the solution? You simply cannot use CompiledQueries with parametrized Includes. Use EntitySQL instead. This doesn't mean that there aren't uses for CompiledQueries. It is great for localized queries that will always be called in the same context. Ideally CompiledQuery should always be used because the syntax is checked at compile time, but due to limitation, that's not possible. An example of use would be: you may want to have a page that queries which two dogs have the same favorite food, which is a bit narrow for a BusinessLayer function, so you put it in your page and know exactly what type of includes are required. Passing more than 3 parameters to a CompiledQuery Func is limited to 5 parameters, of which the last one is the return type and the first one is your Entities object from the model. So that leaves you with 3 parameters. A pitance, but it can be improved on very easily. public struct MyParams { public string param1; public int param2; public DateTime param3; } static readonly Func<Entities, MyParams, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, MyParams, IEnumerable<Dog>>((ctx, myParams) => from dog in ctx.DogSet where dog.Age == myParams.param2 && dog.Name == myParams.param1 and dog.BirthDate > myParams.param3 select dog); public List<Dog> GetSomeDogs( int age, string Name, DateTime birthDate ) { MyParams myParams = new MyParams(); myParams.param1 = name; myParams.param2 = age; myParams.param3 = birthDate; return query_GetDog(YourContext,myParams).ToList(); } Return Types (this does not apply to EntitySQL queries as they aren't compiled at the same time during execution as the CompiledQuery method) Working with Linq, you usually don't force the execution of the query until the very last moment, in case some other functions downstream wants to change the query in some way: static readonly Func<Entities, int, string, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, IEnumerable<Dog>>((ctx, age, name) => from dog in ctx.DogSet where dog.Age == age && dog.Name == name select dog); public IEnumerable<Dog> GetSomeDogs( int age, string name ) { return query_GetDog(YourContext,age,name); } public void DataBindStuff() { IEnumerable<Dog> dogs = GetSomeDogs(4,"Bud"); // but I want the dogs ordered by BirthDate gridView.DataSource = dogs.OrderBy( it => it.BirthDate ); } What is going to happen here? By still playing with the original ObjectQuery (that is the actual return type of the Linq statement, which implements IEnumerable), it will invalidate the compiled query and be force to re-parse. So, the rule of thumb is to return a List< of objects instead. static readonly Func<Entities, int, string, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, IEnumerable<Dog>>((ctx, age, name) => from dog in ctx.DogSet where dog.Age == age && dog.Name == name select dog); public List<Dog> GetSomeDogs( int age, string name ) { return query_GetDog(YourContext,age,name).ToList(); //<== change here } public void DataBindStuff() { List<Dog> dogs = GetSomeDogs(4,"Bud"); // but I want the dogs ordered by BirthDate gridView.DataSource = dogs.OrderBy( it => it.BirthDate ); } When you call ToList(), the query gets executed as per the compiled query and then, later, the OrderBy is executed against the objects in memory. It may be a little bit slower, but I'm not even sure. One sure thing is that you have no worries about mis-handling the ObjectQuery and invalidating the compiled query plan. Once again, that is not a blanket statement. ToList() is a defensive programming trick, but if you have a valid reason not to use ToList(), go ahead. There are many cases in which you would want to refine the query before executing it. Performance What is the performance impact of compiling a query? It can actually be fairly large. A rule of thumb is that compiling and caching the query for reuse takes at least double the time of simply executing it without caching. For complex queries (read inherirante), I have seen upwards to 10 seconds. So, the first time a pre-compiled query gets called, you get a performance hit. After that first hit, performance is noticeably better than the same non-pre-compiled query. Practically the same as Linq2Sql When you load a page with pre-compiled queries the first time you will get a hit. It will load in maybe 5-15 seconds (obviously more than one pre-compiled queries will end up being called), while subsequent loads will take less than 300ms. Dramatic difference, and it is up to you to decide if it is ok for your first user to take a hit or you want a script to call your pages to force a compilation of the queries. Can this query be cached? { Dog dog = from dog in YourContext.DogSet where dog.ID == id select dog; } No, ad-hoc Linq queries are not cached and you will incur the cost of generating the tree every single time you call it. Parametrized Queries Most search capabilities involve heavily parametrized queries. There are even libraries available that will let you build a parametrized query out of lamba expressions. The problem is that you cannot use pre-compiled queries with those. One way around that is to map out all the possible criteria in the query and flag which one you want to use: public struct MyParams { public string name; public bool checkName; public int age; public bool checkAge; } static readonly Func<Entities, MyParams, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, MyParams, IEnumerable<Dog>>((ctx, myParams) => from dog in ctx.DogSet where (myParams.checkAge == true && dog.Age == myParams.age) && (myParams.checkName == true && dog.Name == myParams.name ) select dog); protected List<Dog> GetSomeDogs() { MyParams myParams = new MyParams(); myParams.name = "Bud"; myParams.checkName = true; myParams.age = 0; myParams.checkAge = false; return query_GetDog(YourContext,myParams).ToList(); } The advantage here is that you get all the benifits of a pre-compiled quert. The disadvantages are that you most likely will end up with a where clause that is pretty difficult to maintain, that you will incur a bigger penalty for pre-compiling the query and that each query you run is not as efficient as it could be (particularly with joins thrown in). Another way is to build an EntitySQL query piece by piece, like we all did with SQL. protected List<Dod> GetSomeDogs( string name, int age) { string query = "select value dog from Entities.DogSet where 1 = 1 "; if( !String.IsNullOrEmpty(name) ) query = query + " and dog.Name == @Name "; if( age > 0 ) query = query + " and dog.Age == @Age "; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>( query, YourContext ); if( !String.IsNullOrEmpty(name) ) oQuery.Parameters.Add( new ObjectParameter( "Name", name ) ); if( age > 0 ) oQuery.Parameters.Add( new ObjectParameter( "Age", age ) ); return oQuery.ToList(); } Here the problems are: - there is no syntax checking during compilation - each different combination of parameters generate a different query which will need to be pre-compiled when it is first run. In this case, there are only 4 different possible queries (no params, age-only, name-only and both params), but you can see that there can be way more with a normal world search. - Noone likes to concatenate strings! Another option is to query a large subset of the data and then narrow it down in memory. This is particularly useful if you are working with a definite subset of the data, like all the dogs in a city. You know there are a lot but you also know there aren't that many... so your CityDog search page can load all the dogs for the city in memory, which is a single pre-compiled query and then refine the results protected List<Dod> GetSomeDogs( string name, int age, string city) { string query = "select value dog from Entities.DogSet where dog.Owner.Address.City == @City "; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>( query, YourContext ); oQuery.Parameters.Add( new ObjectParameter( "City", city ) ); List<Dog> dogs = oQuery.ToList(); if( !String.IsNullOrEmpty(name) ) dogs = dogs.Where( it => it.Name == name ); if( age > 0 ) dogs = dogs.Where( it => it.Age == age ); return dogs; } It is particularly useful when you start displaying all the data then allow for filtering. Problems: - Could lead to serious data transfer if you are not careful about your subset. - You can only filter on the data that you returned. It means that if you don't return the Dog.Owner association, you will not be able to filter on the Dog.Owner.Name So what is the best solution? There isn't any. You need to pick the solution that works best for you and your problem: - Use lambda-based query building when you don't care about pre-compiling your queries. - Use fully-defined pre-compiled Linq query when your object structure is not too complex. - Use EntitySQL/string concatenation when the structure could be complex and when the possible number of different resulting queries are small (which means fewer pre-compilation hits). - Use in-memory filtering when you are working with a smallish subset of the data or when you had to fetch all of the data on the data at first anyway (if the performance is fine with all the data, then filtering in memory will not cause any time to be spent in the db). Singleton access The best way to deal with your context and entities accross all your pages is to use the singleton pattern: public sealed class YourContext { private const string instanceKey = "On3GoModelKey"; YourContext(){} public static YourEntities Instance { get { HttpContext context = HttpContext.Current; if( context == null ) return Nested.instance; if (context.Items[instanceKey] == null) { On3GoEntities entity = new On3GoEntities(); context.Items[instanceKey] = entity; } return (YourEntities)context.Items[instanceKey]; } } class Nested { // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit static Nested() { } internal static readonly YourEntities instance = new YourEntities(); } } NoTracking, is it worth it? When executing a query, you can tell the framework to track the objects it will return or not. What does it mean? With tracking enabled (the default option), the framework will track what is going on with the object (has it been modified? Created? Deleted?) and will also link objects together, when further queries are made from the database, which is what is of interest here. For example, lets assume that Dog with ID == 2 has an owner which ID == 10. Dog dog = (from dog in YourContext.DogSet where dog.ID == 2 select dog).FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; Person owner = (from o in YourContext.PersonSet where o.ID == 10 select dog).FirstOrDefault(); //dog.OwnerReference.IsLoaded == true; If we were to do the same with no tracking, the result would be different. ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>) (from dog in YourContext.DogSet where dog.ID == 2 select dog); oDogQuery.MergeOption = MergeOption.NoTracking; Dog dog = oDogQuery.FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; ObjectQuery<Person> oPersonQuery = (ObjectQuery<Person>) (from o in YourContext.PersonSet where o.ID == 10 select o); oPersonQuery.MergeOption = MergeOption.NoTracking; Owner owner = oPersonQuery.FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; Tracking is very useful and in a perfect world without performance issue, it would always be on. But in this world, there is a price for it, in terms of performance. So, should you use NoTracking to speed things up? It depends on what you are planning to use the data for. Is there any chance that the data your query with NoTracking can be used to make update/insert/delete in the database? If so, don't use NoTracking because associations are not tracked and will causes exceptions to be thrown. In a page where there are absolutly no updates to the database, you can use NoTracking. Mixing tracking and NoTracking is possible, but it requires you to be extra careful with updates/inserts/deletes. The problem is that if you mix then you risk having the framework trying to Attach() a NoTracking object to the context where another copy of the same object exist with tracking on. Basicly, what I am saying is that Dog dog1 = (from dog in YourContext.DogSet where dog.ID == 2).FirstOrDefault(); ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>) (from dog in YourContext.DogSet where dog.ID == 2 select dog); oDogQuery.MergeOption = MergeOption.NoTracking; Dog dog2 = oDogQuery.FirstOrDefault(); dog1 and dog2 are 2 different objects, one tracked and one not. Using the detached object in an update/insert will force an Attach() that will say "Wait a minute, I do already have an object here with the same database key. Fail". And when you Attach() one object, all of its hierarchy gets attached as well, causing problems everywhere. Be extra careful. How much faster is it with NoTracking It depends on the queries. Some are much more succeptible to tracking than other. I don't have a fast an easy rule for it, but it helps. So I should use NoTracking everywhere then? Not exactly. There are some advantages to tracking object. The first one is that the object is cached, so subsequent call for that object will not hit the database. That cache is only valid for the lifetime of the YourEntities object, which, if you use the singleton code above, is the same as the page lifetime. One page request == one YourEntity object. So for multiple calls for the same object, it will load only once per page request. (Other caching mechanism could extend that). What happens when you are using NoTracking and try to load the same object multiple times? The database will be queried each time, so there is an impact there. How often do/should you call for the same object during a single page request? As little as possible of course, but it does happens. Also remember the piece above about having the associations connected automatically for your? You don't have that with NoTracking, so if you load your data in multiple batches, you will not have a link to between them: ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>)(from dog in YourContext.DogSet select dog); oDogQuery.MergeOption = MergeOption.NoTracking; List<Dog> dogs = oDogQuery.ToList(); ObjectQuery<Person> oPersonQuery = (ObjectQuery<Person>)(from o in YourContext.PersonSet select o); oPersonQuery.MergeOption = MergeOption.NoTracking; List<Person> owners = oPersonQuery.ToList(); In this case, no dog will have its .Owner property set. Some things to keep in mind when you are trying to optimize the performance. No lazy loading, what am I to do? This can be seen as a blessing in disguise. Of course it is annoying to load everything manually. However, it decreases the number of calls to the db and forces you to think about when you should load data. The more you can load in one database call the better. That was always true, but it is enforced now with this 'feature' of EF. Of course, you can call if( !ObjectReference.IsLoaded ) ObjectReference.Load(); if you want to, but a better practice is to force the framework to load the objects you know you will need in one shot. This is where the discussion about parametrized Includes begins to make sense. Lets say you have you Dog object public class Dog { public Dog Get(int id) { return YourContext.DogSet.FirstOrDefault(it => it.ID == id ); } } This is the type of function you work with all the time. It gets called from all over the place and once you have that Dog object, you will do very different things to it in different functions. First, it should be pre-compiled, because you will call that very often. Second, each different pages will want to have access to a different subset of the Dog data. Some will want the Owner, some the FavoriteToy, etc. Of course, you could call Load() for each reference you need anytime you need one. But that will generate a call to the database each time. Bad idea. So instead, each page will ask for the data it wants to see when it first request for the Dog object: static public Dog Get(int id) { return GetDog(entity,"");} static public Dog Get(int id, string includePath) { string query = "select value o " + " from YourEntities.DogSet as o " +

    Read the article

  • Can I use accepts_nested_attributes_for with checkboxes in a _form to select potential 'links' from a list

    - by Ryan
    In Rails 3: I have the following models: class System has_many :input_modes # name of the table with the join in it has_many :imodes, :through => :input_modes, :source => 'mode', :class_name => "Mode" has_many :output_modes has_many :omodes, :through => :output_modes, :source => 'mode', :class_name => 'Mode' end class InputMode # OutputMode is identical belongs_to :mode belongs_to :system end class Mode ... fields, i.e. name ... end That works nicely and I can assign lists of Modes to imodes and omodes as intended. What I'd like to do is use accepts_nested_attributes_for or some other such magic in the System model and build a view with a set of checkboxes. The set of valid Modes for a given System is defined elsewhere. I'm using checkboxes in the _form view to select which of the valid modes is actually set in imodes and omodes . I don't want to create new Modes from this view, just select from a list of pre-defined Modes. Below is what I'm currently using in my _form view. It generates a list of checkboxes, one for each allowed Mode for the System being edited. If the checkbox is ticked then that Mode is to be included in the imodes list. <% @allowed_modes.each do |mode| %> <li> <%= check_box_tag :imode_ids, mode.id, @system.imodes.include?(modifier), :name => 'imode_ids[]' %> <%= mode.name %> </li> <% end %> Which passes this into the controller in params: { ..., "imode_ids"=>["2", "14"], ... } In the controller#create I extract and assign the Modes that had their corresponding checkboxes ticked and add them to imodes with the following code: @system = System.new(params[:system]) # Note the the empty list that makes sure we clear the # list if none of the checkboxes are ticked if params.has_key?(:imode_ids) imodes = Mode.find(params[:imode_ids]) else imodes = [] end @system.imodes = imodes Once again that all works nicely but I'll have to copy that cludgey code into the other methods in the controller and I'd much prefer to use something more magical if possible. I feel like I've passed off the path of nice clean rails code and into the forest of "hacking around" rails; it works but I don't like it. What should I have done?

    Read the article

  • SCOM 2012 DNS Forwarder Availability Monitor

    - by Massimo
    Background: I have an environment with two different AD domains, each in its own forest, each with two Windows Server 2008 R2 domain controllers acting as DNS servers. There is no trust between the domains. Each DNS server manages the main DNS zone for its AD domain, and then some other zones, including the reverse lookup zone for its IP subnets; all zones are AD-integrated; all DNS servers which manages a zone are correctly listed as authoritative name servers for that zone. So, the situation is like this (using fake names and IP addresses): Domain A: DNS domain: a.dom IP subnet: 192.168.1.X DC/DNS Servers: serverA1.a.dom (192.168.1.1) and serverA2.a.dom (192.168.1.2) Authoritative zones: a.dom, 1.168.192.in-addr.arpa, somezone.local Domain B: DNS domain: b.dom IP subnet: 10.0.0.X DC/DNS Servers: serverB1.b.dom (10.0.0.1) and serverB2.b.dom (10.0.0.2) Authoritative zones: b.dom, 0.0.10.in-addr.arpa, someotherzone.local DNS servers in domain A have conditional forwarders defined for each zone managed by DNS servers in domain B, forwarding to both domain B's DNS servers; DNS servers in domain B have the opposite configuration. All forwarders are stored in Active Directory. All is working perfectly, and computers in each domain can resolve forward and reverse DNS queries for both domains, using their domain's DNS servers. The problem: I have SCOM 2012 deployed in domain A, with the SCOM agent installed on both DCs; the management packs for Active Directory and DNS Server are installed and up-to-date. I have a series of alerts like the following ones on both domain controllers; each alert is generated for each forwarded zone and for each forwarded server: Forwarder someotherzone.local (10.0.0.1) cannot resolve the host name 192.168.1.1,someotherzone.local for serverA1.a.dom Forwarder someotherzone.local (10.0.0.2) cannot resolve the host name 192.168.1.1,someotherzone.local for serverA1.a.dom Forwarder someotherzone.local (10.0.0.1) cannot resolve the host name 192.168.1.2,someotherzone.local for serverA2.a.dom Forwarder someotherzone.local (10.0.0.2) cannot resolve the host name 192.168.1.2,someotherzone.local for serverA2.a.dom Forwarder 0.0.10.in-addr.arpa (10.0.0.1) cannot resolve the host name 192.168.1.1,0.0.10.in-addr.arpa for serverA1.a.dom Forwarder 0.0.10.in-addr.arpa (10.0.0.2) cannot resolve the host name 192.168.1.1,0.0.10.in-addr.arpa for serverA1.a.dom Forwarder 0.0.10.in-addr.arpa (10.0.0.1) cannot resolve the host name 192.168.1.2,0.0.10.in-addr.arpa for serverA2.a.dom Forwarder 0.0.10.in-addr.arpa (10.0.0.2) cannot resolve the host name 192.168.1.2,0.0.10.in-addr.arpa for serverA2.a.dom The only exception is the main AD DNS zone managed by domain B's DNS servers (b.dom): for that conditional forwarder, no alert is generated and the forwarder availability monitor is green. Ok, what does this mean? What are those monitors trying to tell me? What are they checking? What's actually wrong? And why there is no error for the "b.dom" zone, which is configured in the exact same way as the other ones, both as a zone in domain B's DNS servers and as a forwarder in domain A's DNS servers?

    Read the article

  • Silverlight Recruiting Application Part 6 - Adding an Interview Scheduling Module/View

    Between the last post and this one I went ahead and carried the ideas for the Jobs module and view into the Applicants module and view- they're both doing more or less the same thing, except with different objects being at their core.  Made for an easy cut-and-paste operation with a few items being switched from one to another.  Now that we have the ability to add postings and applicants, wouldn't it be nice if we could schedule an interview?  Of course it would! Scheduling Module I think you get the drift from previous posts that these project structures start looking somewhat similar.  The interview scheduling module is no different than the rest- it gets a SchedulingModule.cs file at the root that inherits from IModule, and there is a single SchedulerView.xsml and SchedulerViewModel.cs setup for our V+VM.  We have one unique concern as we enter into this- RadScheduler deals with AppointmentsSource, not ItemsSource, so there are some special considerations to take into account when planning this module. First, I need something which inherits from AppointmentBase.  This is the core of the RadScheduler appointment, and if you are planning to do any form of custom appointment, you'll want it to inherit from this.  Then you can add-on functionality as needed.  Here is my addition to the mix, the InterviewAppointment: 01.public class InterviewAppointment : AppointmentBase 02.{ 03.    private int _applicantID; 04.    public int ApplicantID 05.    { 06.        get { return this._applicantID; } 07.        set 08.        { 09.            if (_applicantID != value) 10.            { 11.                _applicantID = value; 12.                OnPropertyChanged("ApplicantID"); 13.            } 14.        } 15.    } 16.   17.    private int _postingID; 18.    public int PostingID 19.    { 20.        get { return _postingID; } 21.        set 22.        { 23.            if (_postingID != value) 24.            { 25.                _postingID = value; 26.                OnPropertyChanged("PostingID"); 27.            } 28.        } 29.    } 30.   31.    private string _body; 32.    public string Body 33.    { 34.        get { return _body; } 35.        set 36.        { 37.            if (_body != value) 38.            { 39.                _body = value; 40.                OnPropertyChanged("Body"); 41.            } 42.        } 43.    } 44.   45.    private int _interviewID; 46.    public int InterviewID 47.    { 48.        get { return _interviewID; } 49.        set 50.        { 51.            if (_interviewID != value) 52.            { 53.                _interviewID = value; 54.                OnPropertyChanged("InterviewID"); 55.            } 56.        } 57.    } 58.   59.    public override IAppointment Copy() 60.    { 61.        IAppointment appointment = new InterviewAppointment(); 62.        appointment.CopyFrom(this);             63.        return appointment; 64.    } 65.   66.    public override void CopyFrom(IAppointment other) 67.    {             68.        base.CopyFrom(other); 69.        var appointment = other as InterviewAppointment; 70.        if (appointment != null) 71.        { 72.            ApplicantID = appointment.ApplicantID; 73.            PostingID = appointment.PostingID; 74.            Body = appointment.Body; 75.            InterviewID = appointment.InterviewID; 76.        } 77.    } 78.} Nothing too exciting going on here, we just make sure that our custom fields are persisted (specifically set in CopyFrom at the bottom) and notifications are fired- otherwise this ends up exactly like the standard appointment as far as interactions, etc.  But if we've got custom appointment items... that also means we need to customize what our appointment dialog window will look like. Customizing the Edit Appointment Dialog This initially sounds a lot more intimidating than it really is.  The first step here depends on what you're dealing with for theming, but for ease of everything I went ahead and extracted my templates in Blend for RadScheduler so I could modify it as I pleased.  For the faint of heart, the RadScheduler template is a few thousand lines of goodness since there are some very complex things going on in that control.  I've gone ahead and trimmed down the template parts I don't need as much as possible, so what is left is all that is relevant to the Edit Appointment Dialog.  Here's the resulting Xaml, with line numbers, so I can explain further: 001.<UserControl.Resources> 002.    <!-- begin Necessary Windows 7 Theme Resources for EditAppointmentTemplate --> 003.    <helpers:DataContextProxy x:Key="DataContextProxy" /> 004.       005.    <telerik:Windows7Theme x:Key="Theme" /> 006.    <SolidColorBrush x:Key="DialogWindowBackground" 007.                     Color="White" /> 008.    <SolidColorBrush x:Key="CategorySelectorBorderBrush" 009.                     Color="#FFB1B1B1" /> 010.    <LinearGradientBrush x:Key="RadToolBar_InnerBackground" 011.                         EndPoint="0.5,1" 012.                         StartPoint="0.5,0"> 013.        <GradientStop Color="#FFFDFEFF" 014.                      Offset="0" /> 015.        <GradientStop Color="#FFDDE9F7" 016.                      Offset="1" /> 017.        <GradientStop Color="#FFE6F0FA" 018.                      Offset="0.5" /> 019.        <GradientStop Color="#FFDCE6F4" 020.                      Offset="0.5" /> 021.    </LinearGradientBrush> 022.    <Style x:Key="FormElementTextBlockStyle" 023.           TargetType="TextBlock"> 024.        <Setter Property="HorizontalAlignment" 025.                Value="Right" /> 026.        <Setter Property="VerticalAlignment" 027.                Value="Top" /> 028.        <Setter Property="Margin" 029.                Value="15, 15, 0, 2" /> 030.    </Style> 031.    <Style x:Key="FormElementStyle" 032.           TargetType="FrameworkElement"> 033.        <Setter Property="Margin" 034.                Value="10, 10, 0, 2" /> 035.    </Style> 036.    <SolidColorBrush x:Key="GenericShallowBorderBrush" 037.                     Color="#FF979994" /> 038.    <telerik:BooleanToVisibilityConverter x:Key="BooleanToVisibilityConverter" /> 039.    <telerikScheduler:ImportanceToBooleanConverter x:Key="ImportanceToBooleanConverter" /> 040.    <telerikScheduler:NullToVisibilityConverter x:Key="NullToVisibilityConverter" /> 041.    <telerikScheduler:InvertedNullToVisibilityConverter x:Key="InvertedNullToVisibilityConverter" /> 042.    <scheduler:ResourcesSeparatorConverter x:Key="ResourcesSeparatorConverter" /> 043.    <DataTemplate x:Key="IconDataEditTemplate"> 044.        <Image Source="/Telerik.Windows.Controls.Scheduler;component/Themes/Office/Images/cal.png" 045.               Margin="3,3,0,0" 046.               Width="16" 047.               Height="16" /> 048.    </DataTemplate> 049.    <DataTemplate x:Key="SingleSelectionTemplate"> 050.        <Grid VerticalAlignment="Stretch" 051.              HorizontalAlignment="Stretch"> 052.            <Grid.RowDefinitions> 053.                <RowDefinition Height="Auto" /> 054.            </Grid.RowDefinitions> 055.            <Grid.ColumnDefinitions> 056.                <ColumnDefinition Width="Auto" 057.                                  MinWidth="84" /> 058.                <ColumnDefinition Width="Auto" 059.                                  MinWidth="200" /> 060.            </Grid.ColumnDefinitions> 061.            <TextBlock x:Name="SelectionNameLabel" 062.                       Margin="0,13,4,2" 063.                       Text="{Binding ResourceType.DisplayName}" 064.                       Style="{StaticResource FormElementTextBlockStyle}" 065.                       Grid.Column="0" /> 066.            <telerikInput:RadComboBox ItemsSource="{Binding ResourceItems}" 067.                                      Width="185" 068.                                      Margin="5,10,20,2" 069.                                      HorizontalAlignment="Left" 070.                                      Grid.Column="1" 071.                                      ClearSelectionButtonVisibility="Visible" 072.                                      ClearSelectionButtonContent="Clear All" 073.                                      DisplayMemberPath="Resource.DisplayName" 074.                                      telerik:StyleManager.Theme="{StaticResource Theme}" 075.                                      SelectedItem="{Binding SelectedItem, Mode=TwoWay}" /> 076.        </Grid> 077.    </DataTemplate> 078.    <DataTemplate x:Key="MultipleSelectionTemplate"> 079.        <Grid VerticalAlignment="Stretch" 080.              HorizontalAlignment="Stretch"> 081.            <Grid.RowDefinitions> 082.                <RowDefinition Height="Auto" /> 083.            </Grid.RowDefinitions> 084.            <Grid.ColumnDefinitions> 085.                <ColumnDefinition Width="Auto" 086.                                  MinWidth="84" /> 087.                <ColumnDefinition Width="Auto" 088.                                  MinWidth="200" /> 089.            </Grid.ColumnDefinitions> 090.            <TextBlock x:Name="SelectionNameLabel" 091.                       Grid.Column="0" 092.                       Text="{Binding ResourceType.DisplayName}" 093.                       Margin="0,13,4,2" 094.                       Style="{StaticResource FormElementTextBlockStyle}" /> 095.            <telerikInput:RadComboBox Grid.Column="1" 096.                                      Width="185" 097.                                      HorizontalAlignment="Left" 098.                                      Margin="5,10,20,2" 099.                                      ItemsSource="{Binding ResourceItems}" 100.                                      SelectedIndex="{Binding SelectedIndex, Mode=TwoWay}" 101.                                      ClearSelectionButtonVisibility="Visible" 102.                                      ClearSelectionButtonContent="Clear All" 103.                                      telerik:StyleManager.Theme="{StaticResource Theme}"> 104.                <telerikInput:RadComboBox.ItemTemplate> 105.                    <DataTemplate> 106.                        <Grid HorizontalAlignment="Stretch" 107.                              VerticalAlignment="Stretch"> 108.                            <CheckBox VerticalAlignment="Center" 109.                                      HorizontalContentAlignment="Stretch" 110.                                      VerticalContentAlignment="Center" 111.                                      IsChecked="{Binding IsChecked, Mode=TwoWay}" 112.                                      Content="{Binding Resource.DisplayName}"> 113.                                <CheckBox.ContentTemplate> 114.                                    <DataTemplate> 115.                                        <TextBlock HorizontalAlignment="Stretch" 116.                                                   VerticalAlignment="Stretch" 117.                                                   Text="{Binding Content, RelativeSource={RelativeSource TemplatedParent}}" /> 118.                                    </DataTemplate> 119.                                </CheckBox.ContentTemplate> 120.                            </CheckBox> 121.                        </Grid> 122.                    </DataTemplate> 123.                </telerikInput:RadComboBox.ItemTemplate> 124.            </telerikInput:RadComboBox> 125.        </Grid> 126.    </DataTemplate> 127.    <scheduler:ResourceTypeTemplateSelector x:Key="ItemTemplateSelector" 128.                                            MultipleSelectionTemplate="{StaticResource MultipleSelectionTemplate}" 129.                                            SingleSelectionTemplate="{StaticResource SingleSelectionTemplate}" /> 130.    <!-- end Necessary Windows 7 Theme Resources for EditAppointmentTemplate -->  131.       132.    <ControlTemplate x:Key="EditAppointmentTemplate" 133.                     TargetType="telerikScheduler:AppointmentDialogWindow"> 134.        <StackPanel Background="{TemplateBinding Background}" 135.                    UseLayoutRounding="True"> 136.            <StackPanel Grid.Row="0" 137.                        Orientation="Horizontal" 138.                        Background="{StaticResource RadToolBar_InnerBackground}" 139.                        Grid.ColumnSpan="2" 140.                        Height="0"> 141.                <!-- Recurrence buttons --> 142.                <Border Margin="1,1,0,0" 143.                        Background="#50000000" 144.                        HorizontalAlignment="Left" 145.                        VerticalAlignment="Center" 146.                        Width="2" 147.                        Height="16"> 148.                    <Border Margin="0,0,1,1" 149.                            Background="#80FFFFFF" 150.                            HorizontalAlignment="Left" 151.                            Width="1" /> 152.                </Border> 153.                <Border Margin="1,1,0,0" 154.                        Background="#50000000" 155.                        HorizontalAlignment="Left" 156.                        VerticalAlignment="Center" 157.                        Width="2" 158.                        Height="16"> 159.                    <Border Margin="0,0,1,1" 160.                            Background="#80FFFFFF" 161.                            HorizontalAlignment="Left" 162.                            Width="1" /> 163.                </Border> 164.                <TextBlock telerik:LocalizationManager.ResourceKey="ShowAs" 165.                           VerticalAlignment="Center" 166.                           Margin="5,0,0,0" /> 167.                <telerikInput:RadComboBox ItemsSource="{TemplateBinding TimeMarkers}" 168.                                          Width="100" 169.                                          Height="20" 170.                                          VerticalAlignment="Center" 171.                                          Margin="5,0,0,0" 172.                                          ClearSelectionButtonVisibility="Visible" 173.                                          ClearSelectionButtonContent="Clear" 174.                                          SelectedItem="{Binding TimeMarker,RelativeSource={RelativeSource TemplatedParent},Mode=TwoWay}" 175.                                          telerik:StyleManager.Theme="{StaticResource Theme}"> 176.                    <telerikInput:RadComboBox.ItemTemplate> 177.                        <DataTemplate> 178.                            <StackPanel Orientation="Horizontal"> 179.                                <Rectangle Fill="{Binding TimeMarkerBrush}" 180.                                           Margin="2" 181.                                           Width="12" 182.                                           Height="12" /> 183.                                <TextBlock Text="{Binding TimeMarkerName}" 184.                                           Margin="2" /> 185.                            </StackPanel> 186.                        </DataTemplate> 187.                    </telerikInput:RadComboBox.ItemTemplate> 188.                </telerikInput:RadComboBox> 189.                <telerik:RadToggleButton x:Name="High" 190.                                         BorderThickness="0" 191.                                         Background="{StaticResource RadToolBar_InnerBackground}" 192.                                         DataContext="{TemplateBinding EditedAppointment}" 193.                                         telerik:StyleManager.Theme="{StaticResource Theme}" 194.                                         IsChecked="{Binding Importance,Mode=TwoWay, Converter={StaticResource ImportanceToBooleanConverter},ConverterParameter=High}" 195.                                         Margin="2,2,0,2" 196.                                         Width="23" 197.                                         Height="23" 198.                                         HorizontalContentAlignment="Center" 199.                                         ToolTipService.ToolTip="High importance" 200.                                         CommandParameter="High" 201.                                         Command="telerikScheduler:RadSchedulerCommands.SetAppointmentImportance"> 202.                    <StackPanel HorizontalAlignment="Center"> 203.                        <Path Stretch="Fill" 204.                              Height="10" 205.                              HorizontalAlignment="Center" 206.                              VerticalAlignment="Top" 207.                              Width="5.451" 208.                              Data="M200.39647,58.840393 C200.39337,58.336426 201.14566,57.683922 202.56244,57.684292 C204.06589,57.684685 204.73764,58.357765 204.72783,58.992363 C205.04649,61.795574 203.04713,64.181099 202.47388,66.133446 C201.93753,64.154961 199.9471,61.560352 200.39647,58.840393 z"> 209.                            <Path.Fill> 210.                                <LinearGradientBrush EndPoint="1.059,0.375" 211.                                                     StartPoint="-0.457,0.519"> 212.                                    <GradientStop Color="#FFFF0606" 213.                                                  Offset="0.609" /> 214.                                    <GradientStop Color="#FFBF0303" 215.                                                  Offset="0.927" /> 216.                                </LinearGradientBrush> 217.                            </Path.Fill> 218.                        </Path> 219.                        <Ellipse Height="3" 220.                                 HorizontalAlignment="Center" 221.                                 Margin="0,-1,0,0" 222.                                 VerticalAlignment="Top" 223.                                 Width="3"> 224.                            <Ellipse.Fill> 225.                                <RadialGradientBrush> 226.                                    <GradientStop Color="#FFFF0606" 227.                                                  Offset="0" /> 228.                                    <GradientStop Color="#FFBF0303" 229.                                                  Offset="1" /> 230.                                </RadialGradientBrush> 231.                            </Ellipse.Fill> 232.                        </Ellipse> 233.                    </StackPanel> 234.                </telerik:RadToggleButton> 235.                <telerik:RadToggleButton x:Name="Low" 236.                                         HorizontalContentAlignment="Center" 237.                                         BorderThickness="0" 238.                                         Background="{StaticResource RadToolBar_InnerBackground}" 239.                                         DataContext="{TemplateBinding EditedAppointment}" 240.                                         IsChecked="{Binding Importance,Mode=TwoWay, Converter={StaticResource ImportanceToBooleanConverter},ConverterParameter=Low}" 241.                                         Margin="0,2,0,2" 242.                                         Width="23" 243.                                         Height="23" 244.                                         ToolTipService.ToolTip="Low importance" 245.                                         CommandParameter="Low" 246.                                         telerik:StyleManager.Theme="{StaticResource Theme}" 247.                                         Command="telerikScheduler:RadSchedulerCommands.SetAppointmentImportance"> 248.                    <Path Stretch="Fill" 249.                          Height="12" 250.                          HorizontalAlignment="Center" 251.                          VerticalAlignment="Top" 252.                          Width="9" 253.                          Data="M222.40353,60.139881 L226.65768,60.139843 L226.63687,67.240196 L229.15347,67.240196 L224.37816,71.394943 L219.65274,67.240196 L222.37572,67.219345 z" 254.                          Stroke="#FF0365A7"> 255.                        <Path.Fill> 256.                            <LinearGradientBrush EndPoint="1.059,0.375" 257.                                                 StartPoint="-0.457,0.519"> 258.                                <GradientStop Color="#FFBBE4FF" /> 259.                                <GradientStop Color="#FF024572" 260.                                              Offset="0.836" /> 261.                                <GradientStop Color="#FF43ADF4" 262.                                              Offset="0.466" /> 263.                            </LinearGradientBrush> 264.                        </Path.Fill> 265.                    </Path> 266.                </telerik:RadToggleButton> 267.            </StackPanel > 268.            <Border DataContext="{TemplateBinding EditedAppointment}" 269.                    Background="{Binding Category.CategoryBrush}" 270.                    Visibility="{Binding Category,Converter={StaticResource NullToVisibilityConverter}}" 271.                    CornerRadius="3" 272.                    Height="20" 273.                    Margin="5,10,5,0"> 274.                <TextBlock Text="{Binding Category.DisplayName}" 275.                           VerticalAlignment="Center" 276.                           Margin="5,0,0,0" /> 277.            </Border> 278.            <Grid VerticalAlignment="Stretch" 279.                  HorizontalAlignment="Stretch" 280.                  DataContext="{TemplateBinding EditedAppointment}" 281.                  Background="{TemplateBinding Background}"> 282.                <Grid.RowDefinitions> 283.                    <RowDefinition Height="Auto" /> 284.                    <RowDefinition Height="Auto" /> 285.                    <RowDefinition Height="Auto" /> 286.                    <RowDefinition Height="Auto" /> 287.                    <RowDefinition Height="Auto" /> 288.                    <RowDefinition Height="Auto" /> 289.                    <RowDefinition Height="Auto" /> 290.                    <RowDefinition Height="Auto" /> 291.                    <RowDefinition Height="Auto" /> 292.                    <RowDefinition Height="Auto" /> 293.                </Grid.RowDefinitions> 294.                <Grid.ColumnDefinitions> 295.                    <ColumnDefinition Width="Auto" 296.                                      MinWidth="100" /> 297.                    <ColumnDefinition Width="Auto" 298.                                      MinWidth="200" /> 299.                </Grid.ColumnDefinitions> 300.                <!-- Subject --> 301.                <TextBlock x:Name="SubjectLabel" 302.                           Grid.Row="0" 303.                           Grid.Column="0" 304.                           Margin="0,15,0,2" 305.                           telerik:LocalizationManager.ResourceKey="Subject" 306.                           Style="{StaticResource FormElementTextBlockStyle}" /> 307.                <TextBox x:Name="Subject" 308.                         Grid.Row="0" 309.                         Grid.Column="1" 310.                         MinHeight="22" 311.                         Padding="4 2" 312.                         Width="340" 313.                         HorizontalAlignment="Left" 314.                         Text="{Binding Subject, Mode=TwoWay}" 315.                         MaxLength="255" 316.                         telerik:StyleManager.Theme="{StaticResource Theme}" 317.                         Margin="10,12,20,2" /> 318.                <!-- Description --> 319.                <TextBlock x:Name="DescriptionLabel" 320.                           Grid.Row="1" 321.                           Grid.Column="0" 322.                           Margin="0,13,0,2" 323.                           telerik:LocalizationManager.ResourceKey="Body" 324.                           Style="{StaticResource FormElementTextBlockStyle}" /> 325.                <TextBox x:Name="Body" 326.                         VerticalAlignment="top" 327.                         Grid.Row="1" 328.                         Grid.Column="1" 329.                         Height="Auto" 330.                         MaxHeight="82" 331.                         Width="340" 332.                         HorizontalAlignment="Left" 333.                         MinHeight="22" 334.                         Padding="4 2" 335.                         TextWrapping="Wrap" 336.                         telerik:StyleManager.Theme="{StaticResource Theme}" 337.                         Text="{Binding Body, Mode=TwoWay}" 338.                         AcceptsReturn="true" 339.                         Margin="10,10,20,2" 340.                         HorizontalScrollBarVisibility="Auto" 341.                         VerticalScrollBarVisibility="Auto" /> 342.                <!-- Start/End date --> 343.                <TextBlock x:Name="StartDateLabel" 344.                           Grid.Row="2" 345.                           Grid.Column="0" 346.                           Margin="0,13,0,2" 347.                           telerik:LocalizationManager.ResourceKey="StartTime" 348.                           Style="{StaticResource FormElementTextBlockStyle}" /> 349.                <telerikScheduler:DateTimePicker x:Name="StartDateTime" 350.                                                 Height="22" 351.                                                 Grid.Row="2" 352.                                                 Grid.Column="1" 353.                                                 HorizontalAlignment="Left" 354.                                                 Margin="10,10,20,2" 355.                                                 Style="{StaticResource FormElementStyle}" 356.                                                 SelectedDateTime="{Binding Start, Mode=TwoWay}" 357.                                                 telerikScheduler:StartEndDatePicker.EndPicker="{Binding ElementName=EndDateTime}" 358.                                                 IsTabStop="False" 359.                                                 IsEnabled="False" /> 360.                <TextBlock x:Name="EndDateLabel" 361.                           Grid.Row="3" 362.                           Grid.Column="0" 363.                           Margin="0,13,0,2" 364.                           telerik:LocalizationManager.ResourceKey="EndTime" 365.                           Style="{StaticResource FormElementTextBlockStyle}" /> 366.                <telerikScheduler:DateTimePicker x:Name="EndDateTime" 367.                                                 Height="22" 368.                                                 Grid.Row="3" 369.                                                 Grid.Column="1" 370.                                                 HorizontalAlignment="Left" 371.                                                 Margin="10,10,20,2" 372.                                                 Style="{StaticResource FormElementStyle}" 373.                                                 IsTabStop="False" 374.                                                 IsEnabled="False" 375.                                                 SelectedDateTime="{Binding End, Mode=TwoWay}" /> 376.                <!-- Is-all-day selector --> 377.                <CheckBox x:Name="AllDayEventCheckbox" 378.                          IsChecked="{Binding IsAllDayEvent, Mode=TwoWay}" 379.                          Grid.Row="4" 380.                          Grid.Column="1" 381.                          Margin="10,10,20,2" 382.                          HorizontalAlignment="Left" 383.                          telerik:StyleManager.Theme="{StaticResource Theme}" 384.                          telerik:LocalizationManager.ResourceKey="AllDayEvent"> 385.                    <telerik:CommandManager.InputBindings> 386.                        <telerik:InputBindingCollection> 387.                            <telerik:MouseBinding Command="telerikScheduler:RadSchedulerCommands.ChangeTimePickersVisibility" 388.                                                  Gesture="LeftClick" /> 389.                        </telerik:InputBindingCollection> 390.                    </telerik:CommandManager.InputBindings> 391.                </CheckBox> 392.                <Grid Grid.Row="5" 393.                      Grid.ColumnSpan="2"> 394.                    <Grid.ColumnDefinitions> 395.                        <ColumnDefinition Width="Auto" 396.                                          MinWidth="100" /> 397.                        <ColumnDefinition Width="Auto" 398.                                          MinWidth="200" /> 399.                    </Grid.ColumnDefinitions> 400.                    <Grid.RowDefinitions> 401.                        <RowDefinition Height="Auto" /> 402.                        <RowDefinition Height="Auto" /> 403.                    </Grid.RowDefinitions> 404.                    <TextBlock Text="Applicant" 405.                               Margin="0,13,0,2" 406.                               Style="{StaticResource FormElementTextBlockStyle}" /> 407.                    <telerikInput:RadComboBox IsEditable="False" 408.                                              Grid.Column="1" 409.                                              Height="24" 410.                                              VerticalAlignment="Center" 411.                                              ItemsSource="{Binding Source={StaticResource DataContextProxy}, Path=DataSource.ApplicantList}" 412.                                              SelectedValue="{Binding ApplicantID, Mode=TwoWay}" 413.                                              SelectedValuePath="ApplicantID" 414.                                              DisplayMemberPath="FirstName" /> 415.                       416.                    <TextBlock Text="Job" 417.                               Margin="0,13,0,2" 418.                               Grid.Row="1" 419.                               Style="{StaticResource FormElementTextBlockStyle}" /> 420.                    <telerikInput:RadComboBox IsEditable="False" 421.                                              Grid.Column="1" 422.                                              Grid.Row="1" 423.                                              Height="24" 424.                                              VerticalAlignment="Center" 425.                                              ItemsSource="{Binding Source={StaticResource DataContextProxy}, Path=DataSource.JobsList}" 426.                                              SelectedValue="{Binding PostingID, Mode=TwoWay}" 427.                                              SelectedValuePath="PostingID" 428.                                              DisplayMemberPath="JobTitle"/> 429.                </Grid> 430.                    <!-- Resources --> 431.                <Grid x:Name="ResourcesLayout" 432.                      Grid.Row="7" 433.                      Grid.Column="0" 434.                      Grid.ColumnSpan="2" 435.                      MaxHeight="130" 436.                      Margin="20,5,20,0"> 437.                    <Border Margin="0" 438.                            BorderThickness="1" 439.                            BorderBrush="{StaticResource GenericShallowBorderBrush}" 440.                            Visibility="{Binding ElementName=ResourcesScrollViewer, Path=ComputedVerticalScrollBarVisibility}"></Border> 441.                    <ScrollViewer x:Name="ResourcesScrollViewer" 442.                                  IsTabStop="false" 443.                                  Grid.Row="6" 444.                                  Grid.Column="0" 445.                                  Grid.ColumnSpan="2" 446.                                  Margin="1" 447.                                  telerik:StyleManager.Theme="{StaticResource Theme}" 448.                                  VerticalScrollBarVisibility="Auto"> 449.                        <scheduler:ResourcesItemsControl x:Name="PART_Resources" 450.                                                         HorizontalAlignment="Left" 451.                                                         Padding="0,2,0,5" 452.                                                         IsTabStop="false" 453.                                                         ItemsSource="{TemplateBinding ResourceTypeModels}" 454.                                                         ItemTemplateSelector="{StaticResource ItemTemplateSelector}" /> 455.                    </ScrollViewer> 456.                </Grid> 457.                <StackPanel x:Name="FooterControls" 458.                            Margin="5 10 10 10" 459.                            Grid.Row="8" 460.                            Grid.Column="1" 461.                            HorizontalAlignment="Left" 462.                            Orientation="Horizontal"> 463.                    <telerik:RadButton x:Name="OKButton" 464.                                       Margin="5" 465.                                       Padding="10 0" 466.                                       MinWidth="80" 467.                                       Command="telerikScheduler:RadSchedulerCommands.SaveAppointment" 468.                                       telerik:StyleManager.Theme="{StaticResource Theme}" 469.                                       telerikNavigation:RadWindow.ResponseButton="Accept" 470.                                       telerik:LocalizationManager.ResourceKey="SaveAndCloseCommandText"> 471.                    </telerik:RadButton> 472.                    <telerik:RadButton x:Name="CancelButton" 473.                                       Margin="5" 474.                                       Padding="10 0" 475.                                       MinWidth="80" 476.                                       telerik:LocalizationManager.ResourceKey="Cancel" 477.                                       telerik:StyleManager.Theme="{StaticResource Theme}" 478.                                       telerikNavigation:RadWindow.ResponseButton="Cancel" 479.                                       Command="telerik:WindowCommands.Close"> 480.                    </telerik:RadButton> 481.                </StackPanel> 482.            </Grid> 483.            <vsm:VisualStateManager.VisualStateGroups> 484.                <vsm:VisualStateGroup x:Name="RecurrenceRuleState"> 485.                    <vsm:VisualState x:Name="RecurrenceRuleIsNull"> 486.                        <Storyboard> 487.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="StartDateTime" 488.                                                           Storyboard.TargetProperty="IsEnabled" 489.                                                           Duration="0"> 490.                                <DiscreteObjectKeyFrame KeyTime="0" 491.                                                        Value="True" /> 492.                            </ObjectAnimationUsingKeyFrames> 493.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="EndDateTime" 494.                                                           Storyboard.TargetProperty="IsEnabled" 495.                                                           Duration="0"> 496.                                <DiscreteObjectKeyFrame KeyTime="0" 497.                                                        Value="True" /> 498.                            </ObjectAnimationUsingKeyFrames> 499.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="AllDayEventCheckbox" 500.                                                           Storyboard.TargetProperty="IsEnabled" 501.                                                           Duration="0"> 502.                                <DiscreteObjectKeyFrame KeyTime="0" 503.                                                        Value="True" /> 504.                            </ObjectAnimationUsingKeyFrames> 505.                        </Storyboard> 506.                    </vsm:VisualState> 507.                    <vsm:VisualState x:Name="RecurrenceRuleIsNotNull"> 508.                        <Storyboard> 509.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="StartDateTime" 510.                                                           Storyboard.TargetProperty="IsEnabled" 511.                                                           Duration="0"> 512.                                <DiscreteObjectKeyFrame KeyTime="0" 513.                                                        Value="False" /> 514.                            </ObjectAnimationUsingKeyFrames> 515.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="EndDateTime" 516.                                                           Storyboard.TargetProperty="IsEnabled" 517.                                                           Duration="0"> 518.                                <DiscreteObjectKeyFrame KeyTime="0" 519.                                                        Value="False" /> 520.                            </ObjectAnimationUsingKeyFrames> 521.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="AllDayEventCheckbox" 522.                                                           Storyboard.TargetProperty="IsEnabled" 523.                                                           Duration="0"> 524.                                <DiscreteObjectKeyFrame KeyTime="0" 525.                                                        Value="False" /> 526.                            </ObjectAnimationUsingKeyFrames> 527.                        </Storyboard> 528.                    </vsm:VisualState> 529.                </vsm:VisualStateGroup> 530.            </vsm:VisualStateManager.VisualStateGroups> 531.        </StackPanel> 532.    </ControlTemplate> 533.    <DataTemplate x:Key="AppointmentDialogWindowHeaderDataTemplate"> 534.        <StackPanel Orientation="Horizontal" 535.                    MaxWidth="400"> 536.            <TextBlock telerik:LocalizationManager.ResourceKey="Event" 537.                       Visibility="{Binding Appointment.IsAllDayEvent, Converter={StaticResource BooleanToVisibilityConverter}}" /> 538.            <TextBlock telerik:LocalizationManager.ResourceKey="Appointment" 539.                       Visibility="{Binding Appointment.IsAllDayEvent, Converter={StaticResource InvertedBooleanToVisibilityConverter}}" /> 540.            <TextBlock Text=" - " /> 541.            <TextBlock x:Name="SubjectTextBlock" 542.                       Visibility="{Binding Appointment.Subject, Converter={StaticResource NullToVisibilityConverter}}" 543.                       Text="{Binding Appointment.Subject}" /> 544.            <TextBlock telerik:LocalizationManager.ResourceKey="Untitled" 545.                       Visibility="{Binding Appointment.Subject, Converter={StaticResource InvertedNullToVisibilityConverter}}" /> 546.        </StackPanel> 547.    </DataTemplate> 548.    <Style x:Key="EditAppointmentStyle" 549.           TargetType="telerikScheduler:AppointmentDialogWindow"> 550.        <Setter Property="IconTemplate" 551.                Value="{StaticResource IconDataEditTemplate}" /> 552.        <Setter Property="HeaderTemplate" 553.                Value="{StaticResource AppointmentDialogWindowHeaderDataTemplate}" /> 554.        <Setter Property="Background" 555.                Value="{StaticResource DialogWindowBackground}" /> 556.        <Setter Property="Template" 557.                Value="{StaticResource EditAppointmentTemplate}" /> 558.    </Style> 559.</UserControl.Resources> The first line there is the DataContextProxy I mentioned previously- we use that again to work a bit of magic in this template. Where we start getting into the dialog in question is line 132, but line 407 is where things start getting interesting.  The ItemsSource is pointing at a list that exists in my ViewModel (or code-behind, if it is used as a DataContext), the SelectedValue is the item I am actually binding from the applicant (note the TwoWay binding), and SelectedValuePath and DisplayMemberPath ensure the proper applicant is being displayed from the collection.  You will also see similar starting on line 420 where I do the same for the Jobs we'll be displaying. Just to wrap-up the Xaml, here's the RadScheduler declaraction that ties this all together and will be the main focus of our view: 01.<telerikScheduler:RadScheduler x:Name="xJobsScheduler" 02.                  Grid.Row="1" 03.                  Grid.Column="1" 04.                  Width="800" 05.                  MinWidth="600" 06.                  Height="500" 07.                  MinHeight="300" 08.                  AppointmentsSource="{Binding Interviews}" 09.                  EditAppointmentStyle="{StaticResource EditAppointmentStyle}" 10.                  command:AppointmentAddedEventClass.Command="{Binding AddAppointmentCommand}" 11.                  command:ApptCreatedEventClass.Command="{Binding ApptCreatingCommand}" 12.                  command:ApptEditedEventClass.Command="{Binding ApptEditedCommand}" 13.                  command:ApptDeletedEventClass.Command="{Binding ApptDeletedCommand}"> 14.</telerikScheduler:RadScheduler> Now, we get to the ViewModel and what it takes to get that rigged up.  And for those of you who remember the jobs post, those command:s in the Xaml are pointing to attached behavior commands that reproduce the respective events.  This becomes very handy when we're setting up the code-behind version. ;) ViewModel I've been liking this approach so far, so I'm going to put the entire ViewModel here and then go into the lines of interest.  Of course, feel free to ask me questions about anything that isn't clear (by line number, ideally) so I can help out if I have missed anything important: 001.public class SchedulerViewModel : ViewModelBase 002.{ 003.    private readonly IEventAggregator eventAggregator; 004.    private readonly IRegionManager regionManager; 005.   006.    public RecruitingContext context; 007.   008.    private ObservableItemCollection<InterviewAppointment> _interviews = new ObservableItemCollection<InterviewAppointment>(); 009.    public ObservableItemCollection<InterviewAppointment> Interviews 010.    { 011.        get { return _interviews; } 012.        set 013.        { 014.            if (_interviews != value) 015.            { 016.                _interviews = value; 017.                NotifyChanged("Interviews"); 018.            } 019.        } 020.    } 021.   022.    private QueryableCollectionView _jobsList; 023.    public QueryableCollectionView JobsList 024.    { 025.        get { return this._jobsList; } 026.        set 027.        { 028.            if (this._jobsList != value) 029.            { 030.                this._jobsList = value; 031.                this.NotifyChanged("JobsList"); 032.            } 033.        } 034.    } 035.   036.    private QueryableCollectionView _applicantList; 037.    public QueryableCollectionView ApplicantList 038.    { 039.        get { return _applicantList; } 040.        set 041.        { 042.            if (_applicantList != value) 043.            { 044.                _applicantList = value; 045.                NotifyChanged("ApplicantList"); 046.            } 047.        } 048.    } 049.   050.    public DelegateCommand<object> AddAppointmentCommand { get; set; } 051.    public DelegateCommand<object> ApptCreatingCommand { get; set; } 052.    public DelegateCommand<object> ApptEditedCommand { get; set; } 053.    public DelegateCommand<object> ApptDeletedCommand { get; set; } 054.   055.    public SchedulerViewModel(IEventAggregator eventAgg, IRegionManager regionmanager) 056.    { 057.        // set Unity items 058.        this.eventAggregator = eventAgg; 059.        this.regionManager = regionmanager; 060.   061.        // load our context 062.        context = new RecruitingContext(); 063.        LoadOperation<Interview> loadOp = context.Load(context.GetInterviewsQuery()); 064.        loadOp.Completed += new EventHandler(loadOp_Completed); 065.   066.        this._jobsList = new QueryableCollectionView(context.JobPostings); 067.        context.Load(context.GetJobPostingsQuery()); 068.   069.        this._applicantList = new QueryableCollectionView(context.Applicants); 070.        context.Load(context.GetApplicantsQuery()); 071.   072.        AddAppointmentCommand = new DelegateCommand<object>(this.AddAppt); 073.        ApptCreatingCommand = new DelegateCommand<object>(this.ApptCreating); 074.        ApptEditedCommand = new DelegateCommand<object>(this.ApptEdited); 075.        ApptDeletedCommand = new DelegateCommand<object>(this.ApptDeleted); 076.   077.    } 078.   079.    void loadOp_Completed(object sender, EventArgs e) 080.    { 081.        LoadOperation loadop = sender as LoadOperation; 082.   083.        foreach (var ent in loadop.Entities) 084.        { 085.            _interviews.Add(EntityToAppointment(ent as Interview)); 086.        } 087.    } 088.   089.    #region Appointment Adding 090.   091.    public void AddAppt(object obj) 092.    { 093.        // now we have a new InterviewAppointment to add to our QCV :) 094.        InterviewAppointment newInterview = obj as InterviewAppointment; 095.   096.        this.context.Interviews.Add(AppointmentToEntity(newInterview)); 097.        this.context.SubmitChanges((s) => 098.        { 099.            ActionHistory myAction = new ActionHistory(); 100.            myAction.InterviewID = newInterview.InterviewID; 101.            myAction.PostingID = newInterview.PostingID; 102.            myAction.ApplicantID = newInterview.ApplicantID; 103.            myAction.Description = String.Format("Interview with {0} has been created by {1}", newInterview.ApplicantID.ToString(), "default user"); 104.            myAction.TimeStamp = DateTime.Now; 105.            eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 106.        } 107.            , null); 108.    } 109.   110.    public void ApptCreating(object obj) 111.    { 112.        // handled in the behavior, just a placeholder to ensure it runs :) 113.    } 114.   115.    #endregion 116.   117.    #region Appointment Editing 118.   119.    public void ApptEdited(object obj) 120.    { 121.        Interview editedInterview = (from x in context.Interviews 122.                            where x.InterviewID == (obj as InterviewAppointment).InterviewID 123.                            select x).SingleOrDefault(); 124.   125.        CopyAppointmentEdit(editedInterview, obj as InterviewAppointment); 126.   127.        context.SubmitChanges((s) => { 128.            ActionHistory myAction = new ActionHistory(); 129.            myAction.InterviewID = editedInterview.InterviewID; 130.            myAction.PostingID = editedInterview.PostingID; 131.            myAction.ApplicantID = editedInterview.ApplicantID; 132.            myAction.Description = String.Format("Interview with {0} has been modified by {1}", editedInterview.ApplicantID.ToString(), "default user"); 133.            myAction.TimeStamp = DateTime.Now; 134.            eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); } 135.            , null); 136.    } 137.   138.    #endregion 139.   140.    #region Appointment Deleting 141.   142.    public void ApptDeleted(object obj) 143.    { 144.        Interview deletedInterview = (from x in context.Interviews 145.                                      where x.InterviewID == (obj as InterviewAppointment).InterviewID 146.                                      select x).SingleOrDefault(); 147.   148.        context.Interviews.Remove(deletedInterview); 149.        context.SubmitChanges((s) => 150.        { 151.            ActionHistory myAction = new ActionHistory(); 152.            myAction.InterviewID = deletedInterview.InterviewID; 153.            myAction.PostingID = deletedInterview.PostingID; 154.            myAction.ApplicantID = deletedInterview.ApplicantID; 155.            myAction.Description = String.Format("Interview with {0} has been deleted by {1}", deletedInterview.ApplicantID.ToString(), "default user"); 156.            myAction.TimeStamp = DateTime.Now; 157.            eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 158.        } 159.            , null); 160.    } 161.   162.    #endregion 163.   164.    #region Appointment Helpers :) 165.   166.    public Interview AppointmentToEntity(InterviewAppointment ia) 167.    { 168.        Interview newInterview = new Interview(); 169.        newInterview.Subject = ia.Subject; 170.        newInterview.Body = ia.Body; 171.        newInterview.Start = ia.Start; 172.        newInterview.End = ia.End; 173.        newInterview.ApplicantID = ia.ApplicantID; 174.        newInterview.PostingID = ia.PostingID; 175.        newInterview.InterviewID = ia.InterviewID; 176.   177.        return newInterview; 178.    } 179.   180.    public InterviewAppointment EntityToAppointment(Interview ia) 181.    { 182.        InterviewAppointment newInterview = new InterviewAppointment(); 183.        newInterview.Subject = ia.Subject; 184.        newInterview.Body = ia.Body; 185.        newInterview.Start = ia.Start; 186.        newInterview.End = ia.End; 187.        newInterview.ApplicantID = ia.ApplicantID; 188.        newInterview.PostingID = ia.PostingID; 189.        newInterview.InterviewID = ia.InterviewID; 190.   191.        return newInterview; 192.    } 193.   194.    public void CopyAppointmentEdit(Interview entityInterview, InterviewAppointment appointmentInterview) 195.    { 196.        entityInterview.Subject = appointmentInterview.Subject; 197.        entityInterview.Body = appointmentInterview.Body; 198.        entityInterview.Start = appointmentInterview.Start; 199.        entityInterview.End = appointmentInterview.End; 200.        entityInterview.ApplicantID = appointmentInterview.ApplicantID; 201.        entityInterview.PostingID = appointmentInterview.PostingID; 202.    } 203.   204.    #endregion 205.} One thing we're doing here which you won't see in any of the other ViewModels is creating a duplicate collection.  I know this is something which will be fixed down the line for using RadScheduler, simplifying this process, but with WCF RIA changing as it does I wanted to ensure functionality would remain consistent as I continued development on this application.  So, I do a little bit of duplication, but for the greater good.  This all takes place starting on line 79, so for every entity that comes back we add it to the collection that is bound to RadScheduler.  Otherwise, the DelegateCommands that you see correspond directly to the events they are named after.  In each case, rather than sending over the full event arguments, I just send in the appointment in question (coming through as the object obj in all cases) so I can add (line 91), edit (line 119), and delete appointments (line 142) like normal.  This just ensures they get updated back to my database.  Also, the one bit of code you won't see is for the Appointment Creating (line 110) event- that is because in the command I've created I simply make the replacement I need to: 1.void element_AppointmentCreating(object sender, AppointmentCreatingEventArgs e) 2.{ 3.    e.NewAppointment = new InterviewAppointment(); 4.    base.ExecuteCommand(); 5.} And the ViewModel is none the wiser, the appointments just work as far as it is concerned since as they are created they become InterviewAppointments.  End result?  I've customized my EditAppointmentDialog as follows: And adding, editing, and deleting appointments works like a charm.  I can even 'edit' by moving appointments around RadScheduler, so as they are dropped into a timeslot they perform their full edit routine and things get updated. And then, the Code-Behind Version Perhaps the thing I like the most about doing one then the other is I get to steal 90% or more of the code from the MVVM version.  For example, the only real changes to the Code-Behind Xaml file exist in the control declaration, in which I use events instead of attached-behavior-event-commands: 01.<telerikScheduler:RadScheduler x:Name="xJobsScheduler" 02.                  Grid.Row="1" 03.                  Grid.Column="1" 04.                  Width="800" 05.                  MinWidth="600" 06.                  Height="500" 07.                  MinHeight="300" 08.                  EditAppointmentStyle="{StaticResource EditAppointmentStyle}" 09.                  AppointmentAdded="xJobsScheduler_AppointmentAdded" 10.                  AppointmentCreating="xJobsScheduler_AppointmentCreating" 11.                  AppointmentEdited="xJobsScheduler_AppointmentEdited" 12.                  AppointmentDeleted="xJobsScheduler_AppointmentDeleted"> 13.</telerikScheduler:RadScheduler> Easy, right?  Otherwise, all the same styling in UserControl.Resources was re-used, right down to the DataContextProxy that lets us bind to a collection from our viewmodel (in this case, our code-behind) to use within the DataTemplate.  The code conversion gets even easier, as I could literally copy and paste almost everything from the ViewModel to my Code-Behind, just a matter of pasting the right section into the right event.  Here's the code-behind as proof: 001.public partial class SchedulingView : UserControl, INotifyPropertyChanged 002.{ 003.    public RecruitingContext context; 004.   005.    private QueryableCollectionView _jobsList; 006.    public QueryableCollectionView JobsList 007.    { 008.        get { return this._jobsList; } 009.        set 010.        { 011.            if (this._jobsList != value) 012.            { 013.                this._jobsList = value; 014.                this.NotifyChanged("JobsList"); 015.            } 016.        } 017.    } 018.   019.    private QueryableCollectionView _applicantList; 020.    public QueryableCollectionView ApplicantList 021.    { 022.        get { return _applicantList; } 023.        set 024.        { 025.            if (_applicantList != value) 026.            { 027.                _applicantList = value; 028.                NotifyChanged("ApplicantList"); 029.            } 030.        } 031.    } 032.   033.    private ObservableItemCollection<InterviewAppointment> _interviews = new ObservableItemCollection<InterviewAppointment>(); 034.    public ObservableItemCollection<InterviewAppointment> Interviews 035.    { 036.        get { return _interviews; } 037.        set 038.        { 039.            if (_interviews != value) 040.            { 041.                _interviews = value; 042.                NotifyChanged("Interviews"); 043.            } 044.        } 045.    } 046.   047.    public SchedulingView() 048.    { 049.        InitializeComponent(); 050.   051.        this.DataContext = this; 052.   053.        this.Loaded += new RoutedEventHandler(SchedulingView_Loaded); 054.    } 055.   056.    void SchedulingView_Loaded(object sender, RoutedEventArgs e) 057.    { 058.        this.xJobsScheduler.AppointmentsSource = Interviews; 059.   060.        context = new RecruitingContext(); 061.           062.        LoadOperation loadop = context.Load(context.GetInterviewsQuery()); 063.        loadop.Completed += new EventHandler(loadop_Completed); 064.   065.        this._applicantList = new QueryableCollectionView(context.Applicants); 066.        context.Load(context.GetApplicantsQuery()); 067.   068.        this._jobsList = new QueryableCollectionView(context.JobPostings); 069.        context.Load(context.GetJobPostingsQuery()); 070.    } 071.   072.    void loadop_Completed(object sender, EventArgs e) 073.    { 074.        LoadOperation loadop = sender as LoadOperation; 075.   076.        _interviews.Clear(); 077.   078.        foreach (var ent in loadop.Entities) 079.        { 080.            _interviews.Add(EntityToAppointment(ent as Interview)); 081.        } 082.    } 083.   084.    private void xJobsScheduler_AppointmentAdded(object sender, Telerik.Windows.Controls.AppointmentAddedEventArgs e) 085.    { 086.        // now we have a new InterviewAppointment to add to our QCV :) 087.        InterviewAppointment newInterview = e.Appointment as InterviewAppointment; 088.   089.        this.context.Interviews.Add(AppointmentToEntity(newInterview)); 090.        this.context.SubmitChanges((s) => 091.        { 092.            ActionHistory myAction = new ActionHistory(); 093.            myAction.InterviewID = newInterview.InterviewID; 094.            myAction.PostingID = newInterview.PostingID; 095.            myAction.ApplicantID = newInterview.ApplicantID; 096.            myAction.Description = String.Format("Interview with {0} has been created by {1}", newInterview.ApplicantID.ToString(), "default user"); 097.            myAction.TimeStamp = DateTime.Now; 098.            context.ActionHistories.Add(myAction); 099.            context.SubmitChanges(); 100.        } 101.            , null); 102.    } 103.   104.    private void xJobsScheduler_AppointmentCreating(object sender, Telerik.Windows.Controls.AppointmentCreatingEventArgs e) 105.    { 106.        e.NewAppointment = new InterviewAppointment(); 107.    } 108.   109.    private void xJobsScheduler_AppointmentEdited(object sender, Telerik.Windows.Controls.AppointmentEditedEventArgs e) 110.    { 111.        Interview editedInterview = (from x in context.Interviews 112.                                     where x.InterviewID == (e.Appointment as InterviewAppointment).InterviewID 113.                                     select x).SingleOrDefault(); 114.   115.        CopyAppointmentEdit(editedInterview, e.Appointment as InterviewAppointment); 116.   117.        context.SubmitChanges((s) => 118.        { 119.            ActionHistory myAction = new ActionHistory(); 120.            myAction.InterviewID = editedInterview.InterviewID; 121.            myAction.PostingID = editedInterview.PostingID; 122.            myAction.ApplicantID = editedInterview.ApplicantID; 123.            myAction.Description = String.Format("Interview with {0} has been modified by {1}", editedInterview.ApplicantID.ToString(), "default user"); 124.            myAction.TimeStamp = DateTime.Now; 125.            context.ActionHistories.Add(myAction); 126.            context.SubmitChanges(); 127.        } 128.            , null); 129.    } 130.   131.    private void xJobsScheduler_AppointmentDeleted(object sender, Telerik.Windows.Controls.AppointmentDeletedEventArgs e) 132.    { 133.        Interview deletedInterview = (from x in context.Interviews 134.                                      where x.InterviewID == (e.Appointment as InterviewAppointment).InterviewID 135.                                      select x).SingleOrDefault(); 136.   137.        context.Interviews.Remove(deletedInterview); 138.        context.SubmitChanges((s) => 139.        { 140.            ActionHistory myAction = new ActionHistory(); 141.            myAction.InterviewID = deletedInterview.InterviewID; 142.            myAction.PostingID = deletedInterview.PostingID; 143.            myAction.ApplicantID = deletedInterview.ApplicantID; 144.            myAction.Description = String.Format("Interview with {0} has been deleted by {1}", deletedInterview.ApplicantID.ToString(), "default user"); 145.            myAction.TimeStamp = DateTime.Now; 146.            context.ActionHistories.Add(myAction); 147.            context.SubmitChanges(); 148.        } 149.            , null); 150.    } 151.   152.    #region Appointment Helpers :) 153.   154.    public Interview AppointmentToEntity(InterviewAppointment ia) 155.    { 156.        Interview newInterview = new Interview(); 157.        newInterview.Subject = ia.Subject; 158.        newInterview.Body = ia.Body; 159.        newInterview.Start = ia.Start; 160.        newInterview.End = ia.End; 161.        newInterview.ApplicantID = ia.ApplicantID; 162.        newInterview.PostingID = ia.PostingID; 163.        newInterview.InterviewID = ia.InterviewID; 164.   165.        return newInterview; 166.    } 167.   168.    public InterviewAppointment EntityToAppointment(Interview ia) 169.    { 170.        InterviewAppointment newInterview = new InterviewAppointment(); 171.        newInterview.Subject = ia.Subject; 172.        newInterview.Body = ia.Body; 173.        newInterview.Start = ia.Start; 174.        newInterview.End = ia.End; 175.        newInterview.ApplicantID = ia.ApplicantID; 176.        newInterview.PostingID = ia.PostingID; 177.        newInterview.InterviewID = ia.InterviewID; 178.   179.        return newInterview; 180.    } 181.   182.    public void CopyAppointmentEdit(Interview entityInterview, InterviewAppointment appointmentInterview) 183.    { 184.        entityInterview.Subject = appointmentInterview.Subject; 185.        entityInterview.Body = appointmentInterview.Body; 186.        entityInterview.Start = appointmentInterview.Start; 187.        entityInterview.End = appointmentInterview.End; 188.        entityInterview.ApplicantID = appointmentInterview.ApplicantID; 189.        entityInterview.PostingID = appointmentInterview.PostingID; 190.    } 191.   192.    #endregion 193.   194.    #region INotifyPropertyChanged Members 195.   196.    public event PropertyChangedEventHandler PropertyChanged; 197.   198.    public void NotifyChanged(string propertyName) 199.    { 200.        if (string.IsNullOrEmpty(propertyName)) 201.            throw new ArgumentException("propertyName"); 202.   203.        PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); 204.    } 205.   206.    #endregion 207.} Nice... right? :) One really important thing to note as well.  See on line 51 where I set the DataContext before the Loaded event?  This is super important, as if you don't have this set before the usercontrol is loaded, the DataContextProxy has no context to use and your EditAppointmentDialog Job/Applicant dropdowns will be blank and empty.  Trust me on this, took a little bit of debugging to figure out that by setting the DataContext post-loaded would only lead to disaster and frustration.  Otherwise, the only other real difference is that instead of sending an ActionHistory item through an event to get added to the database and saved, I do those right in the callback from submitting.  The Result Again, I only have to post one picture because these bad boys used nearly identical code for both the MVVM and the code-behind views, so our end result is... So what have we learned here today?  One, for the most part this MVVM thing is somewhat easy.  Yeah, you sometimes have to write a bunch of extra code, but with the help of a few useful snippits you can turn the process into a pretty streamlined little workflow.  Heck, this story gets even easier as you can see in this blog post by Michael Washington- specifically run a find on 'InvokeCommandAction' and you'll see the section regarding the command on TreeView in Blend 4.  Brilliant!  MVVM never looked so sweet! Otherwise, it is business as usual with RadScheduler for Silverlight whichever path you're choosing for your development.  Between now and the next post, I'll be cleaning up styles a bit (those RadComboBoxes are a little too close to my labels!) and adding some to the RowDetailsViews for Applicants and Jobs, so you can see all the info for an appointment in the dropdown tab view.  Otherwise, we're about ready to call a wrap on this oneDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Silverlight Recruiting Application Part 6 - Adding an Interview Scheduling Module/View

    Between the last post and this one I went ahead and carried the ideas for the Jobs module and view into the Applicants module and view- they're both doing more or less the same thing, except with different objects being at their core.  Made for an easy cut-and-paste operation with a few items being switched from one to another.  Now that we have the ability to add postings and applicants, wouldn't it be nice if we could schedule an interview?  Of course it would! Scheduling Module I think you get the drift from previous posts that these project structures start looking somewhat similar.  The interview scheduling module is no different than the rest- it gets a SchedulingModule.cs file at the root that inherits from IModule, and there is a single SchedulerView.xsml and SchedulerViewModel.cs setup for our V+VM.  We have one unique concern as we enter into this- RadScheduler deals with AppointmentsSource, not ItemsSource, so there are some special considerations to take into account when planning this module. First, I need something which inherits from AppointmentBase.  This is the core of the RadScheduler appointment, and if you are planning to do any form of custom appointment, you'll want it to inherit from this.  Then you can add-on functionality as needed.  Here is my addition to the mix, the InterviewAppointment: 01.public class InterviewAppointment : AppointmentBase 02.{ 03.    private int _applicantID; 04.    public int ApplicantID 05.    { 06.        get { return this._applicantID; } 07.        set 08.        { 09.            if (_applicantID != value) 10.            { 11.                _applicantID = value; 12.                OnPropertyChanged("ApplicantID"); 13.            } 14.        } 15.    } 16.   17.    private int _postingID; 18.    public int PostingID 19.    { 20.        get { return _postingID; } 21.        set 22.        { 23.            if (_postingID != value) 24.            { 25.                _postingID = value; 26.                OnPropertyChanged("PostingID"); 27.            } 28.        } 29.    } 30.   31.    private string _body; 32.    public string Body 33.    { 34.        get { return _body; } 35.        set 36.        { 37.            if (_body != value) 38.            { 39.                _body = value; 40.                OnPropertyChanged("Body"); 41.            } 42.        } 43.    } 44.   45.    private int _interviewID; 46.    public int InterviewID 47.    { 48.        get { return _interviewID; } 49.        set 50.        { 51.            if (_interviewID != value) 52.            { 53.                _interviewID = value; 54.                OnPropertyChanged("InterviewID"); 55.            } 56.        } 57.    } 58.   59.    public override IAppointment Copy() 60.    { 61.        IAppointment appointment = new InterviewAppointment(); 62.        appointment.CopyFrom(this);             63.        return appointment; 64.    } 65.   66.    public override void CopyFrom(IAppointment other) 67.    {             68.        base.CopyFrom(other); 69.        var appointment = other as InterviewAppointment; 70.        if (appointment != null) 71.        { 72.            ApplicantID = appointment.ApplicantID; 73.            PostingID = appointment.PostingID; 74.            Body = appointment.Body; 75.            InterviewID = appointment.InterviewID; 76.        } 77.    } 78.} Nothing too exciting going on here, we just make sure that our custom fields are persisted (specifically set in CopyFrom at the bottom) and notifications are fired- otherwise this ends up exactly like the standard appointment as far as interactions, etc.  But if we've got custom appointment items... that also means we need to customize what our appointment dialog window will look like. Customizing the Edit Appointment Dialog This initially sounds a lot more intimidating than it really is.  The first step here depends on what you're dealing with for theming, but for ease of everything I went ahead and extracted my templates in Blend for RadScheduler so I could modify it as I pleased.  For the faint of heart, the RadScheduler template is a few thousand lines of goodness since there are some very complex things going on in that control.  I've gone ahead and trimmed down the template parts I don't need as much as possible, so what is left is all that is relevant to the Edit Appointment Dialog.  Here's the resulting Xaml, with line numbers, so I can explain further: 001.<UserControl.Resources> 002.    <!-- begin Necessary Windows 7 Theme Resources for EditAppointmentTemplate --> 003.    <helpers:DataContextProxy x:Key="DataContextProxy" /> 004.       005.    <telerik:Windows7Theme x:Key="Theme" /> 006.    <SolidColorBrush x:Key="DialogWindowBackground" 007.                     Color="White" /> 008.    <SolidColorBrush x:Key="CategorySelectorBorderBrush" 009.                     Color="#FFB1B1B1" /> 010.    <LinearGradientBrush x:Key="RadToolBar_InnerBackground" 011.                         EndPoint="0.5,1" 012.                         StartPoint="0.5,0"> 013.        <GradientStop Color="#FFFDFEFF" 014.                      Offset="0" /> 015.        <GradientStop Color="#FFDDE9F7" 016.                      Offset="1" /> 017.        <GradientStop Color="#FFE6F0FA" 018.                      Offset="0.5" /> 019.        <GradientStop Color="#FFDCE6F4" 020.                      Offset="0.5" /> 021.    </LinearGradientBrush> 022.    <Style x:Key="FormElementTextBlockStyle" 023.           TargetType="TextBlock"> 024.        <Setter Property="HorizontalAlignment" 025.                Value="Right" /> 026.        <Setter Property="VerticalAlignment" 027.                Value="Top" /> 028.        <Setter Property="Margin" 029.                Value="15, 15, 0, 2" /> 030.    </Style> 031.    <Style x:Key="FormElementStyle" 032.           TargetType="FrameworkElement"> 033.        <Setter Property="Margin" 034.                Value="10, 10, 0, 2" /> 035.    </Style> 036.    <SolidColorBrush x:Key="GenericShallowBorderBrush" 037.                     Color="#FF979994" /> 038.    <telerik:BooleanToVisibilityConverter x:Key="BooleanToVisibilityConverter" /> 039.    <telerikScheduler:ImportanceToBooleanConverter x:Key="ImportanceToBooleanConverter" /> 040.    <telerikScheduler:NullToVisibilityConverter x:Key="NullToVisibilityConverter" /> 041.    <telerikScheduler:InvertedNullToVisibilityConverter x:Key="InvertedNullToVisibilityConverter" /> 042.    <scheduler:ResourcesSeparatorConverter x:Key="ResourcesSeparatorConverter" /> 043.    <DataTemplate x:Key="IconDataEditTemplate"> 044.        <Image Source="/Telerik.Windows.Controls.Scheduler;component/Themes/Office/Images/cal.png" 045.               Margin="3,3,0,0" 046.               Width="16" 047.               Height="16" /> 048.    </DataTemplate> 049.    <DataTemplate x:Key="SingleSelectionTemplate"> 050.        <Grid VerticalAlignment="Stretch" 051.              HorizontalAlignment="Stretch"> 052.            <Grid.RowDefinitions> 053.                <RowDefinition Height="Auto" /> 054.            </Grid.RowDefinitions> 055.            <Grid.ColumnDefinitions> 056.                <ColumnDefinition Width="Auto" 057.                                  MinWidth="84" /> 058.                <ColumnDefinition Width="Auto" 059.                                  MinWidth="200" /> 060.            </Grid.ColumnDefinitions> 061.            <TextBlock x:Name="SelectionNameLabel" 062.                       Margin="0,13,4,2" 063.                       Text="{Binding ResourceType.DisplayName}" 064.                       Style="{StaticResource FormElementTextBlockStyle}" 065.                       Grid.Column="0" /> 066.            <telerikInput:RadComboBox ItemsSource="{Binding ResourceItems}" 067.                                      Width="185" 068.                                      Margin="5,10,20,2" 069.                                      HorizontalAlignment="Left" 070.                                      Grid.Column="1" 071.                                      ClearSelectionButtonVisibility="Visible" 072.                                      ClearSelectionButtonContent="Clear All" 073.                                      DisplayMemberPath="Resource.DisplayName" 074.                                      telerik:StyleManager.Theme="{StaticResource Theme}" 075.                                      SelectedItem="{Binding SelectedItem, Mode=TwoWay}" /> 076.        </Grid> 077.    </DataTemplate> 078.    <DataTemplate x:Key="MultipleSelectionTemplate"> 079.        <Grid VerticalAlignment="Stretch" 080.              HorizontalAlignment="Stretch"> 081.            <Grid.RowDefinitions> 082.                <RowDefinition Height="Auto" /> 083.            </Grid.RowDefinitions> 084.            <Grid.ColumnDefinitions> 085.                <ColumnDefinition Width="Auto" 086.                                  MinWidth="84" /> 087.                <ColumnDefinition Width="Auto" 088.                                  MinWidth="200" /> 089.            </Grid.ColumnDefinitions> 090.            <TextBlock x:Name="SelectionNameLabel" 091.                       Grid.Column="0" 092.                       Text="{Binding ResourceType.DisplayName}" 093.                       Margin="0,13,4,2" 094.                       Style="{StaticResource FormElementTextBlockStyle}" /> 095.            <telerikInput:RadComboBox Grid.Column="1" 096.                                      Width="185" 097.                                      HorizontalAlignment="Left" 098.                                      Margin="5,10,20,2" 099.                                      ItemsSource="{Binding ResourceItems}" 100.                                      SelectedIndex="{Binding SelectedIndex, Mode=TwoWay}" 101.                                      ClearSelectionButtonVisibility="Visible" 102.                                      ClearSelectionButtonContent="Clear All" 103.                                      telerik:StyleManager.Theme="{StaticResource Theme}"> 104.                <telerikInput:RadComboBox.ItemTemplate> 105.                    <DataTemplate> 106.                        <Grid HorizontalAlignment="Stretch" 107.                              VerticalAlignment="Stretch"> 108.                            <CheckBox VerticalAlignment="Center" 109.                                      HorizontalContentAlignment="Stretch" 110.                                      VerticalContentAlignment="Center" 111.                                      IsChecked="{Binding IsChecked, Mode=TwoWay}" 112.                                      Content="{Binding Resource.DisplayName}"> 113.                                <CheckBox.ContentTemplate> 114.                                    <DataTemplate> 115.                                        <TextBlock HorizontalAlignment="Stretch" 116.                                                   VerticalAlignment="Stretch" 117.                                                   Text="{Binding Content, RelativeSource={RelativeSource TemplatedParent}}" /> 118.                                    </DataTemplate> 119.                                </CheckBox.ContentTemplate> 120.                            </CheckBox> 121.                        </Grid> 122.                    </DataTemplate> 123.                </telerikInput:RadComboBox.ItemTemplate> 124.            </telerikInput:RadComboBox> 125.        </Grid> 126.    </DataTemplate> 127.    <scheduler:ResourceTypeTemplateSelector x:Key="ItemTemplateSelector" 128.                                            MultipleSelectionTemplate="{StaticResource MultipleSelectionTemplate}" 129.                                            SingleSelectionTemplate="{StaticResource SingleSelectionTemplate}" /> 130.    <!-- end Necessary Windows 7 Theme Resources for EditAppointmentTemplate -->  131.       132.    <ControlTemplate x:Key="EditAppointmentTemplate" 133.                     TargetType="telerikScheduler:AppointmentDialogWindow"> 134.        <StackPanel Background="{TemplateBinding Background}" 135.                    UseLayoutRounding="True"> 136.            <StackPanel Grid.Row="0" 137.                        Orientation="Horizontal" 138.                        Background="{StaticResource RadToolBar_InnerBackground}" 139.                        Grid.ColumnSpan="2" 140.                        Height="0"> 141.                <!-- Recurrence buttons --> 142.                <Border Margin="1,1,0,0" 143.                        Background="#50000000" 144.                        HorizontalAlignment="Left" 145.                        VerticalAlignment="Center" 146.                        Width="2" 147.                        Height="16"> 148.                    <Border Margin="0,0,1,1" 149.                            Background="#80FFFFFF" 150.                            HorizontalAlignment="Left" 151.                            Width="1" /> 152.                </Border> 153.                <Border Margin="1,1,0,0" 154.                        Background="#50000000" 155.                        HorizontalAlignment="Left" 156.                        VerticalAlignment="Center" 157.                        Width="2" 158.                        Height="16"> 159.                    <Border Margin="0,0,1,1" 160.                            Background="#80FFFFFF" 161.                            HorizontalAlignment="Left" 162.                            Width="1" /> 163.                </Border> 164.                <TextBlock telerik:LocalizationManager.ResourceKey="ShowAs" 165.                           VerticalAlignment="Center" 166.                           Margin="5,0,0,0" /> 167.                <telerikInput:RadComboBox ItemsSource="{TemplateBinding TimeMarkers}" 168.                                          Width="100" 169.                                          Height="20" 170.                                          VerticalAlignment="Center" 171.                                          Margin="5,0,0,0" 172.                                          ClearSelectionButtonVisibility="Visible" 173.                                          ClearSelectionButtonContent="Clear" 174.                                          SelectedItem="{Binding TimeMarker,RelativeSource={RelativeSource TemplatedParent},Mode=TwoWay}" 175.                                          telerik:StyleManager.Theme="{StaticResource Theme}"> 176.                    <telerikInput:RadComboBox.ItemTemplate> 177.                        <DataTemplate> 178.                            <StackPanel Orientation="Horizontal"> 179.                                <Rectangle Fill="{Binding TimeMarkerBrush}" 180.                                           Margin="2" 181.                                           Width="12" 182.                                           Height="12" /> 183.                                <TextBlock Text="{Binding TimeMarkerName}" 184.                                           Margin="2" /> 185.                            </StackPanel> 186.                        </DataTemplate> 187.                    </telerikInput:RadComboBox.ItemTemplate> 188.                </telerikInput:RadComboBox> 189.                <telerik:RadToggleButton x:Name="High" 190.                                         BorderThickness="0" 191.                                         Background="{StaticResource RadToolBar_InnerBackground}" 192.                                         DataContext="{TemplateBinding EditedAppointment}" 193.                                         telerik:StyleManager.Theme="{StaticResource Theme}" 194.                                         IsChecked="{Binding Importance,Mode=TwoWay, Converter={StaticResource ImportanceToBooleanConverter},ConverterParameter=High}" 195.                                         Margin="2,2,0,2" 196.                                         Width="23" 197.                                         Height="23" 198.                                         HorizontalContentAlignment="Center" 199.                                         ToolTipService.ToolTip="High importance" 200.                                         CommandParameter="High" 201.                                         Command="telerikScheduler:RadSchedulerCommands.SetAppointmentImportance"> 202.                    <StackPanel HorizontalAlignment="Center"> 203.                        <Path Stretch="Fill" 204.                              Height="10" 205.                              HorizontalAlignment="Center" 206.                              VerticalAlignment="Top" 207.                              Width="5.451" 208.                              Data="M200.39647,58.840393 C200.39337,58.336426 201.14566,57.683922 202.56244,57.684292 C204.06589,57.684685 204.73764,58.357765 204.72783,58.992363 C205.04649,61.795574 203.04713,64.181099 202.47388,66.133446 C201.93753,64.154961 199.9471,61.560352 200.39647,58.840393 z"> 209.                            <Path.Fill> 210.                                <LinearGradientBrush EndPoint="1.059,0.375" 211.                                                     StartPoint="-0.457,0.519"> 212.                                    <GradientStop Color="#FFFF0606" 213.                                                  Offset="0.609" /> 214.                                    <GradientStop Color="#FFBF0303" 215.                                                  Offset="0.927" /> 216.                                </LinearGradientBrush> 217.                            </Path.Fill> 218.                        </Path> 219.                        <Ellipse Height="3" 220.                                 HorizontalAlignment="Center" 221.                                 Margin="0,-1,0,0" 222.                                 VerticalAlignment="Top" 223.                                 Width="3"> 224.                            <Ellipse.Fill> 225.                                <RadialGradientBrush> 226.                                    <GradientStop Color="#FFFF0606" 227.                                                  Offset="0" /> 228.                                    <GradientStop Color="#FFBF0303" 229.                                                  Offset="1" /> 230.                                </RadialGradientBrush> 231.                            </Ellipse.Fill> 232.                        </Ellipse> 233.                    </StackPanel> 234.                </telerik:RadToggleButton> 235.                <telerik:RadToggleButton x:Name="Low" 236.                                         HorizontalContentAlignment="Center" 237.                                         BorderThickness="0" 238.                                         Background="{StaticResource RadToolBar_InnerBackground}" 239.                                         DataContext="{TemplateBinding EditedAppointment}" 240.                                         IsChecked="{Binding Importance,Mode=TwoWay, Converter={StaticResource ImportanceToBooleanConverter},ConverterParameter=Low}" 241.                                         Margin="0,2,0,2" 242.                                         Width="23" 243.                                         Height="23" 244.                                         ToolTipService.ToolTip="Low importance" 245.                                         CommandParameter="Low" 246.                                         telerik:StyleManager.Theme="{StaticResource Theme}" 247.                                         Command="telerikScheduler:RadSchedulerCommands.SetAppointmentImportance"> 248.                    <Path Stretch="Fill" 249.                          Height="12" 250.                          HorizontalAlignment="Center" 251.                          VerticalAlignment="Top" 252.                          Width="9" 253.                          Data="M222.40353,60.139881 L226.65768,60.139843 L226.63687,67.240196 L229.15347,67.240196 L224.37816,71.394943 L219.65274,67.240196 L222.37572,67.219345 z" 254.                          Stroke="#FF0365A7"> 255.                        <Path.Fill> 256.                            <LinearGradientBrush EndPoint="1.059,0.375" 257.                                                 StartPoint="-0.457,0.519"> 258.                                <GradientStop Color="#FFBBE4FF" /> 259.                                <GradientStop Color="#FF024572" 260.                                              Offset="0.836" /> 261.                                <GradientStop Color="#FF43ADF4" 262.                                              Offset="0.466" /> 263.                            </LinearGradientBrush> 264.                        </Path.Fill> 265.                    </Path> 266.                </telerik:RadToggleButton> 267.            </StackPanel > 268.            <Border DataContext="{TemplateBinding EditedAppointment}" 269.                    Background="{Binding Category.CategoryBrush}" 270.                    Visibility="{Binding Category,Converter={StaticResource NullToVisibilityConverter}}" 271.                    CornerRadius="3" 272.                    Height="20" 273.                    Margin="5,10,5,0"> 274.                <TextBlock Text="{Binding Category.DisplayName}" 275.                           VerticalAlignment="Center" 276.                           Margin="5,0,0,0" /> 277.            </Border> 278.            <Grid VerticalAlignment="Stretch" 279.                  HorizontalAlignment="Stretch" 280.                  DataContext="{TemplateBinding EditedAppointment}" 281.                  Background="{TemplateBinding Background}"> 282.                <Grid.RowDefinitions> 283.                    <RowDefinition Height="Auto" /> 284.                    <RowDefinition Height="Auto" /> 285.                    <RowDefinition Height="Auto" /> 286.                    <RowDefinition Height="Auto" /> 287.                    <RowDefinition Height="Auto" /> 288.                    <RowDefinition Height="Auto" /> 289.                    <RowDefinition Height="Auto" /> 290.                    <RowDefinition Height="Auto" /> 291.                    <RowDefinition Height="Auto" /> 292.                    <RowDefinition Height="Auto" /> 293.                </Grid.RowDefinitions> 294.                <Grid.ColumnDefinitions> 295.                    <ColumnDefinition Width="Auto" 296.                                      MinWidth="100" /> 297.                    <ColumnDefinition Width="Auto" 298.                                      MinWidth="200" /> 299.                </Grid.ColumnDefinitions> 300.                <!-- Subject --> 301.                <TextBlock x:Name="SubjectLabel" 302.                           Grid.Row="0" 303.                           Grid.Column="0" 304.                           Margin="0,15,0,2" 305.                           telerik:LocalizationManager.ResourceKey="Subject" 306.                           Style="{StaticResource FormElementTextBlockStyle}" /> 307.                <TextBox x:Name="Subject" 308.                         Grid.Row="0" 309.                         Grid.Column="1" 310.                         MinHeight="22" 311.                         Padding="4 2" 312.                         Width="340" 313.                         HorizontalAlignment="Left" 314.                         Text="{Binding Subject, Mode=TwoWay}" 315.                         MaxLength="255" 316.                         telerik:StyleManager.Theme="{StaticResource Theme}" 317.                         Margin="10,12,20,2" /> 318.                <!-- Description --> 319.                <TextBlock x:Name="DescriptionLabel" 320.                           Grid.Row="1" 321.                           Grid.Column="0" 322.                           Margin="0,13,0,2" 323.                           telerik:LocalizationManager.ResourceKey="Body" 324.                           Style="{StaticResource FormElementTextBlockStyle}" /> 325.                <TextBox x:Name="Body" 326.                         VerticalAlignment="top" 327.                         Grid.Row="1" 328.                         Grid.Column="1" 329.                         Height="Auto" 330.                         MaxHeight="82" 331.                         Width="340" 332.                         HorizontalAlignment="Left" 333.                         MinHeight="22" 334.                         Padding="4 2" 335.                         TextWrapping="Wrap" 336.                         telerik:StyleManager.Theme="{StaticResource Theme}" 337.                         Text="{Binding Body, Mode=TwoWay}" 338.                         AcceptsReturn="true" 339.                         Margin="10,10,20,2" 340.                         HorizontalScrollBarVisibility="Auto" 341.                         VerticalScrollBarVisibility="Auto" /> 342.                <!-- Start/End date --> 343.                <TextBlock x:Name="StartDateLabel" 344.                           Grid.Row="2" 345.                           Grid.Column="0" 346.                           Margin="0,13,0,2" 347.                           telerik:LocalizationManager.ResourceKey="StartTime" 348.                           Style="{StaticResource FormElementTextBlockStyle}" /> 349.                <telerikScheduler:DateTimePicker x:Name="StartDateTime" 350.                                                 Height="22" 351.                                                 Grid.Row="2" 352.                                                 Grid.Column="1" 353.                                                 HorizontalAlignment="Left" 354.                                                 Margin="10,10,20,2" 355.                                                 Style="{StaticResource FormElementStyle}" 356.                                                 SelectedDateTime="{Binding Start, Mode=TwoWay}" 357.                                                 telerikScheduler:StartEndDatePicker.EndPicker="{Binding ElementName=EndDateTime}" 358.                                                 IsTabStop="False" 359.                                                 IsEnabled="False" /> 360.                <TextBlock x:Name="EndDateLabel" 361.                           Grid.Row="3" 362.                           Grid.Column="0" 363.                           Margin="0,13,0,2" 364.                           telerik:LocalizationManager.ResourceKey="EndTime" 365.                           Style="{StaticResource FormElementTextBlockStyle}" /> 366.                <telerikScheduler:DateTimePicker x:Name="EndDateTime" 367.                                                 Height="22" 368.                                                 Grid.Row="3" 369.                                                 Grid.Column="1" 370.                                                 HorizontalAlignment="Left" 371.                                                 Margin="10,10,20,2" 372.                                                 Style="{StaticResource FormElementStyle}" 373.                                                 IsTabStop="False" 374.                                                 IsEnabled="False" 375.                                                 SelectedDateTime="{Binding End, Mode=TwoWay}" /> 376.                <!-- Is-all-day selector --> 377.                <CheckBox x:Name="AllDayEventCheckbox" 378.                          IsChecked="{Binding IsAllDayEvent, Mode=TwoWay}" 379.                          Grid.Row="4" 380.                          Grid.Column="1" 381.                          Margin="10,10,20,2" 382.                          HorizontalAlignment="Left" 383.                          telerik:StyleManager.Theme="{StaticResource Theme}" 384.                          telerik:LocalizationManager.ResourceKey="AllDayEvent"> 385.                    <telerik:CommandManager.InputBindings> 386.                        <telerik:InputBindingCollection> 387.                            <telerik:MouseBinding Command="telerikScheduler:RadSchedulerCommands.ChangeTimePickersVisibility" 388.                                                  Gesture="LeftClick" /> 389.                        </telerik:InputBindingCollection> 390.                    </telerik:CommandManager.InputBindings> 391.                </CheckBox> 392.                <Grid Grid.Row="5" 393.                      Grid.ColumnSpan="2"> 394.                    <Grid.ColumnDefinitions> 395.                        <ColumnDefinition Width="Auto" 396.                                          MinWidth="100" /> 397.                        <ColumnDefinition Width="Auto" 398.                                          MinWidth="200" /> 399.                    </Grid.ColumnDefinitions> 400.                    <Grid.RowDefinitions> 401.                        <RowDefinition Height="Auto" /> 402.                        <RowDefinition Height="Auto" /> 403.                    </Grid.RowDefinitions> 404.                    <TextBlock Text="Applicant" 405.                               Margin="0,13,0,2" 406.                               Style="{StaticResource FormElementTextBlockStyle}" /> 407.                    <telerikInput:RadComboBox IsEditable="False" 408.                                              Grid.Column="1" 409.                                              Height="24" 410.                                              VerticalAlignment="Center" 411.                                              ItemsSource="{Binding Source={StaticResource DataContextProxy}, Path=DataSource.ApplicantList}" 412.                                              SelectedValue="{Binding ApplicantID, Mode=TwoWay}" 413.                                              SelectedValuePath="ApplicantID" 414.                                              DisplayMemberPath="FirstName" /> 415.                       416.                    <TextBlock Text="Job" 417.                               Margin="0,13,0,2" 418.                               Grid.Row="1" 419.                               Style="{StaticResource FormElementTextBlockStyle}" /> 420.                    <telerikInput:RadComboBox IsEditable="False" 421.                                              Grid.Column="1" 422.                                              Grid.Row="1" 423.                                              Height="24" 424.                                              VerticalAlignment="Center" 425.                                              ItemsSource="{Binding Source={StaticResource DataContextProxy}, Path=DataSource.JobsList}" 426.                                              SelectedValue="{Binding PostingID, Mode=TwoWay}" 427.                                              SelectedValuePath="PostingID" 428.                                              DisplayMemberPath="JobTitle"/> 429.                </Grid> 430.                    <!-- Resources --> 431.                <Grid x:Name="ResourcesLayout" 432.                      Grid.Row="7" 433.                      Grid.Column="0" 434.                      Grid.ColumnSpan="2" 435.                      MaxHeight="130" 436.                      Margin="20,5,20,0"> 437.                    <Border Margin="0" 438.                            BorderThickness="1" 439.                            BorderBrush="{StaticResource GenericShallowBorderBrush}" 440.                            Visibility="{Binding ElementName=ResourcesScrollViewer, Path=ComputedVerticalScrollBarVisibility}"></Border> 441.                    <ScrollViewer x:Name="ResourcesScrollViewer" 442.                                  IsTabStop="false" 443.                                  Grid.Row="6" 444.                                  Grid.Column="0" 445.                                  Grid.ColumnSpan="2" 446.                                  Margin="1" 447.                                  telerik:StyleManager.Theme="{StaticResource Theme}" 448.                                  VerticalScrollBarVisibility="Auto"> 449.                        <scheduler:ResourcesItemsControl x:Name="PART_Resources" 450.                                                         HorizontalAlignment="Left" 451.                                                         Padding="0,2,0,5" 452.                                                         IsTabStop="false" 453.                                                         ItemsSource="{TemplateBinding ResourceTypeModels}" 454.                                                         ItemTemplateSelector="{StaticResource ItemTemplateSelector}" /> 455.                    </ScrollViewer> 456.                </Grid> 457.                <StackPanel x:Name="FooterControls" 458.                            Margin="5 10 10 10" 459.                            Grid.Row="8" 460.                            Grid.Column="1" 461.                            HorizontalAlignment="Left" 462.                            Orientation="Horizontal"> 463.                    <telerik:RadButton x:Name="OKButton" 464.                                       Margin="5" 465.                                       Padding="10 0" 466.                                       MinWidth="80" 467.                                       Command="telerikScheduler:RadSchedulerCommands.SaveAppointment" 468.                                       telerik:StyleManager.Theme="{StaticResource Theme}" 469.                                       telerikNavigation:RadWindow.ResponseButton="Accept" 470.                                       telerik:LocalizationManager.ResourceKey="SaveAndCloseCommandText"> 471.                    </telerik:RadButton> 472.                    <telerik:RadButton x:Name="CancelButton" 473.                                       Margin="5" 474.                                       Padding="10 0" 475.                                       MinWidth="80" 476.                                       telerik:LocalizationManager.ResourceKey="Cancel" 477.                                       telerik:StyleManager.Theme="{StaticResource Theme}" 478.                                       telerikNavigation:RadWindow.ResponseButton="Cancel" 479.                                       Command="telerik:WindowCommands.Close"> 480.                    </telerik:RadButton> 481.                </StackPanel> 482.            </Grid> 483.            <vsm:VisualStateManager.VisualStateGroups> 484.                <vsm:VisualStateGroup x:Name="RecurrenceRuleState"> 485.                    <vsm:VisualState x:Name="RecurrenceRuleIsNull"> 486.                        <Storyboard> 487.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="StartDateTime" 488.                                                           Storyboard.TargetProperty="IsEnabled" 489.                                                           Duration="0"> 490.                                <DiscreteObjectKeyFrame KeyTime="0" 491.                                                        Value="True" /> 492.                            </ObjectAnimationUsingKeyFrames> 493.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="EndDateTime" 494.                                                           Storyboard.TargetProperty="IsEnabled" 495.                                                           Duration="0"> 496.                                <DiscreteObjectKeyFrame KeyTime="0" 497.                                                        Value="True" /> 498.                            </ObjectAnimationUsingKeyFrames> 499.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="AllDayEventCheckbox" 500.                                                           Storyboard.TargetProperty="IsEnabled" 501.                                                           Duration="0"> 502.                                <DiscreteObjectKeyFrame KeyTime="0" 503.                                                        Value="True" /> 504.                            </ObjectAnimationUsingKeyFrames> 505.                        </Storyboard> 506.                    </vsm:VisualState> 507.                    <vsm:VisualState x:Name="RecurrenceRuleIsNotNull"> 508.                        <Storyboard> 509.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="StartDateTime" 510.                                                           Storyboard.TargetProperty="IsEnabled" 511.                                                           Duration="0"> 512.                                <DiscreteObjectKeyFrame KeyTime="0" 513.                                                        Value="False" /> 514.                            </ObjectAnimationUsingKeyFrames> 515.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="EndDateTime" 516.                                                           Storyboard.TargetProperty="IsEnabled" 517.                                                           Duration="0"> 518.                                <DiscreteObjectKeyFrame KeyTime="0" 519.                                                        Value="False" /> 520.                            </ObjectAnimationUsingKeyFrames> 521.                            <ObjectAnimationUsingKeyFrames Storyboard.TargetName="AllDayEventCheckbox" 522.                                                           Storyboard.TargetProperty="IsEnabled" 523.                                                           Duration="0"> 524.                                <DiscreteObjectKeyFrame KeyTime="0" 525.                                                        Value="False" /> 526.                            </ObjectAnimationUsingKeyFrames> 527.                        </Storyboard> 528.                    </vsm:VisualState> 529.                </vsm:VisualStateGroup> 530.            </vsm:VisualStateManager.VisualStateGroups> 531.        </StackPanel> 532.    </ControlTemplate> 533.    <DataTemplate x:Key="AppointmentDialogWindowHeaderDataTemplate"> 534.        <StackPanel Orientation="Horizontal" 535.                    MaxWidth="400"> 536.            <TextBlock telerik:LocalizationManager.ResourceKey="Event" 537.                       Visibility="{Binding Appointment.IsAllDayEvent, Converter={StaticResource BooleanToVisibilityConverter}}" /> 538.            <TextBlock telerik:LocalizationManager.ResourceKey="Appointment" 539.                       Visibility="{Binding Appointment.IsAllDayEvent, Converter={StaticResource InvertedBooleanToVisibilityConverter}}" /> 540.            <TextBlock Text=" - " /> 541.            <TextBlock x:Name="SubjectTextBlock" 542.                       Visibility="{Binding Appointment.Subject, Converter={StaticResource NullToVisibilityConverter}}" 543.                       Text="{Binding Appointment.Subject}" /> 544.            <TextBlock telerik:LocalizationManager.ResourceKey="Untitled" 545.                       Visibility="{Binding Appointment.Subject, Converter={StaticResource InvertedNullToVisibilityConverter}}" /> 546.        </StackPanel> 547.    </DataTemplate> 548.    <Style x:Key="EditAppointmentStyle" 549.           TargetType="telerikScheduler:AppointmentDialogWindow"> 550.        <Setter Property="IconTemplate" 551.                Value="{StaticResource IconDataEditTemplate}" /> 552.        <Setter Property="HeaderTemplate" 553.                Value="{StaticResource AppointmentDialogWindowHeaderDataTemplate}" /> 554.        <Setter Property="Background" 555.                Value="{StaticResource DialogWindowBackground}" /> 556.        <Setter Property="Template" 557.                Value="{StaticResource EditAppointmentTemplate}" /> 558.    </Style> 559.</UserControl.Resources> The first line there is the DataContextProxy I mentioned previously- we use that again to work a bit of magic in this template. Where we start getting into the dialog in question is line 132, but line 407 is where things start getting interesting.  The ItemsSource is pointing at a list that exists in my ViewModel (or code-behind, if it is used as a DataContext), the SelectedValue is the item I am actually binding from the applicant (note the TwoWay binding), and SelectedValuePath and DisplayMemberPath ensure the proper applicant is being displayed from the collection.  You will also see similar starting on line 420 where I do the same for the Jobs we'll be displaying. Just to wrap-up the Xaml, here's the RadScheduler declaraction that ties this all together and will be the main focus of our view: 01.<telerikScheduler:RadScheduler x:Name="xJobsScheduler" 02.                  Grid.Row="1" 03.                  Grid.Column="1" 04.                  Width="800" 05.                  MinWidth="600" 06.                  Height="500" 07.                  MinHeight="300" 08.                  AppointmentsSource="{Binding Interviews}" 09.                  EditAppointmentStyle="{StaticResource EditAppointmentStyle}" 10.                  command:AppointmentAddedEventClass.Command="{Binding AddAppointmentCommand}" 11.                  command:ApptCreatedEventClass.Command="{Binding ApptCreatingCommand}" 12.                  command:ApptEditedEventClass.Command="{Binding ApptEditedCommand}" 13.                  command:ApptDeletedEventClass.Command="{Binding ApptDeletedCommand}"> 14.</telerikScheduler:RadScheduler> Now, we get to the ViewModel and what it takes to get that rigged up.  And for those of you who remember the jobs post, those command:s in the Xaml are pointing to attached behavior commands that reproduce the respective events.  This becomes very handy when we're setting up the code-behind version. ;) ViewModel I've been liking this approach so far, so I'm going to put the entire ViewModel here and then go into the lines of interest.  Of course, feel free to ask me questions about anything that isn't clear (by line number, ideally) so I can help out if I have missed anything important: 001.public class SchedulerViewModel : ViewModelBase 002.{ 003.    private readonly IEventAggregator eventAggregator; 004.    private readonly IRegionManager regionManager; 005.   006.    public RecruitingContext context; 007.   008.    private ObservableItemCollection<InterviewAppointment> _interviews = new ObservableItemCollection<InterviewAppointment>(); 009.    public ObservableItemCollection<InterviewAppointment> Interviews 010.    { 011.        get { return _interviews; } 012.        set 013.        { 014.            if (_interviews != value) 015.            { 016.                _interviews = value; 017.                NotifyChanged("Interviews"); 018.            } 019.        } 020.    } 021.   022.    private QueryableCollectionView _jobsList; 023.    public QueryableCollectionView JobsList 024.    { 025.        get { return this._jobsList; } 026.        set 027.        { 028.            if (this._jobsList != value) 029.            { 030.                this._jobsList = value; 031.                this.NotifyChanged("JobsList"); 032.            } 033.        } 034.    } 035.   036.    private QueryableCollectionView _applicantList; 037.    public QueryableCollectionView ApplicantList 038.    { 039.        get { return _applicantList; } 040.        set 041.        { 042.            if (_applicantList != value) 043.            { 044.                _applicantList = value; 045.                NotifyChanged("ApplicantList"); 046.            } 047.        } 048.    } 049.   050.    public DelegateCommand<object> AddAppointmentCommand { get; set; } 051.    public DelegateCommand<object> ApptCreatingCommand { get; set; } 052.    public DelegateCommand<object> ApptEditedCommand { get; set; } 053.    public DelegateCommand<object> ApptDeletedCommand { get; set; } 054.   055.    public SchedulerViewModel(IEventAggregator eventAgg, IRegionManager regionmanager) 056.    { 057.        // set Unity items 058.        this.eventAggregator = eventAgg; 059.        this.regionManager = regionmanager; 060.   061.        // load our context 062.        context = new RecruitingContext(); 063.        LoadOperation<Interview> loadOp = context.Load(context.GetInterviewsQuery()); 064.        loadOp.Completed += new EventHandler(loadOp_Completed); 065.   066.        this._jobsList = new QueryableCollectionView(context.JobPostings); 067.        context.Load(context.GetJobPostingsQuery()); 068.   069.        this._applicantList = new QueryableCollectionView(context.Applicants); 070.        context.Load(context.GetApplicantsQuery()); 071.   072.        AddAppointmentCommand = new DelegateCommand<object>(this.AddAppt); 073.        ApptCreatingCommand = new DelegateCommand<object>(this.ApptCreating); 074.        ApptEditedCommand = new DelegateCommand<object>(this.ApptEdited); 075.        ApptDeletedCommand = new DelegateCommand<object>(this.ApptDeleted); 076.   077.    } 078.   079.    void loadOp_Completed(object sender, EventArgs e) 080.    { 081.        LoadOperation loadop = sender as LoadOperation; 082.   083.        foreach (var ent in loadop.Entities) 084.        { 085.            _interviews.Add(EntityToAppointment(ent as Interview)); 086.        } 087.    } 088.   089.    #region Appointment Adding 090.   091.    public void AddAppt(object obj) 092.    { 093.        // now we have a new InterviewAppointment to add to our QCV :) 094.        InterviewAppointment newInterview = obj as InterviewAppointment; 095.   096.        this.context.Interviews.Add(AppointmentToEntity(newInterview)); 097.        this.context.SubmitChanges((s) => 098.        { 099.            ActionHistory myAction = new ActionHistory(); 100.            myAction.InterviewID = newInterview.InterviewID; 101.            myAction.PostingID = newInterview.PostingID; 102.            myAction.ApplicantID = newInterview.ApplicantID; 103.            myAction.Description = String.Format("Interview with {0} has been created by {1}", newInterview.ApplicantID.ToString(), "default user"); 104.            myAction.TimeStamp = DateTime.Now; 105.            eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 106.        } 107.            , null); 108.    } 109.   110.    public void ApptCreating(object obj) 111.    { 112.        // handled in the behavior, just a placeholder to ensure it runs :) 113.    } 114.   115.    #endregion 116.   117.    #region Appointment Editing 118.   119.    public void ApptEdited(object obj) 120.    { 121.        Interview editedInterview = (from x in context.Interviews 122.                            where x.InterviewID == (obj as InterviewAppointment).InterviewID 123.                            select x).SingleOrDefault(); 124.   125.        CopyAppointmentEdit(editedInterview, obj as InterviewAppointment); 126.   127.        context.SubmitChanges((s) => { 128.            ActionHistory myAction = new ActionHistory(); 129.            myAction.InterviewID = editedInterview.InterviewID; 130.            myAction.PostingID = editedInterview.PostingID; 131.            myAction.ApplicantID = editedInterview.ApplicantID; 132.            myAction.Description = String.Format("Interview with {0} has been modified by {1}", editedInterview.ApplicantID.ToString(), "default user"); 133.            myAction.TimeStamp = DateTime.Now; 134.            eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); } 135.            , null); 136.    } 137.   138.    #endregion 139.   140.    #region Appointment Deleting 141.   142.    public void ApptDeleted(object obj) 143.    { 144.        Interview deletedInterview = (from x in context.Interviews 145.                                      where x.InterviewID == (obj as InterviewAppointment).InterviewID 146.                                      select x).SingleOrDefault(); 147.   148.        context.Interviews.Remove(deletedInterview); 149.        context.SubmitChanges((s) => 150.        { 151.            ActionHistory myAction = new ActionHistory(); 152.            myAction.InterviewID = deletedInterview.InterviewID; 153.            myAction.PostingID = deletedInterview.PostingID; 154.            myAction.ApplicantID = deletedInterview.ApplicantID; 155.            myAction.Description = String.Format("Interview with {0} has been deleted by {1}", deletedInterview.ApplicantID.ToString(), "default user"); 156.            myAction.TimeStamp = DateTime.Now; 157.            eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 158.        } 159.            , null); 160.    } 161.   162.    #endregion 163.   164.    #region Appointment Helpers :) 165.   166.    public Interview AppointmentToEntity(InterviewAppointment ia) 167.    { 168.        Interview newInterview = new Interview(); 169.        newInterview.Subject = ia.Subject; 170.        newInterview.Body = ia.Body; 171.        newInterview.Start = ia.Start; 172.        newInterview.End = ia.End; 173.        newInterview.ApplicantID = ia.ApplicantID; 174.        newInterview.PostingID = ia.PostingID; 175.        newInterview.InterviewID = ia.InterviewID; 176.   177.        return newInterview; 178.    } 179.   180.    public InterviewAppointment EntityToAppointment(Interview ia) 181.    { 182.        InterviewAppointment newInterview = new InterviewAppointment(); 183.        newInterview.Subject = ia.Subject; 184.        newInterview.Body = ia.Body; 185.        newInterview.Start = ia.Start; 186.        newInterview.End = ia.End; 187.        newInterview.ApplicantID = ia.ApplicantID; 188.        newInterview.PostingID = ia.PostingID; 189.        newInterview.InterviewID = ia.InterviewID; 190.   191.        return newInterview; 192.    } 193.   194.    public void CopyAppointmentEdit(Interview entityInterview, InterviewAppointment appointmentInterview) 195.    { 196.        entityInterview.Subject = appointmentInterview.Subject; 197.        entityInterview.Body = appointmentInterview.Body; 198.        entityInterview.Start = appointmentInterview.Start; 199.        entityInterview.End = appointmentInterview.End; 200.        entityInterview.ApplicantID = appointmentInterview.ApplicantID; 201.        entityInterview.PostingID = appointmentInterview.PostingID; 202.    } 203.   204.    #endregion 205.} One thing we're doing here which you won't see in any of the other ViewModels is creating a duplicate collection.  I know this is something which will be fixed down the line for using RadScheduler, simplifying this process, but with WCF RIA changing as it does I wanted to ensure functionality would remain consistent as I continued development on this application.  So, I do a little bit of duplication, but for the greater good.  This all takes place starting on line 79, so for every entity that comes back we add it to the collection that is bound to RadScheduler.  Otherwise, the DelegateCommands that you see correspond directly to the events they are named after.  In each case, rather than sending over the full event arguments, I just send in the appointment in question (coming through as the object obj in all cases) so I can add (line 91), edit (line 119), and delete appointments (line 142) like normal.  This just ensures they get updated back to my database.  Also, the one bit of code you won't see is for the Appointment Creating (line 110) event- that is because in the command I've created I simply make the replacement I need to: 1.void element_AppointmentCreating(object sender, AppointmentCreatingEventArgs e) 2.{ 3.    e.NewAppointment = new InterviewAppointment(); 4.    base.ExecuteCommand(); 5.} And the ViewModel is none the wiser, the appointments just work as far as it is concerned since as they are created they become InterviewAppointments.  End result?  I've customized my EditAppointmentDialog as follows: And adding, editing, and deleting appointments works like a charm.  I can even 'edit' by moving appointments around RadScheduler, so as they are dropped into a timeslot they perform their full edit routine and things get updated. And then, the Code-Behind Version Perhaps the thing I like the most about doing one then the other is I get to steal 90% or more of the code from the MVVM version.  For example, the only real changes to the Code-Behind Xaml file exist in the control declaration, in which I use events instead of attached-behavior-event-commands: 01.<telerikScheduler:RadScheduler x:Name="xJobsScheduler" 02.                  Grid.Row="1" 03.                  Grid.Column="1" 04.                  Width="800" 05.                  MinWidth="600" 06.                  Height="500" 07.                  MinHeight="300" 08.                  EditAppointmentStyle="{StaticResource EditAppointmentStyle}" 09.                  AppointmentAdded="xJobsScheduler_AppointmentAdded" 10.                  AppointmentCreating="xJobsScheduler_AppointmentCreating" 11.                  AppointmentEdited="xJobsScheduler_AppointmentEdited" 12.                  AppointmentDeleted="xJobsScheduler_AppointmentDeleted"> 13.</telerikScheduler:RadScheduler> Easy, right?  Otherwise, all the same styling in UserControl.Resources was re-used, right down to the DataContextProxy that lets us bind to a collection from our viewmodel (in this case, our code-behind) to use within the DataTemplate.  The code conversion gets even easier, as I could literally copy and paste almost everything from the ViewModel to my Code-Behind, just a matter of pasting the right section into the right event.  Here's the code-behind as proof: 001.public partial class SchedulingView : UserControl, INotifyPropertyChanged 002.{ 003.    public RecruitingContext context; 004.   005.    private QueryableCollectionView _jobsList; 006.    public QueryableCollectionView JobsList 007.    { 008.        get { return this._jobsList; } 009.        set 010.        { 011.            if (this._jobsList != value) 012.            { 013.                this._jobsList = value; 014.                this.NotifyChanged("JobsList"); 015.            } 016.        } 017.    } 018.   019.    private QueryableCollectionView _applicantList; 020.    public QueryableCollectionView ApplicantList 021.    { 022.        get { return _applicantList; } 023.        set 024.        { 025.            if (_applicantList != value) 026.            { 027.                _applicantList = value; 028.                NotifyChanged("ApplicantList"); 029.            } 030.        } 031.    } 032.   033.    private ObservableItemCollection<InterviewAppointment> _interviews = new ObservableItemCollection<InterviewAppointment>(); 034.    public ObservableItemCollection<InterviewAppointment> Interviews 035.    { 036.        get { return _interviews; } 037.        set 038.        { 039.            if (_interviews != value) 040.            { 041.                _interviews = value; 042.                NotifyChanged("Interviews"); 043.            } 044.        } 045.    } 046.   047.    public SchedulingView() 048.    { 049.        InitializeComponent(); 050.   051.        this.DataContext = this; 052.   053.        this.Loaded += new RoutedEventHandler(SchedulingView_Loaded); 054.    } 055.   056.    void SchedulingView_Loaded(object sender, RoutedEventArgs e) 057.    { 058.        this.xJobsScheduler.AppointmentsSource = Interviews; 059.   060.        context = new RecruitingContext(); 061.           062.        LoadOperation loadop = context.Load(context.GetInterviewsQuery()); 063.        loadop.Completed += new EventHandler(loadop_Completed); 064.   065.        this._applicantList = new QueryableCollectionView(context.Applicants); 066.        context.Load(context.GetApplicantsQuery()); 067.   068.        this._jobsList = new QueryableCollectionView(context.JobPostings); 069.        context.Load(context.GetJobPostingsQuery()); 070.    } 071.   072.    void loadop_Completed(object sender, EventArgs e) 073.    { 074.        LoadOperation loadop = sender as LoadOperation; 075.   076.        _interviews.Clear(); 077.   078.        foreach (var ent in loadop.Entities) 079.        { 080.            _interviews.Add(EntityToAppointment(ent as Interview)); 081.        } 082.    } 083.   084.    private void xJobsScheduler_AppointmentAdded(object sender, Telerik.Windows.Controls.AppointmentAddedEventArgs e) 085.    { 086.        // now we have a new InterviewAppointment to add to our QCV :) 087.        InterviewAppointment newInterview = e.Appointment as InterviewAppointment; 088.   089.        this.context.Interviews.Add(AppointmentToEntity(newInterview)); 090.        this.context.SubmitChanges((s) => 091.        { 092.            ActionHistory myAction = new ActionHistory(); 093.            myAction.InterviewID = newInterview.InterviewID; 094.            myAction.PostingID = newInterview.PostingID; 095.            myAction.ApplicantID = newInterview.ApplicantID; 096.            myAction.Description = String.Format("Interview with {0} has been created by {1}", newInterview.ApplicantID.ToString(), "default user"); 097.            myAction.TimeStamp = DateTime.Now; 098.            context.ActionHistories.Add(myAction); 099.            context.SubmitChanges(); 100.        } 101.            , null); 102.    } 103.   104.    private void xJobsScheduler_AppointmentCreating(object sender, Telerik.Windows.Controls.AppointmentCreatingEventArgs e) 105.    { 106.        e.NewAppointment = new InterviewAppointment(); 107.    } 108.   109.    private void xJobsScheduler_AppointmentEdited(object sender, Telerik.Windows.Controls.AppointmentEditedEventArgs e) 110.    { 111.        Interview editedInterview = (from x in context.Interviews 112.                                     where x.InterviewID == (e.Appointment as InterviewAppointment).InterviewID 113.                                     select x).SingleOrDefault(); 114.   115.        CopyAppointmentEdit(editedInterview, e.Appointment as InterviewAppointment); 116.   117.        context.SubmitChanges((s) => 118.        { 119.            ActionHistory myAction = new ActionHistory(); 120.            myAction.InterviewID = editedInterview.InterviewID; 121.            myAction.PostingID = editedInterview.PostingID; 122.            myAction.ApplicantID = editedInterview.ApplicantID; 123.            myAction.Description = String.Format("Interview with {0} has been modified by {1}", editedInterview.ApplicantID.ToString(), "default user"); 124.            myAction.TimeStamp = DateTime.Now; 125.            context.ActionHistories.Add(myAction); 126.            context.SubmitChanges(); 127.        } 128.            , null); 129.    } 130.   131.    private void xJobsScheduler_AppointmentDeleted(object sender, Telerik.Windows.Controls.AppointmentDeletedEventArgs e) 132.    { 133.        Interview deletedInterview = (from x in context.Interviews 134.                                      where x.InterviewID == (e.Appointment as InterviewAppointment).InterviewID 135.                                      select x).SingleOrDefault(); 136.   137.        context.Interviews.Remove(deletedInterview); 138.        context.SubmitChanges((s) => 139.        { 140.            ActionHistory myAction = new ActionHistory(); 141.            myAction.InterviewID = deletedInterview.InterviewID; 142.            myAction.PostingID = deletedInterview.PostingID; 143.            myAction.ApplicantID = deletedInterview.ApplicantID; 144.            myAction.Description = String.Format("Interview with {0} has been deleted by {1}", deletedInterview.ApplicantID.ToString(), "default user"); 145.            myAction.TimeStamp = DateTime.Now; 146.            context.ActionHistories.Add(myAction); 147.            context.SubmitChanges(); 148.        } 149.            , null); 150.    } 151.   152.    #region Appointment Helpers :) 153.   154.    public Interview AppointmentToEntity(InterviewAppointment ia) 155.    { 156.        Interview newInterview = new Interview(); 157.        newInterview.Subject = ia.Subject; 158.        newInterview.Body = ia.Body; 159.        newInterview.Start = ia.Start; 160.        newInterview.End = ia.End; 161.        newInterview.ApplicantID = ia.ApplicantID; 162.        newInterview.PostingID = ia.PostingID; 163.        newInterview.InterviewID = ia.InterviewID; 164.   165.        return newInterview; 166.    } 167.   168.    public InterviewAppointment EntityToAppointment(Interview ia) 169.    { 170.        InterviewAppointment newInterview = new InterviewAppointment(); 171.        newInterview.Subject = ia.Subject; 172.        newInterview.Body = ia.Body; 173.        newInterview.Start = ia.Start; 174.        newInterview.End = ia.End; 175.        newInterview.ApplicantID = ia.ApplicantID; 176.        newInterview.PostingID = ia.PostingID; 177.        newInterview.InterviewID = ia.InterviewID; 178.   179.        return newInterview; 180.    } 181.   182.    public void CopyAppointmentEdit(Interview entityInterview, InterviewAppointment appointmentInterview) 183.    { 184.        entityInterview.Subject = appointmentInterview.Subject; 185.        entityInterview.Body = appointmentInterview.Body; 186.        entityInterview.Start = appointmentInterview.Start; 187.        entityInterview.End = appointmentInterview.End; 188.        entityInterview.ApplicantID = appointmentInterview.ApplicantID; 189.        entityInterview.PostingID = appointmentInterview.PostingID; 190.    } 191.   192.    #endregion 193.   194.    #region INotifyPropertyChanged Members 195.   196.    public event PropertyChangedEventHandler PropertyChanged; 197.   198.    public void NotifyChanged(string propertyName) 199.    { 200.        if (string.IsNullOrEmpty(propertyName)) 201.            throw new ArgumentException("propertyName"); 202.   203.        PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); 204.    } 205.   206.    #endregion 207.} Nice... right? :) One really important thing to note as well.  See on line 51 where I set the DataContext before the Loaded event?  This is super important, as if you don't have this set before the usercontrol is loaded, the DataContextProxy has no context to use and your EditAppointmentDialog Job/Applicant dropdowns will be blank and empty.  Trust me on this, took a little bit of debugging to figure out that by setting the DataContext post-loaded would only lead to disaster and frustration.  Otherwise, the only other real difference is that instead of sending an ActionHistory item through an event to get added to the database and saved, I do those right in the callback from submitting.  The Result Again, I only have to post one picture because these bad boys used nearly identical code for both the MVVM and the code-behind views, so our end result is... So what have we learned here today?  One, for the most part this MVVM thing is somewhat easy.  Yeah, you sometimes have to write a bunch of extra code, but with the help of a few useful snippits you can turn the process into a pretty streamlined little workflow.  Heck, this story gets even easier as you can see in this blog post by Michael Washington- specifically run a find on 'InvokeCommandAction' and you'll see the section regarding the command on TreeView in Blend 4.  Brilliant!  MVVM never looked so sweet! Otherwise, it is business as usual with RadScheduler for Silverlight whichever path you're choosing for your development.  Between now and the next post, I'll be cleaning up styles a bit (those RadComboBoxes are a little too close to my labels!) and adding some to the RowDetailsViews for Applicants and Jobs, so you can see all the info for an appointment in the dropdown tab view.  Otherwise, we're about ready to call a wrap on this oneDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Silverlight Recruiting Application Part 5 - Jobs Module / View

    Now we starting getting into a more code-heavy portion of this series, thankfully though this means the groundwork is all set for the most part and after adding the modules we will have a complete application that can be provided with full source. The Jobs module will have two concerns- adding and maintaining jobs that can then be broadcast out to the website. How they are displayed on the site will be handled by our admin system (which will just poll from this common database), so we aren't too concerned with that, but rather with getting the information into the system and allowing the backend administration/HR users to keep things up to date. Since there is a fair bit of information that we want to display, we're going to move editing to a separate view so we can get all that information in an easy-to-use spot. With all the files created for this module, the project looks something like this: And now... on to the code. XAML for the Job Posting View All we really need for the Job Posting View is a RadGridView and a few buttons. This will let us both show off records and perform operations on the records without much hassle. That XAML is going to look something like this: 01.<Grid x:Name="LayoutRoot" 02.Background="White"> 03.<Grid.RowDefinitions> 04.<RowDefinition Height="30" /> 05.<RowDefinition /> 06.</Grid.RowDefinitions> 07.<StackPanel Orientation="Horizontal"> 08.<Button x:Name="xAddRecordButton" 09.Content="Add Job" 10.Width="120" 11.cal:Click.Command="{Binding AddRecord}" 12.telerik:StyleManager.Theme="Windows7" /> 13.<Button x:Name="xEditRecordButton" 14.Content="Edit Job" 15.Width="120" 16.cal:Click.Command="{Binding EditRecord}" 17.telerik:StyleManager.Theme="Windows7" /> 18.</StackPanel> 19.<telerikGrid:RadGridView x:Name="xJobsGrid" 20.Grid.Row="1" 21.IsReadOnly="True" 22.AutoGenerateColumns="False" 23.ColumnWidth="*" 24.RowDetailsVisibilityMode="VisibleWhenSelected" 25.ItemsSource="{Binding MyJobs}" 26.SelectedItem="{Binding SelectedJob, Mode=TwoWay}" 27.command:SelectedItemChangedEventClass.Command="{Binding SelectedItemChanged}"> 28.<telerikGrid:RadGridView.Columns> 29.<telerikGrid:GridViewDataColumn Header="Job Title" 30.DataMemberBinding="{Binding JobTitle}" 31.UniqueName="JobTitle" /> 32.<telerikGrid:GridViewDataColumn Header="Location" 33.DataMemberBinding="{Binding Location}" 34.UniqueName="Location" /> 35.<telerikGrid:GridViewDataColumn Header="Resume Required" 36.DataMemberBinding="{Binding NeedsResume}" 37.UniqueName="NeedsResume" /> 38.<telerikGrid:GridViewDataColumn Header="CV Required" 39.DataMemberBinding="{Binding NeedsCV}" 40.UniqueName="NeedsCV" /> 41.<telerikGrid:GridViewDataColumn Header="Overview Required" 42.DataMemberBinding="{Binding NeedsOverview}" 43.UniqueName="NeedsOverview" /> 44.<telerikGrid:GridViewDataColumn Header="Active" 45.DataMemberBinding="{Binding IsActive}" 46.UniqueName="IsActive" /> 47.</telerikGrid:RadGridView.Columns> 48.</telerikGrid:RadGridView> 49.</Grid> I'll explain what's happening here by line numbers: Lines 11 and 16: Using the same type of click commands as we saw in the Menu module, we tie the button clicks to delegate commands in the viewmodel. Line 25: The source for the jobs will be a collection in the viewmodel. Line 26: We also bind the selected item to a public property from the viewmodel for use in code. Line 27: We've turned the event into a command so we can handle it via code in the viewmodel. So those first three probably make sense to you as far as Silverlight/WPF binding magic is concerned, but for line 27... This actually comes from something I read onDamien Schenkelman's blog back in the day for creating an attached behavior from any event. So, any time you see me using command:Whatever.Command, the backing for it is actually something like this: SelectedItemChangedEventBehavior.cs: 01.public class SelectedItemChangedEventBehavior : CommandBehaviorBase<Telerik.Windows.Controls.DataControl> 02.{ 03.public SelectedItemChangedEventBehavior(DataControl element) 04.: base(element) 05.{ 06.element.SelectionChanged += new EventHandler<SelectionChangeEventArgs>(element_SelectionChanged); 07.} 08.void element_SelectionChanged(object sender, SelectionChangeEventArgs e) 09.{ 10.// We'll only ever allow single selection, so will only need item index 0 11.base.CommandParameter = e.AddedItems[0]; 12.base.ExecuteCommand(); 13.} 14.} SelectedItemChangedEventClass.cs: 01.public class SelectedItemChangedEventClass 02.{ 03.#region The Command Stuff 04.public static ICommand GetCommand(DependencyObject obj) 05.{ 06.return (ICommand)obj.GetValue(CommandProperty); 07.} 08.public static void SetCommand(DependencyObject obj, ICommand value) 09.{ 10.obj.SetValue(CommandProperty, value); 11.} 12.public static readonly DependencyProperty CommandProperty = 13.DependencyProperty.RegisterAttached("Command", typeof(ICommand), 14.typeof(SelectedItemChangedEventClass), new PropertyMetadata(OnSetCommandCallback)); 15.public static void OnSetCommandCallback(DependencyObject dependencyObject, DependencyPropertyChangedEventArgs e) 16.{ 17.DataControl element = dependencyObject as DataControl; 18.if (element != null) 19.{ 20.SelectedItemChangedEventBehavior behavior = GetOrCreateBehavior(element); 21.behavior.Command = e.NewValue as ICommand; 22.} 23.} 24.#endregion 25.public static SelectedItemChangedEventBehavior GetOrCreateBehavior(DataControl element) 26.{ 27.SelectedItemChangedEventBehavior behavior = element.GetValue(SelectedItemChangedEventBehaviorProperty) as SelectedItemChangedEventBehavior; 28.if (behavior == null) 29.{ 30.behavior = new SelectedItemChangedEventBehavior(element); 31.element.SetValue(SelectedItemChangedEventBehaviorProperty, behavior); 32.} 33.return behavior; 34.} 35.public static SelectedItemChangedEventBehavior GetSelectedItemChangedEventBehavior(DependencyObject obj) 36.{ 37.return (SelectedItemChangedEventBehavior)obj.GetValue(SelectedItemChangedEventBehaviorProperty); 38.} 39.public static void SetSelectedItemChangedEventBehavior(DependencyObject obj, SelectedItemChangedEventBehavior value) 40.{ 41.obj.SetValue(SelectedItemChangedEventBehaviorProperty, value); 42.} 43.public static readonly DependencyProperty SelectedItemChangedEventBehaviorProperty = 44.DependencyProperty.RegisterAttached("SelectedItemChangedEventBehavior", 45.typeof(SelectedItemChangedEventBehavior), typeof(SelectedItemChangedEventClass), null); 46.} These end up looking very similar from command to command, but in a nutshell you create a command based on any event, determine what the parameter for it will be, then execute. It attaches via XAML and ties to a DelegateCommand in the viewmodel, so you get the full event experience (since some controls get a bit event-rich for added functionality). Simple enough, right? Viewmodel for the Job Posting View The Viewmodel is going to need to handle all events going back and forth, maintaining interactions with the data we are using, and both publishing and subscribing to events. Rather than breaking this into tons of little pieces, I'll give you a nice view of the entire viewmodel and then hit up the important points line-by-line: 001.public class JobPostingViewModel : ViewModelBase 002.{ 003.private readonly IEventAggregator eventAggregator; 004.private readonly IRegionManager regionManager; 005.public DelegateCommand<object> AddRecord { get; set; } 006.public DelegateCommand<object> EditRecord { get; set; } 007.public DelegateCommand<object> SelectedItemChanged { get; set; } 008.public RecruitingContext context; 009.private QueryableCollectionView _myJobs; 010.public QueryableCollectionView MyJobs 011.{ 012.get { return _myJobs; } 013.} 014.private QueryableCollectionView _selectionJobActionHistory; 015.public QueryableCollectionView SelectedJobActionHistory 016.{ 017.get { return _selectionJobActionHistory; } 018.} 019.private JobPosting _selectedJob; 020.public JobPosting SelectedJob 021.{ 022.get { return _selectedJob; } 023.set 024.{ 025.if (value != _selectedJob) 026.{ 027._selectedJob = value; 028.NotifyChanged("SelectedJob"); 029.} 030.} 031.} 032.public SubscriptionToken editToken = new SubscriptionToken(); 033.public SubscriptionToken addToken = new SubscriptionToken(); 034.public JobPostingViewModel(IEventAggregator eventAgg, IRegionManager regionmanager) 035.{ 036.// set Unity items 037.this.eventAggregator = eventAgg; 038.this.regionManager = regionmanager; 039.// load our context 040.context = new RecruitingContext(); 041.this._myJobs = new QueryableCollectionView(context.JobPostings); 042.context.Load(context.GetJobPostingsQuery()); 043.// set command events 044.this.AddRecord = new DelegateCommand<object>(this.AddNewRecord); 045.this.EditRecord = new DelegateCommand<object>(this.EditExistingRecord); 046.this.SelectedItemChanged = new DelegateCommand<object>(this.SelectedRecordChanged); 047.SetSubscriptions(); 048.} 049.#region DelegateCommands from View 050.public void AddNewRecord(object obj) 051.{ 052.this.eventAggregator.GetEvent<AddJobEvent>().Publish(true); 053.} 054.public void EditExistingRecord(object obj) 055.{ 056.if (_selectedJob == null) 057.{ 058.this.eventAggregator.GetEvent<NotifyUserEvent>().Publish("No job selected."); 059.} 060.else 061.{ 062.this._myJobs.EditItem(this._selectedJob); 063.this.eventAggregator.GetEvent<EditJobEvent>().Publish(this._selectedJob); 064.} 065.} 066.public void SelectedRecordChanged(object obj) 067.{ 068.if (obj.GetType() == typeof(ActionHistory)) 069.{ 070.// event bubbles up so we don't catch items from the ActionHistory grid 071.} 072.else 073.{ 074.JobPosting job = obj as JobPosting; 075.GrabHistory(job.PostingID); 076.} 077.} 078.#endregion 079.#region Subscription Declaration and Events 080.public void SetSubscriptions() 081.{ 082.EditJobCompleteEvent editComplete = eventAggregator.GetEvent<EditJobCompleteEvent>(); 083.if (editToken != null) 084.editComplete.Unsubscribe(editToken); 085.editToken = editComplete.Subscribe(this.EditCompleteEventHandler); 086.AddJobCompleteEvent addComplete = eventAggregator.GetEvent<AddJobCompleteEvent>(); 087.if (addToken != null) 088.addComplete.Unsubscribe(addToken); 089.addToken = addComplete.Subscribe(this.AddCompleteEventHandler); 090.} 091.public void EditCompleteEventHandler(bool complete) 092.{ 093.if (complete) 094.{ 095.JobPosting thisJob = _myJobs.CurrentEditItem as JobPosting; 096.this._myJobs.CommitEdit(); 097.this.context.SubmitChanges((s) => 098.{ 099.ActionHistory myAction = new ActionHistory(); 100.myAction.PostingID = thisJob.PostingID; 101.myAction.Description = String.Format("Job '{0}' has been edited by {1}", thisJob.JobTitle, "default user"); 102.myAction.TimeStamp = DateTime.Now; 103.eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 104.} 105., null); 106.} 107.else 108.{ 109.this._myJobs.CancelEdit(); 110.} 111.this.MakeMeActive(this.regionManager, "MainRegion", "JobPostingsView"); 112.} 113.public void AddCompleteEventHandler(JobPosting job) 114.{ 115.if (job == null) 116.{ 117.// do nothing, new job add cancelled 118.} 119.else 120.{ 121.this.context.JobPostings.Add(job); 122.this.context.SubmitChanges((s) => 123.{ 124.ActionHistory myAction = new ActionHistory(); 125.myAction.PostingID = job.PostingID; 126.myAction.Description = String.Format("Job '{0}' has been added by {1}", job.JobTitle, "default user"); 127.myAction.TimeStamp = DateTime.Now; 128.eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 129.} 130., null); 131.} 132.this.MakeMeActive(this.regionManager, "MainRegion", "JobPostingsView"); 133.} 134.#endregion 135.public void GrabHistory(int postID) 136.{ 137.context.ActionHistories.Clear(); 138._selectionJobActionHistory = new QueryableCollectionView(context.ActionHistories); 139.context.Load(context.GetHistoryForJobQuery(postID)); 140.} Taking it from the top, we're injecting an Event Aggregator and Region Manager for use down the road and also have the public DelegateCommands (just like in the Menu module). We also grab a reference to our context, which we'll obviously need for data, then set up a few fields with public properties tied to them. We're also setting subscription tokens, which we have not yet seen but I will get into below. The AddNewRecord (50) and EditExistingRecord (54) methods should speak for themselves for functionality, the one thing of note is we're sending events off to the Event Aggregator which some module, somewhere will take care of. Since these aren't entirely relying on one another, the Jobs View doesn't care if anyone is listening, but it will publish AddJobEvent (52), NotifyUserEvent (58) and EditJobEvent (63)regardless. Don't mind the GrabHistory() method so much, that is just grabbing history items (visibly being created in the SubmitChanges callbacks), and adding them to the database. Every action will trigger a history event, so we'll know who modified what and when, just in case. ;) So where are we at? Well, if we click to Add a job, we publish an event, if we edit a job, we publish an event with the selected record (attained through the magic of binding). Where is this all going though? To the Viewmodel, of course! XAML for the AddEditJobView This is pretty straightforward except for one thing, noted below: 001.<Grid x:Name="LayoutRoot" 002.Background="White"> 003.<Grid x:Name="xEditGrid" 004.Margin="10" 005.validationHelper:ValidationScope.Errors="{Binding Errors}"> 006.<Grid.Background> 007.<LinearGradientBrush EndPoint="0.5,1" 008.StartPoint="0.5,0"> 009.<GradientStop Color="#FFC7C7C7" 010.Offset="0" /> 011.<GradientStop Color="#FFF6F3F3" 012.Offset="1" /> 013.</LinearGradientBrush> 014.</Grid.Background> 015.<Grid.RowDefinitions> 016.<RowDefinition Height="40" /> 017.<RowDefinition Height="40" /> 018.<RowDefinition Height="40" /> 019.<RowDefinition Height="100" /> 020.<RowDefinition Height="100" /> 021.<RowDefinition Height="100" /> 022.<RowDefinition Height="40" /> 023.<RowDefinition Height="40" /> 024.<RowDefinition Height="40" /> 025.</Grid.RowDefinitions> 026.<Grid.ColumnDefinitions> 027.<ColumnDefinition Width="150" /> 028.<ColumnDefinition Width="150" /> 029.<ColumnDefinition Width="300" /> 030.<ColumnDefinition Width="100" /> 031.</Grid.ColumnDefinitions> 032.<!-- Title --> 033.<TextBlock Margin="8" 034.Text="{Binding AddEditString}" 035.TextWrapping="Wrap" 036.Grid.Column="1" 037.Grid.ColumnSpan="2" 038.FontSize="16" /> 039.<!-- Data entry area--> 040. 041.<TextBlock Margin="8,0,0,0" 042.Style="{StaticResource LabelTxb}" 043.Grid.Row="1" 044.Text="Job Title" 045.VerticalAlignment="Center" /> 046.<TextBox x:Name="xJobTitleTB" 047.Margin="0,8" 048.Grid.Column="1" 049.Grid.Row="1" 050.Text="{Binding activeJob.JobTitle, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 051.Grid.ColumnSpan="2" /> 052.<TextBlock Margin="8,0,0,0" 053.Grid.Row="2" 054.Text="Location" 055.d:LayoutOverrides="Height" 056.VerticalAlignment="Center" /> 057.<TextBox x:Name="xLocationTB" 058.Margin="0,8" 059.Grid.Column="1" 060.Grid.Row="2" 061.Text="{Binding activeJob.Location, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 062.Grid.ColumnSpan="2" /> 063. 064.<TextBlock Margin="8,11,8,0" 065.Grid.Row="3" 066.Text="Description" 067.TextWrapping="Wrap" 068.VerticalAlignment="Top" /> 069. 070.<TextBox x:Name="xDescriptionTB" 071.Height="84" 072.TextWrapping="Wrap" 073.ScrollViewer.VerticalScrollBarVisibility="Auto" 074.Grid.Column="1" 075.Grid.Row="3" 076.Text="{Binding activeJob.Description, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 077.Grid.ColumnSpan="2" /> 078.<TextBlock Margin="8,11,8,0" 079.Grid.Row="4" 080.Text="Requirements" 081.TextWrapping="Wrap" 082.VerticalAlignment="Top" /> 083. 084.<TextBox x:Name="xRequirementsTB" 085.Height="84" 086.TextWrapping="Wrap" 087.ScrollViewer.VerticalScrollBarVisibility="Auto" 088.Grid.Column="1" 089.Grid.Row="4" 090.Text="{Binding activeJob.Requirements, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 091.Grid.ColumnSpan="2" /> 092.<TextBlock Margin="8,11,8,0" 093.Grid.Row="5" 094.Text="Qualifications" 095.TextWrapping="Wrap" 096.VerticalAlignment="Top" /> 097. 098.<TextBox x:Name="xQualificationsTB" 099.Height="84" 100.TextWrapping="Wrap" 101.ScrollViewer.VerticalScrollBarVisibility="Auto" 102.Grid.Column="1" 103.Grid.Row="5" 104.Text="{Binding activeJob.Qualifications, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 105.Grid.ColumnSpan="2" /> 106.<!-- Requirements Checkboxes--> 107. 108.<CheckBox x:Name="xResumeRequiredCB" Margin="8,8,8,15" 109.Content="Resume Required" 110.Grid.Row="6" 111.Grid.ColumnSpan="2" 112.IsChecked="{Binding activeJob.NeedsResume, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 113. 114.<CheckBox x:Name="xCoverletterRequiredCB" Margin="8,8,8,15" 115.Content="Cover Letter Required" 116.Grid.Column="2" 117.Grid.Row="6" 118.IsChecked="{Binding activeJob.NeedsCV, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 119. 120.<CheckBox x:Name="xOverviewRequiredCB" Margin="8,8,8,15" 121.Content="Overview Required" 122.Grid.Row="7" 123.Grid.ColumnSpan="2" 124.IsChecked="{Binding activeJob.NeedsOverview, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 125. 126.<CheckBox x:Name="xJobActiveCB" Margin="8,8,8,15" 127.Content="Job is Active" 128.Grid.Column="2" 129.Grid.Row="7" 130.IsChecked="{Binding activeJob.IsActive, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 131. 132.<!-- Buttons --> 133. 134.<Button x:Name="xAddEditButton" Margin="8,8,0,10" 135.Content="{Binding AddEditButtonString}" 136.cal:Click.Command="{Binding AddEditCommand}" 137.Grid.Column="2" 138.Grid.Row="8" 139.HorizontalAlignment="Left" 140.Width="125" 141.telerik:StyleManager.Theme="Windows7" /> 142. 143.<Button x:Name="xCancelButton" HorizontalAlignment="Right" 144.Content="Cancel" 145.cal:Click.Command="{Binding CancelCommand}" 146.Margin="0,8,8,10" 147.Width="125" 148.Grid.Column="2" 149.Grid.Row="8" 150.telerik:StyleManager.Theme="Windows7" /> 151.</Grid> 152.</Grid> The 'validationHelper:ValidationScope' line may seem odd. This is a handy little trick for catching current and would-be validation errors when working in this whole setup. This all comes from an approach found on theJoy Of Code blog, although it looks like the story for this will be changing slightly with new advances in SL4/WCF RIA Services, so this section can definitely get an overhaul a little down the road. The code is the fun part of all this, so let us see what's happening under the hood. Viewmodel for the AddEditJobView We are going to see some of the same things happening here, so I'll skip over the repeat info and get right to the good stuff: 001.public class AddEditJobViewModel : ViewModelBase 002.{ 003.private readonly IEventAggregator eventAggregator; 004.private readonly IRegionManager regionManager; 005. 006.public RecruitingContext context; 007. 008.private JobPosting _activeJob; 009.public JobPosting activeJob 010.{ 011.get { return _activeJob; } 012.set 013.{ 014.if (_activeJob != value) 015.{ 016._activeJob = value; 017.NotifyChanged("activeJob"); 018.} 019.} 020.} 021. 022.public bool isNewJob; 023. 024.private string _addEditString; 025.public string AddEditString 026.{ 027.get { return _addEditString; } 028.set 029.{ 030.if (_addEditString != value) 031.{ 032._addEditString = value; 033.NotifyChanged("AddEditString"); 034.} 035.} 036.} 037. 038.private string _addEditButtonString; 039.public string AddEditButtonString 040.{ 041.get { return _addEditButtonString; } 042.set 043.{ 044.if (_addEditButtonString != value) 045.{ 046._addEditButtonString = value; 047.NotifyChanged("AddEditButtonString"); 048.} 049.} 050.} 051. 052.public SubscriptionToken addJobToken = new SubscriptionToken(); 053.public SubscriptionToken editJobToken = new SubscriptionToken(); 054. 055.public DelegateCommand<object> AddEditCommand { get; set; } 056.public DelegateCommand<object> CancelCommand { get; set; } 057. 058.private ObservableCollection<ValidationError> _errors = new ObservableCollection<ValidationError>(); 059.public ObservableCollection<ValidationError> Errors 060.{ 061.get { return _errors; } 062.} 063. 064.private ObservableCollection<ValidationResult> _valResults = new ObservableCollection<ValidationResult>(); 065.public ObservableCollection<ValidationResult> ValResults 066.{ 067.get { return this._valResults; } 068.} 069. 070.public AddEditJobViewModel(IEventAggregator eventAgg, IRegionManager regionmanager) 071.{ 072.// set Unity items 073.this.eventAggregator = eventAgg; 074.this.regionManager = regionmanager; 075. 076.context = new RecruitingContext(); 077. 078.AddEditCommand = new DelegateCommand<object>(this.AddEditJobCommand); 079.CancelCommand = new DelegateCommand<object>(this.CancelAddEditCommand); 080. 081.SetSubscriptions(); 082.} 083. 084.#region Subscription Declaration and Events 085. 086.public void SetSubscriptions() 087.{ 088.AddJobEvent addJob = this.eventAggregator.GetEvent<AddJobEvent>(); 089. 090.if (addJobToken != null) 091.addJob.Unsubscribe(addJobToken); 092. 093.addJobToken = addJob.Subscribe(this.AddJobEventHandler); 094. 095.EditJobEvent editJob = this.eventAggregator.GetEvent<EditJobEvent>(); 096. 097.if (editJobToken != null) 098.editJob.Unsubscribe(editJobToken); 099. 100.editJobToken = editJob.Subscribe(this.EditJobEventHandler); 101.} 102. 103.public void AddJobEventHandler(bool isNew) 104.{ 105.this.activeJob = null; 106.this.activeJob = new JobPosting(); 107.this.activeJob.IsActive = true; // We assume that we want a new job to go up immediately 108.this.isNewJob = true; 109.this.AddEditString = "Add New Job Posting"; 110.this.AddEditButtonString = "Add Job"; 111. 112.MakeMeActive(this.regionManager, "MainRegion", "AddEditJobView"); 113.} 114. 115.public void EditJobEventHandler(JobPosting editJob) 116.{ 117.this.activeJob = null; 118.this.activeJob = editJob; 119.this.isNewJob = false; 120.this.AddEditString = "Edit Job Posting"; 121.this.AddEditButtonString = "Edit Job"; 122. 123.MakeMeActive(this.regionManager, "MainRegion", "AddEditJobView"); 124.} 125. 126.#endregion 127. 128.#region DelegateCommands from View 129. 130.public void AddEditJobCommand(object obj) 131.{ 132.if (this.Errors.Count > 0) 133.{ 134.List<string> errorMessages = new List<string>(); 135. 136.foreach (var valR in this.Errors) 137.{ 138.errorMessages.Add(valR.Exception.Message); 139.} 140. 141.this.eventAggregator.GetEvent<DisplayValidationErrorsEvent>().Publish(errorMessages); 142. 143.} 144.else if (!Validator.TryValidateObject(this.activeJob, new ValidationContext(this.activeJob, null, null), _valResults, true)) 145.{ 146.List<string> errorMessages = new List<string>(); 147. 148.foreach (var valR in this._valResults) 149.{ 150.errorMessages.Add(valR.ErrorMessage); 151.} 152. 153.this._valResults.Clear(); 154. 155.this.eventAggregator.GetEvent<DisplayValidationErrorsEvent>().Publish(errorMessages); 156.} 157.else 158.{ 159.if (this.isNewJob) 160.{ 161.this.eventAggregator.GetEvent<AddJobCompleteEvent>().Publish(this.activeJob); 162.} 163.else 164.{ 165.this.eventAggregator.GetEvent<EditJobCompleteEvent>().Publish(true); 166.} 167.} 168.} 169. 170.public void CancelAddEditCommand(object obj) 171.{ 172.if (this.isNewJob) 173.{ 174.this.eventAggregator.GetEvent<AddJobCompleteEvent>().Publish(null); 175.} 176.else 177.{ 178.this.eventAggregator.GetEvent<EditJobCompleteEvent>().Publish(false); 179.} 180.} 181. 182.#endregion 183.} 184.} We start seeing something new on line 103- the AddJobEventHandler will create a new job and set that to the activeJob item on the ViewModel. When this is all set, the view calls that familiar MakeMeActive method to activate itself. I made a bit of a management call on making views self-activate like this, but I figured it works for one reason. As I create this application, views may not exist that I have in mind, so after a view receives its 'ping' from being subscribed to an event, it prepares whatever it needs to do and then goes active. This way if I don't have 'edit' hooked up, I can click as the day is long on the main view and won't get lost in an empty region. Total personal preference here. :) Everything else should again be pretty straightforward, although I do a bit of validation checking in the AddEditJobCommand, which can either fire off an event back to the main view/viewmodel if everything is a success or sent a list of errors to our notification module, which pops open a RadWindow with the alerts if any exist. As a bonus side note, here's what my WCF RIA Services metadata looks like for handling all of the validation: private JobPostingMetadata() { } [StringLength(2500, ErrorMessage = "Description should be more than one and less than 2500 characters.", MinimumLength = 1)] [Required(ErrorMessage = "Description is required.")] public string Description; [Required(ErrorMessage="Active Status is Required")] public bool IsActive; [StringLength(100, ErrorMessage = "Posting title must be more than 3 but less than 100 characters.", MinimumLength = 3)] [Required(ErrorMessage = "Job Title is required.")] public bool JobTitle; [Required] public string Location; public bool NeedsCV; public bool NeedsOverview; public bool NeedsResume; public int PostingID; [Required(ErrorMessage="Qualifications are required.")] [StringLength(2500, ErrorMessage="Qualifications should be more than one and less than 2500 characters.", MinimumLength=1)] public string Qualifications; [StringLength(2500, ErrorMessage = "Requirements should be more than one and less than 2500 characters.", MinimumLength = 1)] [Required(ErrorMessage="Requirements are required.")] public string Requirements;   The RecruitCB Alternative See all that Xaml I pasted above? Those are now two pieces sitting in the JobsView.xaml file now. The only real difference is that the xEditGrid now sits in the same place as xJobsGrid, with visibility swapping out between the two for a quick switch. I also took out all the cal: and command: command references and replaced Button events with clicks and the Grid selection command replaced with a SelectedItemChanged event. Also, at the bottom of the xEditGrid after the last button, I add a ValidationSummary (with Visibility=Collapsed) to catch any errors that are popping up. Simple as can be, and leads to this being the single code-behind file: 001.public partial class JobsView : UserControl 002.{ 003.public RecruitingContext context; 004.public JobPosting activeJob; 005.public bool isNew; 006.private ObservableCollection<ValidationResult> _valResults = new ObservableCollection<ValidationResult>(); 007.public ObservableCollection<ValidationResult> ValResults 008.{ 009.get { return this._valResults; } 010.} 011.public JobsView() 012.{ 013.InitializeComponent(); 014.this.Loaded += new RoutedEventHandler(JobsView_Loaded); 015.} 016.void JobsView_Loaded(object sender, RoutedEventArgs e) 017.{ 018.context = new RecruitingContext(); 019.xJobsGrid.ItemsSource = context.JobPostings; 020.context.Load(context.GetJobPostingsQuery()); 021.} 022.private void xAddRecordButton_Click(object sender, RoutedEventArgs e) 023.{ 024.activeJob = new JobPosting(); 025.isNew = true; 026.xAddEditTitle.Text = "Add a Job Posting"; 027.xAddEditButton.Content = "Add"; 028.xEditGrid.DataContext = activeJob; 029.HideJobsGrid(); 030.} 031.private void xEditRecordButton_Click(object sender, RoutedEventArgs e) 032.{ 033.activeJob = xJobsGrid.SelectedItem as JobPosting; 034.isNew = false; 035.xAddEditTitle.Text = "Edit a Job Posting"; 036.xAddEditButton.Content = "Edit"; 037.xEditGrid.DataContext = activeJob; 038.HideJobsGrid(); 039.} 040.private void xAddEditButton_Click(object sender, RoutedEventArgs e) 041.{ 042.if (!Validator.TryValidateObject(this.activeJob, new ValidationContext(this.activeJob, null, null), _valResults, true)) 043.{ 044.List<string> errorMessages = new List<string>(); 045.foreach (var valR in this._valResults) 046.{ 047.errorMessages.Add(valR.ErrorMessage); 048.} 049.this._valResults.Clear(); 050.ShowErrors(errorMessages); 051.} 052.else if (xSummary.Errors.Count > 0) 053.{ 054.List<string> errorMessages = new List<string>(); 055.foreach (var err in xSummary.Errors) 056.{ 057.errorMessages.Add(err.Message); 058.} 059.ShowErrors(errorMessages); 060.} 061.else 062.{ 063.if (this.isNew) 064.{ 065.context.JobPostings.Add(activeJob); 066.context.SubmitChanges((s) => 067.{ 068.ActionHistory thisAction = new ActionHistory(); 069.thisAction.PostingID = activeJob.PostingID; 070.thisAction.Description = String.Format("Job '{0}' has been edited by {1}", activeJob.JobTitle, "default user"); 071.thisAction.TimeStamp = DateTime.Now; 072.context.ActionHistories.Add(thisAction); 073.context.SubmitChanges(); 074.}, null); 075.} 076.else 077.{ 078.context.SubmitChanges((s) => 079.{ 080.ActionHistory thisAction = new ActionHistory(); 081.thisAction.PostingID = activeJob.PostingID; 082.thisAction.Description = String.Format("Job '{0}' has been added by {1}", activeJob.JobTitle, "default user"); 083.thisAction.TimeStamp = DateTime.Now; 084.context.ActionHistories.Add(thisAction); 085.context.SubmitChanges(); 086.}, null); 087.} 088.ShowJobsGrid(); 089.} 090.} 091.private void xCancelButton_Click(object sender, RoutedEventArgs e) 092.{ 093.ShowJobsGrid(); 094.} 095.private void ShowJobsGrid() 096.{ 097.xAddEditRecordButtonPanel.Visibility = Visibility.Visible; 098.xEditGrid.Visibility = Visibility.Collapsed; 099.xJobsGrid.Visibility = Visibility.Visible; 100.} 101.private void HideJobsGrid() 102.{ 103.xAddEditRecordButtonPanel.Visibility = Visibility.Collapsed; 104.xJobsGrid.Visibility = Visibility.Collapsed; 105.xEditGrid.Visibility = Visibility.Visible; 106.} 107.private void ShowErrors(List<string> errorList) 108.{ 109.string nm = "Errors received: \n"; 110.foreach (string anerror in errorList) 111.nm += anerror + "\n"; 112.RadWindow.Alert(nm); 113.} 114.} The first 39 lines should be pretty familiar, not doing anything too unorthodox to get this up and running. Once we hit the xAddEditButton_Click on line 40, we're still doing pretty much the same things except instead of checking the ValidationHelper errors, we both run a check on the current activeJob object as well as check the ValidationSummary errors list. Once that is set, we again use the callback of context.SubmitChanges (lines 68 and 78) to create an ActionHistory which we will use to track these items down the line. That's all? Essentially... yes. If you look back through this post, most of the code and adventures we have taken were just to get things working in the MVVM/Prism setup. Since I have the whole 'module' self-contained in a single JobView+code-behind setup, I don't have to worry about things like sending events off into space for someone to pick up, communicating through an Infrastructure project, or even re-inventing events to be used with attached behaviors. Everything just kinda works, and again with much less code. Here's a picture of the MVVM and Code-behind versions on the Jobs and AddEdit views, but since the functionality is the same in both apps you still cannot tell them apart (for two-strike): Looking ahead, the Applicants module is effectively the same thing as the Jobs module, so most of the code is being cut-and-pasted back and forth with minor tweaks here and there. So that one is being taken care of by me behind the scenes. Next time, we get into a new world of fun- the interview scheduling module, which will pull from available jobs and applicants for each interview being scheduled, tying everything together with RadScheduler to the rescue. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Active Directory Time Synchronisation - Time-Service Event ID 50

    - by George
    I have an Active Directory domain with two DCs. The first DC in the forest/domain is Server 2012, the second is 2008 R2. The first DC holds the PDC Emulator role. I sporadically receive a warning from the Time-Service source, event ID 50: The time service detected a time difference of greater than %1 milliseconds for %2 seconds. The time difference might be caused by synchronization with low-accuracy time sources or by suboptimal network conditions. The time service is no longer synchronized and cannot provide the time to other clients or update the system clock. When a valid time stamp is received from a time service provider, the time service will correct itself. Time sync in the domain is configured with the second DC to synchronise using the /syncfromflags:DOMHIER flag. The first DC is configured to sync time using a /syncfromflags:MANUAL /reliable:YES, from a peerlist consisting of a number of UK based stratum 2 servers, such as ntp2d.mcc.ac.uk. I'm confused why I receive this event warning. It implies that my PDC emulator cannot synchronise time with a supposedly reliable external time source, and it quotes a time difference of 5 seconds for 900 seconds. It's worth also mentioning that I used to use a UK pool from ntp.org but I would receive the warning much more often. Since updating to a number of UK based academic time servers, it seems to be more reliable. Can someone with more experience shed some light on this - perhaps it is purely transient? Should I disregard the warning? Is my configuration sound? EDIT: I should add that the DCs are virtual, and installed on two separate VMware ESXi/vSphere physical hosts. I can also confirm that as per MDMarra's comment and best practice, VMware timesync is disabled, since: c:\Program Files\VMware\VMware Tools\VMwareToolboxCmd.exe timesync status returns Disabled. EDIT 2 Some strange new issue has cropped up. I've noticed a pattern. Originally, the event ID 50 warnings would occur at about 1230pm each day. This is interesting since our veeam backup happens at 12 midday. Since I made the changes discussed here, I now receive an event ID 51 instead of 50. The new warning says that: The time sample received from peer server.ac.uk differs from the local time by -40 seconds (Or approximately 40 seconds). This has happened two days in a row. Now I'm even more confused. Obviously the time never updates until I manually intervene. The issue seems to be related to virtualisation and veeam. Something may be occuring when veeam is backing up the PDCe. Any suggestions? UPDATE & SUMMARY msemack's excellent list of resources below (the accepted answer) provided enough information to correctly configure the time service in the domain. This should be the first port of call for any future people looking to verify their configuration. The final "40 second jump" issue I have resolved (there are no more warnings) through adjusting the VMware time sync settings as noted in the veeam knowledge base article here: http://www.veeam.com/kb1202 In any case, should any future reader use ESXi, veeam or not, the resources here are an excellent source of information on the time sync topic and msemack's answer is particularly invaluable.

    Read the article

  • Windows Server 2012 Migration (DNS/AD DS Standard Eval to Essentials OEM) P2V -> Do I need a Secondary Domain Controller during migration?

    - by Aubrey Robertson
    This is my first post on this exchange (although not my first on stack exchange), so please have patience. I am a 3rd year student intern, and I have been tasked with virtualizing the server systems at the company I work for. I have come a long way, and I am almost ready to install the VM Server in migration mode. Here is some information: Source Server: Windows Server 2012 Standard Evaluation DNS Server (local only) Advanced Directory Domain Services File and Storage stuff A few other server roles Destination Server: Windows Server 2012 Essentials OEM (Hyper-V client) Running under a temporary Hyper-V host (will migrate the Hyper-V host back to the old machine after the original server is virtualized as a client). Sitting currently at the "Select Installation Mode" screen. I have been following the guides on Microsoft tech net, and today I spent most of the day getting rid of issues in the Best Practices Analyser on the source machine. I have 3 remaining issues (which are all related): ERROR: DNS: DNS servers on Ethernet (adapter name) should include the loopback address, but not as the first entry (flavour text indicates that, during migration, the DNS server may not be found) WARNING: All domains should have at least two domain controllers for redundancy. WARNING: DNS: Ethernet should be configured to use both a preferred and an alternate DNS Server. All of these issues can be resolved by deploying a secondary domain controller, but I have never done that before (see my concerns below). The main issue here that I am concerned with for installing in migration mode is the FIRST one (the error). If I try and set-up the new server deployment, and the adapter domain controller is listed as localhost, then this may cause the installation to fail. (at least, this is what the Microsoft documentation suggests). But I do not have another IP address to enter here as I have no other local domain controllers. So I did the first obvious thing that came to my mind, and tried to use Google DNS servers as my alternates. That did not work because they couldn't recognize other computers in the "forest". Now I'm no expert when it comes to DNS, so please forgive my ignorance. This DNS server is concerned only with Active Directory stuffs for the local network. If I go ahead with migration, and it fails, then I will just have to go ahead and install a secondary DNS server I suppose. The problem I have here is that I am limited by the amount of Windows Server keys I have available (I have 2); however, I do have access to a Linux box running Debian Wheezy that I set-up two weeks ago as a Mantis server. I could install Windows Server 2012 as a secondary DNS (I think) in a VM and use that, but then it seems like I will be wasting time, and probably the Windows key too, and if there's another way to do it with Linux that would be much better. Even better still, do I even need a secondary DNS server for migration at all? The hints said that during migration the original machine "might" not be found. Thank you for your time and consideration.

    Read the article

< Previous Page | 171 172 173 174 175 176 177 178 179 180 181 182  | Next Page >