Search Results

Search found 20224 results on 809 pages for 'query optimization'.

Page 175/809 | < Previous Page | 171 172 173 174 175 176 177 178 179 180 181 182  | Next Page >

  • Speeding up inner joins between a large table and a small table

    - by Zaid
    This may be a silly question, but it may shed some light on how joins work internally. Let's say I have a large table L and a small table S (100K rows vs. 100 rows). Would there be any difference in terms of speed between the following two options?: OPTION 1: OPTION 2: --------- --------- SELECT * SELECT * FROM L INNER JOIN S FROM S INNER JOIN L ON L.id = S.id; ON L.id = S.id; Notice that the only difference is the order in which the tables are joined. I realize performance may vary between different SQL languages. If so, how would MySQL compare to Access?

    Read the article

  • Trying to reduce the speed overhead of an almost-but-not-quite-int number class

    - by Fumiyo Eda
    I have implemented a C++ class which behaves very similarly to the standard int type. The difference is that it has an additional concept of "epsilon" which represents some tiny value that is much less than 1, but greater than 0. One way to think of it is as a very wide fixed point number with 32 MSBs (the integer parts), 32 LSBs (the epsilon parts) and a huge sea of zeros in between. The following class works, but introduces a ~2x speed penalty in the overall program. (The program includes code that has nothing to do with this class, so the actual speed penalty of this class is probably much greater than 2x.) I can't paste the code that is using this class, but I can say the following: +, -, +=, <, > and >= are the only heavily used operators. Use of setEpsilon() and getInt() is extremely rare. * is also rare, and does not even need to consider the epsilon values at all. Here is the class: #include <limits> struct int32Uepsilon { typedef int32Uepsilon Self; int32Uepsilon () { _value = 0; _eps = 0; } int32Uepsilon (const int &i) { _value = i; _eps = 0; } void setEpsilon() { _eps = 1; } Self operator+(const Self &rhs) const { Self result = *this; result._value += rhs._value; result._eps += rhs._eps; return result; } Self operator-(const Self &rhs) const { Self result = *this; result._value -= rhs._value; result._eps -= rhs._eps; return result; } Self operator-( ) const { Self result = *this; result._value = -result._value; result._eps = -result._eps; return result; } Self operator*(const Self &rhs) const { return this->getInt() * rhs.getInt(); } // XXX: discards epsilon bool operator<(const Self &rhs) const { return (_value < rhs._value) || (_value == rhs._value && _eps < rhs._eps); } bool operator>(const Self &rhs) const { return (_value > rhs._value) || (_value == rhs._value && _eps > rhs._eps); } bool operator>=(const Self &rhs) const { return (_value >= rhs._value) || (_value == rhs._value && _eps >= rhs._eps); } Self &operator+=(const Self &rhs) { this->_value += rhs._value; this->_eps += rhs._eps; return *this; } Self &operator-=(const Self &rhs) { this->_value -= rhs._value; this->_eps -= rhs._eps; return *this; } int getInt() const { return(_value); } private: int _value; int _eps; }; namespace std { template<> struct numeric_limits<int32Uepsilon> { static const bool is_signed = true; static int max() { return 2147483647; } } }; The code above works, but it is quite slow. Does anyone have any ideas on how to improve performance? There are a few hints/details I can give that might be helpful: 32 bits are definitely insufficient to hold both _value and _eps. In practice, up to 24 ~ 28 bits of _value are used and up to 20 bits of _eps are used. I could not measure a significant performance difference between using int32_t and int64_t, so memory overhead itself is probably not the problem here. Saturating addition/subtraction on _eps would be cool, but isn't really necessary. Note that the signs of _value and _eps are not necessarily the same! This broke my first attempt at speeding this class up. Inline assembly is no problem, so long as it works with GCC on a Core i7 system running Linux!

    Read the article

  • Find point which sum of distances to set of other points is minimal

    - by Pawel Markowski
    I have one set (X) of points (not very big let's say 1-20 points) and the second (Y), much larger set of points. I need to choose some point from Y which sum of distances to all points from X is minimal. I came up with an idea that I would treat X as a vertices of a polygon and find centroid of this polygon, and then I will choose a point from Y nearest to the centroid. But I'm not sure whether centroid minimizes sum of its distances to the vertices of polygon, so I'm not sure whether this is a good way? Is there any algorithm for solving this problem? Points are defined by geographical coordinates.

    Read the article

  • Can anyone recommend a decent tool for optimising images other than photoshop

    - by toomanyairmiles
    Can anyone recommend a decent tool for optimising images other than adobe photoshop, the gimp etc? I'm looking to optimise images for the web preferably online and free. Basically I have a client who can't install additional software on their work PC but needs to optimise photographs and other images for their website and is presently uploading 1 or 2 Mb files. On a personal level I'm interested to see what other people are using...

    Read the article

  • MongoDB query to return only embedded document

    - by Matt
    assume that i have a BlogPost model with zero-to-many embedded Comment documents. can i query for and have MongoDB return only Comment objects matching my query spec? eg, db.blog_posts.find({"comment.submitter": "some_name"}) returns only a list of comments. edit: an example: import pymongo connection = pymongo.Connection() db = connection['dvds'] db['dvds'].insert({'title': "The Hitchhikers Guide to the Galaxy", 'episodes': [{'title': "Episode 1", 'desc': "..."}, {'title': "Episode 2", 'desc': "..."}, {'title': "Episode 3", 'desc': "..."}, {'title': "Episode 4", 'desc': "..."}, {'title': "Episode 5", 'desc': "..."}, {'title': "Episode 6", 'desc': "..."}]}) episode = db['dvds'].find_one({'episodes.title': "Episode 1"}, fields=['episodes']) in this example, episode is: {u'_id': ObjectId('...'), u'episodes': [{u'desc': u'...', u'title': u'Episode 1'}, {u'desc': u'...', u'title': u'Episode 2'}, {u'desc': u'...', u'title': u'Episode 3'}, {u'desc': u'...', u'title': u'Episode 4'}, {u'desc': u'...', u'title': u'Episode 5'}, {u'desc': u'...', u'title': u'Episode 6'}]} but i just want: {u'desc': u'...', u'title': u'Episode 1'}

    Read the article

  • Fast read of certain bytes of multiple files in C/C++

    - by Alejandro Cámara
    I've been searching in the web about this question and although there are many similar questions about read/write in C/C++, I haven't found about this specific task. I want to be able to read from multiple files (256x256 files) only sizeof(double) bytes located in a certain position of each file. Right now my solution is, for each file: Open the file (read, binary mode): fstream fTest("current_file", ios_base::out | ios_base::binary); Seek the position I want to read: fTest.seekg(position*sizeof(test_value), ios_base::beg); Read the bytes: fTest.read((char *) &(output[i][j]), sizeof(test_value)); And close the file: fTest.close(); This takes about 350 ms to run inside a for{ for {} } structure with 256x256 iterations (one for each file). Q: Do you think there is a better way to implement this operation? How would you do it?

    Read the article

  • How do I guarante node order for an Xpath 'OR' query

    - by Tom Carter
    I have a snippet of XML that looks like <body> Some text.... <nodeA>....</nodeA> more text <someOtherNode> <nodeA>.......</nodeA> </someOtherNode> <nodeB>.......</nodeB> etc..... </body> I'm selecting all nodeA and NodeB nodes inside <body> using an XPATH query similar to "//nodeA|//nodeB" As I understand it, .NET supports XPATH 1.0 which does not guarantee node order. How can I guarantee selected nodes are returned in document order in my OR query : that's to say : nodeA, nodeA, nodeB

    Read the article

  • Rewriting a for loop in pure NumPy to decrease execution time

    - by Statto
    I recently asked about trying to optimise a Python loop for a scientific application, and received an excellent, smart way of recoding it within NumPy which reduced execution time by a factor of around 100 for me! However, calculation of the B value is actually nested within a few other loops, because it is evaluated at a regular grid of positions. Is there a similarly smart NumPy rewrite to shave time off this procedure? I suspect the performance gain for this part would be less marked, and the disadvantages would presumably be that it would not be possible to report back to the user on the progress of the calculation, that the results could not be written to the output file until the end of the calculation, and possibly that doing this in one enormous step would have memory implications? Is it possible to circumvent any of these? import numpy as np import time def reshape_vector(v): b = np.empty((3,1)) for i in range(3): b[i][0] = v[i] return b def unit_vectors(r): return r / np.sqrt((r*r).sum(0)) def calculate_dipole(mu, r_i, mom_i): relative = mu - r_i r_unit = unit_vectors(relative) A = 1e-7 num = A*(3*np.sum(mom_i*r_unit, 0)*r_unit - mom_i) den = np.sqrt(np.sum(relative*relative, 0))**3 B = np.sum(num/den, 1) return B N = 20000 # number of dipoles r_i = np.random.random((3,N)) # positions of dipoles mom_i = np.random.random((3,N)) # moments of dipoles a = np.random.random((3,3)) # three basis vectors for this crystal n = [10,10,10] # points at which to evaluate sum gamma_mu = 135.5 # a constant t_start = time.clock() for i in range(n[0]): r_frac_x = np.float(i)/np.float(n[0]) r_test_x = r_frac_x * a[0] for j in range(n[1]): r_frac_y = np.float(j)/np.float(n[1]) r_test_y = r_frac_y * a[1] for k in range(n[2]): r_frac_z = np.float(k)/np.float(n[2]) r_test = r_test_x +r_test_y + r_frac_z * a[2] r_test_fast = reshape_vector(r_test) B = calculate_dipole(r_test_fast, r_i, mom_i) omega = gamma_mu*np.sqrt(np.dot(B,B)) # write r_test, B and omega to a file frac_done = np.float(i+1)/(n[0]+1) t_elapsed = (time.clock()-t_start) t_remain = (1-frac_done)*t_elapsed/frac_done print frac_done*100,'% done in',t_elapsed/60.,'minutes...approximately',t_remain/60.,'minutes remaining'

    Read the article

  • Can I use Duff's Device on an array in C?

    - by Ben Fossen
    I have a loop here and I want to make it run faster. I am passing in a large array. I recently heard of Duff's Device can it be applied to this for loop? any ideas? for (i = 0; i < dim; i++) { for (j = 0; j < dim; j++) { dst[RIDX(dim-1-j, i, dim)] = src[RIDX(i, j, dim)]; } }

    Read the article

  • Will the compiler optimize escaping an inner loop?

    - by BCS
    The code I have looks like this (all uses of done shown): bool done = false; for(int i = 0; i < big; i++) { ... for(int j = 0; j < wow; j++) { ... if(foo(i,j)) { done = true; break; } ... } if(done) break; ... } will any compilers convert it to this: for(int i = 0; i < big; i++) { ... for(int j = 0; j < wow; j++) { ... if(foo(i,j)) goto __done; // same as a labeled break if we had it ... } ... } __done:;

    Read the article

  • Google Web Optimizer -- How long until winning combination?

    - by Django Reinhardt
    I've had an A/B Test running in Google Web Optimizer for six weeks now, and there's still no end in sight. Google is still saying: "We have not gathered enough data yet to show any significant results. When we collect more data we should be able to show you a winning combination." Is there any way of telling how close Google is to making up its mind? (Does anyone know what algorithm does it use to decide if there's been any "high confidence winners"?) According to the Google help documentation: Sometimes we simply need more data to be able to reach a level of high confidence. A tested combination typically needs around 200 conversions for us to judge its performance with certainty. But all of our conversions have over 200 conversations at the moment: 230 / 4061 (Original) 223 / 3937 (Variation 1) 205 / 3984 (Variation 2) 205 / 4007 (Variation 3) How much longer is it going to have to run?? Thanks for any help.

    Read the article

  • when is java faster than c++ (or when is JIT faster then precompiled)?

    - by kostja
    I have heard that under certain circumstances, Java programs or rather parts of java programs are able to be executed faster than the "same" code in C++ (or other precompiled code) due to JIT optimizations. This is due to the compiler being able to determine the scope of some variables, avoid some conditionals and pull similar tricks at runtime. Could you give an (or better - some) example, where this applies? And maybe outline the exact conditions under which the compiler is able to optimize the bytecode beyond what is possible with precompiled code? NOTE : This question is not about comparing Java to C++. Its about the possibilities of JIT compiling. Please no flaming. I am also not aware of any duplicates. Please point them out if you are.

    Read the article

  • How can I strip Python logging calls without commenting them out?

    - by cdleary
    Today I was thinking about a Python project I wrote about a year back where I used logging pretty extensively. I remember having to comment out a lot of logging calls in inner-loop-like scenarios (the 90% code) because of the overhead (hotshot indicated it was one of my biggest bottlenecks). I wonder now if there's some canonical way to programmatically strip out logging calls in Python applications without commenting and uncommenting all the time. I'd think you could use inspection/recompilation or bytecode manipulation to do something like this and target only the code objects that are causing bottlenecks. This way, you could add a manipulator as a post-compilation step and use a centralized configuration file, like so: [Leave ERROR and above] my_module.SomeClass.method_with_lots_of_warn_calls [Leave WARN and above] my_module.SomeOtherClass.method_with_lots_of_info_calls [Leave INFO and above] my_module.SomeWeirdClass.method_with_lots_of_debug_calls Of course, you'd want to use it sparingly and probably with per-function granularity -- only for code objects that have shown logging to be a bottleneck. Anybody know of anything like this? Note: There are a few things that make this more difficult to do in a performant manner because of dynamic typing and late binding. For example, any calls to a method named debug may have to be wrapped with an if not isinstance(log, Logger). In any case, I'm assuming all of the minor details can be overcome, either by a gentleman's agreement or some run-time checking. :-)

    Read the article

  • Quickest way to write to file in java

    - by user1097772
    I'm writing an application which compares directory structure. First I wrote an application which writes gets info about files - one line about each file or directory. My soulution is: calling method toFile Static PrintWriter pw = new PrintWriter(new BufferedWriter( new FileWriter("DirStructure.dlis")), true); String line; // info about file or directory public void toFile(String line) { pw.println(line); } and of course pw.close(), at the end. My question is, can I do it quicker? What is the quickest way? Edit: quickest way = quickest writing in the file

    Read the article

  • Does replacing statements by expressions using the C++ comma operator could allow more compiler opti

    - by Gabriel Cuvillier
    The C++ comma operator is used to chain individual expressions, yielding the value of the last executed expression as the result. For example the skeleton code (6 statements, 6 expressions): step1; step2; if (condition) step3; return step4; else return step5; May be rewritten to: (1 statement, 6 expressions) return step1, step2, condition? step3, step4 : step5; I noticed that it is not possible to perform step-by-step debugging of such code, as the expression chain seems to be executed as a whole. Does it means that the compiler is able to perform special optimizations which are not possible with the traditional statement approach (specially if the steps are const or inline)? Note: I'm not talking about the coding style merit of that way of expressing sequence of expressions! Just about the possible optimisations allowed by replacing statements by expressions.

    Read the article

  • SQL Join query help

    - by lostInTransit
    Hi I have 2 tables A and B with the following columns Table A - id,bId,aName,aVal Table B - id,bName where A.bId is the same as B.id. I want a result set from a query to get A.id, A.aName, B.bName where A.bId=B.id OR A.id, A.aName, "" when A.bId=0. In both cases, only those records should be considered where A.aVal LIKE "aVal" Can someone please help me with the query? I can use left join but how do I get the blank string if bId=0 and B.bName otherwise? Thanks

    Read the article

  • approximating log10[x^k0 + k1]

    - by Yale Zhang
    Greetings. I'm trying to approximate the function Log10[x^k0 + k1], where .21 < k0 < 21, 0 < k1 < ~2000, and x is integer < 2^14. k0 & k1 are constant. For practical purposes, you can assume k0 = 2.12, k1 = 2660. The desired accuracy is 5*10^-4 relative error. This function is virtually identical to Log[x], except near 0, where it differs a lot. I already have came up with a SIMD implementation that is ~1.15x faster than a simple lookup table, but would like to improve it if possible, which I think is very hard due to lack of efficient instructions. My SIMD implementation uses 16bit fixed point arithmetic to evaluate a 3rd degree polynomial (I use least squares fit). The polynomial uses different coefficients for different input ranges. There are 8 ranges, and range i spans (64)2^i to (64)2^(i + 1). The rational behind this is the derivatives of Log[x] drop rapidly with x, meaning a polynomial will fit it more accurately since polynomials are an exact fit for functions that have a derivative of 0 beyond a certain order. SIMD table lookups are done very efficiently with a single _mm_shuffle_epi8(). I use SSE's float to int conversion to get the exponent and significand used for the fixed point approximation. I also software pipelined the loop to get ~1.25x speedup, so further code optimizations are probably unlikely. What I'm asking is if there's a more efficient approximation at a higher level? For example: Can this function be decomposed into functions with a limited domain like log2((2^x) * significand) = x + log2(significand) hence eliminating the need to deal with different ranges (table lookups). The main problem I think is adding the k1 term kills all those nice log properties that we know and love, making it not possible. Or is it? Iterative method? don't think so because the Newton method for log[x] is already a complicated expression Exploiting locality of neighboring pixels? - if the range of the 8 inputs fall in the same approximation range, then I can look up a single coefficient, instead of looking up separate coefficients for each element. Thus, I can use this as a fast common case, and use a slower, general code path when it isn't. But for my data, the range needs to be ~2000 before this property hold 70% of the time, which doesn't seem to make this method competitive. Please, give me some opinion, especially if you're an applied mathematician, even if you say it can't be done. Thanks.

    Read the article

  • Code runs 6 times slower with 2 threads than with 1

    - by Edward Bird
    So I have written some code to experiment with threads and do some testing. The code should create some numbers and then find the mean of those numbers. I think it is just easier to show you what I have so far. I was expecting with two threads that the code would run about 2 times as fast. Measuring it with a stopwatch I think it runs about 6 times slower! void findmean(std::vector<double>*, std::size_t, std::size_t, double*); int main(int argn, char** argv) { // Program entry point std::cout << "Generating data..." << std::endl; // Create a vector containing many variables std::vector<double> data; for(uint32_t i = 1; i <= 1024 * 1024 * 128; i ++) data.push_back(i); // Calculate mean using 1 core double mean = 0; std::cout << "Calculating mean, 1 Thread..." << std::endl; findmean(&data, 0, data.size(), &mean); mean /= (double)data.size(); // Print result std::cout << " Mean=" << mean << std::endl; // Repeat, using two threads std::vector<std::thread> thread; std::vector<double> result; result.push_back(0.0); result.push_back(0.0); std::cout << "Calculating mean, 2 Threads..." << std::endl; // Run threads uint32_t halfsize = data.size() / 2; uint32_t A = 0; uint32_t B, C, D; // Split the data into two blocks if(data.size() % 2 == 0) { B = C = D = halfsize; } else if(data.size() % 2 == 1) { B = C = halfsize; D = hsz + 1; } // Run with two threads thread.push_back(std::thread(findmean, &data, A, B, &(result[0]))); thread.push_back(std::thread(findmean, &data, C, D , &(result[1]))); // Join threads thread[0].join(); thread[1].join(); // Calculate result mean = result[0] + result[1]; mean /= (double)data.size(); // Print result std::cout << " Mean=" << mean << std::endl; // Return return EXIT_SUCCESS; } void findmean(std::vector<double>* datavec, std::size_t start, std::size_t length, double* result) { for(uint32_t i = 0; i < length; i ++) { *result += (*datavec).at(start + i); } } I don't think this code is exactly wonderful, if you could suggest ways of improving it then I would be grateful for that also.

    Read the article

  • c++ optimize array of ints

    - by a432511
    I have a 2D lookup table of int16_t. int16_t my_array[37][73] = {{**DATA HERE**}} I have a mixture of values that range from just above the range of int8_t to just below the range of int8_t and some of the values repeat themselves. I am trying to reduce the size of this lookup table. What I have done so far is split each int16_t value into two int8_t values to visualize the wasted bytes. int8_t part_1 = original_value >> 4; int8_t part_2 = original_value & 0x0000FFFF; // If the upper 4 bits of the original_value were empty if(part_1 == 0) wasted_bytes_count++; I can easily remove the zero value int8_t that are wasting a byte of space and I can also remove the duplicate values, but my question is how do I do remove those values while retaining the ability to lookup based on the two indices? I contemplated translating this into a 1D array and adding a number following each duplicated value that would represent the number of duplicates that were removed, but I am struggling with how I would then identify what is a lookup value and what is a duplicate count. Also, it is further complicated by stripping out the zero int8_t values that were wasted bytes. EDIT: This array is stored in ROM already. RAM is even more limited than ROM so it is already stored in ROM. EDIT: I am going to post a bounty for this question as soon as I can. I need a complete answer of how to store the information AND retrieve it. It does not need to be a 2D array as long as I can get the same values. EDIT: Adding the actual array below: {150,145,140,135,130,125,120,115,110,105,100,95,90,85,80,75,70,65,60,55,50,45,40,35,30,25,20,15,10,5,0,-4,-9,-14,-19,-24,-29,-34,-39,-44,-49,-54,-59,-64,-69,-74,-79,-84,-89,-94,-99,104,109,114,119,124,129,134,139,144,149,154,159,164,169,174,179,175,170,165,160,155,150}, \ {143,137,131,126,120,115,110,105,100,95,90,85,80,75,71,66,62,57,53,48,44,39,35,31,27,22,18,14,9,5,1,-3,-7,-11,-16,-20,-25,-29,-34,-38,-43,-47,-52,-57,-61,-66,-71,-76,-81,-86,-91,-96,101,107,112,117,123,128,134,140,146,151,157,163,169,175,178,172,166,160,154,148,143}, \ {130,124,118,112,107,101,96,92,87,82,78,74,70,65,61,57,54,50,46,42,38,34,31,27,23,19,16,12,8,4,1,-2,-6,-10,-14,-18,-22,-26,-30,-34,-38,-43,-47,-51,-56,-61,-65,-70,-75,-79,-84,-89,-94,100,105,111,116,122,128,135,141,148,155,162,170,177,174,166,159,151,144,137,130}, \ {111,104,99,94,89,85,81,77,73,70,66,63,60,56,53,50,46,43,40,36,33,30,26,23,20,16,13,10,6,3,0,-3,-6,-9,-13,-16,-20,-24,-28,-32,-36,-40,-44,-48,-52,-57,-61,-65,-70,-74,-79,-84,-88,-93,-98,103,109,115,121,128,135,143,152,162,172,176,165,154,144,134,125,118,111}, \ {85,81,77,74,71,68,65,63,60,58,56,53,51,49,46,43,41,38,35,32,29,26,23,19,16,13,10,7,4,1,-1,-3,-6,-9,-13,-16,-19,-23,-26,-30,-34,-38,-42,-46,-50,-54,-58,-62,-66,-70,-74,-78,-83,-87,-91,-95,100,105,110,117,124,133,144,159,178,160,141,125,112,103,96,90,85}, \ {62,60,58,57,55,54,52,51,50,48,47,46,44,42,41,39,36,34,31,28,25,22,19,16,13,10,7,4,2,0,-3,-5,-8,-10,-13,-16,-19,-22,-26,-29,-33,-37,-41,-45,-49,-53,-56,-60,-64,-67,-70,-74,-77,-80,-83,-86,-89,-91,-94,-97,101,105,111,130,109,84,77,74,71,68,66,64,62}, \ {46,46,45,44,44,43,42,42,41,41,40,39,38,37,36,35,33,31,28,26,23,20,16,13,10,7,4,1,-1,-3,-5,-7,-9,-12,-14,-16,-19,-22,-26,-29,-33,-36,-40,-44,-48,-51,-55,-58,-61,-64,-66,-68,-71,-72,-74,-74,-75,-74,-72,-68,-61,-48,-25,2,22,33,40,43,45,46,47,46,46}, \ {36,36,36,36,36,35,35,35,35,34,34,34,34,33,32,31,30,28,26,23,20,17,14,10,6,3,0,-2,-4,-7,-9,-10,-12,-14,-15,-17,-20,-23,-26,-29,-32,-36,-40,-43,-47,-50,-53,-56,-58,-60,-62,-63,-64,-64,-63,-62,-59,-55,-49,-41,-30,-17,-4,6,15,22,27,31,33,34,35,36,36}, \ {30,30,30,30,30,30,30,29,29,29,29,29,29,29,29,28,27,26,24,21,18,15,11,7,3,0,-3,-6,-9,-11,-12,-14,-15,-16,-17,-19,-21,-23,-26,-29,-32,-35,-39,-42,-45,-48,-51,-53,-55,-56,-57,-57,-56,-55,-53,-49,-44,-38,-31,-23,-14,-6,0,7,13,17,21,24,26,27,29,29,30}, \ {25,25,26,26,26,25,25,25,25,25,25,25,25,26,25,25,24,23,21,19,16,12,8,4,0,-3,-7,-10,-13,-15,-16,-17,-18,-19,-20,-21,-22,-23,-25,-28,-31,-34,-37,-40,-43,-46,-48,-49,-50,-51,-51,-50,-48,-45,-42,-37,-32,-26,-19,-13,-7,-1,3,7,11,14,17,19,21,23,24,25,25}, \ {21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,21,20,18,16,13,9,5,1,-3,-7,-11,-14,-17,-18,-20,-21,-21,-22,-22,-22,-23,-23,-25,-27,-29,-32,-35,-37,-40,-42,-44,-45,-45,-45,-44,-42,-40,-36,-32,-27,-22,-17,-12,-7,-3,0,3,7,9,12,14,16,18,19,20,21,21}, \ {18,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,18,17,16,14,10,7,2,-1,-6,-10,-14,-17,-19,-21,-22,-23,-24,-24,-24,-24,-23,-23,-23,-24,-26,-28,-30,-33,-35,-37,-38,-39,-39,-38,-36,-34,-31,-28,-24,-19,-15,-10,-6,-3,0,1,4,6,8,10,12,14,15,16,17,18,18}, \ {16,16,17,17,17,17,17,17,17,17,17,16,16,16,16,16,16,15,13,11,8,4,0,-4,-9,-13,-16,-19,-21,-23,-24,-25,-25,-25,-25,-24,-23,-21,-20,-20,-21,-22,-24,-26,-28,-30,-31,-32,-31,-30,-29,-27,-24,-21,-17,-13,-9,-6,-3,-1,0,2,4,5,7,9,10,12,13,14,15,16,16}, \ {14,14,14,15,15,15,15,15,15,15,14,14,14,14,14,14,13,12,11,9,5,2,-2,-6,-11,-15,-18,-21,-23,-24,-25,-25,-25,-25,-24,-22,-21,-18,-16,-15,-15,-15,-17,-19,-21,-22,-24,-24,-24,-23,-22,-20,-18,-15,-12,-9,-5,-3,-1,0,1,2,4,5,6,8,9,10,11,12,13,14,14}, \ {12,13,13,13,13,13,13,13,13,13,13,13,12,12,12,12,11,10,9,6,3,0,-4,-8,-12,-16,-19,-21,-23,-24,-24,-24,-24,-23,-22,-20,-17,-15,-12,-10,-9,-9,-10,-12,-13,-15,-17,-17,-18,-17,-16,-15,-13,-11,-8,-5,-3,-1,0,1,1,2,3,4,6,7,8,9,10,11,12,12,12}, \ {11,11,11,11,11,12,12,12,12,12,11,11,11,11,11,10,10,9,7,5,2,-1,-5,-9,-13,-17,-20,-22,-23,-23,-23,-23,-22,-20,-18,-16,-14,-11,-9,-6,-5,-4,-5,-6,-8,-9,-11,-12,-12,-12,-12,-11,-9,-8,-6,-3,-1,0,0,1,1,2,3,4,5,6,7,8,9,10,11,11,11}, \ {10,10,10,10,10,10,10,10,10,10,10,10,10,10,9,9,9,7,6,3,0,-3,-6,-10,-14,-17,-20,-21,-22,-22,-22,-21,-19,-17,-15,-13,-10,-8,-6,-4,-2,-2,-2,-2,-4,-5,-7,-8,-8,-9,-8,-8,-7,-5,-4,-2,0,0,1,1,1,2,2,3,4,5,6,7,8,9,10,10,10}, \ {9,9,9,9,9,9,9,10,10,9,9,9,9,9,9,8,8,6,5,2,0,-4,-7,-11,-15,-17,-19,-21,-21,-21,-20,-18,-16,-14,-12,-10,-8,-6,-4,-2,-1,0,0,0,-1,-2,-4,-5,-5,-6,-6,-5,-5,-4,-3,-1,0,0,1,1,1,1,2,3,3,5,6,7,8,8,9,9,9}, \ {9,9,9,9,9,9,9,9,9,9,9,9,8,8,8,8,7,5,4,1,-1,-5,-8,-12,-15,-17,-19,-20,-20,-19,-18,-16,-14,-11,-9,-7,-5,-4,-2,-1,0,0,1,1,0,0,-2,-3,-3,-4,-4,-4,-3,-3,-2,-1,0,0,0,0,0,1,1,2,3,4,5,6,7,8,8,9,9}, \ {9,9,9,8,8,8,9,9,9,9,9,8,8,8,8,7,6,5,3,0,-2,-5,-9,-12,-15,-17,-18,-19,-19,-18,-16,-14,-12,-9,-7,-5,-4,-2,-1,0,0,1,1,1,1,0,0,-1,-2,-2,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,8,9}, \ {8,8,8,8,8,8,9,9,9,9,9,9,8,8,8,7,6,4,2,0,-3,-6,-9,-12,-15,-17,-18,-18,-17,-16,-14,-12,-10,-8,-6,-4,-2,-1,0,0,1,2,2,2,2,1,0,0,-1,-1,-1,-2,-2,-1,-1,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,8}, \ {8,8,8,8,9,9,9,9,9,9,9,9,9,8,8,7,5,3,1,-1,-4,-7,-10,-13,-15,-16,-17,-17,-16,-15,-13,-11,-9,-6,-5,-3,-2,0,0,0,1,2,2,2,2,1,1,0,0,0,-1,-1,-1,-1,-1,0,0,0,0,-1,-1,-1,-1,-1,0,0,1,3,4,5,7,7,8}, \ {8,8,9,9,9,9,10,10,10,10,10,10,10,9,8,7,5,3,0,-2,-5,-8,-11,-13,-15,-16,-16,-16,-15,-13,-12,-10,-8,-6,-4,-2,-1,0,0,1,2,2,3,3,2,2,1,0,0,0,0,0,0,0,0,0,0,-1,-1,-2,-2,-2,-2,-2,-1,0,0,1,3,4,6,7,8}, \ {7,8,9,9,9,10,10,11,11,11,11,11,10,10,9,7,5,3,0,-2,-6,-9,-11,-13,-15,-16,-16,-15,-14,-13,-11,-9,-7,-5,-3,-2,0,0,1,1,2,3,3,3,3,2,2,1,1,0,0,0,0,0,0,0,-1,-1,-2,-3,-3,-4,-4,-4,-3,-2,-1,0,1,3,5,6,7}, \ {6,8,9,9,10,11,11,12,12,12,12,12,11,11,9,7,5,2,0,-3,-7,-10,-12,-14,-15,-16,-15,-15,-13,-12,-10,-8,-7,-5,-3,-1,0,0,1,2,2,3,3,4,3,3,3,2,2,1,1,1,0,0,0,0,-1,-2,-3,-4,-4,-5,-5,-5,-5,-4,-2,-1,0,2,3,5,6}, \ {6,7,8,10,11,12,12,13,13,14,14,13,13,11,10,8,5,2,0,-4,-8,-11,-13,-15,-16,-16,-16,-15,-13,-12,-10,-8,-6,-5,-3,-1,0,0,1,2,3,3,4,4,4,4,4,3,3,3,2,2,1,1,0,0,-1,-2,-3,-5,-6,-7,-7,-7,-6,-5,-4,-3,-1,0,2,4,6}, \ {5,7,8,10,11,12,13,14,15,15,15,14,14,12,11,8,5,2,-1,-5,-9,-12,-14,-16,-17,-17,-16,-15,-14,-12,-11,-9,-7,-5,-3,-1,0,0,1,2,3,4,4,5,5,5,5,5,5,4,4,3,3,2,1,0,-1,-2,-4,-6,-7,-8,-8,-8,-8,-7,-6,-4,-2,0,1,3,5}, \ {4,6,8,10,12,13,14,15,16,16,16,16,15,13,11,9,5,2,-2,-6,-10,-13,-16,-17,-18,-18,-17,-16,-15,-13,-11,-9,-7,-5,-4,-2,0,0,1,3,3,4,5,6,6,7,7,7,7,7,6,5,4,3,2,0,-1,-3,-5,-7,-8,-9,-10,-10,-10,-9,-7,-5,-4,-1,0,2,4}, \ {4,6,8,10,12,14,15,16,17,18,18,17,16,15,12,9,5,1,-3,-8,-12,-15,-18,-19,-20,-20,-19,-18,-16,-15,-13,-11,-8,-6,-4,-2,-1,0,1,3,4,5,6,7,8,9,9,9,9,9,9,8,7,5,3,1,-1,-3,-6,-8,-10,-11,-12,-12,-11,-10,-9,-7,-5,-2,0,1,4}, \ {4,6,8,11,13,15,16,18,19,19,19,19,18,16,13,10,5,0,-5,-10,-15,-18,-21,-22,-23,-22,-22,-20,-18,-17,-14,-12,-10,-8,-5,-3,-1,0,1,3,5,6,8,9,10,11,12,12,13,12,12,11,9,7,5,2,0,-3,-6,-9,-11,-12,-13,-13,-12,-11,-10,-8,-6,-3,-1,1,4}, \ {3,6,9,11,14,16,17,19,20,21,21,21,19,17,14,10,4,-1,-8,-14,-19,-22,-25,-26,-26,-26,-25,-23,-21,-19,-17,-14,-12,-9,-7,-4,-2,0,1,3,5,7,9,11,13,14,15,16,16,16,16,15,13,10,7,4,0,-3,-7,-10,-12,-14,-15,-14,-14,-12,-11,-9,-6,-4,-1,1,3}, \ {4,6,9,12,14,17,19,21,22,23,23,23,21,19,15,9,2,-5,-13,-20,-25,-28,-30,-31,-31,-30,-29,-27,-25,-22,-20,-17,-14,-11,-9,-6,-3,0,1,4,6,9,11,13,15,17,19,20,21,21,21,20,18,15,11,6,2,-2,-7,-11,-13,-15,-16,-16,-15,-13,-11,-9,-7,-4,-1,1,4}, \ {4,7,10,13,15,18,20,22,24,25,25,25,23,20,15,7,-2,-12,-22,-29,-34,-37,-38,-38,-37,-36,-34,-31,-29,-26,-23,-20,-17,-13,-10,-7,-4,-1,2,5,8,11,13,16,18,21,23,24,26,26,26,26,24,21,17,12,5,0,-6,-10,-14,-16,-16,-16,-15,-14,-12,-10,-7,-4,-1,1,4}, \ {4,7,10,13,16,19,22,24,26,27,27,26,24,19,11,-1,-15,-28,-37,-43,-46,-47,-47,-45,-44,-41,-39,-36,-32,-29,-26,-22,-19,-15,-11,-8,-4,-1,2,5,9,12,15,19,22,24,27,29,31,33,33,33,32,30,26,21,14,6,0,-6,-11,-14,-15,-16,-15,-14,-12,-9,-7,-4,-1,1,4}, \ {6,9,12,15,18,21,23,25,27,28,27,24,17,4,-14,-34,-49,-56,-60,-60,-60,-58,-56,-53,-50,-47,-43,-40,-36,-32,-28,-25,-21,-17,-13,-9,-5,-1,2,6,10,14,17,21,24,28,31,34,37,39,41,42,43,43,41,38,33,25,17,8,0,-4,-8,-10,-10,-10,-8,-7,-4,-2,0,3,6}, \ {22,24,26,28,30,32,33,31,23,-18,-81,-96,-99,-98,-95,-93,-89,-86,-82,-78,-74,-70,-66,-62,-57,-53,-49,-44,-40,-36,-32,-27,-23,-19,-14,-10,-6,-1,2,6,10,15,19,23,27,31,35,38,42,45,49,52,55,57,60,61,63,63,62,61,57,53,47,40,33,28,23,21,19,19,19,20,22}, \ {168,173,178,176,171,166,161,156,151,146,141,136,131,126,121,116,111,106,101,-96,-91,-86,-81,-76,-71,-66,-61,-56,-51,-46,-41,-36,-31,-26,-21,-16,-11,-6,-1,3,8,13,18,23,28,33,38,43,48,53,58,63,68,73,78,83,88,93,98,103,108,113,118,123,128,133,138,143,148,153,158,163,168}, \ Thanks for your time.

    Read the article

  • Call function in query in Entity framework 3.5

    - by Ashwani K
    Hello All: I am trying to run following query in entity framework 3.5 var test = from e in customers where IsValid(e) select e; Here IsValid function takes current customer and validate against some conditions and returns false or true. But when I am trying to run the query it is giving error "LINQ Method cannot be translated into a store expression." Can any body tell me any other approach? One approach I can think of is to write all validation conditions here, but that will make the code difficult to read. Thanks Ashwani

    Read the article

  • Wordpress Database SQL query help needed

    - by i-CONICA
    Hi, I've written a PHP script to access the latest item from the wordpress database, which it does. But I need to use it twice, once for the latest item from a specific category, and another from a differerent category... But right now I cannot figure out how to put the query together. The post has a post_parent, which in another table, called wp_term_relationships, is referred to as object_id, and has a term_taxonomy_id, which then relates to a different table, called wp_terms where the term_taxonomy_id is now term_id and then you have the category slug name available to select... I really cannot understand how this query would work though. I've made a really crap mock up of it, to try to "visually" explain what i'm trying to do... SELECT * FROM wp_posts WHERE post_status = 'publish' AND (SELECT term_taxonomy_id FROM wp_term_relationships WHERE object_id = post_parent) AND (SELECT slug FROM wp_terms WHERE term_id = term_taxonomy_id) ORDER BY ID DESC LIMIT 1 Really would appreciate some help... Thanks.

    Read the article

  • how to speed up the code??

    - by kaushik
    in my program i have a method which requires about 4 files to be open each time it is called,as i require to take some data.all this data from the file i have been storing in list for manupalation. I approximatily need to call this method about 10,000 times.which is making my program very slow? any method for handling this files in a better ways and is storing the whole data in list time consuming what is better alternatives for list? I can give some code,but my previous question was closed as that only confused everyone as it is a part of big program and need to be explained completely to understand,so i am not giving any code,please suggest ways thinking this as a general question... thanks in advance

    Read the article

  • Regular Expression for $_GET query strings

    - by sandelius
    Hi there! I'm trying to find a regular expression for $_GET query strings. I have an array like this: private $_regexp = array( ':id' => '[0-9]+', ':year' => '[12][0-9]{3}', ':month' => '0[1-9]|1[012]', ':day' => '0[1-9]|[12][0-9]|3[01]', ':slug' => '[a-zA-Z0-9-]+', ':query' => '...' ); and I loop throw them to see if I have a matching wildcard like this: if ( array_key_exists($matches[0], $this->_regexp) ) { return '^('.$this->_regexp[$matches[0]].')$'; } All other regexp go throw but I've tried a whole lot of different regexp to find: ?anything=anything can't figure it out, googled like h..l but can't find anything. I've tried, for example something like this: (\?)(.*)(=)(.*) but without result... Any regexp gurus here? / Tobias

    Read the article

  • Is opening too many datacontexts bad?

    - by ryudice
    I've been checking my application with linq 2 sql profiler, and I noticed that it opens a lot of datacontexts, most of them are opened by the linq datasource I used, since my repositories use only the instance stored in Request.Items, is it bad to open too many datacontext? and how can I make my linqdatasource to use the datacontext that I store in Request.Items for the duration of the request? thanks for any help!

    Read the article

  • Is there a faster TList implementation ?

    - by dmauric.mp
    My application makes heavy use of TList, so I was wondering if there are any alternative implementations that are faster or optimized for particular use case. I know of RtlVCLOptimize.pas 2.77, which has optimized implementations of several TList methods. But I'd like to know if there is anything else out there. I also don't require it to be a TList descendant, I just need the TList functionality regardless of how it's implemented. It's entirely possible, given the rather basic functionality TList provides, that there is not much room for improvement, but would still like to verify that, hence this question.

    Read the article

< Previous Page | 171 172 173 174 175 176 177 178 179 180 181 182  | Next Page >