Search Results

Search found 8262 results on 331 pages for 'optimization algorithm'.

Page 176/331 | < Previous Page | 172 173 174 175 176 177 178 179 180 181 182 183  | Next Page >

  • Implementing RSA-SHA1 signature algorithm in Java (creating a private key for use with OAuth RSA-SHA

    - by The Elite Gentleman
    Hi everyone, As you know, OAuth can support RSA-SHA1 Signature. I have an OAuthSignature interface that has the following method public String sign(String data, String consumerSecret, String tokenSecret) throws GeneralSecurityException; I successfully implemented and tested HMAC-SHA1 Signature (which OAuth Supports) as well as the PLAINTEXT "signature". I have searched google and I have to create a private key if I need to use SHA1withRSA signature: Sample code: /** * Signs the data with the given key and the provided algorithm. */ private static byte[] sign(PrivateKey key, String data) throws GeneralSecurityException { Signature signature = Signature.getInstance("SHA1withRSA"); signature.initSign(key); signature.update(data.getBytes()); return signature.sign(); } Now, How can I take the OAuth key (which is key = consumerSecret&tokenSecret) and create a PrivateKey to use with SHA1withRSA signature? Thanks

    Read the article

  • What do the ddx and ddy values do in this AABB ray intersect algorithm?

    - by Paz
    Does anyone know what the ddx and ddy values do in the AABB ray intersect algorithm? Taken from the following site http://www.blitzbasic.com/codearcs/codearcs.php?code=1029 (show below). Local txmin#,txmax#,tymin#,tymax# // rox, rdx are the ray origin on the x axis, and ray delta on the x axis ... y-axis is roy and rdy Local ddx# =1.0/(rox-rdx) Local ddy# =1.0/(roy-rdy) If ddx >= 0 txmin = (bminx - rox) * ddx txmax = (bmaxx - rox) * ddx Else txmin = (bmaxx - rox) * ddx txmax = (bminx - rox) * ddx EndIf If ddy >= 0 tymin = (bminy - roy) * ddy tymax = (bmaxy - roy) * ddy Else tymin = (bmaxy - roy) * ddy tymax = (bminy - roy) * ddy EndIf If ( (txmin > tymax) Or (tymin > txmax) ) Return 0 If (tymin > txmin) txmin = tymin If (tymax < txmax) txmax = tymax Local tzmin#,tzmax# Local ddz# =1.0/(roz-rdz) If ddz >= 0 tzmin = (bminz - roz) * ddz tzmax = (bmaxz - roz) * ddz Else tzmin = (bmaxz - roz) * ddz tzmax = (bminz - roz) * ddz EndIf If (txmin > tzmax) Or (tzmin > txmax) Return 0 Return 1

    Read the article

  • Please help, now I have a matrix, I want use Combination algorithm to generate a array for length 6

    - by user313429
    The first thanks a lot for your help , the following is my matrix, I want to implement combination algorithm between multiple arrays in LINQ for this matrix. int[,] cj = { { 10, 23, 16, 20 }, { 22, 13, 1, 33 }, { 7, 19, 31, 12 }, { 30, 14, 21, 4 }, { 2, 29, 32, 6 }, { 18, 26, 17, 8 }, { 25, 11, 5, 28 }, { 24, 3, 15, 27 } }; other: public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k) { return k == 0 ? new[] { new T[0] } : elements.SelectMany((e, i) => elements.Skip(i + 1).**Combinations**(k - 1).Select(c => (new[] { e }).Concat(c))); } The above method has a error in my project, System.Collections.Generic.IEnumerable' does not contain a definition for 'Combinations' and no extension method 'Combinations' accepting a first argument of type 'System.Collections.Generic.IEnumerable' could be found (are you missing a using directive or an assembly reference? I use .Net Framework3.5, what is the reason it?

    Read the article

  • What programming language is used to design google algorithm?

    - by AKN
    It is known that google has best searching & indexing algorithm. The also have good relevancy. They are also quicker in getting down the latest results. All that's fine. What programming language (c, c++, java, etc...) & database (oracle, MySQL, etc...) they have used in achieving this. Since they have to manipulate with volume of data quickly and effectively. Though I'm not looking for their indepth architecture (if in case violates their company policies) an overview of all such things could be useful. Anybody please add you valuable suggestions and insight on this?

    Read the article

  • Is there an algorithm for determining how much daylight there is?

    - by Pharaun
    Is there a function/algorithm that allows me to input the latitude and the approximate orbital position of the earth in so that I can determine how long the sun is up? IE during the winter it would show that the sun is only up a few hours in the far north hemisphere. I did some basic Google search and didn't find much so I was thinking that I might have to do some trigonometry that would allow me to calculate how much the earth is inclined or not toward the sun then use that information along with the latitude to figure out how much sunshine a site would be getting.

    Read the article

  • Is there any algorithm for turning simple HAXE code into C/C++ code files?

    - by Ole Jak
    I have simple Haxe app like class Main { public static function main() { trace("hello world"); } } I know how to compile such app for windows (not as SWF but as app from pure C\C++ )(and you can see how here but be worned thay use hxcpp\0,4 ) The problem is - I do not want to compile app for Windows Vista or 7 or XP I want to get PURE C\C++ code (better in one place as one project) for for example compiling that code on windows mobile or where ever I want to. So is there any algorithm for turning simple HAXE code into C/C++ code files?

    Read the article

  • How to change password hashing algorithm when using spring security?

    - by harry
    I'm working on a legacy Spring MVC based web Application which is using a - by current standards - inappropriate hashing algorithm. Now I want to gradually migrate all hashes to bcrypt. My high level strategy is: New hashes are generated with bcrypt by default When a user successfully logs in and has still a legacy hash, the app replaces the old hash with a new bcrypt hash. What is the most idiomatic way of implementing this strategy with Spring Security? Should I use a custom Filter or my on AccessDecisionManager or …?

    Read the article

  • Recursive algorithm for coalescing / collapsing list of dates into ranges.

    - by Dycey
    Given a list of dates 12/07/2010 13/07/2010 14/07/2010 15/07/2010 12/08/2010 13/08/2010 14/08/2010 15/08/2010 19/08/2010 20/08/2010 21/08/2010 I'm looking for pointers towards a recursive pseudocode algorithm (which I can translate into a FileMaker custom function) for producing a list of ranges, i.e. 12/07/2010 to 15/07/2010, 12/08/2010 to 15/08/2010, 19/08/2010 to 20/08/2010 The list is presorted and de-deuplicated. I've tried starting from both the first value and working forwards, and the last value and working backwards but I just can't seem to get it to work. Having one of those frustrating days... It would be nice if the signature was something like CollapseDateList( dateList, separator, ellipsis ) :-)

    Read the article

  • Segmentation fault when enabling optimization in a simple GTK+ application?

    - by gatopeich
    Might be that it is too late, but I find it at least curious that the following few lines seem to be causing a segmentation fault if and only when compiled with gcc's optimization, even "-O1"! settings_dialog = gtk_dialog_new_with_buttons("gatotray Settings" , NULL, 0, GTK_STOCK_CANCEL, FALSE, GTK_STOCK_SAVE, TRUE, 0); g_signal_connect(G_OBJECT(settings_dialog), "response", G_CALLBACK(gtk_widget_destroy), NULL); g_signal_connect(G_OBJECT(settings_dialog), "destroy", G_CALLBACK(settings_destroyed), NULL); GtkWidget *vb = gtk_dialog_get_content_area(GTK_DIALOG(settings_dialog)); GtkWidget *hb = gtk_hbox_new(FALSE, 3); gtk_container_add(GTK_CONTAINER(hb), gtk_label_new("Background:")); GtkWidget *cb = gtk_color_button_new(); gtk_container_add(GTK_CONTAINER(hb), cb); gtk_container_add(GTK_CONTAINER(vb), hb); This is the backtrace: (gdb) backtrace #0 0x00007ffff4d88052 in ?? () from /lib/libc.so.6 #1 0x00007ffff5304112 in g_strdup () from /lib/libglib-2.0.so.0 #2 0x00007ffff5bc799d in ?? () from /usr/lib/libgobject-2.0.so.0 #3 0x00007ffff5ba826c in g_object_new_valist () from /usr/lib/libgobject-2.0.so.0 #4 0x00007ffff5ba84f1 in g_object_new () from /usr/lib/libgobject-2.0.so.0 #5 0x00007ffff78502d5 in gtk_button_new_from_stock () from /usr/lib/libgtk-x11-2.0.so.0 #6 0x00007ffff787cc95 in gtk_dialog_add_button () from /usr/lib/libgtk-x11-2.0.so.0 #7 0x00007ffff787cd60 in ?? () from /usr/lib/libgtk-x11-2.0.so.0 #8 0x00007ffff787cf60 in gtk_dialog_new_with_buttons () from /usr/lib/libgtk-x11-2.0.so.0 #9 0x0000000000402bb9 in show_settings_dialog () at settings.c:24 #10 0x0000000000403328 in main (argc=1, argv=0x7fffffffe2b8) at gatotray.c:286 ... settings.c:24 is exactly the first line listed above, seems like "gtk_dialog_new_with_buttons" is the culprit... Versions: gcc: 4.4.3 GTK+: 2.20.1 BTW, forgot to mention that commenting out certain lines after the conflictive call prevents it from happening. Particularly the line with "gtk_container_add(GTK_CONTAINER(hb), cb);" I tried almost all suitable combinations of GtkTypes/GTK_MACROS, it makes no difference.

    Read the article

  • ?12c database ????Adaptive Execution Plans ????????

    - by Liu Maclean(???)
    12c R1 ????SQL??????- Adaptive Execution Plans ????????,???????optimizer ??????(runtime)???????????????, ????????????????????? SQL???????? ????????????, ?????????????????????????????????????????????????????????????adaptive plan ????????????????????????????????????,?????subplan???????????????????? ??????, ???????? ???????????????,?????????, ?????? ???????????????”???”????, ???????????????????buffer ???????  ????????????,?????,??????????????????? ???optimizer ?????????????????????????,?????????????????????????????????????????plan???? ??12C?????????????, ???????????????????,?????? ???????????? ????????????2???: Dynamic Plans????: ???????????????????????;??????,???optimizer??????????subplans??????????????, ???????????????????,?????????????? Reoptimization????: ?Dynamic Plans????,Reoptimization??????????????????????Reoptimization??,?????????????????????????,??reoptimization????? OPTIMIZER_ADAPTIVE_REPORTING_ONLY ???? report-only????????????????TRUE,?????????report-only????,???????????????,??????????????? Dynamic Plans ??????????????,????????????????????????, ?????????????,???????????,????????????????????????????????????????? ?????????????final plan??????????????default plan, ??final plan?default plan???????,????????????? subplan ???????????????,???????????????????????? ??????,???????statistics collector ?buffer???????????statistics collector?????????????????,???????????????????????????? ?????????????????????????????????????????,??????????,?????????????? ???????????,???????buffer???? ???????????????,?????????????????????????????,??????buffer,??????final plan? ????????,???????????????????????,????????????????? ?V$SQL??????IS_RESOLVED_DYNAMIC_PLAN??????????final plan???default plan? ??????dynamic plan ???????SQL PLAN directives?????? declare cursor PLAN_DIRECTIVE_IDS is select directive_id from DBA_SQL_PLAN_DIRECTIVES; begin for z in PLAN_DIRECTIVE_IDS loop DBMS_SPD.DROP_SQL_PLAN_DIRECTIVE(z.directive_id); end loop; end; / explain plan for select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id; select * from table(dbms_xplan.display()); Plan hash value: 1255158658 www.askmaclean.com ------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 4 | 128 | 7 (0)| 00:00:01 | | 1 | NESTED LOOPS | | | | | | | 2 | NESTED LOOPS | | 4 | 128 | 7 (0)| 00:00:01 | |* 3 | TABLE ACCESS FULL | ORDER_ITEMS | 4 | 48 | 3 (0)| 00:00:01 | |* 4 | INDEX UNIQUE SCAN | PRODUCT_INFORMATION_PK | 1 | | 0 (0)| 00:00:01 | | 5 | TABLE ACCESS BY INDEX ROWID| PRODUCT_INFORMATION | 1 | 20 | 1 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("O"."UNIT_PRICE"=15 AND "QUANTITY">1) 4 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") alter session set events '10053 trace name context forever,level 1'; OR alter session set events 'trace[SQL_Plan_Directive] disk highest'; select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id; ---------------------------------------------------------------+-----------------------------------+ | Id | Operation | Name | Rows | Bytes | Cost | Time | ---------------------------------------------------------------+-----------------------------------+ | 0 | SELECT STATEMENT | | | | 7 | | | 1 | HASH JOIN | | 4 | 128 | 7 | 00:00:01 | | 2 | NESTED LOOPS | | | | | | | 3 | NESTED LOOPS | | 4 | 128 | 7 | 00:00:01 | | 4 | STATISTICS COLLECTOR | | | | | | | 5 | TABLE ACCESS FULL | ORDER_ITEMS | 4 | 48 | 3 | 00:00:01 | | 6 | INDEX UNIQUE SCAN | PRODUCT_INFORMATION_PK| 1 | | 0 | | | 7 | TABLE ACCESS BY INDEX ROWID | PRODUCT_INFORMATION | 1 | 20 | 1 | 00:00:01 | | 8 | TABLE ACCESS FULL | PRODUCT_INFORMATION | 1 | 20 | 1 | 00:00:01 | ---------------------------------------------------------------+-----------------------------------+ Predicate Information: ---------------------- 1 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") 5 - filter(("O"."UNIT_PRICE"=15 AND "QUANTITY">1)) 6 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") ===================================== SPD: BEGIN context at statement level ===================================== Stmt: ******* UNPARSED QUERY IS ******* SELECT /*+ OPT_ESTIMATE (@"SEL$1" JOIN ("P"@"SEL$1" "O"@"SEL$1") ROWS=13.000000 ) OPT_ESTIMATE (@"SEL$1" TABLE "O"@"SEL$1" ROWS=13.000000 ) */ "P"."PRODUCT_NAME" "PRODUCT_NAME" FROM "OE"."ORDER_ITEMS" "O","OE"."PRODUCT_INFORMATION" "P" WHERE "O"."UNIT_PRICE"=15 AND "O"."QUANTITY">1 AND "P"."PRODUCT_ID"="O"."PRODUCT_ID" Objects referenced in the statement PRODUCT_INFORMATION[P] 92194, type = 1 ORDER_ITEMS[O] 92197, type = 1 Objects in the hash table Hash table Object 92197, type = 1, ownerid = 6573730143572393221: No Dynamic Sampling Directives for the object Hash table Object 92194, type = 1, ownerid = 17822962561575639002: No Dynamic Sampling Directives for the object Return code in qosdInitDirCtx: ENBLD =================================== SPD: END context at statement level =================================== ======================================= SPD: BEGIN context at query block level ======================================= Query Block SEL$1 (#0) Return code in qosdSetupDirCtx4QB: NOCTX ===================================== SPD: END context at query block level ===================================== SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92197, objtyp = 1, vecsize = 6, colvec = [4, 5, ], fid = 2896834833840853267 SPD: Inserted felem, fid=2896834833840853267, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = YES, keep = YES SPD: qosdCreateFindingSingTab retCode = CREATED, fid = 2896834833840853267 SPD: qosdCreateDirCmp retCode = CREATED, fid = 2896834833840853267 SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = JOIN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SKIP_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = JOIN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92197, objtyp = 1, vecsize = 6, colvec = [4, 5, ], fid = 2896834833840853267 SPD: Modified felem, fid=2896834833840853267, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = YES, keep = YES SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92194, objtyp = 1, vecsize = 2, colvec = [1, ], fid = 5618517328604016300 SPD: Modified felem, fid=5618517328604016300, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92194, objtyp = 1, vecsize = 2, colvec = [1, ], fid = 1142802697078608149 SPD: Modified felem, fid=1142802697078608149, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO SPD: Generating finding id: type = 1, reason = 2, objcnt = 2, obItr = 0, objid = 92194, objtyp = 1, vecsize = 0, obItr = 1, objid = 92197, objtyp = 1, vecsize = 0, fid = 1437680122701058051 SPD: Modified felem, fid=1437680122701058051, ftype = 1, freason = 2, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO select * from table(dbms_xplan.display_cursor(format=>'report')) ; ????report????adaptive plan Adaptive plan: ------------- This cursor has an adaptive plan, but adaptive plans are enabled for reporting mode only.  The plan that would be executed if adaptive plans were enabled is displayed below. ------------------------------------------------------------------------------------------ | Id  | Operation          | Name                | Rows  | Bytes | Cost (%CPU)| Time     | ------------------------------------------------------------------------------------------ |   0 | SELECT STATEMENT   |                     |       |       |     7 (100)|          | |*  1 |  HASH JOIN         |                     |     4 |   128 |     7   (0)| 00:00:01 | |*  2 |   TABLE ACCESS FULL| ORDER_ITEMS         |     4 |    48 |     3   (0)| 00:00:01 | |   3 |   TABLE ACCESS FULL| PRODUCT_INFORMATION |     1 |    20 |     1   (0)| 00:00:01 | ------------------------------------------------------------------------------------------ SQL> select SQL_ID,IS_RESOLVED_DYNAMIC_PLAN,sql_text from v$SQL WHERE SQL_TEXT like '%MALCEAN%' and sql_text not like '%like%'; SQL_ID IS -------------------------- -- SQL_TEXT -------------------------------------------------------------------------------- 6ydj1bn1bng17 Y select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id ???? explain plan for ????default plan, ??????optimizer???final plan,??V$SQL.IS_RESOLVED_DYNAMIC_PLAN???Y,????????????? DBA_SQL_PLAN_DIRECTIVES?????????????SQL PLAN DIRECTIVES, ???12c? ???MMON?????DML ???column usage??????????,????SMON??? MMON????SGA??PLAN DIRECTIVES??? ?????DBMS_SPD.flush_sql_plan_directive???? select directive_id,type,reason from DBA_SQL_PLAN_DIRECTIVES / DIRECTIVE_ID TYPE REASON ----------------------------------- -------------------------------- ----------------------------- 10321283028317893030 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE 4757086536465754886 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE 16085268038103121260 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE SQL> set pages 9999 SQL> set lines 300 SQL> col state format a5 SQL> col subobject_name format a11 SQL> col col_name format a11 SQL> col object_name format a13 SQL> select d.directive_id, o.object_type, o.object_name, o.subobject_name col_name, d.type, d.state, d.reason 2 from dba_sql_plan_directives d, dba_sql_plan_dir_objects o 3 where d.DIRECTIVE_ID=o.DIRECTIVE_ID 4 and o.object_name in ('ORDER_ITEMS') 5 order by d.directive_id; DIRECTIVE_ID OBJECT_TYPE OBJECT_NAME COL_NAME TYPE STATE REASON ------------ ------------ ------------- ----------- -------------------------------- ----- ------------------------------------- --- 1.8156E+19 COLUMN ORDER_ITEMS UNIT_PRICE DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1.8156E+19 TABLE ORDER_ITEMS DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1.8156E+19 COLUMN ORDER_ITEMS QUANTITY DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE DBA_SQL_PLAN_DIRECTIVES????? _BASE_OPT_DIRECTIVE ? _BASE_OPT_FINDING SELECT d.dir_own#, d.dir_id, d.f_id, decode(type, 1, 'DYNAMIC_SAMPLING', 'UNKNOWN'), decode(state, 1, 'NEW', 2, 'MISSING_STATS', 3, 'HAS_STATS', 4, 'CANDIDATE', 5, 'PERMANENT', 6, 'DISABLED', 'UNKNOWN'), decode(bitand(flags, 1), 1, 'YES', 'NO'), cast(d.created as timestamp), cast(d.last_modified as timestamp), -- Please see QOSD_DAYS_TO_UPDATE and QOSD_PLUS_SECONDS for more details -- about 6.5 cast(d.last_used as timestamp) - NUMTODSINTERVAL(6.5, 'day') FROM sys.opt_directive$ d ??dbms_spd??? SQL PLAN DIRECTIVES, SQL PLAN DIRECTIVES???retention ???53?: Package: DBMS_SPD This package provides subprograms for managing Sql Plan Directives(SPD). SPD are objects generated automatically by Oracle server. For example, if server detects that the single table cardinality estimated by optimizer is off from the actual number of rows returned when accessing the table, it will automatically create a directive to do dynamic sampling for the table. When any Sql statement referencing the table is compiled, optimizer will perform dynamic sampling for the table to get more accurate estimate. Notes: DBMSL_SPD is a invoker-rights package. The invoker requires ADMINISTER SQL MANAGEMENT OBJECT privilege for executing most of the subprograms of this package. Also the subprograms commit the current transaction (if any), perform the operation and commit it again. DBA view dba_sql_plan_directives shows all the directives created in the system and the view dba_sql_plan_dir_objects displays the objects that are included in the directives. -- Default value for SPD_RETENTION_WEEKS SPD_RETENTION_WEEKS_DEFAULT CONSTANT varchar2(4) := '53'; | STATE : NEW : Newly created directive. | : MISSING_STATS : The directive objects do not | have relevant stats. | : HAS_STATS : The objects have stats. | : PERMANENT : A permanent directive. Server | evaluated effectiveness and these | directives are useful. | | AUTO_DROP : YES : Directive will be dropped | automatically if not | used for SPD_RETENTION_WEEKS. | This is the default behavior. | NO : Directive will not be dropped | automatically. Procedure: flush_sql_plan_directive This procedure allows manually flushing the Sql Plan directives that are automatically recorded in SGA memory while executing sql statements. The information recorded in SGA are periodically flushed by oracle background processes. This procedure just provides a way to flush the information manually. ????”_optimizer_dynamic_plans”(enable dynamic plans)????????,???TRUE??DYNAMIC PLAN? ???FALSE???????????? ????,Dynamic Plan????????????Nested Loop?Hash Join???case ,????????Nested loop???????????HASH JOIN,?HASH JOIN????????????????? ????????subplan?????,???? pass?? ?join method???,?????STATISTICS COLLECTOR???cardinality?,???????HASH JOIN?????Nested Loop,????????????subplan?????access path; ???????Sales??????????????????,????HASH JOIN,??SUBPLAN??customers?????????;?????Nested Loop,???????cust_id?????Range Scan+Access by Rowid? Cardinality feedback Cardinality feedback????????11.2????,????????re-optimization???;  ???????????,Cardinality feedback?????????????????????????? ???????????????????,?????????????????,??????????Cardinality feedback????????????? ????????????????????????? ??????????????Cardinality feedback ??: ????????,???????????,??????????,????????????????selectivity ??? ????????????: ??????,?????????????????????????????????,??????????????????? ????????????????????????????????????????,?????????????????????????? ?????????,???????????????,?????????? ??????????Cardinality ????,??????join Cardinality ????????? Cardinality feedback???????cursor?,?Cursor???aged out????? SELECT /*+ gather_plan_statistics */ product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id Plan hash value: 1553478007 ---------------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 13 |00:00:00.01 | 24 | 20 | | | | |* 1 | HASH JOIN | | 1 | 4 | 13 |00:00:00.01 | 24 | 20 | 2061K| 2061K| 429K (0)| |* 2 | TABLE ACCESS FULL| ORDER_ITEMS | 1 | 4 | 13 |00:00:00.01 | 7 | 6 | | | | | 3 | TABLE ACCESS FULL| PRODUCT_INFORMATION | 1 | 1 | 288 |00:00:00.01 | 17 | 14 | | | | ---------------------------------------------------------------------------------------------------------------------------------------- SELECT /*+ gather_plan_statistics */ product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id Plan hash value: 1553478007 ------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 13 |00:00:00.01 | 24 | | | | |* 1 | HASH JOIN | | 1 | 13 | 13 |00:00:00.01 | 24 | 2061K| 2061K| 413K (0)| |* 2 | TABLE ACCESS FULL| ORDER_ITEMS | 1 | 13 | 13 |00:00:00.01 | 7 | | | | | 3 | TABLE ACCESS FULL| PRODUCT_INFORMATION | 1 | 288 | 288 |00:00:00.01 | 17 | | | | ------------------------------------------------------------------------------------------------------------------------------- Note ----- - statistics feedback used for this statement SQL> select count(*) from v$SQL where SQL_ID='cz0hg2zkvd10y'; COUNT(*) ---------- 2 SQL>select sql_ID,USE_FEEDBACK_STATS FROM V$SQL_SHARED_CURSOR where USE_FEEDBACK_STATS ='Y'; SQL_ID U ------------- - cz0hg2zkvd10y Y ????????Cardinality feedback????,???????????????????????????,????????????order_items???????? ????2??????plan hash value??(??????????),?????2????child cursor??????gather_plan_statistics???actual : A-ROWS  estimate :E-ROWS????????? Automatic Re-optimization ???dynamic plan, Re-optimization???????????????  ?  ??????????????? ????????????????????????????????  ???????????,??????????????, ???????????????????? ???????????  Re-optimization??, ????????????????????? Re-optimization????dynamic plan??????????  dynamic plan????????????????????, ???????????????????? ????,??????????join order ??????????????,?????????????join order????? ??????,????????Re-optimization, ??Re-optimization ??????????????????? ?Oracle database 12c?,join statistics?????????????????????,??????????????????????Re-optimization???????????adaptive cursor sharing????? ????????????????,???????????? ????? ???????statistics collectors ????????????????????Re-optimization??????2?????????????,???????????????? ??????????????Re-optimization?????,?????????????????????? ???v$SQL??????IS_REOPTIMIZABLE?????????????????????Re-optimization,??????????Re-optimization???,?????Re-optimization ,???????reporting????? IS_REOPTIMIZABLE VARCHAR2(1) This columns shows whether the next execution matching this child cursor will trigger a reoptimization. The values are:   Y: If the next execution will trigger a reoptimization R: If the child cursor contains reoptimization information, but will not trigger reoptimization because the cursor was compiled in reporting mode N: If the child cursor has no reoptimization information ??1: select plan_table_output from table (dbms_xplan.display_cursor('gwf99gfnm0t7g',NULL,'ALLSTATS LAST')); SQL_ID  gwf99gfnm0t7g, child number 0 ------------------------------------- SELECT /*+ SFTEST gather_plan_statistics */ o.order_id, v.product_name FROM  orders o,   ( SELECT order_id, product_name FROM order_items o, product_information p     WHERE  p.product_id = o.product_id AND list_price < 50 AND min_price < 40  ) v WHERE o.order_id = v.order_id Plan hash value: 1906736282 ------------------------------------------------------------------------------------------------------------------------------------------- | Id  | Operation             | Name                | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------------------- |   0 | SELECT STATEMENT      |                     |      1 |        |    269 |00:00:00.02 |    1336 |     18 |       |       |          | |   1 |  NESTED LOOPS         |                     |      1 |      1 |    269 |00:00:00.02 |    1336 |     18 |       |       |          | |   2 |   MERGE JOIN CARTESIAN|                     |      1 |      4 |   9135 |00:00:00.02 |      34 |     15 |       |       |          | |*  3 |    TABLE ACCESS FULL  | PRODUCT_INFORMATION |      1 |      1 |     87 |00:00:00.01 |      33 |     14 |       |       |          | |   4 |    BUFFER SORT        |                     |     87 |    105 |   9135 |00:00:00.01 |       1 |      1 |  4096 |  4096 | 4096  (0)| |   5 |     INDEX FULL SCAN   | ORDER_PK            |      1 |    105 |    105 |00:00:00.01 |       1 |      1 |       |       |          | |*  6 |   INDEX UNIQUE SCAN   | ORDER_ITEMS_UK      |   9135 |      1 |    269 |00:00:00.01 |    1302 |      3 |       |       |          | ------------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ---------------------------------------------------    3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))    6 - access("O"."ORDER_ID"="ORDER_ID" AND "P"."PRODUCT_ID"="O"."PRODUCT_ID") SQL_ID  gwf99gfnm0t7g, child number 1 ------------------------------------- SELECT /*+ SFTEST gather_plan_statistics */ o.order_id, v.product_name FROM  orders o,   ( SELECT order_id, product_name FROM order_items o, product_information p     WHERE  p.product_id = o.product_id AND list_price < 50 AND min_price < 40  ) v WHERE o.order_id = v.order_id Plan hash value: 35479787 -------------------------------------------------------------------------------------------------------------------------------------------- | Id  | Operation              | Name                | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem | -------------------------------------------------------------------------------------------------------------------------------------------- |   0 | SELECT STATEMENT       |                     |      1 |        |    269 |00:00:00.01 |      63 |      3 |       |       |          | |   1 |  NESTED LOOPS          |                     |      1 |    269 |    269 |00:00:00.01 |      63 |      3 |       |       |          | |*  2 |   HASH JOIN            |                     |      1 |    313 |    269 |00:00:00.01 |      42 |      3 |  1321K|  1321K| 1234K (0)| |*  3 |    TABLE ACCESS FULL   | PRODUCT_INFORMATION |      1 |     87 |     87 |00:00:00.01 |      16 |      0 |       |       |          | |   4 |    INDEX FAST FULL SCAN| ORDER_ITEMS_UK      |      1 |    665 |    665 |00:00:00.01 |      26 |      3 |       |       |          | |*  5 |   INDEX UNIQUE SCAN    | ORDER_PK            |    269 |      1 |    269 |00:00:00.01 |      21 |      0 |       |       |          | -------------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ---------------------------------------------------    2 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")    3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))    5 - access("O"."ORDER_ID"="ORDER_ID") Note -----    - statistics feedback used for this statement    SQL> select IS_REOPTIMIZABLE,child_number FROM V$SQL  A where A.SQL_ID='gwf99gfnm0t7g'; IS CHILD_NUMBER -- ------------ Y             0 N             1    1* select child_number,other_xml From v$SQL_PLAN  where SQL_ID='gwf99gfnm0t7g' and other_xml is not nul SQL> / CHILD_NUMBER OTHER_XML ------------ --------------------------------------------------------------------------------            1 <other_xml><info type="cardinality_feedback">yes</info><info type="db_version">1              2.1.0.1</info><info type="parse_schema"><![CDATA["OE"]]></info><info type="plan_              hash">35479787</info><info type="plan_hash_2">3382491761</info><outline_data><hi              nt><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]></hint><hint><![CDATA[OPTIMIZER_FEATUR              ES_ENABLE('12.1.0.1')]]></hint><hint><![CDATA[DB_VERSION('12.1.0.1')]]></hint><h              int><![CDATA[ALL_ROWS]]></hint><hint><![CDATA[OUTLINE_LEAF(@"SEL$F5BB74E1")]]></              hint><hint><![CDATA[MERGE(@"SEL$2")]]></hint><hint><![CDATA[OUTLINE(@"SEL$1")]]>              </hint><hint><![CDATA[OUTLINE(@"SEL$2")]]></hint><hint><![CDATA[FULL(@"SEL$F5BB7              4E1" "P"@"SEL$2")]]></hint><hint><![CDATA[INDEX_FFS(@"SEL$F5BB74E1" "O"@"SEL$2"              ("ORDER_ITEMS"."ORDER_ID" "ORDER_ITEMS"."PRODUCT_ID"))]]></hint><hint><![CDATA[I              NDEX(@"SEL$F5BB74E1" "O"@"SEL$1" ("ORDERS"."ORDER_ID"))]]></hint><hint><![CDATA[              LEADING(@"SEL$F5BB74E1" "P"@"SEL$2" "O"@"SEL$2" "O"@"SEL$1")]]></hint><hint><![C              DATA[USE_HASH(@"SEL$F5BB74E1" "O"@"SEL$2")]]></hint><hint><![CDATA[USE_NL(@"SEL$              F5BB74E1" "O"@"SEL$1")]]></hint></outline_data></other_xml>            0 <other_xml><info type="db_version">12.1.0.1</info><info type="parse_schema"><![C              DATA["OE"]]></info><info type="plan_hash">1906736282</info><info type="plan_hash              _2">2579473118</info><outline_data><hint><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]>              </hint><hint><![CDATA[OPTIMIZER_FEATURES_ENABLE('12.1.0.1')]]></hint><hint><![CD              ATA[DB_VERSION('12.1.0.1')]]></hint><hint><![CDATA[ALL_ROWS]]></hint><hint><![CD              ATA[OUTLINE_LEAF(@"SEL$F5BB74E1")]]></hint><hint><![CDATA[MERGE(@"SEL$2")]]></hi              nt><hint><![CDATA[OUTLINE(@"SEL$1")]]></hint><hint><![CDATA[OUTLINE(@"SEL$2")]]>              </hint><hint><![CDATA[FULL(@"SEL$F5BB74E1" "P"@"SEL$2")]]></hint><hint><![CDATA[              INDEX(@"SEL$F5BB74E1" "O"@"SEL$1" ("ORDERS"."ORDER_ID"))]]></hint><hint><![CDATA              [INDEX(@"SEL$F5BB74E1" "O"@"SEL$2" ("ORDER_ITEMS"."ORDER_ID" "ORDER_ITEMS"."PROD              UCT_ID"))]]></hint><hint><![CDATA[LEADING(@"SEL$F5BB74E1" "P"@"SEL$2" "O"@"SEL$1              " "O"@"SEL$2")]]></hint><hint><![CDATA[USE_MERGE_CARTESIAN(@"SEL$F5BB74E1" "O"@"              SEL$1")]]></hint><hint><![CDATA[USE_NL(@"SEL$F5BB74E1" "O"@"SEL$2")]]></hint></o              utline_data></other_xml> ??2: SELECT /*+gather_plan_statistics*/ * FROM customers WHERE cust_state_province='CA' AND country_id='US'; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID b74nw722wjvy3, child number 0 ------------------------------------- select /*+gather_plan_statistics*/ * from customers where CUST_STATE_PROVINCE='CA' and country_id='US' Plan hash value: 1683234692 -------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | -------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | 14 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 8 | 29 |00:00:00.01 | 17 | 14 | -------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US')) SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE FROM V$SQL WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%'; SQL_ID CHILD_NUMBER SQL_TEXT I ------------- ------------ ----------- - b74nw722wjvy3 0 select /*+g Y ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE; SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME, o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID AND o.OWNER IN ('SH') ORDER BY 1,2,3,4,5; DIR_ID OWNER OBJECT_NAME COL_NAME OBJECT TYPE STATE REASON ----------------------- ----- ------------- ----------- ------ ---------------- ----- ------------------------ 1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY PROVINCE MISESTIMATE 1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE SELECT /*+gather_plan_statistics*/ * FROM customers WHERE cust_state_province='CA' AND country_id='US'; ELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID b74nw722wjvy3, child number 1 ------------------------------------- select /*+gather_plan_statistics*/ * from customers where CUST_STATE_PROVINCE='CA' and country_id='US' Plan hash value: 1683234692 ----------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ----------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 29 | 29 |00:00:00.01 | 17 | ----------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US')) Note ----- - cardinality feedback used for this statement SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE FROM V$SQL WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%'; SQL_ID CHILD_NUMBER SQL_TEXT I ------------- ------------ ----------- - b74nw722wjvy3 0 select /*+g Y ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' b74nw722wjvy3 1 select /*+g N ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' SELECT /*+gather_plan_statistics*/ CUST_EMAIL FROM CUSTOMERS WHERE CUST_STATE_PROVINCE='MA' AND COUNTRY_ID='US'; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID 3tk6hj3nkcs2u, child number 0 ------------------------------------- Select /*+gather_plan_statistics*/ cust_email From customers Where cust_state_province='MA' And country_id='US' Plan hash value: 1683234692 ------------------------------------------------------------------------------- |Id | Operation | Name | Starts|E-Rows|A-Rows| A-Time |Buffers| ------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 2 |00:00:00.01| 16 | |*1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 2| 2 |00:00:00.01| 16 | ----------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='MA' AND "COUNTRY_ID"='US')) Note ----- - dynamic sampling used for this statement (level=2) - 1 Sql Plan Directive used for this statement EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE; SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME, o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID AND o.OWNER IN ('SH') ORDER BY 1,2,3,4,5; DIR_ID OW OBJECT_NA COL_NAME OBJECT TYPE STATE REASON ------------------- -- --------- ---------- ------- --------------- ------------- ------------------------ 1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY MISESTIMATE 1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY PROVINCE MISESTIMATE 1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY MISESTIMATE

    Read the article

  • Spring @Value annotation not using defaults when property is not present

    - by garyj
    Hi All I am trying to use @Value annotation in the parameters of a constructor as follows: @Autowired public StringEncryptor( @Value("${encryptor.password:\"\"}") String password, @Value("${encryptor.algorithm:\"PBEWithMD5AndTripleDES\"}") String algorithm, @Value("${encryptor.poolSize:10}") Integer poolSize, @Value("${encryptor.salt:\"\"}") String salt) { ... } When the properties file is present on the classpath, the properties are loaded perfectly and the test executes fine. However when I remove the properties file from the classpath, I would have expected that the default values would have been used, for example poolSize would be set to 10 or algorithm to PBEWithMD5AndTripleDES however this is not the case. Running the code through a debugger (which would only work after changing @Value("${encryptor.poolSize:10}") Integer poolSize to @Value("${encryptor.poolSize:10}") String poolSize as it was causing NumberFormatExceptions) I find that the defaults are not being set and the parameters are in the form of: poolSize = ${encryptor.poolSize:10} or algorithm = ${encryptor.algorithm:"PBEWithMD5AndTripleDES"} rather than the expected poolSize = 10 or algorithm = "PBEWithMD5AndTripleDES" Based on SPR-4785 the notation such as ${my.property:myDefaultValue} should work. Yet it's not happening for me! Thank you

    Read the article

  • What's the largest (most complex) PHP algorithm ever implemented in a single monolithic PHP script?

    - by Alex R
    I'm working on a tool which converts PHP code to Scala. As one of the finishing touches, I'm in need of a really good (er, somewhat biased) benchmark. By dumb luck my first benchmark attempt was with some code which uses bcmath extensively, which unfortunately is 1000x slower in Java, making the Scala code 22x slower overall than the original PHP. So I'm looking for some meaningful PHP benchmark with the following characteristics: The source needs to be in a single file. I need it to be simple to setup - no databases, hard-to-find input files, etc. Simple text input and output preferred. It should not use features that are slow in Java (BigInteger, trigonometric functions, etc). It should not use exoteric or dynamic PHP functions (e.g. no "eval" or "variable vars"). It should not over-rely on built-in libraries, e.g. MD5, crypt, etc. It should not be I/O bound. A CPU-bound memory-hungry algorithm is preferred. Basically, intensive OO operations, integer and string manipulation, recursion, etc would be great. Thanks

    Read the article

  • Is there an algorithm for finding an item that matches certain properties, like a 20 questions game?

    - by lala
    A question about 20 questions games was asked here: However, if I'm understanding it correctly, the answers seem to assume that each question will go down a hierarchal branching tree. A binary tree should work if the game went like this: Is it an animal? Yes. Is it a mammal? Yes. Is it a feline? Yes. Because feline is an example of a mammal and mammal is an example of an animal. But what if the questions go like this? Is it a mammal? Yes. Is it a predator? Yes. Does it have a long nose? No. You can't branch down a tree with those kinds of questions, because there are plenty of predators that aren't mammals. So you can't have your program just narrow it down to mammal and have predators be a subset of mammals. So is there a way to use a binary search tree that I'm not understanding or is there a different algorithm for this problem?

    Read the article

  • How to specify hash algorithm when updating LDAP via Java?

    - by JuanZe
    Is there a way to specify the hash algorithm (MD5, SHA1, etc.) to use for storing the passwords when you update an Open LDAP directory using Java APIs with code like this: private void resetPassword(String principal, String newPassword) throws NamingException { InitialDirContext ctxAdmin = null; Hashtable<String, String> ctxData = new Hashtable<String, String>(); ctxData.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory"); ctxData.put(Context.PROVIDER_URL, "ldap://myserver:389"); ctxData.put(Context.SECURITY_AUTHENTICATION, "simple"); ctxData.put(Context.SECURITY_PRINCIPAL, "admin_dn"); ctxData.put(Context.SECURITY_CREDENTIALS, "admin_passwd"); InitialDirContext ctxAdmin = new InitialDirContext(ctxData); if (newPassword == null || newPassword.equals("")) { String msg = "Password can't be null"; throw new NamingException(msg); } else { if (principal == null || principal.equals("")) { String msg = "Principal can't be null"; throw new NamingException(msg); } else { if (ctxAdmin == null) { String errCtx = "Can't get LDAP context"; throw new NamingException(errCtx); } } } BasicAttribute attr = new BasicAttribute("userpassword", newPassword); ModificationItem modItem = new ModificationItem(DirContext.REPLACE_ATTRIBUTE, attr); ModificationItem[] items = new ModificationItem[1]; items[0] = modItem; ctxAdmin.modifyAttributes("cn=" + principal + ",ou=Users,dc=com", items); }

    Read the article

  • is there a simple timed lock algorithm avoiding deadlock on multiple mutexes?

    - by Vicente Botet Escriba
    C++0x thread library or Boost.thread define a non-member variadic template function that locks all mutex at once that helps to avoid deadlock. template <class L1, class L2, class... L3> void lock(L1&, L2&, L3&...); The same can be applied to a non-member variadic template function try_lock_until, which locks all the mutex until a given time is reached that helps to avoid deadlock like lock(...). template <class Clock, class Duration, class L1, class L2, class... L3> void try_lock_until( const chrono::time_point<Clock,Duration>& abs_time, L1&, L2&, L3&...); I have an implementation that follows the same design as the Boost function boost::lock(...). But this is quite complex. As I can be missing something evident I wanted to know if: is there a simple timed lock algorithm avoiding deadlock on multiple mutexes? If no simple implementation exists, can this justify a proposal to Boost? P.S. Please avoid posting complex solutions.

    Read the article

  • emule algorithm and how to get fast download speed.

    - by Benjamin
    Actually, I use amule in ubuntu. Because emule users are much more, I wrote emule in this title. But whatever emule or amule, it's okay. Both of them are very similar. I want to get fast-download speed as much as I can. But I don't understand emule(or amule)'s detail functions and algorithms. These are always very qurious to me. If I provide higher upload-speed or more valuable files to other people, can I get benefit?(My download speed) Is serverlist important? Does it cause my download-speed? I captured a image for my amule. Please explain these columns and let me know your tips for getting fast speed. What does 8/9+23 mean in the Source column? What does 294/300(1) mean in the Source column? What does QR:608(0) mean in the Priority? What do I do for getting fast download speed as much as I can get? You can also explain other columns.

    Read the article

  • MySQL takes forever after running certain php scripts... optimization help?

    - by DFischer
    When I run a couple scripts from the vBulletin software (like uninstalling a plugin) it takes forever. When monitoring the memory usage, it shows this = -/+ buffers/cache: 158 381 Swap: 255 10 245 It seems that MySQL is only using a certain amount and once it does it tries to use the swap instead? I have a 512MB slice and right now my key buffer is at 16M and max_allowed_packet is at 16M. Is there something else I should increase or can I increase those variables and still be safe? Thanks.

    Read the article

  • Is (Ubuntu) Linux file copying algorithm better than Windows 7?

    - by Sarath
    Windows Copying is a real mess ever since Windows Vista. Even Microsoft claims they've improved the performance, from a user perspective, it's not quite visible. Even with single file the copying window appears too much time for 'Calculating' and then finishing the copy(Even after 100% completion some times the dialog remains active). At the same time, I was backing up some files in Ubuntu Linux. I felt it's really fast. Might be a feeling caused by faster UI updates. I read an informative post from Jeff Atwood few years back on Windows File Copying. but what my specific questions are Is (Ubuntu) Linux file performance is better than Windows-7? Are both algorithms, Windows and Linux is making use of multiple threads and pipelining mechanism to improve the speed? If yes, which one is better?

    Read the article

  • A* algorithm works OK, but not perfectly. What's wrong?

    - by Bart van Heukelom
    This is my grid of nodes: I'm moving an object around on it using the A* pathfinding algorithm. It generally works OK, but it sometimes acts wrongly: When moving from 3 to 1, it correctly goes via 2. When going from 1 to 3 however, it goes via 4. When moving between 3 and 5, it goes via 4 in either direction instead of the shorter way via 6 What can be wrong? Here's my code (AS3): public static function getPath(from:Point, to:Point, grid:NodeGrid):PointLine { // get target node var target:NodeGridNode = grid.getClosestNodeObj(to.x, to.y); var backtrace:Map = new Map(); var openList:LinkedSet = new LinkedSet(); var closedList:LinkedSet = new LinkedSet(); // begin with first node openList.add(grid.getClosestNodeObj(from.x, from.y)); // start A* var curNode:NodeGridNode; while (openList.size != 0) { // pick a new current node if (openList.size == 1) { curNode = NodeGridNode(openList.first); } else { // find cheapest node in open list var minScore:Number = Number.MAX_VALUE; var minNext:NodeGridNode; openList.iterate(function(next:NodeGridNode, i:int):int { var score:Number = curNode.distanceTo(next) + next.distanceTo(target); if (score < minScore) { minScore = score; minNext = next; return LinkedSet.BREAK; } return 0; }); curNode = minNext; } // have not reached if (curNode == target) break; else { // move to closed openList.remove(curNode); closedList.add(curNode); // put connected nodes on open list for each (var adjNode:NodeGridNode in curNode.connects) { if (!openList.contains(adjNode) && !closedList.contains(adjNode)) { openList.add(adjNode); backtrace.put(adjNode, curNode); } } } } // make path var pathPoints:Vector.<Point> = new Vector.<Point>(); pathPoints.push(to); while(curNode != null) { pathPoints.unshift(curNode.location); curNode = backtrace.read(curNode); } pathPoints.unshift(from); return new PointLine(pathPoints); } NodeGridNode::distanceTo() public function distanceTo(o:NodeGridNode):Number { var dx:Number = location.x - o.location.x; var dy:Number = location.y - o.location.y; return Math.sqrt(dx*dx + dy*dy); }

    Read the article

  • NET Math Libraries

    - by JoshReuben
    NET Mathematical Libraries   .NET Builder for Matlab The MathWorks Inc. - http://www.mathworks.com/products/netbuilder/ MATLAB Builder NE generates MATLAB based .NET and COM components royalty-free deployment creates the components by encrypting MATLAB functions and generating either a .NET or COM wrapper around them. .NET/Link for Mathematica www.wolfram.com a product that 2-way integrates Mathematica and Microsoft's .NET platform call .NET from Mathematica - use arbitrary .NET types directly from the Mathematica language. use and control the Mathematica kernel from a .NET program. turns Mathematica into a scripting shell to leverage the computational services of Mathematica. write custom front ends for Mathematica or use Mathematica as a computational engine for another program comes with full source code. Leverages MathLink - a Wolfram Research's protocol for sending data and commands back and forth between Mathematica and other programs. .NET/Link abstracts the low-level details of the MathLink C API. Extreme Optimization http://www.extremeoptimization.com/ a collection of general-purpose mathematical and statistical classes built for the.NET framework. It combines a math library, a vector and matrix library, and a statistics library in one package. download the trial of version 4.0 to try it out. Multi-core ready - Full support for Task Parallel Library features including cancellation. Broad base of algorithms covering a wide range of numerical techniques, including: linear algebra (BLAS and LAPACK routines), numerical analysis (integration and differentiation), equation solvers. Mathematics leverages parallelism using .NET 4.0's Task Parallel Library. Basic math: Complex numbers, 'special functions' like Gamma and Bessel functions, numerical differentiation. Solving equations: Solve equations in one variable, or solve systems of linear or nonlinear equations. Curve fitting: Linear and nonlinear curve fitting, cubic splines, polynomials, orthogonal polynomials. Optimization: find the minimum or maximum of a function in one or more variables, linear programming and mixed integer programming. Numerical integration: Compute integrals over finite or infinite intervals, over 2D and higher dimensional regions. Integrate systems of ordinary differential equations (ODE's). Fast Fourier Transforms: 1D and 2D FFT's using managed or fast native code (32 and 64 bit) BigInteger, BigRational, and BigFloat: Perform operations with arbitrary precision. Vector and Matrix Library Real and complex vectors and matrices. Single and double precision for elements. Structured matrix types: including triangular, symmetrical and band matrices. Sparse matrices. Matrix factorizations: LU decomposition, QR decomposition, singular value decomposition, Cholesky decomposition, eigenvalue decomposition. Portability and performance: Calculations can be done in 100% managed code, or in hand-optimized processor-specific native code (32 and 64 bit). Statistics Data manipulation: Sort and filter data, process missing values, remove outliers, etc. Supports .NET data binding. Statistical Models: Simple, multiple, nonlinear, logistic, Poisson regression. Generalized Linear Models. One and two-way ANOVA. Hypothesis Tests: 12 14 hypothesis tests, including the z-test, t-test, F-test, runs test, and more advanced tests, such as the Anderson-Darling test for normality, one and two-sample Kolmogorov-Smirnov test, and Levene's test for homogeneity of variances. Multivariate Statistics: K-means cluster analysis, hierarchical cluster analysis, principal component analysis (PCA), multivariate probability distributions. Statistical Distributions: 25 29 continuous and discrete statistical distributions, including uniform, Poisson, normal, lognormal, Weibull and Gumbel (extreme value) distributions. Random numbers: Random variates from any distribution, 4 high-quality random number generators, low discrepancy sequences, shufflers. New in version 4.0 (November, 2010) Support for .NET Framework Version 4.0 and Visual Studio 2010 TPL Parallellized – multicore ready sparse linear program solver - can solve problems with more than 1 million variables. Mixed integer linear programming using a branch and bound algorithm. special functions: hypergeometric, Riemann zeta, elliptic integrals, Frensel functions, Dawson's integral. Full set of window functions for FFT's. Product  Price Update subscription Single Developer License $999  $399  Team License (3 developers) $1999  $799  Department License (8 developers) $3999  $1599  Site License (Unlimited developers in one physical location) $7999  $3199    NMath http://www.centerspace.net .NET math and statistics libraries matrix and vector classes random number generators Fast Fourier Transforms (FFTs) numerical integration linear programming linear regression curve and surface fitting optimization hypothesis tests analysis of variance (ANOVA) probability distributions principal component analysis cluster analysis built on the Intel Math Kernel Library (MKL), which contains highly-optimized, extensively-threaded versions of BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACKage). Product  Price Update subscription Single Developer License $1295 $388 Team License (5 developers) $5180 $1554   DotNumerics http://www.dotnumerics.com/NumericalLibraries/Default.aspx free DotNumerics is a website dedicated to numerical computing for .NET that includes a C# Numerical Library for .NET containing algorithms for Linear Algebra, Differential Equations and Optimization problems. The Linear Algebra library includes CSLapack, CSBlas and CSEispack, ports from Fortran to C# of LAPACK, BLAS and EISPACK, respectively. Linear Algebra (CSLapack, CSBlas and CSEispack). Systems of linear equations, eigenvalue problems, least-squares solutions of linear systems and singular value problems. Differential Equations. Initial-value problem for nonstiff and stiff ordinary differential equations ODEs (explicit Runge-Kutta, implicit Runge-Kutta, Gear's BDF and Adams-Moulton). Optimization. Unconstrained and bounded constrained optimization of multivariate functions (L-BFGS-B, Truncated Newton and Simplex methods).   Math.NET Numerics http://numerics.mathdotnet.com/ free an open source numerical library - includes special functions, linear algebra, probability models, random numbers, interpolation, integral transforms. A merger of dnAnalytics with Math.NET Iridium in addition to a purely managed implementation will also support native hardware optimization. constants & special functions complex type support real and complex, dense and sparse linear algebra (with LU, QR, eigenvalues, ... decompositions) non-uniform probability distributions, multivariate distributions, sample generation alternative uniform random number generators descriptive statistics, including order statistics various interpolation methods, including barycentric approaches and splines numerical function integration (quadrature) routines integral transforms, like fourier transform (FFT) with arbitrary lengths support, and hartley spectral-space aware sequence manipulation (signal processing) combinatorics, polynomials, quaternions, basic number theory. parallelized where appropriate, to leverage multi-core and multi-processor systems fully managed or (if available) using native libraries (Intel MKL, ACMS, CUDA, FFTW) provides a native facade for F# developers

    Read the article

  • Can python and php work together?

    - by user71741
    I am having a mobile app created for ios. The developers built the app in php. The app requires an algorithm so I found another programmer to develop it. The algorithm programmer built the algorithm in python. The developers refuse to finish the app because they say it won't work with python, while the programmer insist it will. The programmer says put the algorithm in its on server and connect then over http. Will this work and I'd so how risky is it to future problems?

    Read the article

  • Is chess-like AI really inapplicable in turn-based strategy games?

    - by Joh
    Obviously, trying to apply the min-max algorithm on the complete tree of moves works only for small games (I apologize to all chess enthusiasts, by "small" I do not mean "simplistic"). For typical turn-based strategy games where the board is often wider than 100 tiles and all pieces in a side can move simultaneously, the min-max algorithm is inapplicable. I was wondering if a partial min-max algorithm which limits itself to N board configurations at each depth couldn't be good enough? Using a genetic algorithm, it might be possible to find a number of board configurations that are good wrt to the evaluation function. Hopefully, these configurations might also be good wrt to long-term goals. I would be surprised if this hasn't been thought of before and tried. Has it? How does it work?

    Read the article

  • Why using the word "mechanism" in CS?

    - by Nick Rosencrantz
    I'm not sure about the usage of the word "mechanism" when in fact most of the time what is meant is an algorithm. For instance there's talk about Java's "thread-scheduling mechanism" - why not call it an algorithm and why borrow a term from mechanics where relations sometimes are the opposites than of computer science? I'm aware that an algorithm is considered a "mechanical solution" but is this really the case in fact when a lot of algorithm don't have mechanical representations for instance a file-sharing network that gets quicker and faster as the usage grows, that would be the reverse of a mechanical structure that would go slower when usage grows.

    Read the article

< Previous Page | 172 173 174 175 176 177 178 179 180 181 182 183  | Next Page >