Search Results

Search found 20163 results on 807 pages for 'struct size'.

Page 176/807 | < Previous Page | 172 173 174 175 176 177 178 179 180 181 182 183  | Next Page >

  • C#/.NET Little Wonders: Constraining Generics with Where Clause

    - by James Michael Hare
    Back when I was primarily a C++ developer, I loved C++ templates.  The power of writing very reusable generic classes brought the art of programming to a brand new level.  Unfortunately, when .NET 1.0 came about, they didn’t have a template equivalent.  With .NET 2.0 however, we finally got generics, which once again let us spread our wings and program more generically in the world of .NET However, C# generics behave in some ways very differently from their C++ template cousins.  There is a handy clause, however, that helps you navigate these waters to make your generics more powerful. The Problem – C# Assumes Lowest Common Denominator In C++, you can create a template and do nearly anything syntactically possible on the template parameter, and C++ will not check if the method/fields/operations invoked are valid until you declare a realization of the type.  Let me illustrate with a C++ example: 1: // compiles fine, C++ makes no assumptions as to T 2: template <typename T> 3: class ReverseComparer 4: { 5: public: 6: int Compare(const T& lhs, const T& rhs) 7: { 8: return rhs.CompareTo(lhs); 9: } 10: }; Notice that we are invoking a method CompareTo() off of template type T.  Because we don’t know at this point what type T is, C++ makes no assumptions and there are no errors. C++ tends to take the path of not checking the template type usage until the method is actually invoked with a specific type, which differs from the behavior of C#: 1: // this will NOT compile! C# assumes lowest common denominator. 2: public class ReverseComparer<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } So why does C# give us a compiler error even when we don’t yet know what type T is?  This is because C# took a different path in how they made generics.  Unless you specify otherwise, for the purposes of the code inside the generic method, T is basically treated like an object (notice I didn’t say T is an object). That means that any operations, fields, methods, properties, etc that you attempt to use of type T must be available at the lowest common denominator type: object.  Now, while object has the broadest applicability, it also has the fewest specific.  So how do we allow our generic type placeholder to do things more than just what object can do? Solution: Constraint the Type With Where Clause So how do we get around this in C#?  The answer is to constrain the generic type placeholder with the where clause.  Basically, the where clause allows you to specify additional constraints on what the actual type used to fill the generic type placeholder must support. You might think that narrowing the scope of a generic means a weaker generic.  In reality, though it limits the number of types that can be used with the generic, it also gives the generic more power to deal with those types.  In effect these constraints says that if the type meets the given constraint, you can perform the activities that pertain to that constraint with the generic placeholders. Constraining Generic Type to Interface or Superclass One of the handiest where clause constraints is the ability to specify the type generic type must implement a certain interface or be inherited from a certain base class. For example, you can’t call CompareTo() in our first C# generic without constraints, but if we constrain T to IComparable<T>, we can: 1: public class ReverseComparer<T> 2: where T : IComparable<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } Now that we’ve constrained T to an implementation of IComparable<T>, this means that our variables of generic type T may now call any members specified in IComparable<T> as well.  This means that the call to CompareTo() is now legal. If you constrain your type, also, you will get compiler warnings if you attempt to use a type that doesn’t meet the constraint.  This is much better than the syntax error you would get within C++ template code itself when you used a type not supported by a C++ template. Constraining Generic Type to Only Reference Types Sometimes, you want to assign an instance of a generic type to null, but you can’t do this without constraints, because you have no guarantee that the type used to realize the generic is not a value type, where null is meaningless. Well, we can fix this by specifying the class constraint in the where clause.  By declaring that a generic type must be a class, we are saying that it is a reference type, and this allows us to assign null to instances of that type: 1: public static class ObjectExtensions 2: { 3: public static TOut Maybe<TIn, TOut>(this TIn value, Func<TIn, TOut> accessor) 4: where TOut : class 5: where TIn : class 6: { 7: return (value != null) ? accessor(value) : null; 8: } 9: } In the example above, we want to be able to access a property off of a reference, and if that reference is null, pass the null on down the line.  To do this, both the input type and the output type must be reference types (yes, nullable value types could also be considered applicable at a logical level, but there’s not a direct constraint for those). Constraining Generic Type to only Value Types Similarly to constraining a generic type to be a reference type, you can also constrain a generic type to be a value type.  To do this you use the struct constraint which specifies that the generic type must be a value type (primitive, struct, enum, etc). Consider the following method, that will convert anything that is IConvertible (int, double, string, etc) to the value type you specify, or null if the instance is null. 1: public static T? ConvertToNullable<T>(IConvertible value) 2: where T : struct 3: { 4: T? result = null; 5:  6: if (value != null) 7: { 8: result = (T)Convert.ChangeType(value, typeof(T)); 9: } 10:  11: return result; 12: } Because T was constrained to be a value type, we can use T? (System.Nullable<T>) where we could not do this if T was a reference type. Constraining Generic Type to Require Default Constructor You can also constrain a type to require existence of a default constructor.  Because by default C# doesn’t know what constructors a generic type placeholder does or does not have available, it can’t typically allow you to call one.  That said, if you give it the new() constraint, it will mean that the type used to realize the generic type must have a default (no argument) constructor. Let’s assume you have a generic adapter class that, given some mappings, will adapt an item from type TFrom to type TTo.  Because it must create a new instance of type TTo in the process, we need to specify that TTo has a default constructor: 1: // Given a set of Action<TFrom,TTo> mappings will map TFrom to TTo 2: public class Adapter<TFrom, TTo> : IEnumerable<Action<TFrom, TTo>> 3: where TTo : class, new() 4: { 5: // The list of translations from TFrom to TTo 6: public List<Action<TFrom, TTo>> Translations { get; private set; } 7:  8: // Construct with empty translation and reverse translation sets. 9: public Adapter() 10: { 11: // did this instead of auto-properties to allow simple use of initializers 12: Translations = new List<Action<TFrom, TTo>>(); 13: } 14:  15: // Add a translator to the collection, useful for initializer list 16: public void Add(Action<TFrom, TTo> translation) 17: { 18: Translations.Add(translation); 19: } 20:  21: // Add a translator that first checks a predicate to determine if the translation 22: // should be performed, then translates if the predicate returns true 23: public void Add(Predicate<TFrom> conditional, Action<TFrom, TTo> translation) 24: { 25: Translations.Add((from, to) => 26: { 27: if (conditional(from)) 28: { 29: translation(from, to); 30: } 31: }); 32: } 33:  34: // Translates an object forward from TFrom object to TTo object. 35: public TTo Adapt(TFrom sourceObject) 36: { 37: var resultObject = new TTo(); 38:  39: // Process each translation 40: Translations.ForEach(t => t(sourceObject, resultObject)); 41:  42: return resultObject; 43: } 44:  45: // Returns an enumerator that iterates through the collection. 46: public IEnumerator<Action<TFrom, TTo>> GetEnumerator() 47: { 48: return Translations.GetEnumerator(); 49: } 50:  51: // Returns an enumerator that iterates through a collection. 52: IEnumerator IEnumerable.GetEnumerator() 53: { 54: return GetEnumerator(); 55: } 56: } Notice, however, you can’t specify any other constructor, you can only specify that the type has a default (no argument) constructor. Summary The where clause is an excellent tool that gives your .NET generics even more power to perform tasks higher than just the base "object level" behavior.  There are a few things you cannot specify with constraints (currently) though: Cannot specify the generic type must be an enum. Cannot specify the generic type must have a certain property or method without specifying a base class or interface – that is, you can’t say that the generic must have a Start() method. Cannot specify that the generic type allows arithmetic operations. Cannot specify that the generic type requires a specific non-default constructor. In addition, you cannot overload a template definition with different, opposing constraints.  For example you can’t define a Adapter<T> where T : struct and Adapter<T> where T : class.  Hopefully, in the future we will get some of these things to make the where clause even more useful, but until then what we have is extremely valuable in making our generics more user friendly and more powerful!   Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,where,generics

    Read the article

  • how to save and load the state of a game in scheme

    - by user3667664
    I'm creating the game of chess in scheme, but do not know how to save and load game state is a part I have this code (define-struct ficha(color se-movio? tipo-ficha )) ;;tablero lista de listas de fichas (define-struct estado (tablero turno fichaSel)) (define bpawn (bitmap "b-peon.png")) (define brook (bitmap "b-torre.png")) (define bcaballo (bitmap "b-caballo.png")) (define bbish (bitmap "b-arfil.png")) (define bquee (bitmap "b-reina.png")) (define bking (bitmap "b-rey.png")) (define wpawn (bitmap "w-peon.png")) (define wrook (bitmap "w-torre.png")) (define wcaballo (bitmap "w-caballo.png")) (define wbish (bitmap "w-arfil.png")) (define wquee (bitmap "w-reina.png")) (define wking (bitmap "w-rey.png")) (define board (bitmap "board.jpg")) This is the board that is a list of lists (define tableroini (list (list torreb caballob arfilb reinab reyb arfilb caballob torreb) (list peonb peonb peonb peonb peonb peonb peonb peonb) (list empty empty empty empty empty empty empty empty) (list empty empty empty empty empty empty empty empty) (list empty empty empty empty empty empty empty empty) (list empty empty empty empty empty empty empty empty) (list peonw peonw peonw peonw peonw peonw peonw peonw) (list torrew caballow arfilw reinaw reyw arfilw caballow torrew))) I did this to save the state of the game: (define (Guardar-en-archivo archivo) (write-file (string-append Subcarpeta archivo ".txt") "game state" )) But not as you insert the game state on "game state" for me to save the game How I can do this ?

    Read the article

  • Sprites, Primitives and logic entity as structs

    - by Jeffrey
    I'm wondering would it be considered acceptable: The window class is responsible for drawing data, so it will have a method: Window::draw(const Sprite&); Window::draw(const Rect&); Window::draw(const Triangle&); Window::draw(const Circle&); and all those primitives + sprites would be just public struct. For example Sprite: struct Sprite { float x, y; // center float origin_x, origin_y; float width, height; float rotation; float scaling; GLuint texture; Sprite(float w, float h); Sprite(float w, float h, float a, float b); void useTexture(std::string file); void setOrigin(float a, float b); void move(float a, float b); // relative move void moveTo(float a, float b); // absolute move void rotate(float a); // relative rotation void rotateTo(float a); // absolute rotation void rotationReset(); void scale(float a); // relative scaling void scaleTo(float a); // absolute scaling void scaleReset(); }; So instead of having each primitive to call their draw() function, which is a little bit off topic for their object, I let the Window class handle all the OpenGL stuff and manipulate them as simple objects that will be drawn later on. Is this pattern used? Does it have any cons against it's primitives-draw-themself pattern? Are there any other related patterns?

    Read the article

  • How to automatically render all opaque meshes with a specific shader?

    - by dsilva.vinicius
    I have a specular outline shader that I want to be used on all opaque meshes of the scene whenever a specific camera renders. The shader is working properly when it is manually applied to some material. The shader is as follows: Shader "Custom/Outline" { Properties { _Color ("Main Color", Color) = (.5,.5,.5,1) _OutlineColor ("Outline Color", Color) = (1,0.5,0,1) _Outline ("Outline width", Range (0.0, 0.1)) = .05 _SpecColor ("Specular Color", Color) = (0.5, 0.5, 0.5, 1) _Shininess ("Shininess", Range (0.03, 1)) = 0.078125 _MainTex ("Base (RGB) Gloss (A)", 2D) = "white" {} } SubShader { Tags { "Queue"="Overlay" "RenderType"="Opaque" } Pass { Name "OUTLINE" Tags { "LightMode" = "Always" } Cull Off ZWrite Off // Uncomment to show outline always. //ZTest Always CGPROGRAM #pragma target 3.0 #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" struct appdata { float4 vertex : POSITION; float3 normal : NORMAL; }; struct v2f { float4 pos : POSITION; float4 color : COLOR; }; float _Outline; float4 _OutlineColor; v2f vert(appdata v) { // just make a copy of incoming vertex data but scaled according to normal direction v2f o; o.pos = mul(UNITY_MATRIX_MVP, v.vertex); float3 norm = mul ((float3x3)UNITY_MATRIX_IT_MV, v.normal); float2 offset = TransformViewToProjection(norm.xy); o.pos.xy += offset * o.pos.z * _Outline; o.color = _OutlineColor; return o; } float4 frag(v2f fromVert) : COLOR { return fromVert.color; } ENDCG } UsePass "Specular/FORWARD" } FallBack "Specular" } The camera used fot the effect has just a script component which setups the shader replacement: using UnityEngine; using System.Collections; public class DetectiveEffect : MonoBehaviour { public Shader EffectShader; // Use this for initialization void Start () { this.camera.SetReplacementShader(EffectShader, "RenderType=Opaque"); } // Update is called once per frame void Update () { } } Unfortunately, whenever I use this camera I just see the background color. Any ideas?

    Read the article

  • Augmenting functionality of subclasses without code duplication in C++

    - by Rob W
    I have to add common functionality to some classes that share the same superclass, preferably without bloating the superclass. The simplified inheritance chain looks like this: Element -> HTMLElement -> HTMLAnchorElement Element -> SVGElement -> SVGAlement The default doSomething() method on Element is no-op by default, but there are some subclasses that need an actual implementation that requires some extra overridden methods and instance members. I cannot put a full implementation of doSomething() in Element because 1) it is only relevant for some of the subclasses, 2) its implementation has a performance impact and 3) it depends on a method that could be overridden by a class in the inheritance chain between the superclass and a subclass, e.g. SVGElement in my example. Especially because of the third point, I wanted to solve the problem using a template class, as follows (it is a kind of decorator for classes): struct Element { virtual void doSomething() {} }; // T should be an instance of Element template<class T> struct AugmentedElement : public T { // doSomething is expensive and uses T virtual void doSomething() override {} // Used by doSomething virtual bool shouldDoSomething() = 0; }; class SVGElement : public Element { /* ... */ }; class SVGAElement : public AugmentedElement<SVGElement> { // some non-trivial check bool shouldDoSomething() { /* ... */ return true; } }; // Similarly for HTMLAElement and others I looked around (in the existing (huge) codebase and on the internet), but didn't find any similar code snippets, let alone an evaluation of the effectiveness and pitfalls of this approach. Is my design the right way to go, or is there a better way to add common functionality to some subclasses of a given superclass?

    Read the article

  • What is an effective way to convert a shared memory-mapped system to another data access model?

    - by Rob Jones
    I have a code base that is designed around shared memory. Each process that needs to access the memory maps it into its own address space. The data structures in the shared memory are directly accessed, that is, there is no API. For example: Assume the following: typedef struct { int x; int y; struct { int a; int b; } z; } myStruct; myStruct s; Then a process might access this structure as: myStruct *s = mapGlobalMem(); And use it as: int tmpX = s->x; The majority of the information in the global structure is configuration information that is set once and read many times. I would like to store this information in a database and develop an API to access the database. The problem is, these references are sprinkled throughout the code. I need a way to parse the code and identify global structure references that will need to be refactored. I've looked into using ANTLR to create a parser that will identify references to a small set of structures and enter them into a custom symbol table. I could then use this symbol table to identify which source files need to be refactored. It looks like a promising approach. What other approaches are there? Of course, I'm looking for a programmatic approach. There are far too many source files to examine each one visually. This is all ordinary ANSI C. Nothing else.

    Read the article

  • Why is my shadowmap all white?

    - by Berend
    I was trying out a shadowmap. But all my shadow is white. I think there is some problem with my homogeneous component. Can anybody help me? The rest of my code is written in xna Here is the hlsl code I used float4x4 xWorld; float4x4 xView; float4x4 xProjection; struct VertexToPixel { float4 Position : POSITION; float4 ScreenPos : TEXCOORD1; float Depth : TEXCOORD2; }; struct PixelToFrame { float4 Color : COLOR0; }; //------- Technique: ShadowMap -------- VertexToPixel MyVertexShader(float4 inPos: POSITION0, float3 inNormal: NORMAL0) { VertexToPixel Output = (VertexToPixel)0; float4x4 preViewProjection = mul(xView, xProjection); float4x4 preWorldViewProjection = mul(xWorld, preViewProjection); Output.Position =mul(inPos, mul(xWorld, preViewProjection)); Output.Depth = Output.Position.z / Output.Position.w; Output.ScreenPos = Output.Position; return Output; } float4 MyPixelShader(VertexToPixel PSIn) : COLOR0 { PixelToFrame Output = (PixelToFrame)0; Output.Color = PSIn.ScreenPos.z/PSIn.ScreenPos.w; return Output.Color; } technique ShadowMap { pass Pass0 { VertexShader = compile vs_2_0 MyVertexShader(); PixelShader = compile ps_2_0 MyPixelShader(); } }

    Read the article

  • CUDA 4.1 Particle Update

    - by N0xus
    I'm using CUDA 4.1 to parse in the update of my Particle system that I've made with DirectX 10. So far, my update method for the particle systems is 1 line of code within a for loop that makes each particle fall down the y axis to simulate a waterfall: m_particleList[i].positionY = m_particleList[i].positionY - (m_particleList[i].velocity * frameTime * 0.001f); In my .cu class I've created a struct which I copied from my particle class and is as follows: struct ParticleType { float positionX, positionY, positionZ; float red, green, blue; float velocity; bool active; }; Then I have an UpdateParticle method in the .cu as well. This encompass the 3 main parameters my particles need to update themselves based off the initial line of code. : __global__ void UpdateParticle(float* position, float* velocity, float frameTime) { } This is my first CUDA program and I'm at a loss to what to do next. I've tried to simply put the particleList line in the UpdateParticle method, but then the particles don't fall down as they should. I believe it is because I am not calling something that I need to in the class where the particle fall code use to be. Could someone please tell me what it is I am missing to get it working as it should? If I am doing this completely wrong in general, the please inform me as well.

    Read the article

  • Game engine lib and editor

    - by luke
    I would like to know the best way/best practice to handle the following situation. Suppose the project you are working on is split in two sub-projects: game engine lib editor gui. Now, you have a method bool Method( const MethodParams &params ) that will be called during game-level initialization. So it is a method belonging to the game engine lib. Now, the parameters of this method, passed as a reference the structure MethodParams can be decided via the editor, in the level design phase. Suppose the structure is the following: enum Enum1 { E1_VAL1, E1_VAL2, }; enum Enum2 { E2_VAL1, E2_VAL2, E2_VAL3, }; struct MethodParams { float value; Enum1 e1; Enum2 e2; // some other member } The editor should present a dialog that will let the user set the MethodParams struct. A text control for the field value. Furthermore, the editor needs to let the user set the fields e1 and e2 using, for example, two combo boxes (a combo box is a window control that has a list of choices). Obviously, every enum should be mapped to a string, so the user can make an informed selection (i have used E1_VAL1 etc.., but normally the enum would be more meaningful). One could even want to map every enum to a string more informative (E1_VAL1 to "Image union algorithm", E1_VAL2 to "Image intersection algorithm" and so on...). The editor will include all the relevant game egine lib files (.h etc...), but this mapping is not automatic and i am confused on how to handle it in a way that, if in future i add E1_VAL3 and E1_VAL4, the code change will be minimal.

    Read the article

  • ERROR #342: DEVICE_SHADER_LINKAGE_SEMANTICNAME_NOT_FOUND

    - by Telanor
    I've stared at this for at least half an hour now and I cannot figure out what directx is complaining about. I know this error normally means you put float3 instead of a float4 or something like that, but I've checked over and over and as far as I can tell, everything matches. This is the full error message: D3D11: ERROR: ID3D11DeviceContext::DrawIndexed: Input Assembler - Vertex Shader linkage error: Signatures between stages are incompatible. The input stage requires Semantic/Index (COLOR,0) as input, but it is not provided by the output stage. [ EXECUTION ERROR #342: DEVICE_SHADER_LINKAGE_SEMANTICNAME_NOT_FOUND ] This is the vertex shader's input signature as seen in PIX: // Input signature: // // Name Index Mask Register SysValue Format Used // -------------------- ----- ------ -------- -------- ------ ------ // POSITION 0 xyz 0 NONE float xyz // NORMAL 0 xyz 1 NONE float // COLOR 0 xyzw 2 NONE float The HLSL structure looks like this: struct VertexShaderInput { float3 Position : POSITION0; float3 Normal : NORMAL0; float4 Color: COLOR0; }; The input layout, from PIX, is: The C# structure holding the data looks like this: [StructLayout(LayoutKind.Sequential)] public struct PositionColored { public static int SizeInBytes = Marshal.SizeOf(typeof(PositionColored)); public static InputElement[] InputElements = new[] { new InputElement("POSITION", 0, Format.R32G32B32_Float, 0), new InputElement("NORMAL", 0, Format.R32G32B32_Float, 0), new InputElement("COLOR", 0, Format.R32G32B32A32_Float, 0) }; Vector3 position; Vector3 normal; Vector4 color; #region Properties ... #endregion public PositionColored(Vector3 position, Vector3 normal, Vector4 color) { this.position = position; this.normal = normal; this.color = color; } public override string ToString() { StringBuilder sb = new StringBuilder(base.ToString()); sb.Append(" Position="); sb.Append(position); sb.Append(" Color="); sb.Append(Color); return sb.ToString(); } } SizeInBytes comes out to 40, which is correct (4*3 + 4*3 + 4*4 = 40). Can anyone find where the mistake is?

    Read the article

  • Pointers inside a structure [on hold]

    - by user3402552
    I have the next program: #include<stdio.h> #include<stdlib.h> struct a { char *ch; char *str; }; int main() { struct a s1; char ptr[100]; int m, n; printf("\n Enter a string : "); gets(ptr); m = strlen(ptr); s1.ch = (char *)malloc(strlen(ptr) * sizeof(char)); if(s1.ch) { strcpy(s1.ch, ptr); } else { printf("\n Alocation failed!\n"); } printf("\n %s\n\n", s1.ch); while(*s1.ch) { printf(" %c", *(s1.ch)); s1.ch++; } printf("\n\n"); s1.ch = s1.ch - m; printf("\n\n\n %s \n\n", s1.ch); } Is this ok this program in this way ? I mean the pointers should not be initialized ? And if it is not ok, why compile it without errors?

    Read the article

  • Pixel Shader Issues :

    - by Morphex
    I have issues with a pixel shader, my issue is mostly that I get nothing draw on the screen. float4x4 MVP; // TODO: add effect parameters here. struct VertexShaderInput { float4 Position : POSITION; float4 normal : NORMAL; float2 TEXCOORD : TEXCOORD; }; struct VertexShaderOutput { float4 Position : POSITION; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { input.Position.w = 0; VertexShaderOutput output; output.Position = mul(input.Position, MVP); // TODO: add your vertex shader code here. return output; } float4 PixelShaderFunction(VertexShaderOutput input) : SV_TARGET { return float4(1, 0, 0, 1); } technique { pass { Profile = 11.0; VertexShader = VertexShaderFunction; PixelShader = PixelShaderFunction; } } My matrix is calculated like this : Matrix MVP = Matrix.Multiply(Matrix.Multiply(Matrix.Identity, Matrix.LookAtLH(new Vector3(-10, 10, -10), new Vector3(0), new Vector3(0, 1, -0))), Camera.Projection); VoxelEffect.Parameters["MVP"].SetValue(MVP); Visual Studio Graphics Debug shows me that my vertex shader is actually working, but not the PixelShader. I striped the Shader to the bare minimums so that I was sure the shader was correct. But why is my screen still black?

    Read the article

  • Efficiency of iterators and alternatives? [migrated]

    - by user48037
    I have the following code for my game tiles: std::vector<GameObject_Tile*>::iterator it; for(int y = 0; y < GAME_TILES_Y; y++) { for(int x = 0; x < GAME_TILES_X; x++) { for (it = gameTiles[x][y].tiles.begin() ; it != gameTiles[x][y].tiles.end(); ++it) {}}} tiles is: struct Game_Tile { // More specific object types will be added here eventually vector<GameObject_Tile*> tiles; }; My problem is that if I change the vector to just be a single GameObject_Tile* instead and remove the iterator line in the loop I go from about 200fps to 450fps. Some context: The vector/pointer only contains one object in both scenarios. I will eventually need to store multiple, but for testing I just set it to a single pointer. The loop goes through 2,300 objects each frame and draws them. I would like to point out that if I remove the Draw (not seen int he example) method, I gain about 30 frames in both scenarios, the issue is the iteration. So I am wondering why having this as a vector being looped through by an iterator (to get at a single object) is costing me over 200 frames when compared to it being a single pointer? The 200+ frames faster code is: std::vector<GameObject_Tile*>::iterator it; for(int y = 0; y < GAME_TILES_Y; y++) { for(int x = 0; x < GAME_TILES_X; x++) { //gameTiles[x][y].tiles is used as a pointer here instead of using *it }} tiles is: struct Game_Tile { // More specific object types will be added here eventually GameObject_Tile* tiles; };

    Read the article

  • How to get skin tone color pixel in iPhone?

    - by aman-gupta
    Hi In my application I m using following way to get red pixel in a image // // PixelsAccessAppDelegate.h // PixelsAccess // // Created by Fortune1 on 14/04/10. // Copyright MyCompanyName 2010. All rights reserved. // import @class clsPixelAccess; NSUInteger numberOfRedPixels; NSUInteger numberOfRedPixels1; NSUInteger numberOfRedPixels2; NSUInteger numberOfRedPixels3; NSUInteger numberOfRedPixels4; NSUInteger numberOfRedPixels5; NSUInteger numberOfRedPixels6; NSUInteger numberOfRedPixels7; NSUInteger numberOfRedPixels8; NSUInteger numberOfRedPixels9; NSUInteger numberOfRedPixels10; NSUInteger numberOfRedPixels11; NSUInteger numberOfRedPixels12; NSUInteger numberOfRedPixels13; NSUInteger numberOfRedPixels14; NSUInteger numberOfRedPixels15; NSUInteger numberOfRedPixels16; NSUInteger numberOfRedPixels17; NSUInteger numberOfRedPixels18; NSUInteger numberOfRedPixels19; NSUInteger numberOfRedPixels20; NSUInteger numberOfRedPixels21; NSUInteger numberOfRedPixels22; NSUInteger numberOfRedPixels23; NSUInteger numberOfRedPixels24; NSUInteger numberOfRedPixels25; NSUInteger numberOfRedPixels26; NSUInteger numberOfRedPixels27; NSUInteger numberOfRedPixels28; NSUInteger numberOfRedPixels29; NSUInteger numberOfRedPixels30; NSUInteger numberOfRedPixels31; @interface PixelsAccessAppDelegate : NSObject { UIWindow *window; clsPixelAccess *obj; } @property (nonatomic, retain) IBOutlet UIWindow *window; -(IBAction)processImage:(id)sender; @end //////////////////// // // PixelsAccessAppDelegate.m // PixelsAccess // // Created by Fortune1 on 14/04/10. // Copyright MyCompanyName 2010. All rights reserved. // import "PixelsAccessAppDelegate.h" import "clsPixelAccess.h" @implementation PixelsAccessAppDelegate @synthesize window; (IBAction)processImage:(id)sender { NSUInteger retVal; obj = [[clsPixelAccess alloc] init]; NSInteger imageSend =[obj processImage1:[UIImage imageNamed:@"s.jpg"]]; NSInteger iamgeCall =[obj getPixelData:retVal]; NSUInteger *numberOfRedPixels = retVal; //lblPixelCount.text = [NSString stringWithFormat: @"There are %d red pixels in the image", numberOfRedPixels]; } (void)applicationDidFinishLaunching:(UIApplication *)application { // Override point for customization after application launch [window makeKeyAndVisible]; } (void)dealloc { [window release]; [super dealloc]; } @end /////////////// // // clsPixelsAccess.h // PixelsAccess // // Created by Fortune1 on 14/04/10. // Copyright 2010 MyCompanyName. All rights reserved. // import @interface clsPixelAccess : NSObject { } -(NSInteger) processImage1: (UIImage*) image; -(NSInteger)getPixelData:(NSUInteger *)pixelCount; @end ///////// // // clsPixelsAccess.m // PixelsAccess // // Created by Fortune1 on 14/04/10. // Copyright 2010 MyCompanyName. All rights reserved. // import "clsPixelAccess.h" import "PixelsAccessAppDelegate.h" @implementation clsPixelAccess struct pixel { //unsigned char r, g, b,a; Byte r, g, b, a; int count; }; -(NSInteger)getPixelData:(NSUInteger *)pixelCount { *pixelCount =numberOfRedPixels; return 1; } // Process the image and return the number of pure red pixels in it. (NSInteger) processImage1: (UIImage*) image { // Allocate a buffer big enough to hold all the pixels struct pixel* pixels = (struct pixel*) calloc(1, image.size.width * image.size.height * sizeof(struct pixel)); if (pixels != nil) { // Create a new bitmap CGContextRef context = CGBitmapContextCreate( (void*) pixels, image.size.width, image.size.height, 8, image.size.width * 4, CGImageGetColorSpace(image.CGImage), kCGImageAlphaPremultipliedLast ); //NSLog(@"1=%d, 2=%d, 3=%d", CGImageGetBitsPerComponent(image), CGImageGetBitsPerPixel(image),CGImageGetBytesPerRow(image)); if (context != NULL) { // Draw the image in the bitmap CGContextDrawImage(context, CGRectMake(0.0f, 0.0f, image.size.width, image.size.height), image.CGImage); NSUInteger numberOfPixels = image.size.width * image.size.height; NSMutableArray *numberOfPixelsArray = [[[NSMutableArray alloc] initWithCapacity:numberOfPixelsArray] autorelease]; NSLog( @"Pixel data %d", numberOfPixelsArray); /* NSMatrix *newMatrix = [[NSMatrix alloc] initWithFrame:NSMakeRect(138.0f, 85.0f, 0.0f, 0.0f) mode:NSRadioModeMatrix prototype:prototypeButtonCell numberOfRows: numberOfColumns:]; */ while (numberOfPixels &gt; 0) { if (pixels-&gt;r &gt; 0 &amp;&amp; pixels-&gt;r &lt;= 7) { numberOfRedPixels++; } NSLog( @"Red pixel data %d",numberOfRedPixels); if (pixels-&gt;r &gt;= 8 &amp;&amp; pixels-&gt;r &lt;= 15) { numberOfRedPixels1++; } NSLog( @"Red pixel data1 %d",numberOfRedPixels1); if (pixels-&gt;r &gt;= 16 &amp;&amp; pixels-&gt;r &lt;=23 ) { numberOfRedPixels2++; } NSLog( @"Red pixel data2 %d",numberOfRedPixels2); if (pixels-&gt;r &gt;= 24 &amp;&amp; pixels-&gt;r &lt;=31 ) { numberOfRedPixels3++; } NSLog( @"Red pixel data3 %d",numberOfRedPixels3); if (pixels-&gt;r &gt;= 32 &amp;&amp; pixels-&gt;r &lt;= 39) { numberOfRedPixels4++; } NSLog( @"Red pixel data4 %d",numberOfRedPixels4); if (pixels-&gt;r &gt;= 40 &amp;&amp; pixels-&gt;r &lt;= 47) { numberOfRedPixels5++; } NSLog( @"Red pixel data5 %d",numberOfRedPixels5); if (pixels-&gt;r &gt;= 48 &amp;&amp; pixels-&gt;r &lt;= 55) { numberOfRedPixels6++; } NSLog( @"Red pixel data6 %d",numberOfRedPixels6); if(pixels-&gt;r &gt;= 56 &amp;&amp; pixels-&gt;r &lt;= 63) { numberOfRedPixels7++; } NSLog( @"Red pixel data7 %d",numberOfRedPixels7); if (pixels-&gt;r &gt;= 64 &amp;&amp; pixels-&gt;r &lt;= 71) { numberOfRedPixels8++; } NSLog( @"Red pixel data8 %d",numberOfRedPixels8); if (pixels-&gt;r &gt;= 72 &amp;&amp; pixels-&gt;r &lt;= 79) { numberOfRedPixels9++; } NSLog( @"Red pixel data9 %d",numberOfRedPixels9); if (pixels-&gt;r &gt;= 80 &amp;&amp; pixels-&gt;r &lt;= 87) { numberOfRedPixels10++; } NSLog( @"Red pixel data10 %d",numberOfRedPixels10); if (pixels-&gt;r &gt;= 88 &amp;&amp; pixels-&gt;r &lt;= 95) { numberOfRedPixels11++; } NSLog( @"Red pixel data11 %d",numberOfRedPixels11); if (pixels-&gt;r &gt;= 96 &amp;&amp; pixels-&gt;r &lt;= 103) { numberOfRedPixels12++; } NSLog( @"Red pixel data12 %d",numberOfRedPixels12); if (pixels-&gt;r &gt;= 104 &amp;&amp; pixels-&gt;r &lt;= 111) { numberOfRedPixels13++; } NSLog( @"Red pixel data13 %d",numberOfRedPixels13); if (pixels-&gt;r &gt;= 112 &amp;&amp; pixels-&gt;r &lt;= 119) { numberOfRedPixels14++; } NSLog( @"Red pixel data14 %d",numberOfRedPixels14); if (pixels-&gt;r &gt;= 120 &amp;&amp; pixels-&gt;r &lt;= 127) { numberOfRedPixels15++; } NSLog( @"Red pixel data15 %d",numberOfRedPixels15); if (pixels-&gt;r &gt; 128 &amp;&amp; pixels-&gt;r &lt;= 135) { numberOfRedPixels16++; } NSLog( @"Red pixel data16 %d",numberOfRedPixels16); if (pixels-&gt;r &gt;= 136 &amp;&amp; pixels-&gt;r &lt;= 143) { numberOfRedPixels17++; } NSLog( @"Red pixel data17 %d",numberOfRedPixels17); if (pixels-&gt;r &gt;= 144 &amp;&amp; pixels-&gt;r &lt;=151) { numberOfRedPixels18++; } NSLog( @"Red pixel data18 %d",numberOfRedPixels18); if (pixels-&gt;r &gt;= 152 &amp;&amp; pixels-&gt;r &lt;=159 ) { numberOfRedPixels19++; } NSLog( @"Red pixel data19 %d",numberOfRedPixels19); if (pixels-&gt;r &gt;= 160 &amp;&amp; pixels-&gt;r &lt;= 167) { numberOfRedPixels20++; } NSLog( @"Red pixel data20 %d",numberOfRedPixels20); if (pixels-&gt;r &gt;= 168 &amp;&amp; pixels-&gt;r &lt;= 175) { numberOfRedPixels21++; } NSLog( @"Red pixel data21 %d",numberOfRedPixels21); if (pixels-&gt;r &gt;= 176 &amp;&amp; pixels-&gt;r &lt;= 199) { numberOfRedPixels22++; } NSLog( @"Red pixel data22 %d",numberOfRedPixels22); if(pixels-&gt;r &gt;= 184 &amp;&amp; pixels-&gt;r &lt;= 191) { numberOfRedPixels23++; } NSLog( @"Red pixel data23 %d",numberOfRedPixels23); if (pixels-&gt;r &gt;= 192 &amp;&amp; pixels-&gt;r &lt;= 199) { numberOfRedPixels24++; } NSLog( @"Red pixel data24 %d",numberOfRedPixels24); if (pixels-&gt;r &gt;= 200 &amp;&amp; pixels-&gt;r &lt;= 207) { numberOfRedPixels25++; } NSLog( @"Red pixel data25 %d",numberOfRedPixels25); if (pixels-&gt;r &gt;= 208 &amp;&amp; pixels-&gt;r &lt;= 215) { numberOfRedPixels26++; } NSLog( @"Red pixel data26 %d",numberOfRedPixels26); if (pixels-&gt;r &gt;= 216 &amp;&amp; pixels-&gt;r &lt;= 223) { numberOfRedPixels27++; } NSLog( @"Red pixel data27 %d",numberOfRedPixels27); if (pixels-&gt;r &gt;= 224 &amp;&amp; pixels-&gt;r &lt;= 231) { numberOfRedPixels28++; } NSLog( @"Red pixel data28 %d",numberOfRedPixels28); if (pixels-&gt;r &gt;= 232 &amp;&amp; pixels-&gt;r &lt;= 239) { numberOfRedPixels29++; } NSLog( @"Red pixel data29 %d",numberOfRedPixels29); if (pixels-&gt;r &gt;= 240 &amp;&amp; pixels-&gt;r &lt;= 247) { numberOfRedPixels30++; } NSLog( @"Red pixel data30 %d",numberOfRedPixels30); if (pixels-&gt;r &gt;= 248) { numberOfRedPixels31++; } NSLog( @"Red pixel data31 %d",numberOfRedPixels31); pixels++; numberOfPixels--; } CGContextRelease(context); } free(pixels); } return 1; } @end My problem is I want skin Tone Pixel how it could be possible Please help me out. Thanks in Advance

    Read the article

  • Exporting a non public Type through public API

    - by sachin
    I am trying to follow Trees tutorial at: http://cslibrary.stanford.edu/110/BinaryTrees.html Here is the code I have written so far: package trees.bst; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * * @author sachin */ public class BinarySearchTree { Node root = null; class Node { Node left = null; Node right = null; int data = 0; public Node(int data) { this.left = null; this.right = null; this.data = data; } } public void insert(int data) { root = insert(data, root); } public boolean lookup(int data) { return lookup(data, root); } public void buildTree(int numNodes) { for (int i = 0; i < numNodes; i++) { int num = (int) (Math.random() * 10); System.out.println("Inserting number:" + num); insert(num); } } public int size() { return size(root); } public int maxDepth() { return maxDepth(root); } public int minValue() { return minValue(root); } public int maxValue() { return maxValue(root); } public void printTree() { //inorder traversal System.out.println("inorder traversal:"); printTree(root); System.out.println("\n--------------"); } public void printPostorder() { //inorder traversal System.out.println("printPostorder traversal:"); printPostorder(root); System.out.println("\n--------------"); } public int buildTreeFromOutputString(String op) { root = null; int i = 0; StringTokenizer st = new StringTokenizer(op); while (st.hasMoreTokens()) { String stNum = st.nextToken(); int num = Integer.parseInt(stNum); System.out.println("buildTreeFromOutputString: Inserting number:" + num); insert(num); i++; } return i; } public boolean hasPathSum(int pathsum) { return hasPathSum(pathsum, root); } public void mirror() { mirror(root); } public void doubleTree() { doubleTree(root); } public boolean sameTree(BinarySearchTree bst) { //is this tree same as another given tree? return sameTree(this.root, bst.getRoot()); } public void printPaths() { if (root == null) { System.out.println("print path sum: tree is empty"); } List pathSoFar = new ArrayList(); printPaths(root, pathSoFar); } ///-------------------------------------------Public helper functions public Node getRoot() { return root; } //Exporting a non public Type through public API ///-------------------------------------------Helper Functions private boolean isLeaf(Node node) { if (node == null) { return false; } if (node.left == null && node.right == null) { return true; } return false; } ///----------------------------------------------------------- private boolean sameTree(Node n1, Node n2) { if ((n1 == null && n2 == null)) { return true; } else { if ((n1 == null || n2 == null)) { return false; } else { if ((n1.data == n2.data)) { return (sameTree(n1.left, n2.left) && sameTree(n1.right, n2.right)); } } } return false; } private void doubleTree(Node node) { //create a copy //bypass the copy to continue looping if (node == null) { return; } Node copyNode = new Node(node.data); Node temp = node.left; node.left = copyNode; copyNode.left = temp; doubleTree(copyNode.left); doubleTree(node.right); } private void mirror(Node node) { if (node == null) { return; } Node temp = node.left; node.left = node.right; node.right = temp; mirror(node.left); mirror(node.right); } private void printPaths(Node node, List pathSoFar) { if (node == null) { return; } pathSoFar.add(node.data); if (isLeaf(node)) { System.out.println("path in tree:" + pathSoFar); pathSoFar.remove(pathSoFar.lastIndexOf(node.data)); //only the current node, a node.data may be duplicated return; } else { printPaths(node.left, pathSoFar); printPaths(node.right, pathSoFar); } } private boolean hasPathSum(int pathsum, Node node) { if (node == null) { return false; } int val = pathsum - node.data; boolean ret = false; if (val == 0 && isLeaf(node)) { ret = true; } else if (val == 0 && !isLeaf(node)) { ret = false; } else if (val != 0 && isLeaf(node)) { ret = false; } else if (val != 0 && !isLeaf(node)) { //recurse further ret = hasPathSum(val, node.left) || hasPathSum(val, node.right); } return ret; } private void printPostorder(Node node) { //inorder traversal if (node == null) { return; } printPostorder(node.left); printPostorder(node.right); System.out.print(" " + node.data); } private void printTree(Node node) { //inorder traversal if (node == null) { return; } printTree(node.left); System.out.print(" " + node.data); printTree(node.right); } private int minValue(Node node) { if (node == null) { //error case: this is not supported return -1; } if (node.left == null) { return node.data; } else { return minValue(node.left); } } private int maxValue(Node node) { if (node == null) { //error case: this is not supported return -1; } if (node.right == null) { return node.data; } else { return maxValue(node.right); } } private int maxDepth(Node node) { if (node == null || (node.left == null && node.right == null)) { return 0; } int ldepth = 1 + maxDepth(node.left); int rdepth = 1 + maxDepth(node.right); if (ldepth > rdepth) { return ldepth; } else { return rdepth; } } private int size(Node node) { if (node == null) { return 0; } return 1 + size(node.left) + size(node.right); } private Node insert(int data, Node node) { if (node == null) { node = new Node(data); } else if (data <= node.data) { node.left = insert(data, node.left); } else { node.right = insert(data, node.right); } //control should never reach here; return node; } private boolean lookup(int data, Node node) { if (node == null) { return false; } if (node.data == data) { return true; } if (data < node.data) { return lookup(data, node.left); } else { return lookup(data, node.right); } } public static void main(String[] args) { BinarySearchTree bst = new BinarySearchTree(); int treesize = 5; bst.buildTree(treesize); //treesize = bst.buildTreeFromOutputString("4 4 4 6 7"); treesize = bst.buildTreeFromOutputString("3 4 6 3 6"); //treesize = bst.buildTreeFromOutputString("10"); for (int i = 0; i < treesize; i++) { System.out.println("Searching:" + i + " found:" + bst.lookup(i)); } System.out.println("tree size:" + bst.size()); System.out.println("maxDepth :" + bst.maxDepth()); System.out.println("minvalue :" + bst.minValue()); System.out.println("maxvalue :" + bst.maxValue()); bst.printTree(); bst.printPostorder(); int pathSum = 10; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); pathSum = 6; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); pathSum = 19; System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum)); bst.printPaths(); bst.printTree(); //bst.mirror(); System.out.println("Tree after mirror function:"); bst.printTree(); //bst.doubleTree(); System.out.println("Tree after double function:"); bst.printTree(); System.out.println("tree size:" + bst.size()); System.out.println("Same tree:" + bst.sameTree(bst)); BinarySearchTree bst2 = new BinarySearchTree(); bst2.buildTree(treesize); treesize = bst2.buildTreeFromOutputString("3 4 6 3 6"); bst2.printTree(); System.out.println("Same tree:" + bst.sameTree(bst2)); System.out.println("---"); } } Now the problem is that netbeans shows Warning: Exporting a non public Type through public API for function getRoot(). I write this function to get root of tree to be used in sameTree() function, to help comparison of "this" with given tree. Perhaps this is a OOP design issue... How should I restructure the above code that I do not get this warning and what is the concept I am missing here?

    Read the article

  • ie7 innerhtml strange display problem

    - by thoraniann
    Hello, I am having a strange problem with ie7 (ie8 in compatibility mode). I have div containers where I am updating values using javascript innhtml to update the values. This works fine in Firefox and ie8. In ie7 the values do not update but if a click on the values and highlight them then they update, also if a change the height of the browser then on the next update the values get updated correctly. I have figured out that if I change the position property of the outer div container from relative to static then the updates work correctly. The page can be viewed here http://islendingasogur.net/test/webmap_html_test.html In internet explorer 8 with compatibility turned on you can see that the timestamp in the gray box only gets updated one time, after that you see no changes. The timestamp in the lower right corner gets updated every 10 seconds. But if you highlight the text in the gray box then the updated timestamp values appears! Here is the page: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> <meta http-equiv="cache-control" content="no-cache"/> <meta http-equiv="pragma" content="no-cache"/> <meta http-equiv="expires" content="Mon, 22 Jul 2002 11:12:01 GMT"/> <title>innerhtml problem</title> <script type="text/javascript"> <!-- var alarm_off_color = '#00ff00'; var alarm_low_color = '#ffff00'; var alarm_lowlow_color = '#ff0000'; var group_id_array = new Array(); var var_alarm_array = new Array(); var timestamp_color = '#F3F3F3'; var timestamp_alarm_color = '#ff00ff'; group_id_array[257] = 0; function updateParent(var_array, group_array) { //Update last update time var time_str = "Last Reload Time: "; var currentTime = new Date(); var hours = currentTime.getHours(); var minutes = currentTime.getMinutes(); var seconds = currentTime.getSeconds(); if(minutes < 10) {minutes = "0" + minutes;} if(seconds < 10) {seconds = "0" + seconds;} time_str += hours + ":" + minutes + ":" + seconds; document.getElementById('div_last_update_time').innerHTML = time_str; //alert(time_str); alarm_var = 0; //update group values for(i1 = 0; i1 < var_array.length; ++i1) { if(document.getElementById(var_array[i1][0])) { document.getElementById(var_array[i1][0]).innerHTML = unescape(var_array[i1][1]); if(var_array[i1][2]==0) {document.getElementById(var_array[i1][0]).style.backgroundColor=alarm_off_color} else if(var_array[i1][2]==1) {document.getElementById(var_array[i1][0]).style.backgroundColor=alarm_low_color} else if(var_array[i1][2]==2) {document.getElementById(var_array[i1][0]).style.backgroundColor=alarm_lowlow_color} //check if alarm is new var_id = var_array[i1][3]; if(var_array[i1][2]==1 && var_array[i1][4]==0) { alarm_var = 1; } else if(var_array[i1][2]==2 && var_array[i1][4]==0) { alarm_var = 1; } } } //Update group timestamp and box alarm color for(i1 = 0; i1 < group_array.length; ++i1) { if(document.getElementById(group_array[i1][0])) { //set timestamp for group document.getElementById(group_array[i1][0]).innerHTML = group_array[i1][1]; if(group_array[i1][4] != -1) { //set data update error status current_timestamp_color = timestamp_color; if(group_array[i1][4] == 1) {current_timestamp_color = timestamp_alarm_color;} document.getElementById(group_array[i1][0]).style.backgroundColor = current_timestamp_color; } } } } function update_map(map_id) { document.getElementById('webmap_update').src = 'webmap_html_test_sub.html?first_time=1&map_id='+map_id; } --> </script> <style type="text/css"> body { margin:0; border:0; padding:0px;background:#eaeaea;font-family:verdana, arial, sans-serif; text-align: center; } A:active { color: #000000;} A:link { color: #000000;} A:visited { color: #000000;} A:hover { color: #000000;} #div_header { /*position: absolute;*/ background: #ffffff; width: 884px; height: 60px; display: block; float: left; font-size: 14px; text-align: left; /*overflow: visible;*/ } #div_container{ background: #ffffff;border-left:1px solid #000000; border-right:1px solid #000000; border-bottom:1px solid #000000; float: left; width: 884px;} #div_image_container{ position: relative; width: 884px; height: 549px; background: #ffffff; font-family:arial, verdana, arial, sans-serif; /*display: block;*/ float:none!important; float/**/:left; border:1px solid #00ff00; padding: 0px; } .div_group_box{ position: absolute; width: -2px; height: -2px; background: #FFFFFF; opacity: 1; filter: alpha(opacity=100); border:1px solid #000000; font-size: 2px; z-index: 0; padding: 0px; } .div_group_container{ position: absolute; opacity: 1; filter: alpha(opacity=100); z-index: 5; /*display: block;*/ /*border:1px solid #000000;*/ } .div_group_container A:active {text-decoration: none; display: block;} .div_group_container A:link { color: #000000;text-decoration: none; display: block;} .div_group_container A:visited { color: #000000;text-decoration: none; display: block;} .div_group_container A:hover { color: #000000;text-decoration: none; display: block;} .div_group_header{ background: #17B400; border:1px solid #000000;font-size: 12px; color: #FFFFFF; padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; text-align: center; } .div_var_name_container{ color: #000000;background: #FFFFFF; border-left:1px solid #000000; border-top:0px solid #000000; border-bottom:0px solid #000000;font-size: 12px; float: left; display: block; text-align: left; } .div_var_name{ padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; display: block; } .div_var_value_container{ color: #000000;background: #FFFFFF; border-left:1px solid #000000; border-right:1px solid #000000; border-top:0px solid #000000; border-bottom:0px solid #000000;font-size: 12px; float: left; text-align: center; } .div_var_value{ padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; } .div_var_unit_container{ color: #000000;background: #FFFFFF; border-right:1px solid #000000; border-top:0px solid #000000; border-bottom:0px solid #000000;font-size: 12px; float: left; text-align: left; } .div_var_unit{ padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; } .div_timestamp{ float: none; color: #000000;background: #F3F3F3; border:1px solid #000000;font-size: 12px; padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; text-align: center; clear: left; z-index: 100; position: relative; } #div_last_update_time{ height: 14px; width: 210px; text-align: right; padding: 1px; font-size: 10px; float: right; } .copyright{ height: 14px; width: 240px; text-align: left; color: #777; padding: 1px; font-size: 10px; float: left; } a img { border: 1px solid #000000; } .clearer { clear: both; display: block; height: 1px; margin-bottom: -1px; font-size: 1px; line-height: 1px; } </style> </head> <body onload="update_map(1)"> <div id="div_container"><div id="div_header"></div><div class="clearer"></div><div id="div_image_container"><img id="map" src="Images/maps/0054_gardabaer.jpg" title="My map" alt="" align="left" border="0" usemap ="#_area_links" style="padding: 0px; margin: 0px;" /> <div id="group_container_257" class="div_group_container" style="visibility:visible; top:10px; left:260px; cursor: pointer;"> <div class="div_group_header" style="clear:right">Site</div> <div class="div_var_name_container"> <div id="group_name_257_var_8" class="div_var_name" >variable 1</div> <div id="group_name_257_var_7" class="div_var_name" style="border-top:1px solid #000000;">variable 2</div> <div id="group_name_257_var_9" class="div_var_name" style="border-top:1px solid #000000;">variable 3</div> </div> <div class="div_var_value_container"> <div id="group_value_257_var_8" class="div_var_value" >0</div> <div id="group_value_257_var_7" class="div_var_value" style="border-top:1px solid #000000;">0</div> <div id="group_value_257_var_9" class="div_var_value" style="border-top:1px solid #000000;">0</div> </div> <div class="div_var_unit_container"> <div id="group_unit_257_var_8" class="div_var_unit" >N/A</div> <div id="group_unit_257_var_7" class="div_var_unit" style="border-top:1px solid #000000;">N/A</div> <div id="group_unit_257_var_9" class="div_var_unit" style="border-top:1px solid #000000;">N/A</div> </div> <div id="group_257_timestamp" class="div_timestamp" style="">-</div> </div> </div><div class="clearer"></div><div class="copyright">© Copyright</div><div id="div_last_update_time">-</div> </div> <iframe id="webmap_update" style="display:none;" width="0" height="0"></iframe></body> </html> The divs with class div_var_value, div_timestamp & div_last_update_time all get updated by the javascript function. The div "div_image_container" is the one that is causing this it seems, atleast if I change the position property for it from relative to static the values get updated correctly This is the page that updates the values: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Loader</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <script type="text/javascript"> <!-- window.onload = doLoad; function refresh() { //window.location.reload( false ); var _random_num = Math.floor(Math.random()*1100); window.location.search="?map_id=54&first_time=0&t="+_random_num; } var var_array = new Array(); var timestamp_array = new Array(); var_array[0] = Array('group_value_257_var_9','41.73',-1, 9, 0); var_array[1] = Array('group_value_257_var_7','62.48',-1, 7, 0); var_array[2] = Array('group_value_257_var_8','4.24',-1, 8, 0); var current_time = new Date(); var current_time_str = current_time.getHours(); current_time_str += ':'+current_time.getMinutes(); current_time_str += ':'+current_time.getSeconds(); timestamp_array[0] = Array('group_257_timestamp',current_time_str,'box_group_container_206',-1, -1); //timestamp_array[0] = Array('group_257_timestamp','11:33:16 23.Nov','box_group_container_257',-1, -1); window.parent.updateParent(var_array, timestamp_array); function doLoad() { setTimeout( "refresh()", 10*1000 ); } //--> </script> </head> <body> </body> </html> I edited the post and added a link to the webpage in question, I have also tested the webpage in internet explorer 7 and this error does not appear there. I have only seen this error in ie8 with compatibility turned on. If anybody has seen this before and has a fix, I would be very grateful. Thanks.

    Read the article

  • Keep width even when column changes. (HTML)

    - by Andrew
    I have a login on the left sidebar of my website. When a user is logged in, the sidebar width doesn't remain the same as it was when the user wasn't logged in. Is there a way to keep the width the same? <!-- Start Sidebar --> <td id="sidebar" valign="top" height="400px" style="width: 200px"> <!-- Login Form --> <table id="TABLE2"> <tr> <td valign="top"> <asp:LoginView ID="LoginView1" runat="server"> <LoggedInTemplate> <br /> <br /> You are currently logged in. </LoggedInTemplate> <AnonymousTemplate> <asp:Login ID="Login1" runat="server" BorderPadding="0" BorderStyle="None" BorderWidth="0px" Font-Names="Verdana" Font-Size="0.8em" CreateUserText="Sign Up Now!" CreateUserUrl="http://www.tiltonindustries.com/Tilton/Login/CreateAccount.aspx" Height="1px" PasswordRecoveryText="Forgot your password?" PasswordRecoveryUrl="http://www.tiltonindustries.com/Tilton/Login/ForgotPassword.aspx" TextLayout="TextOnTop" Width="200px" DestinationPageUrl="http://www.tiltonindustries.com/Tilton/default.aspx"> <TitleTextStyle Font-Bold="True" Font-Size="0.9em"/> <InstructionTextStyle Font-Italic="True" ForeColor="Black" /> <TextBoxStyle Font-Size="0.8em" /> <LoginButtonStyle BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana" Font-Size="0.8em" ForeColor="#990000" /> <LayoutTemplate> <table border="0" cellpadding="4" cellspacing="0" style="border-collapse: collapse; height: 159px;"> <tr> <td style="height: 176px; width: 135px;"> <table border="0" cellpadding="0" style="width: 219px; height: 1px" id="TABLE1"> <tr> <td align="center" style="font-weight: bold; font-size: 0.9em; color: white; height: 18px; background-color: #990000; text-align: center" colspan="2"> Log In</td> </tr> <tr> <td style="width: 94px; height: 10px;"> </td> <td style="height: 10px; width: 78px;"> </td> </tr> <tr> <td style="width: 94px; height: 20px; text-align: right"> <asp:Label ID="UserNameLabel" runat="server" AssociatedControlID="UserName">User Name:</asp:Label> &nbsp; </td> <td style="height: 20px; text-align: left; width: 78px;"> <asp:TextBox ID="UserName" runat="server" Font-Size="0.9em" EnableViewState="False" Width="100px" MaxLength="20"></asp:TextBox><asp:RequiredFieldValidator ID="UserNameRequired" runat="server" ControlToValidate="UserName" ErrorMessage="User Name is required." ToolTip="User Name is required." ValidationGroup="ctl01$Login1">*</asp:RequiredFieldValidator></td> </tr> <tr> <td style="width: 94px; text-align: right"> <asp:Label ID="PasswordLabel" runat="server" AssociatedControlID="Password">Password:</asp:Label> &nbsp; </td> <td style="text-align: left; width: 78px;"> <asp:TextBox ID="Password" runat="server" Font-Size="0.9em" TextMode="Password" Width="100px"></asp:TextBox><asp:RequiredFieldValidator ID="PasswordRequired" runat="server" ControlToValidate="Password" ErrorMessage="Password is required." ToolTip="Password is required." ValidationGroup="ctl01$Login1">*</asp:RequiredFieldValidator></td> </tr> <tr> <td style="height: 20px; width: 94px;"> &nbsp;</td> <td style="height: 20px; text-align: left; width: 78px;"> <asp:CheckBox ID="chkRememberMe" runat="server" Text="Remember Me" Width="104px" /></td> </tr> <tr> <td align="center" style="color: red; width: 94px; height: 20px;"> </td> <td align="center" style="color: red; text-align: left; width: 78px; height: 20px;"> <asp:Button ID="LoginButton" runat="server" BorderStyle="Solid" BorderWidth="1px" CommandName="Login" Font-Names="Verdana" Font-Size="1.0 em" Text="Log In" ValidationGroup="ctl01$Login1" Width="59px" BackColor="Gray" BorderColor="Black" Height="20px" /></td> </tr> <tr> <td align="center" style="width: 250px; color: red; height: 35px; text-align: center;" colspan="2"> <asp:Literal ID="FailureText" runat="server" EnableViewState="False"></asp:Literal></td> </tr> <tr> <td style="height: 26px; width: 94px;"> <asp:HyperLink ID="CreateUserLink" runat="server" NavigateUrl="http://www.tiltonindustries.com/Tilton/Login/CreateAccount.aspx">Sign Up Now!</asp:HyperLink>&nbsp; </td> <td style="width: 78px; height: 26px"> <asp:HyperLink ID="PasswordRecoveryLink" runat="server" NavigateUrl="http://www.tiltonindustries.com/Tilton/Login/ForgotPassword.aspx">Forgot your password?</asp:HyperLink></td> </tr> </table> </td> </tr> </table> </LayoutTemplate> </asp:Login> </AnonymousTemplate> </asp:LoginView> <!-- End Login Form --> <!-- Quick Links --> <br /> <br /> <p style="font-size: 14px; font-weight: bold; color: White"> Quick Links:<br /> </p> <br /> <p id="quicklinks"> <a href="default.aspx">Home</a><br /> <a href="services.aspx">Services</a><br /> <a href="matching.aspx">Color Matching</a><br /> <a href="packaging.aspx">Custom Packaging</a><br /> <a href="decorals.aspx">Decorals</a><br /> <a href="delivery.aspx">Delivery</a><br /> <a href="items.aspx">Items</a><br /> <a href="msds.aspx">MSDS</a><br /> <a href="plant.aspx">Plant Capabilities</a><br /> <a href="standard.aspx">Standard Colors</a><br /> <a href="special.aspx">Special Effects</a><br /> <a href="coatings.aspx">Spray Coatings</a><br /> <a href="warranty.aspx">Warranty</a><br /> <a href="http://www.tiltonindustries.com/Tilton/Login/Login.aspx">My Account</a><br /> <a href="gallery.aspx">Gallery</a><br /> <a href="about.aspx">About</a><br /> <a href="faq.aspx">F.A.Q</a><br /> <a href="links.aspx">Links</a><br /> <a href="careers.aspx">Careers</a><br /> <a href="contact.aspx">Contact</a><br /> <br /> </p> </td> </tr> </table> </td> <!-- End Sidebar -->

    Read the article

  • while I scroll between the layout it takes too long to be able to scroll between the gallerie's pictures. Is there any way to reduce this time?

    - by Mateo
    Hello, this is my first question here, though I've being reading this forum for quite a while. Most of the answers to my doubts are from here :) Getting back on topic. I'm developing an Android application. I'm drawing a dynamic layout that are basically Galleries, inside a LinearLayout, inside a ScrollView, inside a RelativeLayout. The ScrollView is a must, because I'm drawing a dynamic amount of galleries that most probably will not fit on the screen. When I scroll inside the layout, I have to wait 3/4 seconds until the ScrollView "deactivates" to be able to scroll inside the galleries. What I want to do is to reduce this time to a minimum. Preferably I would like to be able to scroll inside the galleries as soon as I lift my finger from the screen, though anything lower than 2 seconds would be great as well. I've being googling around for a solution but all I could find until now where layout tutorials that didn't tackle this particular issue. I was hoping someone here knows if this is possible and if so to give me some hints on how to do so. I would prefer not to do my own ScrollView to solve this. But if that is the only way I would appreciate some help because I'm not really sure how would I solve this issue by doing that. this is my layout: public class PicturesL extends Activity implements OnClickListener, OnItemClickListener, OnItemLongClickListener { private ArrayList<ImageView> imageView = new ArrayList<ImageView>(); private StringBuilder PicsDate = new StringBuilder(); private CaWaApplication application; private long ListID; private ArrayList<Gallery> gallery = new ArrayList<Gallery>(); private ArrayList<Bitmap> Thumbails = new ArrayList<Bitmap>(); private String idioma; private ArrayList<Long> Days = new ArrayList<Long>(); private long oldDay; private long oldThumbsLoaded; private ArrayList<Long> ThumbailsDays = new ArrayList<Long>(); private ArrayList<ArrayList<Long>> IDs = new ArrayList<ArrayList<Long>>(); @Override public void onCreate(Bundle savedInstancedState) { super.onCreate(savedInstancedState); RelativeLayout layout = new RelativeLayout(this); ScrollView scroll = new ScrollView(this); LinearLayout realLayout = new LinearLayout(this); ArrayList<TextView> texts = new ArrayList<TextView>(); Button TakePic = new Button(this); idioma = com.mateloft.cawa.prefs.getLang(this); if (idioma.equals("en")) { TakePic.setText("Take Picture"); } else if (idioma.equals("es")) { TakePic.setText("Sacar Foto"); } RelativeLayout.LayoutParams scrollLP = new RelativeLayout.LayoutParams(RelativeLayout.LayoutParams.FILL_PARENT, RelativeLayout.LayoutParams.FILL_PARENT); layout.addView(scroll, scrollLP); realLayout.setOrientation(LinearLayout.VERTICAL); realLayout.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT)); scroll.addView(realLayout); TakePic.setId(67); TakePic.setOnClickListener(this); application = (CaWaApplication) getApplication(); ListID = getIntent().getExtras().getLong("listid"); getAllThumbailsOfID(); LinearLayout.LayoutParams TakeLP = new LinearLayout.LayoutParams(LinearLayout.LayoutParams.WRAP_CONTENT, LinearLayout.LayoutParams.WRAP_CONTENT); realLayout.addView(TakePic); oldThumbsLoaded = 0; int galler = 100; for (int z = 0; z < Days.size(); z++) { ThumbailsManager croppedThumbs = new ThumbailsManager(Thumbails, oldThumbsLoaded, ThumbailsDays.get(z)); oldThumbsLoaded = ThumbailsDays.get(z); texts.add(new TextView(this)); texts.get(z).setText("Day " + Days.get(z).toString()); gallery.add(new Gallery(this)); gallery.get(z).setAdapter(new ImageAdapter(this, croppedThumbs.getGallery(), 250, 175, true, ListID)); gallery.get(z).setOnItemClickListener(this); gallery.get(z).setOnItemLongClickListener(this); gallery.get(z).setId(galler); galler++; realLayout.addView(texts.get(z)); realLayout.addView(gallery.get(z)); } Log.d("PicturesL", "ListID: " + ListID); setContentView(layout); } private void getAllThumbailsOfID() { ArrayList<ModelPics> Pictures = new ArrayList<ModelPics>(); ArrayList<String> ThumbailsPath = new ArrayList<String>(); Pictures = application.dataManager.selectAllPics(); long thumbpathloaded = 0; int currentID = 0; for (int x = 0; x < Pictures.size(); x++) { if (Pictures.get(x).walkname == ListID) { if (Days.size() == 0) { Days.add(Pictures.get(x).day); oldDay = Pictures.get(x).day; IDs.add(new ArrayList<Long>()); currentID = 0; } if (oldDay != Pictures.get(x).day) { oldDay = Pictures.get(x).day; ThumbailsDays.add(thumbpathloaded); Days.add(Pictures.get(x).day); IDs.add(new ArrayList<Long>()); currentID++; } StringBuilder tpath = new StringBuilder(); tpath.append(Pictures.get(x).path.substring(0, Pictures.get(x).path.length() - 4)); tpath.append("-t.jpg"); IDs.get(currentID).add(Pictures.get(x).id); ThumbailsPath.add(tpath.toString()); thumbpathloaded++; if (x == Pictures.size() - 1) { Log.d("PicturesL", "El ultimo de los arrays, tamaño: " + Days.size()); ThumbailsDays.add(thumbpathloaded); } } } for (int y = 0; y < ThumbailsPath.size(); y++) { Thumbails.add(BitmapFactory.decodeFile(ThumbailsPath.get(y))); } } I had a memory leak on another activity when screen orientation changed that was making it slower, now it is working better. The scroller is not locking up. But sometimes, when it stops scrolling, it takes a few seconds (2/3) to disable itself. I just want it to be a little more dynamic, is there any way to override the listener and make it stop scrolling ON_ACTION_UP or something like that? I don't want to use the listview because I want to have each gallery separated by other views, now I just have text, but I will probably separate them with images with a different size than the galleries. I'm not really sure if this is possible with a listadapter and a listview, I assumed that a view can only handle only one type of object, so I'm using a scrollview of a layout, if I'm wrong please correct me :) Also this activity works as a preview or selecting the pictures you want to view in full size and manage their values. So its working only with thumbnails. Each one weights 40 kb. Guessing that is very unlikely that a user gets more than 1000~1500 pictures in this view, i thought that the activity wouldn't use more than 40~50 mb of ram in this case, adding 10 more if I open the fullsized view. So I guessed as well most devices are able to display this view in full size. If it doesn't work on low-end devices my plan was to add an option in the app preferences to let user chop this view according to some database values. And a last reason is that during most of this activity "life-cycle" (the app has pics that are relevant to the view, when it ends the value that selects which pictures are displayed has to change and no more pictures are added inside this instance of this activity); the view will be unpopulated, so most of the time showing everything wont cost much, just at the end of its cycle That was more or less what I thought at the time i created this layout. I'm open to any sort of suggestion or opinion, I just created this layout a few days ago and I'm trying to see if it can work right, because it suits my app needs. Though if there is a better way i would love to hear it Thanks Mateo

    Read the article

  • Convert Java program to C

    - by imicrothinking
    I need a bit of guidance with writing a C program...a bit of quick background as to my level, I've programmed in Java previously, but this is my first time programming in C, and we've been tasked to translate a word count program from Java to C that consists of the following: Read a file from memory Count the words in the file For each occurrence of a unique word, keep a word counter variable Print out the top ten most frequent words and their corresponding occurrences Here's the source program in Java: package lab0; import java.io.File; import java.io.FileReader; import java.util.ArrayList; import java.util.Calendar; import java.util.Collections; public class WordCount { private ArrayList<WordCountNode> outputlist = null; public WordCount(){ this.outputlist = new ArrayList<WordCountNode>(); } /** * Read the file into memory. * * @param filename name of the file. * @return content of the file. * @throws Exception if the file is too large or other file related exception. */ public char[] readFile(String filename) throws Exception{ char [] result = null; File file = new File(filename); long size = file.length(); if (size > Integer.MAX_VALUE){ throw new Exception("File is too large"); } result = new char[(int)size]; FileReader reader = new FileReader(file); int len, offset = 0, size2read = (int)size; while(size2read > 0){ len = reader.read(result, offset, size2read); if(len == -1) break; size2read -= len; offset += len; } return result; } /** * Make article word by word. * * @param article the content of file to be counted. * @return string contains only letters and "'". */ private enum SPLIT_STATE {IN_WORD, NOT_IN_WORD}; /** * Go through article, find all the words and add to output list * with their count. * * @param article the content of the file to be counted. * @return words in the file and their counts. */ public ArrayList<WordCountNode> countWords(char[] article){ SPLIT_STATE state = SPLIT_STATE.NOT_IN_WORD; if(null == article) return null; char curr_ltr; int curr_start = 0; for(int i = 0; i < article.length; i++){ curr_ltr = Character.toUpperCase( article[i]); if(state == SPLIT_STATE.IN_WORD){ article[i] = curr_ltr; if ((curr_ltr < 'A' || curr_ltr > 'Z') && curr_ltr != '\'') { article[i] = ' '; //printf("\nthe word is %s\n\n",curr_start); if(i - curr_start < 0){ System.out.println("i = " + i + " curr_start = " + curr_start); } addWord(new String(article, curr_start, i-curr_start)); state = SPLIT_STATE.NOT_IN_WORD; } }else{ if (curr_ltr >= 'A' && curr_ltr <= 'Z') { curr_start = i; article[i] = curr_ltr; state = SPLIT_STATE.IN_WORD; } } } return outputlist; } /** * Add the word to output list. */ public void addWord(String word){ int pos = dobsearch(word); if(pos >= outputlist.size()){ outputlist.add(new WordCountNode(1L, word)); }else{ WordCountNode tmp = outputlist.get(pos); if(tmp.getWord().compareTo(word) == 0){ tmp.setCount(tmp.getCount() + 1); }else{ outputlist.add(pos, new WordCountNode(1L, word)); } } } /** * Search the output list and return the position to put word. * @param word is the word to be put into output list. * @return position in the output list to insert the word. */ public int dobsearch(String word){ int cmp, high = outputlist.size(), low = -1, next; // Binary search the array to find the key while (high - low > 1) { next = (high + low) / 2; // all in upper case cmp = word.compareTo((outputlist.get(next)).getWord()); if (cmp == 0) return next; else if (cmp < 0) high = next; else low = next; } return high; } public static void main(String args[]){ // handle input if (args.length == 0){ System.out.println("USAGE: WordCount <filename> [Top # of results to display]\n"); System.exit(1); } String filename = args[0]; int dispnum; try{ dispnum = Integer.parseInt(args[1]); }catch(Exception e){ dispnum = 10; } long start_time = Calendar.getInstance().getTimeInMillis(); WordCount wordcount = new WordCount(); System.out.println("Wordcount: Running..."); // read file char[] input = null; try { input = wordcount.readFile(filename); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); System.exit(1); } // count all word ArrayList<WordCountNode> result = wordcount.countWords(input); long end_time = Calendar.getInstance().getTimeInMillis(); System.out.println("wordcount: completed " + (end_time - start_time)/1000000 + "." + (end_time - start_time)%1000000 + "(s)"); System.out.println("wordsort: running ..."); start_time = Calendar.getInstance().getTimeInMillis(); Collections.sort(result); end_time = Calendar.getInstance().getTimeInMillis(); System.out.println("wordsort: completed " + (end_time - start_time)/1000000 + "." + (end_time - start_time)%1000000 + "(s)"); Collections.reverse(result); System.out.println("\nresults (TOP "+ dispnum +" from "+ result.size() +"):\n" ); // print out result String str ; for (int i = 0; i < result.size() && i < dispnum; i++){ if(result.get(i).getWord().length() > 15) str = result.get(i).getWord().substring(0, 14); else str = result.get(i).getWord(); System.out.println(str + " - " + result.get(i).getCount()); } } public class WordCountNode implements Comparable{ private String word; private long count; public WordCountNode(long count, String word){ this.count = count; this.word = word; } public String getWord() { return word; } public void setWord(String word) { this.word = word; } public long getCount() { return count; } public void setCount(long count) { this.count = count; } public int compareTo(Object arg0) { // TODO Auto-generated method stub WordCountNode obj = (WordCountNode)arg0; if( count - obj.getCount() < 0) return -1; else if( count - obj.getCount() == 0) return 0; else return 1; } } } Here's my attempt (so far) in C: #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <string.h> // Read in a file FILE *readFile (char filename[]) { FILE *inputFile; inputFile = fopen (filename, "r"); if (inputFile == NULL) { printf ("File could not be opened.\n"); exit (EXIT_FAILURE); } return inputFile; } // Return number of words in an array int wordCount (FILE *filePointer, char filename[]) {//, char *words[]) { // count words int count = 0; char temp; while ((temp = getc(filePointer)) != EOF) { //printf ("%c", temp); if ((temp == ' ' || temp == '\n') && (temp != '\'')) count++; } count += 1; // counting method uses space AFTER last character in word - the last space // of the last character isn't counted - off by one error // close file fclose (filePointer); return count; } // Print out the frequencies of the 10 most frequent words in the console int main (int argc, char *argv[]) { /* Step 1: Read in file and check for errors */ FILE *filePointer; filePointer = readFile (argv[1]); /* Step 2: Do a word count to prep for array size */ int count = wordCount (filePointer, argv[1]); printf ("Number of words is: %i\n", count); /* Step 3: Create a 2D array to store words in the file */ // open file to reset marker to beginning of file filePointer = fopen (argv[1], "r"); // store words in character array (each element in array = consecutive word) char allWords[count][100]; // 100 is an arbitrary size - max length of word int i,j; char temp; for (i = 0; i < count; i++) { for (j = 0; j < 100; j++) { // labels are used with goto statements, not loops in C temp = getc(filePointer); if ((temp == ' ' || temp == '\n' || temp == EOF) && (temp != '\'') ) { allWords[i][j] = '\0'; break; } else { allWords[i][j] = temp; } printf ("%c", allWords[i][j]); } printf ("\n"); } // close file fclose (filePointer); /* Step 4: Use a simple selection sort algorithm to sort 2D char array */ // PStep 1: Compare two char arrays, and if // (a) c1 > c2, return 2 // (b) c1 == c2, return 1 // (c) c1 < c2, return 0 qsort(allWords, count, sizeof(char[][]), pstrcmp); /* int k = 0, l = 0, m = 0; char currentMax, comparedElement; int max; // the largest element in the current 2D array int elementToSort = 0; // elementToSort determines the element to swap with starting from the left // Outer a iterates through number of swaps needed for (k = 0; k < count - 1; k++) { // times of swaps max = k; // max element set to k // Inner b iterates through successive elements to fish out the largest element for (m = k + 1; m < count - k; m++) { currentMax = allWords[k][l]; comparedElement = allWords[m][l]; // Inner c iterates through successive chars to set the max vars to the largest for (l = 0; (currentMax != '\0' || comparedElement != '\0'); l++) { if (currentMax > comparedElement) break; else if (currentMax < comparedElement) { max = m; currentMax = allWords[m][l]; break; } else if (currentMax == comparedElement) continue; } } // After max (count and string) is determined, perform swap with temp variable char swapTemp[1][20]; int y = 0; do { swapTemp[0][y] = allWords[elementToSort][y]; allWords[elementToSort][y] = allWords[max][y]; allWords[max][y] = swapTemp[0][y]; } while (swapTemp[0][y++] != '\0'); elementToSort++; } */ int a, b; for (a = 0; a < count; a++) { for (b = 0; (temp = allWords[a][b]) != '\0'; b++) { printf ("%c", temp); } printf ("\n"); } // Copy rows to different array and print results /* char arrayCopy [count][20]; int ac, ad; char tempa; for (ac = 0; ac < count; ac++) { for (ad = 0; (tempa = allWords[ac][ad]) != '\0'; ad++) { arrayCopy[ac][ad] = tempa; printf("%c", arrayCopy[ac][ad]); } printf("\n"); } */ /* Step 5: Create two additional arrays: (a) One in which each element contains unique words from char array (b) One which holds the count for the corresponding word in the other array */ /* Step 6: Sort the count array in decreasing order, and print the corresponding array element as well as word count in the console */ return 0; } // Perform housekeeping tasks like freeing up memory and closing file I'm really stuck on the selection sort algorithm. I'm currently using 2D arrays to represent strings, and that worked out fine, but when it came to sorting, using three level nested loops didn't seem to work, I tried to use qsort instead, but I don't fully understand that function as well. Constructive feedback and criticism greatly welcome (...and needed)!

    Read the article

  • Guide to reduce TFS database growth using the Test Attachment Cleaner

    - by terje
    Recently there has been several reports on TFS databases growing too fast and growing too big.  Notable this has been observed when one has started to use more features of the Testing system.  Also, the TFS 2010 handles test results differently from TFS 2008, and this leads to more data stored in the TFS databases. As a consequence of this there has been released some tools to remove unneeded data in the database, and also some fixes to correct for bugs which has been found and corrected during this process.  Further some preventive practices and maintenance rules should be adopted. A lot of people have blogged about this, among these are: Anu’s very important blog post here describes both the problem and solutions to handle it.  She describes both the Test Attachment Cleaner tool, and also some QFE/CU releases to fix some underlying bugs which prevented the tool from being fully effective. Brian Harry’s blog post here describes the problem too This forum thread describes the problem with some solution hints. Ravi Shanker’s blog post here describes best practices on solving this (TBP) Grant Holidays blogpost here describes strategies to use the Test Attachment Cleaner both to detect space problems and how to rectify them.   The problem can be divided into the following areas: Publishing of test results from builds Publishing of manual test results and their attachments in particular Publishing of deployment binaries for use during a test run Bugs in SQL server preventing total cleanup of data (All the published data above is published into the TFS database as attachments.) The test results will include all data being collected during the run.  Some of this data can grow rather large, like IntelliTrace logs and video recordings.   Also the pushing of binaries which happen for automated test runs, including tests run during a build using code coverage which will include all the files in the deployment folder, contributes a lot to the size of the attached data.   In order to handle this systematically, I have set up a 3-stage process: Find out if you have a database space issue Set up your TFS server to minimize potential database issues If you have the “problem”, clean up the database and otherwise keep it clean   Analyze the data Are your database( s) growing ?  Are unused test results growing out of proportion ? To find out about this you need to query your TFS database for some of the information, and use the Test Attachment Cleaner (TAC) to obtain some  more detailed information. If you don’t have too many databases you can use the SQL Server reports from within the Management Studio to analyze the database and table sizes. Or, you can use a set of queries . I find queries often faster to use because I can tweak them the way I want them.  But be aware that these queries are non-documented and non-supported and may change when the product team wants to change them. If you have multiple Project Collections, find out which might have problems: (Disclaimer: The queries below work on TFS 2010. They will not work on Dev-11, since the table structure have been changed.  I will try to update them for Dev-11 when it is released.) Open a SQL Management Studio session onto the SQL Server where you have your TFS Databases. Use the query below to find the Project Collection databases and their sizes, in descending size order.  use master select DB_NAME(database_id) AS DBName, (size/128) SizeInMB FROM sys.master_files where type=0 and substring(db_name(database_id),1,4)='Tfs_' and DB_NAME(database_id)<>'Tfs_Configuration' order by size desc Doing this on one of our SQL servers gives the following results: It is pretty easy to see on which collection to start the work   Find out which tables are possibly too large Keep a special watch out for the Tfs_Attachment table. Use the script at the bottom of Grant’s blog to find the table sizes in descending size order. In our case we got this result: From Grant’s blog we learnt that the tbl_Content is in the Version Control category, so the major only big issue we have here is the tbl_AttachmentContent.   Find out which team projects have possibly too large attachments In order to use the TAC to find and eventually delete attachment data we need to find out which team projects have these attachments. The team project is a required parameter to the TAC. Use the following query to find this, replace the collection database name with whatever applies in your case:   use Tfs_DefaultCollection select p.projectname, sum(a.compressedlength)/1024/1024 as sizeInMB from dbo.tbl_Attachment as a inner join tbl_testrun as tr on a.testrunid=tr.testrunid inner join tbl_project as p on p.projectid=tr.projectid group by p.projectname order by sum(a.compressedlength) desc In our case we got this result (had to remove some names), out of more than 100 team projects accumulated over quite some years: As can be seen here it is pretty obvious the “Byggtjeneste – Projects” are the main team project to take care of, with the ones on lines 2-4 as the next ones.  Check which attachment types takes up the most space It can be nice to know which attachment types takes up the space, so run the following query: use Tfs_DefaultCollection select a.attachmenttype, sum(a.compressedlength)/1024/1024 as sizeInMB from dbo.tbl_Attachment as a inner join tbl_testrun as tr on a.testrunid=tr.testrunid inner join tbl_project as p on p.projectid=tr.projectid group by a.attachmenttype order by sum(a.compressedlength) desc We then got this result: From this it is pretty obvious that the problem here is the binary files, as also mentioned in Anu’s blog. Check which file types, by their extension, takes up the most space Run the following query use Tfs_DefaultCollection select SUBSTRING(filename,len(filename)-CHARINDEX('.',REVERSE(filename))+2,999)as Extension, sum(compressedlength)/1024 as SizeInKB from tbl_Attachment group by SUBSTRING(filename,len(filename)-CHARINDEX('.',REVERSE(filename))+2,999) order by sum(compressedlength) desc This gives a result like this:   Now you should have collected enough information to tell you what to do – if you got to do something, and some of the information you need in order to set up your TAC settings file, both for a cleanup and for scheduled maintenance later.    Get your TFS server and environment properly set up Even if you have got the problem or if have yet not got the problem, you should ensure the TFS server is set up so that the risk of getting into this problem is minimized.  To ensure this you should install the following set of updates and components. The assumption is that your TFS Server is at SP1 level. Install the QFE for KB2608743 – which also contains detailed instructions on its use, download from here. The QFE changes the default settings to not upload deployed binaries, which are used in automated test runs. Binaries will still be uploaded if: Code coverage is enabled in the test settings. You change the UploadDeploymentItem to true in the testsettings file. Be aware that this might be reset back to false by another user which haven't installed this QFE. The hotfix should be installed to The build servers (the build agents) The machine hosting the Test Controller Local development computers (Visual Studio) Local test computers (MTM) It is not required to install it to the TFS Server, test agents or the build controller – it has no effect on these programs. If you use the SQL Server 2008 R2 you should also install the CU 10 (or later).  This CU fixes a potential problem of hanging “ghost” files.  This seems to happen only in certain trigger situations, but to ensure it doesn’t bite you, it is better to make sure this CU is installed. There is no such CU for SQL Server 2008 pre-R2 Work around:  If you suspect hanging ghost files, they can be – with some mental effort, deduced from the ghost counters using the following SQL query: use master SELECT DB_NAME(database_id) as 'database',OBJECT_NAME(object_id) as 'objectname', index_type_desc,ghost_record_count,version_ghost_record_count,record_count,avg_record_size_in_bytes FROM sys.dm_db_index_physical_stats (DB_ID(N'<DatabaseName>'), OBJECT_ID(N'<TableName>'), NULL, NULL , 'DETAILED') The problem is a stalled ghost cleanup process.  Restarting the SQL server after having stopped all components that depends on it, like the TFS Server and SPS services – that is all applications that connect to the SQL server. Then restart the SQL server, and finally start up all dependent processes again.  (I would guess a complete server reboot would do the trick too.) After this the ghost cleanup process will run properly again. The fix will come in the next CU cycle for SQL Server R2 SP1.  The R2 pre-SP1 and R2 SP1 have separate maintenance cycles, and are maintained individually. Each have its own set of CU’s. When it comes I will add the link here to that CU. The "hanging ghost file” issue came up after one have run the TAC, and deleted enourmes amount of data.  The SQL Server can get into this hanging state (without the QFE) in certain cases due to this. And of course, install and set up the Test Attachment Cleaner command line power tool.  This should be done following some guidelines from Ravi Shanker: “When you run TAC, ensure that you are deleting small chunks of data at regular intervals (say run TAC every night at 3AM to delete data that is between age 730 to 731 days) – this will ensure that small amounts of data are being deleted and SQL ghosted record cleanup can catch up with the number of deletes performed. “ This rule minimizes the risk of the ghosted hang problem to occur, and further makes it easier for the SQL server ghosting process to work smoothly. “Run DBCC SHRINKDB post the ghosted records are cleaned up to physically reclaim the space on the file system” This is the last step in a 3 step process of removing SQL server data. First they are logically deleted. Then they are cleaned out by the ghosting process, and finally removed using the shrinkdb command. Cleaning out the attachments The TAC is run from the command line using a set of parameters and controlled by a settingsfile.  The parameters point out a server uri including the team project collection and also point at a specific team project. So in order to run this for multiple team projects regularly one has to set up a script to run the TAC multiple times, once for each team project.  When you install the TAC there is a very useful readme file in the same directory. When the deployment binaries are published to the TFS server, ALL items are published up from the deployment folder. That often means much more files than you would assume are necessary. This is a brute force technique. It works, but you need to take care when cleaning up. Grant has shown how their settings file looks in his blog post, removing all attachments older than 180 days , as long as there are no active workitems connected to them. This setting can be useful to clean out all items, both in a clean-up once operation, and in a general There are two scenarios we need to consider: Cleaning up an existing overgrown database Maintaining a server to avoid an overgrown database using scheduled TAC   1. Cleaning up a database which has grown too big due to these attachments. This job is a “Once” job.  We do this once and then move on to make sure it won’t happen again, by taking the actions in 2) below.  In this scenario you should only consider the large files. Your goal should be to simply reduce the size, and don’t bother about  the smaller stuff. That can be left a scheduled TAC cleanup ( 2 below). Here you can use a very general settings file, and just remove the large attachments, or you can choose to remove any old items.  Grant’s settings file is an example of the last one.  A settings file to remove only large attachments could look like this: <!-- Scenario : Remove large files --> <DeletionCriteria> <TestRun /> <Attachment> <SizeInMB GreaterThan="10" /> </Attachment> </DeletionCriteria> Or like this: If you want only to remove dll’s and pdb’s about that size, add an Extensions-section.  Without that section, all extensions will be deleted. <!-- Scenario : Remove large files of type dll's and pdb's --> <DeletionCriteria> <TestRun /> <Attachment> <SizeInMB GreaterThan="10" /> <Extensions> <Include value="dll" /> <Include value="pdb" /> </Extensions> </Attachment> </DeletionCriteria> Before you start up your scheduled maintenance, you should clear out all older items. 2. Scheduled maintenance using the TAC If you run a schedule every night, and remove old items, and also remove them in small batches.  It is important to run this often, like every night, in order to keep the number of deleted items low. That way the SQL ghost process works better. One approach could be to delete all items older than some number of days, let’s say 180 days. This could be combined with restricting it to keep attachments with active or resolved bugs.  Doing this every night ensures that only small amounts of data is deleted. <!-- Scenario : Remove old items except if they have active or resolved bugs --> <DeletionCriteria> <TestRun> <AgeInDays OlderThan="180" /> </TestRun> <Attachment /> <LinkedBugs> <Exclude state="Active" /> <Exclude state="Resolved"/> </LinkedBugs> </DeletionCriteria> In my experience there are projects which are left with active or resolved workitems, akthough no further work is done.  It can be wise to have a cleanup process with no restrictions on linked bugs at all. Note that you then have to remove the whole LinkedBugs section. A approach which could work better here is to do a two step approach, use the schedule above to with no LinkedBugs as a sweeper cleaning task taking away all data older than you could care about.  Then have another scheduled TAC task to take out more specifically attachments that you are not likely to use. This task could be much more specific, and based on your analysis clean out what you know is troublesome data. <!-- Scenario : Remove specific files early --> <DeletionCriteria> <TestRun > <AgeInDays OlderThan="30" /> </TestRun> <Attachment> <SizeInMB GreaterThan="10" /> <Extensions> <Include value="iTrace"/> <Include value="dll"/> <Include value="pdb"/> <Include value="wmv"/> </Extensions> </Attachment> <LinkedBugs> <Exclude state="Active" /> <Exclude state="Resolved" /> </LinkedBugs> </DeletionCriteria> The readme document for the TAC says that it recognizes “internal” extensions, but it does recognize any extension. To run the tool do the following command: tcmpt attachmentcleanup /collection:your_tfs_collection_url /teamproject:your_team_project /settingsfile:path_to_settingsfile /outputfile:%temp%/teamproject.tcmpt.log /mode:delete   Shrinking the database You could run a shrink database command after the TAC has run in cases where there are a lot of data being deleted.  In this case you SHOULD do it, to free up all that space.  But, after the shrink operation you should do a rebuild indexes, since the shrink operation will leave the database in a very fragmented state, which will reduce performance. Note that you need to rebuild indexes, reorganizing is not enough. For smaller amounts of data you should NOT shrink the database, since the data will be reused by the SQL server when it need to add more records.  In fact, it is regarded as a bad practice to shrink the database regularly.  So on a daily maintenance schedule you should NOT shrink the database. To shrink the database you do a DBCC SHRINKDATABASE command, and then follow up with a DBCC INDEXDEFRAG afterwards.  I find the easiest way to do this is to create a SQL Maintenance plan including the Shrink Database Task and the Rebuild Index Task and just execute it when you need to do this.

    Read the article

  • AWS: setting up auto-scale for EC2 instances

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2013/10/16/aws-setting-up-auto-scale-for-ec2-instances.aspxWith Amazon Web Services, there’s no direct equivalent to Azure Worker Roles – no Elastic Beanstalk-style application for .NET background workers. But you can get the auto-scale part by configuring an auto-scaling group for your EC2 instance. This is a step-by-step guide, that shows you how to create the auto-scaling configuration, which for EC2 you need to do with the command line, and then link your scaling policies to CloudWatch alarms in the Web console. I’m using queue size as my metric for CloudWatch,  which is a good fit if your background workers are pulling messages from a queue and processing them.  If the queue is getting too big, the “high” alarm will fire and spin up a new instance to share the workload. If the queue is draining down, the “low” alarm will fire and shut down one of the instances. To start with, you need to manually set up your app in an EC2 VM, for a background worker that would mean hosting your code in a Windows Service (I always use Topshelf). If you’re dual-running Azure and AWS, then you can isolate your logic in one library, with a generic entry point that has Start() and Stop()  functions, so your Worker Role and Windows Service are essentially using the same code. When you have your instance set up with the Windows Service running automatically, and you’ve tested it starts up and works properly from a reboot, shut the machine down and take an image of the VM, using Create Image (EBS AMI) from the Web Console: When that completes, you’ll have your own AMI which you can use to spin up new instances, and you’re ready to create your auto-scaling group. You need to dip into the command-line tools for this, so follow this guide to set up the AWS autoscale command line tool. Now we’re ready to go. 1. Create a launch configuration This launch configuration tells AWS what to do when a new instance needs to be spun up. You create it with the as-create-launch-config command, which looks like this: as-create-launch-config sc-xyz-launcher # name of the launch config --image-id ami-7b9e9f12 # id of the AMI you extracted from your VM --region eu-west-1 # which region the new instance gets created in --instance-type t1.micro # size of the instance to create --group quicklaunch-1 #security group for the new instance 2. Create an auto-scaling group The auto-scaling group links to the launch config, and defines the overall configuration of the collection of instances: as-create-auto-scaling-group sc-xyz-asg # auto-scaling group name --region eu-west-1 # region to create in --launch-configuration sc-xyz-launcher # name of the launch config to invoke for new instances --min-size 1 # minimum number of nodes in the group --max-size 5 # maximum number of nodes in the group --default-cooldown 300 # period to wait (in seconds) after each scaling event, before checking if another scaling event is required --availability-zones eu-west-1a eu-west-1b eu-west-1c # which availability zones you want your instances to be allocated in – multiple entries means EC@ will use any of them 3. Create a scale-up policy The policy dictates what will happen in response to a scaling event being triggered from a “high” alarm being breached. It links to the auto-scaling group; this sample results in one additional node being spun up: as-put-scaling-policy scale-up-policy # policy name -g sc-psod-woker-asg # auto-scaling group the policy works with --adjustment 1 # size of the adjustment --region eu-west-1 # region --type ChangeInCapacity # type of adjustment, this specifies a fixed number of nodes, but you can use PercentChangeInCapacity to make an adjustment relative to the current number of nodes, e.g. increasing by 50% 4. Create a scale-down policy The policy dictates what will happen in response to a scaling event being triggered from a “low” alarm being breached. It links to the auto-scaling group; this sample results in one node from the group being taken offline: as-put-scaling-policy scale-down-policy -g sc-psod-woker-asg "--adjustment=-1" # in Windows, use double-quotes to surround a negative adjustment value –-type ChangeInCapacity --region eu-west-1 5. Create a “high” CloudWatch alarm We’re done with the command line now. In the Web Console, open up the CloudWatch view and create a new alarm. This alarm will monitor your metrics and invoke the scale-up policy from your auto-scaling group, when the group is working too hard. Configure your metric – this example will fire the alarm if there are more than 10 messages in my queue for over a minute: Then link the alarm to the scale-up policy in your group: 6. Create a “low” CloudWatch alarm The opposite of step 4, this alarm will trigger when the instances in your group don’t have enough work to do (e.g fewer than 2 messages in the queue for 1 minute), and will invoke the scale-down policy. And that’s it. You don’t need your original VM as the auto-scale group has a minimum number of nodes connected. You can test out the scaling by flexing your CloudWatch metric – in this example, filling up a queue from a  stub publisher – and watching AWS create new nodes as required, then stopping the publisher and watch AWS kill off the spare nodes.

    Read the article

  • Why would GLCapabilities.setHardwareAccelerated(true/false) have no effect on performance?

    - by Luke
    I've got a JOGL application in which I am rendering 1 million textures (all the same texture) and 1 million lines between those textures. Basically it's a ball-and-stick graph. I am storing the vertices in a vertex array on the card and referencing them via index arrays, which are also stored on the card. Each pass through the draw loop I am basically doing this: gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_POINTS, <size>, GL.GL_UNSIGNED_INT, 0); gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_LINES, <size>, GL.GL_UNSIGNED_INT, 0); I noticed that the JOGL library is pegging one of my CPU cores. Every frame, the run method internal to the library is taking quite long. I'm not sure why this is happening since I have called setHardwareAccelerated(true) on the GLCapabilities used to create my canvas. What's more interesting is that I changed it to setHardwareAccelerated(false) and there was no impact on the performance at all. Is it possible that my code is not using hardware rendering even when it is set to true? Is there any way to check? EDIT: As suggested, I have tested breaking my calls up into smaller chunks. I have tried using glDrawRangeElements and respecting the limits that it requests. All of these simply resulted in the same pegged CPU usage and worse framerates. I have also narrowed the problem down to a simpler example where I just render 4 million textures (no lines). The draw loop then just doing this: gl.glEnableClientState(GL.GL_VERTEX_ARRAY); gl.glEnableClientState(GL.GL_INDEX_ARRAY); gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT); gl.glMatrixMode(GL.GL_MODELVIEW); gl.glLoadIdentity(); <... Camera and transform related code ...> gl.glEnableVertexAttribArray(0); gl.glEnable(GL.GL_TEXTURE_2D); gl.glAlphaFunc(GL.GL_GREATER, ALPHA_TEST_LIMIT); gl.glEnable(GL.GL_ALPHA_TEST); <... Bind texture ...> gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_POINTS, <size>, GL.GL_UNSIGNED_INT, 0); gl.glDisable(GL.GL_TEXTURE_2D); gl.glDisable(GL.GL_ALPHA_TEST); gl.glDisableVertexAttribArray(0); gl.glFlush(); Where the first buffer contains 12 million floats (the x,y,z coords of the 4 million textures) and the second (element) buffer contains 4 million integers. In this simple example it is simply the integers 0 through 3999999. I really want to know what is being done in software that is pegging my CPU, and how I can make it stop (if I can). My buffers are generated by the following code: gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBufferData(GL.GL_ARRAY_BUFFER, <size> * BufferUtil.SIZEOF_FLOAT, <buffer>, GL.GL_STATIC_DRAW); gl.glVertexAttribPointer(0, 3, GL.GL_FLOAT, false, 0, 0); and: gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glBufferData(GL.GL_ELEMENT_ARRAY_BUFFER, <size> * BufferUtil.SIZEOF_INT, <buffer>, GL.GL_STATIC_DRAW); ADDITIONAL INFO: Here is my initialization code: gl.setSwapInterval(1); //Also tried 0 gl.glShadeModel(GL.GL_SMOOTH); gl.glClearDepth(1.0f); gl.glEnable(GL.GL_DEPTH_TEST); gl.glDepthFunc(GL.GL_LESS); gl.glHint(GL.GL_PERSPECTIVE_CORRECTION_HINT, GL.GL_FASTEST); gl.glPointParameterfv(GL.GL_POINT_DISTANCE_ATTENUATION, POINT_DISTANCE_ATTENUATION, 0); gl.glPointParameterfv(GL.GL_POINT_SIZE_MIN, MIN_POINT_SIZE, 0); gl.glPointParameterfv(GL.GL_POINT_SIZE_MAX, MAX_POINT_SIZE, 0); gl.glPointSize(POINT_SIZE); gl.glTexEnvf(GL.GL_POINT_SPRITE, GL.GL_COORD_REPLACE, GL.GL_TRUE); gl.glEnable(GL.GL_POINT_SPRITE); gl.glClearColor(clearColor.getX(), clearColor.getY(), clearColor.getZ(), 0.0f); Also, I'm not sure if this helps or not, but when I drag the entire graph off the screen, the FPS shoots back up and the CPU usage falls to 0%. This seems obvious and intuitive to me, but I thought that might give a hint to someone else.

    Read the article

  • Populate a WCF syndication podcast using MP3 ID3 metadata tags

    - by brian_ritchie
    In the last post, I showed how to create a podcast using WCF syndication.  A podcast is an RSS feed containing a list of audio files to which users can subscribe.  The podcast not only contains links to the audio files, but also metadata about each episode.  A cool approach to building the feed is reading this metadata from the ID3 tags on the MP3 files used for the podcast. One library to do this is TagLib-Sharp.  Here is some sample code: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: var taggedFile = TagLib.File.Create(f); 2: var fileInfo = new FileInfo(f); 3: var item = new iTunesPodcastItem() 4: { 5: title = taggedFile.Tag.Title, 6: size = fileInfo.Length, 7: url = feed.baseUrl + fileInfo.Name, 8: duration = taggedFile.Properties.Duration, 9: mediaType = feed.mediaType, 10: summary = taggedFile.Tag.Comment, 11: subTitle = taggedFile.Tag.FirstAlbumArtist, 12: id = fileInfo.Name 13: }; 14: if (!string.IsNullOrEmpty(taggedFile.Tag.Album)) 15: item.publishedDate = DateTimeOffset.Parse(taggedFile.Tag.Album); This reads the ID3 tags into an object for later use in creating the syndication feed.  When the MP3 is created, these tags are set...or they can be set after the fact using the Properties dialog in Windows Explorer.  The only "hack" is that there isn't an easily accessible tag for "subtitle" or "published date" so I used other tags in this example. Feel free to change this to meet your purposes.  You could remove the subtitle & use the file modified data for example. That takes care of the episodes, for the feed level settings we'll load those from an XML file: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: <?xml version="1.0" encoding="utf-8" ?> 2: <iTunesPodcastFeed 3: baseUrl ="" 4: title="" 5: subTitle="" 6: description="" 7: copyright="" 8: category="" 9: ownerName="" 10: ownerEmail="" 11: mediaType="audio/mp3" 12: mediaFiles="*.mp3" 13: imageUrl="" 14: link="" 15: /> Here is the full code put together. Read the feed XML file and deserialize it into an iTunesPodcastFeed classLoop over the files in a directory reading the ID3 tags from the audio files .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: public static iTunesPodcastFeed CreateFeedFromFiles(string podcastDirectory, string podcastFeedFile) 2: { 3: XmlSerializer serializer = new XmlSerializer(typeof(iTunesPodcastFeed)); 4: iTunesPodcastFeed feed; 5: using (var fs = File.OpenRead(Path.Combine(podcastDirectory, podcastFeedFile))) 6: { 7: feed = (iTunesPodcastFeed)serializer.Deserialize(fs); 8: } 9: foreach (var f in Directory.GetFiles(podcastDirectory, feed.mediaFiles)) 10: { 11: try 12: { 13: var taggedFile = TagLib.File.Create(f); 14: var fileInfo = new FileInfo(f); 15: var item = new iTunesPodcastItem() 16: { 17: title = taggedFile.Tag.Title, 18: size = fileInfo.Length, 19: url = feed.baseUrl + fileInfo.Name, 20: duration = taggedFile.Properties.Duration, 21: mediaType = feed.mediaType, 22: summary = taggedFile.Tag.Comment, 23: subTitle = taggedFile.Tag.FirstAlbumArtist, 24: id = fileInfo.Name 25: }; 26: if (!string.IsNullOrEmpty(taggedFile.Tag.Album)) 27: item.publishedDate = DateTimeOffset.Parse(taggedFile.Tag.Album); 28: feed.Items.Add(item); 29: } 30: catch 31: { 32: // ignore files that can't be accessed successfully 33: } 34: } 35: return feed; 36: } Usually putting a "try...catch" like this is bad, but in this case I'm just skipping over files that are locked while they are being uploaded to the web site.Here is the code from the last couple of posts.  

    Read the article

  • 5 Things I Learned About the IT Labor Shortage

    - by Oracle Accelerate for Midsize Companies
    by Jim Lein | Sr. Principal Product Marketing Director | Oracle Midsize Programs | @JimLein Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} 5 Things I Learned About the IT Labor Shortage A gentle autumn breeze is nudging the last golden leaves off the aspen trees. It’s time to wrap up the series that I started back in April, “The Growing IT Labor Shortage: Are You Feeling It?” Even in a time of relatively high unemployment, labor shortages exist depending on many factors, including location, industry, IT requirements, and company size. According to Manpower Groups 2013 Talent Shortage Survey, 35% of hiring managers globally are having difficulty filling jobs. Their top three challenges in filling jobs are: 1. lack of technical competencies (hard skills) 2. Lack of available applicants 3. Lack of experience The same report listed Technicians as the most difficult position to fill in the United States For most companies, Human Capital and Talent Management have never been more strategic and they are striving for ways streamline processes, reduce turnover, and lower costs (see this Oracle whitepaper, “ Simplify Workforce Management and Increase Global Agility”). Everyone I spoke to—partner, customer, and Oracle experts—agreed that it can be extremely challenging to hire and retain IT talent in today’s labor market. And they generally agreed on the causes: a. IT is so pervasive that there are myriad moving parts requiring support and expertise, b. thus, it’s hard for university graduates to step in and contribute immediately without experience and specialization, c. big IT companies generally aren’t the talent incubators that they were in the freewheeling 90’s due to bottom line pressures that require hiring talent that can hit the ground running, and d. it’s often too expensive for resource-strapped midsize companies to invest the time and money required to get graduates up to speed. Here are my top lessons learned from my conversations with the experts. 1. A Better Title Would Have Been, “The Challenges of Finding and Retaining IT Talent That Matches Your Requirements” There are more applicants than jobs but it’s getting tougher and tougher to find individuals that perfectly fit each and every role. Top performing companies are increasingly looking to hire the “almost ready”, striving to keep their existing talent more engaged, and leveraging their employee’s social and professional networks to quickly narrow down candidate searches (here’s another whitepaper, “A Strategic Approach to Talent Management”). 2. Size Matters—But So Does Location Midsize companies must strive to build cultures that compete favorably with what large enterprises can offer, especially when they aren’t within commuting distance of IT talent strongholds. They can’t always match the compensation and benefits offered by large enterprises so it's paramount to offer candidates high quality of life and opportunities to build their resumes in alignment with their long term career aspirations. 3. Get By With a Little Help From Your Friends It doesn’t always make sense to invest time and money in training an employee on a task they will not perform frequently. Or get in a bidding war for talent with skills that are rare and in high demand. Many midsize companies are finding that it makes good economic sense to contract with partners for remote support rather than trying to divvy up each and every role amongst their lean staff. Internal staff can be assigned to roles that will have the highest positive impact on achieving organizational goals. 4. It’s Actually Both “What You Know” AND “Who You Know” If I was hiring someone today I would absolutely leverage the social and professional networks of my co-workers. Period. Most research shows that hiring in this manner is less expensive and time consuming AND produces better results. There is also some evidence that suggests new hires from employees’ networks have higher job performance and retention rates. 5. I Have New Respect for Recruiters and Hiring Managers My hats off to them—it’s not easy hiring and retaining top talent with today’s challenges. Check out the infographic, “A New Day: Taking HR from Chaos to Control”, on Oracle’s Human Capital Management solutions home page. You can also explore all of Oracle’s HCM solutions from that page based on your role. You can read all the posts in this series by clicking on the links in the right sidebar. Stay tuned…we’ll continue to post thought leadership on HCM and Talent Management topics.

    Read the article

  • Oracle NoSQL Database Exceeds 1 Million Mixed YCSB Ops/Sec

    - by Charles Lamb
    We ran a set of YCSB performance tests on Oracle NoSQL Database using SSD cards and Intel Xeon E5-2690 CPUs with the goal of achieving 1M mixed ops/sec on a 95% read / 5% update workload. We used the standard YCSB parameters: 13 byte keys and 1KB data size (1,102 bytes after serialization). The maximum database size was 2 billion records, or approximately 2 TB of data. We sized the shards to ensure that this was not an "in-memory" test (i.e. the data portion of the B-Trees did not fit into memory). All updates were durable and used the "simple majority" replica ack policy, effectively 'committing to the network'. All read operations used the Consistency.NONE_REQUIRED parameter allowing reads to be performed on any replica. In the past we have achieved 100K ops/sec using SSD cards on a single shard cluster (replication factor 3) so for this test we used 10 shards on 15 Storage Nodes with each SN carrying 2 Rep Nodes and each RN assigned to its own SSD card. After correcting a scaling problem in YCSB, we blew past the 1M ops/sec mark with 8 shards and proceeded to hit 1.2M ops/sec with 10 shards.  Hardware Configuration We used 15 servers, each configured with two 335 GB SSD cards. We did not have homogeneous CPUs across all 15 servers available to us so 12 of the 15 were Xeon E5-2690, 2.9 GHz, 2 sockets, 32 threads, 193 GB RAM, and the other 3 were Xeon E5-2680, 2.7 GHz, 2 sockets, 32 threads, 193 GB RAM.  There might have been some upside in having all 15 machines configured with the faster CPU, but since CPU was not the limiting factor we don't believe the improvement would be significant. The client machines were Xeon X5670, 2.93 GHz, 2 sockets, 24 threads, 96 GB RAM. Although the clients had 96 GB of RAM, neither the NoSQL Database or YCSB clients require anywhere near that amount of memory and the test could have just easily been run with much less. Networking was all 10GigE. YCSB Scaling Problem We made three modifications to the YCSB benchmark. The first was to allow the test to accommodate more than 2 billion records (effectively int's vs long's). To keep the key size constant, we changed the code to use base 32 for the user ids. The second change involved to the way we run the YCSB client in order to make the test itself horizontally scalable.The basic problem has to do with the way the YCSB test creates its Zipfian distribution of keys which is intended to model "real" loads by generating clusters of key collisions. Unfortunately, the percentage of collisions on the most contentious keys remains the same even as the number of keys in the database increases. As we scale up the load, the number of collisions on those keys increases as well, eventually exceeding the capacity of the single server used for a given key.This is not a workload that is realistic or amenable to horizontal scaling. YCSB does provide alternate key distribution algorithms so this is not a shortcoming of YCSB in general. We decided that a better model would be for the key collisions to be limited to a given YCSB client process. That way, as additional YCSB client processes (i.e. additional load) are added, they each maintain the same number of collisions they encounter themselves, but do not increase the number of collisions on a single key in the entire store. We added client processes proportionally to the number of records in the database (and therefore the number of shards). This change to the use of YCSB better models a use case where new groups of users are likely to access either just their own entries, or entries within their own subgroups, rather than all users showing the same interest in a single global collection of keys. If an application finds every user having the same likelihood of wanting to modify a single global key, that application has no real hope of getting horizontal scaling. Finally, we used read/modify/write (also known as "Compare And Set") style updates during the mixed phase. This uses versioned operations to make sure that no updates are lost. This mode of operation provides better application behavior than the way we have typically run YCSB in the past, and is only practical at scale because we eliminated the shared key collision hotspots.It is also a more realistic testing scenario. To reiterate, all updates used a simple majority replica ack policy making them durable. Scalability Results In the table below, the "KVS Size" column is the number of records with the number of shards and the replication factor. Hence, the first row indicates 400m total records in the NoSQL Database (KV Store), 2 shards, and a replication factor of 3. The "Clients" column indicates the number of YCSB client processes. "Threads" is the number of threads per process with the total number of threads. Hence, 90 threads per YCSB process for a total of 360 threads. The client processes were distributed across 10 client machines. Shards KVS Size Clients Mixed (records) Threads OverallThroughput(ops/sec) Read Latencyav/95%/99%(ms) Write Latencyav/95%/99%(ms) 2 400m(2x3) 4 90(360) 302,152 0.76/1/3 3.08/8/35 4 800m(4x3) 8 90(720) 558,569 0.79/1/4 3.82/16/45 8 1600m(8x3) 16 90(1440) 1,028,868 0.85/2/5 4.29/21/51 10 2000m(10x3) 20 90(1800) 1,244,550 0.88/2/6 4.47/23/53

    Read the article

< Previous Page | 172 173 174 175 176 177 178 179 180 181 182 183  | Next Page >