Search Results

Search found 11901 results on 477 pages for 'triple store'.

Page 176/477 | < Previous Page | 172 173 174 175 176 177 178 179 180 181 182 183  | Next Page >

  • Junior software developer - How to understand web applications in depth?

    - by nat_gr
    I am currently a junior developer in web applications and specifically in ASP.NET MVC technology. My problem is that the C# senior developer in the company has no experience with this technology and I try to learn without any guidance. I went through all tutorials (e.g music store), codeplex projects and also read Pro ASP.NET MVC 4. However, most of the examples are about CRUD and e-commerce applications. What I don't understand is how dependency injection fits in web applications (I have realized that is not only used for facilitating unit testing) or when I should use a custom model binder or how to model the business logic when there is already a database schema in place. I read the forum quite often and it would very helpful if some experienced developer could give me an insight about how to proceed. Do I need to read some books to understand the overall idea behind web applications? And what kind of application should I start building myself - I don't think it would be useful to create similar examples with the tutorials.

    Read the article

  • Mobile Apps for Hospitals?

    - by Joey Green
    I currently work for a pretty large hospital and have been dabbling in iPhone development for a couple years. The CEO is wanting to get together a group to see what mobile technology we could create. I was contacted to be the main developer. I wanted to gather some ideas of what kind of mobile apps people have seen deployed in hospitals. Not necessarily medical apps that you can get on the app store, but rather apps built specifically for a hospital. Any ideas? If this is not the appropriate forum for a question like this, can someone point me to a forum where it would be appropriate?

    Read the article

  • Motion Sensing Fog Machine Increases Savings and Spook Factor

    - by Jason Fitzpatrick
    This DIY add-on switches a standard fog machine from always-on to motion-activated–increase your savings and spook factor at the same time. Courtesy of tinker Greg, this modification involves a new relay and motion sensor mounted onto the existing switch of a store-bought fog machine. When the motion-sensor detects motion the fog machine releases a burst of fog for 5 seconds and then disarms itself for 10 seconds–long enough for the startled victim to move on and for the machine to recharge for the next passerby. Check out the video above to see it in action and then hit up the link below to see the project’s build guide. Motion Sensing Fog Machine Trigger [via Hack A Day] How Hackers Can Disguise Malicious Programs With Fake File Extensions Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer

    Read the article

  • Beta Testing iOS Application

    - by dbramhall
    I was wondering if it is advisable to get a small team of beta testers for an iOS application that will be released to the App Store. I am developing an iOS application and I have setup a beta application form however I was wondering if it is advisable to even do beta testing considering I am actively testing and using my application on all of my own iOS devices (iPad 2, 2 iPod Touches and an iPhone 4 (plus, of course iOS Simulator)) - all running various versions of iOS 4. My question is: would you advise someone to get beta testers for an iOS application and, if so, how would you advise them to go about getting testers. For those interested, my application is at http://affogato.visioa.com/

    Read the article

  • Error pages in ASP.NET

    - by koevoeter
    In ASP.NET you can retrieve the last unhandled exception via:(HttpContext.Current.)Server.GetLastError() // Server object is available as a property in Page and UserControl context This obviously only works in the same roundtrip. If you want to retrieve this information in your error page, you got a problem because the error page is not returned in the same roundtrip. The server responds with a redirect response and a new request to the error page is automatically sent. A common workaround would be to store the exception in your Session state from the Application_Error event in Global.asax. From ASP.NET 3.5 you can configure the redirect mode for error pages: <customErrors mode="On" defaultRedirect="~/Error.aspx" redirectMode="ResponseRewrite" /> This way the redirect response is not sent and the error page is returned right away. That implies that the browser is not aware of a page change and cannot reflect it in the address bar, so your original URL is not replaced with the URL of the error page, which might be what you actually want…

    Read the article

  • Best practice for storing HTML coming from text fields to a database?

    - by user1767270
    I have an application that allows users to edit certain parts of text and then email that out. My question is what is the best way to store this in a Microsoft SQL Server database. Right now I have two tables, one holding the HTML data and one holding the plain text data. When the user saves the info, it replaces newlines with br's and puts it in the HTML-conntaining table and then puts the regular text in the other table. This way the text box has the newlines when they go to edit, but the table that contains the HTML data, has the BR's. This seems like a silly way to do things. What would be the best practice? Thanks.

    Read the article

  • JavaOne 2012 - Java Deployment on Mac OS X

    - by Sharon Zakhour
    Also at the JavaOne 2012 conference, Scott Kovatch presented a session on Deploying Your Application with OpenJDK 7 on Mac OS X. The session had special emphasis on how to deploy Java applications to the Mac App Store and discussed topics relevant to using Oracle Java on the Mac. Interested developers may find the following documentation useful: Packaging a Java App for Distribution on a Mac. For more information on installing and using Oracle Java for the Mac, refer to the following documentation: Mac FAQ JDK 7 Installation for Mac OS X JRE 7 Installation for Mac OS X Mac OS X Platform Install FAQ Note for Users of Macs that Include Apple Java 6

    Read the article

  • Having Fun with Roughriders

    - by D'Arcy Lussier
    So I’m in Regina for a conference, and I happen to notice that some RoughRiders (Weston Dressler, Wes Cates, and Marcus Adams) are going to be signing autographs at the local SaskTel store on Thursday. So a plan gets hatched, and I call my buddy Mike who hasn’t left Winnipeg yet and have him pick up my Alouette jersey from home. My buddy Dylan who was here too happened to bring his Bomber jersey. And so we set off on our adventure: to get three Saskatchewan Roughrider players to autograph a calculator (cause, y’know…tough counting to 13 and all). Below is the footage. And continued… And here’s the autographed calculator: Thanks for being good sports guys! D Technorati Tags: CFL,Roughriders,Alouettes

    Read the article

  • Speaking tomorrow @ JAX, Mainz, Germany

    - by terrencebarr
    Just a quick note: I’ll be speaking at the JAX conference in Mainz, Germany, tomorrow: “JavaFX 2: Java, RIA, Web, and more”, April 17, 18:00 The talk will be giving an overview of JavaFX 2.0, top features, demos, tools, and the roadmap of what’s in store for the technology in 2012 and beyond. Also, be sure to check out the other Oracle sessions: “Java everywhere – The Vision becomes true, again”, Dennis Leung, April 17, 9:00 “Die Oracle-Java-Plattformstrategie zeigt klare Konturen”, Wolfgang Weigend, April 18, 17:30 “Lambdas in Java 8: their Design and Implementation”, Maurizio Cimadamore, April 18, 17:30 “OpenJDK Build Workshop”, Frederik Öhrström, April 18, 20:45 “The Future of Java on Multi-Core, Lambdas, Spliterators and Methods“, Frederik Öhrström, April 19, 10:15 For a complete list of all sessions, see here. Cheers, – Terrence Filed under: Mobile & Embedded Tagged: JavaFX, JAX

    Read the article

  • Resources for Test Driven Development in Web Applications?

    - by HorusKol
    I would like to try and implement some TDD in our web applications to reduce regressions and improve release quality, but I'm not convinced at how well automated testing can perform with something as fluffy as web applications. I've read about and tried TDD and unit testing, but the examples are 'solid' and rather simple functionalities like currency converters, and so on. Are there any resources that can help with unit testing content management and publication systems? How about unit testing a shopping cart/store (physical and online products)? AJAX? Googling for "Web Test Driven Development" just gets me old articles from several years ago either covering the same examples of calculator-like function or discussions about why TDD is better than anything (without any examples).

    Read the article

  • Data Storage Options

    - by Kenneth
    When I was working as a website designer/engineer I primarily used databases for storage of much of my dynamic data. It was very easy and convenient to use this method and seemed like a standard practice from my research on the matter. I'm now working on shifting away from websites and into desktop applications. What are the best practices for data storage for desktop applications? I ask because I have noticed that most programs I use on a personal level don't appear to use a database for data storage unless its embedded in the program. (I'm not thinking of an application like a word processor where it makes sense to have data stored in individual files as defined by the user. Rather I'm thinking of something more along the lines of a calendar application which would need to store dates and event info and such where accessing that information would be much easier if stored in a database... at least as far as my experience would indicate.) Thanks for the input!

    Read the article

  • Windows Azure Recipe: Enterprise LOBs

    - by Clint Edmonson
    Enterprises are more and more dependent on their specialized internal Line of Business (LOB) applications than ever before. Naturally, the more software they leverage on-premises, the more infrastructure they need manage. It’s frequently the case that our customers simply can’t scale up their hardware purchases and operational staff as fast as internal demand for software requires. The result is that getting new or enhanced applications in the hands of business users becomes slower and more expensive every day. Being able to quickly deliver applications in a rapidly changing business environment while maintaining high standards of corporate security is a challenge that can be met right now by moving enterprise LOBs out into the cloud and leveraging Azure’s Access Control services. In fact, we’re seeing many of our customers (both large and small) see huge benefits from moving their web based business applications such as corporate help desks, expense tracking, travel portals, timesheets, and more to Windows Azure. Drivers Cost Reduction Time to market Security Solution Here’s a sketch of how many Windows Azure Enterprise LOBs are being architected and deployed: Ingredients Web Role – this will host the core of the application. Each web role is a virtual machine hosting an application written in ASP.NET (or optionally php, or node.js). The number of web roles can be scaled up or down as needed to handle peak and non-peak traffic loads. Many Java based applications are also being deployed to Windows Azure with a little more effort. Database – every modern web application needs to store data. SQL Azure databases look and act exactly like their on-premise siblings but are fault tolerant and have data redundancy built in. Access Control – this service is necessary to establish federated identity between the cloud hosted application and an enterprise’s corporate network. It works in conjunction with a secure token service (STS) that is hosted on-premises to establish the corporate user’s identity and credentials. The source code for an on-premises STS is provided in the Windows Azure training kit and merely needs to be customized for the corporate environment and published on a publicly accessible corporate web site. Once set up, corporate users see a near seamless single sign-on experience. Reporting – businesses live and die by their reports and SQL Azure Reporting, based on SQL Server Reporting 2008 R2, can serve up reports with tables, charts, maps, gauges, and more. These reports can be accessed from the Windows Azure Portal, through a web browser, or directly from applications. Service Bus (optional) – if deep integration with other applications and systems is needed, the service bus is the answer. It enables secure service layer communication between applications hosted behind firewalls in on-premises or partner datacenters and applications hosted inside Windows Azure. The Service Bus provides the ability to securely expose just the information and services that are necessary to create a simpler, more secure architecture than opening up a full blown VPN. Data Sync (optional) – in cases where the data stored in the cloud needs to be shared internally, establishing a secure one-way or two-way data-sync connection between the on-premises and off-premises databases is a perfect option. It can be very granular, allowing us to specify exactly what tables and columns to synchronize, setup filters to sync only a subset of rows, set the conflict resolution policy for two-way sync, and specify how frequently data should be synchronized Training Labs These links point to online Windows Azure training labs where you can learn more about the individual ingredients described above. (Note: The entire Windows Azure Training Kit can also be downloaded for offline use.) Windows Azure (16 labs) Windows Azure is an internet-scale cloud computing and services platform hosted in Microsoft data centers, which provides an operating system and a set of developer services which can be used individually or together. It gives developers the choice to build web applications; applications running on connected devices, PCs, or servers; or hybrid solutions offering the best of both worlds. New or enhanced applications can be built using existing skills with the Visual Studio development environment and the .NET Framework. With its standards-based and interoperable approach, the services platform supports multiple internet protocols, including HTTP, REST, SOAP, and plain XML SQL Azure (7 labs) Microsoft SQL Azure delivers on the Microsoft Data Platform vision of extending the SQL Server capabilities to the cloud as web-based services, enabling you to store structured, semi-structured, and unstructured data. Windows Azure Services (9 labs) As applications collaborate across organizational boundaries, ensuring secure transactions across disparate security domains is crucial but difficult to implement. Windows Azure Services provides hosted authentication and access control using powerful, secure, standards-based infrastructure. See my Windows Azure Resource Guide for more guidance on how to get started, including links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • User Independant Share Folder

    - by ell
    At the moment, I have a folder in my home directory that is shared on my laptop and can also be accessed by the other windows desktop pcs in my network but now I have decided to make my home folder inaccessible by other users on my laptop so other people cannot look at my files if they have a user on my laptop. I set the permissions to none for everyone apart from me. I then changed the share folder (/home/elliot/Shared) to allow all access but my windows computers and other users on my laptop cannot access it even though they have the right permission, I think this is because they don't have access to the home folder in which the Shared folder is stored. Where should I store a new Shared folder on my laptop? Should I put it as /home/Shared? Or, alternatively is there a way I can allow other users to access my /home/elliot/Shared folder even if /home/elliot is inaccessible? Thanks in advance, ell.

    Read the article

  • Reverse horizontal and vertical for a HTML table

    - by porton
    There is a two-dimensional array describing a HTML table. Each element of the array consists of: the cell content rowspan colspan Every row of this two dimensional array corresponds to <td> cells of a <tr> of the table which my software should generate. I need to "reverse" the array (interchange vertical and horizontal direction). Insofar I considered algorithm based on this idea: make a rectangular matrix of the size of the table and store in every element of this matrix the corresponding index of the element of the above mentioned array. (Note that two elements of the matrix may be identical due rowspan/colspan.) Then I could use this matrix to calculate rowspan/colspan for the inverted table. But this idea seems bad for me. Any other algorithms? Note that I program in PHP.

    Read the article

  • How to use lemodev highscore plugin for unity?

    - by user3889649
    I am trying to add a server-sided highscore system to my game in unity. I have downloaded the free lemodev highscore plugin from the asset store but I cant figure out how to use it. I know where to put my server info and so on but other what are you supposed to do ? I added the main camera prefab that came with the package to my scene but other than adding an additional camera it did precisely nothing ( at least it seems that way ). Could anyone look into it and tell me how to use it ? The developer's website seems to have no information on the subject.

    Read the article

  • Is there any difference between storing textures and baked lighting for environment meshes?

    - by Ben Hymers
    I assume that when texturing environments, one or several textures will be used, and the UVs of the environment geometry will likely overlap on these textures, so that e.g. a tiling brick texture can be used by many parts of the environment, rather than UV unwrapping the entire thing, and having several areas of the texture be identical. If my assumption is wrong, please let me know! Now, when thinking about baking lighting, clearly this can't be done the same way - lighting in general will be unique to every face so the environment must be UV unwrapped without overlap, and lighting must be baked onto unique areas of one or several textures, to give each surface its own texture space to store its lighting. My questions are: Have I got this wrong? If so, how? Isn't baking lighting going to use a lot of texture space? Will the geometry need two UV sets, one used for the colour/normal texture and one for the lighting texture? Anything else you'd like to add? :)

    Read the article

  • In-app paymnt methods

    - by user212228
    I'm interested in developing for Ubuntu (mostly phones) and I can't seem to find the guidelines on app publishing, will apps only work through the ubuntu software center, or can users download and install an app from a website like is possible with an android apk? Also, are there any rules regarding in-app purchase methods, (I hope the minimum price here isn't $2.99 in-app as well or I'm not going to even bother developing for Ubuntu and will just stick with Android) Google for example, requires that in-app purchases go through their servers so that it isn't possible to use other funding methods at least for play store published apps. My main questions here are: Would it be possible to release an app for ubuntu touch that accepted bitcoin, paypal, or other methods for in-app purchases? If not, would it be possible to release apps through a personal website or 3rd party app market that could use alternative payment methods?

    Read the article

  • What is the best solution for document archiving?

    - by Anders Wallenquist
    I'm looking for a utility that helps me (and my colleagues) to archive documents in a systematic manner (Like Zeitgeist but permanent). The utility have to clean-out old document from desktops and store them on a server (as automatic as possible and consistent) maybe from just a few locations (Document directory) Documents shall be stored on cheap large media for many years to come - hard disk and file system maybe? Easy to maintain and manage for a small organization. Documents have to be easy to find and restore One systematic manner could be a directory-structure by year, month, user or user, year, month. Its a plus if documents could be linked to a project, if documents could be search-able and if document could also be mail, IM-discussions not only OpenOffice traditional documents. Any ideas?

    Read the article

  • Developing for Chrome App/Android?

    - by Johnny Quest
    I have been developing for win7 mobile (XNA/silverlight and will continue to do so, love everything about it) but I wanted to branch a few of my more polished games to google app store online, and perhaps android(though not sure, as with all the different versions it makes learning/loading applications a bit tricky) What is the most versatile language to start learning from chrome apps/android: Java would be excellent for android, but could I port it to a web app for chrome? (and its close to C#) Flash would work for a web app as I can just embed it into a html page (have done actionscript before, didn't care much for the IDE though), but would it also work on android? or I guess there is always C/C++ but haven't heard much about that, though I think it works for both (though C++ does interest me) Any advice would be excellent, thanks.

    Read the article

  • Architecture for Social Graph data that has a Time Frame Associated?

    - by Jay Stevens
    I am adding some "social" type features to an existing application. There are a limited # of node & edge types. Overall the data itself is relatively small (50,000 - 70,000 for each type of node) there will be a number of edges (relationships) between them (almost all directional). This, I know, is relatively easy to represent with an SDF store (such as BrightstarDB) or something like Microsoft's Trinity (or really many of the noSQL options). The thing that, I think, makes this a unique use case is that each relationship will have a timeframe associated with it (start and end dates). Right now, I'm thinking of just storing this in a relational structure and dealing with the headaches of "traversing the graph", but I'm looking for suggestions on a better approach (both in terms of data structure and server): Column ================ From_Node_ID Relationship To_Node_ID StartDate EndDate Any suggestions or thoughts are welcomed.

    Read the article

  • Is data integrity possible without normalization?

    - by shuniar
    I am working on an application that requires the storage of location information such as city, state, zip code, latitude, and longitude. I would like to ensure: Location data is accurate Detroit, CA Detroit IS NOT in California Detroit, MI Detroit IS in Michigan Cities and states are spelled correctly California not Calefornia Detroit not Detriot Cities and states are named consistently Valid: CA Detroit Invalid: Cali california DET d-town The D Also, since city/zip data is not guaranteed to be static, updating this data in a normalized fashion could be difficult, whereas it could be implemented as a de facto location if it is denormalized. A couple thoughts that come to mind: A collection of reference tables that store a list of all states and the most common cities and zip codes that can grow over time. It would search the database for an exact or similar match and recommend corrections. Use some sort of service to validate the location data before it is stored in the database. Is it possible to fulfill these requirements without normalization, and if so, should I denormalize this data?

    Read the article

  • Errors compiling XNA project Windows 8?

    - by ChocoMan
    I'm using Visual Studio 2012 have just installed Windows 8 on my computer and tried to compile a game Im working on in XNA. When the game tried to build, I got the following errors: Error 12 Could not copy the file "C:\Users\Computer\Documents\Visual Studio 2012\Projects\WindowsGame1\WindowsGame1\WindowsGame1\bin\x86\Debug\Content\SkyDome\skycirrus01.xnb" because it was not found. Error 13 Could not copy the file "C:\Users\Computer\Documents\Visual Studio 2012\Projects\WindowsGame1\WindowsGame1\WindowsGame1\bin\x86\Debug\Content\Fonts\Arial.xnb" because it was not found. Error 14 Could not copy the file "C:\Users\Computer\Documents\Visual Studio 2012\Projects\WindowsGame1\WindowsGame1\WindowsGame1\bin\x86\Debug\Content\Fonts\ISOCP2.xnb" because it was not found. skycirrus01.xnb is actually a .fbx. *Arial.xmb* and ISOCP2.xmb are my spritefonts within my project. Prior to installing Windows 8 (store bought) my project compiled. Does anyone know how to convert these to .xnb files? I'm assuming that will make them compatible.

    Read the article

  • Microsoft releases Bing iPhone app

    As its officials have been hinting and promising for a while now, Microsoft announced it has developed a version of its Bing search app for the iPhone. The new Bing app is available on the iPhone app store as of tonight (December 15). Microsoft already offers Bing on a number of mobile phones, and has a five-year deal with Verizon to provide Bing on a number of phones available to Verizon Wireless customers. A mobile version of Bing already is available for Windows Mobile, Blackberry, BREW and Sidekick devices on Verizon. In other Bing news, Microsoft has finally hit the 10 percent market share mark with Bing, according to the November U.S. search share data from comScore. Bing’s growth is continuing to come at the expense of Yahoo, not Google. Update: To those wondering why Microsoft would deliver a version of Continue... span.fullpost {display:none;}

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

< Previous Page | 172 173 174 175 176 177 178 179 180 181 182 183  | Next Page >