Search Results

Search found 9889 results on 396 pages for 'behind the compiler'.

Page 177/396 | < Previous Page | 173 174 175 176 177 178 179 180 181 182 183 184  | Next Page >

  • Downside to including headers in every source file (Objective-C)

    - by Michael Waterfall
    I'm currently including my AppDelegate.h and all of my category headers into every one of my source files using the MyApp_Prefix.pch prefix header, instead of manually #importing them only where they are used. The category methods and lots of compiler #define's in my app delegate are used in lots of places in my code. Is there any down side to this? Is it just that compilation will take longer?

    Read the article

  • Access element of pointed std::vector

    - by user146780
    I have a function where I provide a pointer to a std::vector. I want to make x = to vector[element] but i'm getting compiler errors. I'm doing: void Function(std::vector<int> *input) { int a; a = *input[0]; } What is the right way to do this? Thanks

    Read the article

  • String formatting help

    - by Camran
    I have this: 2010-04-08T01:01:00Z I want to remove the 'T' and everything behind it as well. Also I would like to rewrite the date into this format: 08-04-2010 How can I do this the easiest way? Thanks

    Read the article

  • How to get the URL of the parent from an iframe in ASP.NET

    - by user163457
    Hi, I have a page on the example.com domain which contains an IFrame, this IFrame loads an ASP.NET page (c#) from the example2.com domain. From the code behind on the example2.com domain how can I get the URL of the master page? Would it help if the 2 pages were on the same domain, so example.com contains an iframe with sub.example.com? Thanks

    Read the article

  • How to add Eclipse Task Tags programmatically (Eclipse Plugin development)?

    - by sebnem
    Hi, I am developing an Eclipse Plugin. I want to add my custom Task Tag programmatically within the plugin. (Lets say DOTHIS) Later, i want to list the lines marked with DOTHIS tag in my custom taskView I know that it is done using the Eclipse UI from Project Properties Java Compiler Task Tags New. and then in the task view by Configure Contents but how can i do these arranegments within the plugin? Thanks in advance.

    Read the article

  • Weird initialization in C

    - by pacopepe
    Hi there, I have this piece of code and i don't know how it works #include <stdio.h> int main(void) { int numero = ({const int i = 10; i+10;}); printf("%d\n", numero); // Prints 20 return 0; } Why if i delete the second part (i+10;), the compiler gets an error? Why are the brackets necessary? Thank you ^^!

    Read the article

  • Including huge string in our c++ programs ?

    - by Xinus
    I am trying to include huge string in my c++ programs, Its size is 20598617 characters , I am using #define to achieve it. I have a header file which contains this statement #define "<huge string containing 20598617 characterd>" When I try to compile the program I get error as fatal error C1060: compiler is out of heap space I tried following command line options with no success /Zm200 /Zm1000 /Zm2000 How can I make successful compilation of this program? Platform: Windows 7

    Read the article

  • What is the explanation of this java code ?

    - by M.H
    I have the following code : public class Main { public void method(Object o) { System.out.println("Object Version"); } public void method(String s) { System.out.println("String Version"); } public static void main(String args[]) { Main question = new Main(); question.method(null);//1 } } why is the result is "String Version" ? and why there is a compiler error if the first method takes a StringBuffer object ?

    Read the article

  • Python: Closing a for loop by reading stdout

    - by user1732102
    import os dictionaryfile = "/root/john.txt" pgpencryptedfile = "helloworld.txt.gpg" array = open(dictionaryfile).readlines() for x in array: x = x.rstrip('\n') newstring = "echo " + x + " | gpg --passphrase-fd 0 " + pgpencryptedfile os.popen(newstring) I need to create something inside the for loop that will read gpg's output. When gpg outputs this string gpg: WARNING: message was not integrity protected, I need the loop to close and print Success! How can I do this, and what is the reasoning behind it? Thanks Everyone!

    Read the article

  • how to install ffmpeg in cpanel

    - by Ajay Chthri
    i'm using dedicated server(linux) so i need to install ffmpeg in cpanel so here ffmpeg i found in Main Software Install a Perl Module but i writing script in php so how can i install ffmpeg phpperl when i'am trying to install ffmpeg in perl module i get this response Checking C compiler....C compiler (/usr/bin/cc) OK (cached Tue Jan 17 19:16:31 2012)....Done CPAN fallback is disabled since /var/cpanel/conserve_memory exists, and cpanm is available. Method: Using Perl Expect, Installer: cpanm You have make /usr/bin/make Falling back to HTTP::Tiny 0.009 You have /bin/tar: tar (GNU tar) 1.15.1 You have /usr/bin/unzip You have Cpanel::HttpRequest 2.1 Testing connection speed...(using fast method)...Done Ping:2 (ticks) Testing connection speed to cpan.knowledgematters.net using pureperl...(28800.00 bytes/s)...Done Ping:2 (ticks) Testing connection speed to cpan.develooper.com using pureperl...(22233.33 bytes/s)...Done Ping:2 (ticks) Testing connection speed to cpan.schatt.com using pureperl...(32750.00 bytes/s)...Done Ping:3 (ticks) Testing connection speed to cpan.mirror.facebook.net using pureperl...(14050.00 bytes/s)...Done Ping:2 (ticks) Testing connection speed to cpan.mirrors.hoobly.com using pureperl...(5150.00 bytes/s)...Done Five usable mirrors located Ping:0 (ticks) Testing connection speed to 208.109.109.239 using pureperl...(28950.00 bytes/s)...Done Ping:2 (ticks) Testing connection speed to 208.82.118.100 using pureperl...(19300.00 bytes/s)...Done Ping:1 (ticks) Testing connection speed to 69.50.192.73 using pureperl...(19300.00 bytes/s)...Done Three usable fallback mirrors located Mirror Check passed for cpan.schatt.com (/index.html) Searching on cpanmetadb ... Fetching http://cpanmetadb.cpanel.net/v1.0/package/Video::FFmpeg?cpanel_version=11.30.5.6&cpanel_tier=release (connected:0).......(request attempt 1/12)...Using dns cache file /root/.HttpRequest/cpanmetadb.cpanel.net......searching for mirrors (mirror search attempt 1/3)......5 usable mirrors located. (less then expected)......mirror search success......connecting to 208.74.123.82...@208.74.123.82......connected......receiving...100%......request success......Done Searching Video::FFmpeg on cpanmetadb (http://cpanmetadb.cpanel.net/v1.0/package/Video::FFmpeg?cpanel_version=11.30.5.6&cpanel_tier=release) ... Fetching http://cpanmetadb.cpanel.net/v1.0/package/Video::FFmpeg?cpanel_version=11.30.5.6&cpanel_tier=release (connected:1).......(request attempt 1/12)[email protected]%......request success......Done Source: fastest CPAN mirror ... --> Working on Video::FFmpeg Fetching http://cpan.schatt.com//authors/id/R/RA/RANDOMMAN/Video-FFmpeg-0.47.tar.gz ... Fetching http://cpan.schatt.com/authors/id/R/RA/RANDOMMAN/Video-FFmpeg-0.47.tar.gz (connected:1).......(request attempt 1/12)...Resolving cpan.schatt.com...(resolve attempt 1/65)......connecting to 66.249.128.125...@66.249.128.125......connected......receiving...25%...50%...75%...100%......request success......Done OK Unpacking Video-FFmpeg-0.47.tar.gz Video-FFmpeg-0.47/ Video-FFmpeg-0.47/Changes Video-FFmpeg-0.47/FFmpeg.xs Video-FFmpeg-0.47/MANIFEST Video-FFmpeg-0.47/META.yml Video-FFmpeg-0.47/Makefile.PL Video-FFmpeg-0.47/README Video-FFmpeg-0.47/lib/ Video-FFmpeg-0.47/lib/Video/ Video-FFmpeg-0.47/lib/Video/FFmpeg/ Video-FFmpeg-0.47/lib/Video/FFmpeg/AVFormat.pm Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream/ Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream/Audio.pm Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream/Subtitle.pm Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream/Video.pm Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream.pm Video-FFmpeg-0.47/lib/Video/FFmpeg.pm Video-FFmpeg-0.47/ppport.h Video-FFmpeg-0.47/t/ Video-FFmpeg-0.47/t/Video-FFmpeg.t Video-FFmpeg-0.47/test Video-FFmpeg-0.47/test.mp4 Video-FFmpeg-0.47/typemap Entering Video-FFmpeg-0.47 Checking configure dependencies from META.yml META.yml not found or unparsable. Fetching META.yml from search.cpan.org Fetching http://search.cpan.org/meta/Video-FFmpeg-0.47/META.yml (connected:1).......(request attempt 1/12)...Resolving search.cpan.org...(resolve attempt 1/65)......connecting to 199.15.176.161...@199.15.176.161......connected......receiving...100%......request success......Done Configuring Video-FFmpeg-0.47 ... Running Makefile.PL Perl v5.10.0 required--this is only v5.8.8, stopped at Makefile.PL line 1. BEGIN failed--compilation aborted at Makefile.PL line 1. N/A ! Configure failed for Video-FFmpeg-0.47. See /home/.cpanm/build.log for details. Perl Expect failed with non-zero exit status: 256 All available perl module install methods have failed guide me how can i install ffmpeg in cPanel Thanks for advance.

    Read the article

  • PPTP connection fails with errors 800/806

    - by Mark S. Rasmussen
    I've got a client (Server 2008 R2) that won't connect to our production environment PPTP VPN server (Server 2003, running RRAS). The server is behind a firewall that has TCP1723 open as well as GRE. Other clients at our office are able to connect just fine. Our office is behind a Juniper SSG5-Serial firewall, but all outgoing traffic is allowed, and multiple other clients are able to connect to VPN servers without issues. I've also setup a completely different VPN server on another network outside of our office. The functioning clients connect just fine - the Server 2008 R2 machine doesn't. Thus it's definitely a problem with this machine in particular. I've rebooted it. I've disabled the firewall, no dice on either. I've run PPTPSRV and PPTPCLNT on the server/client and they're able to communicate perfectly - indicating there's no problem using neither TCP1723 nor GRE. The Server 2008 R2 machine is also running as a VPN server itself (incoming connection) and that's working perfectly. We have the issues no matter if there are active incoming connections or not. I'm not sure what my next debugging step would be; any suggestions? EDIT: The event log on the server has the following warning from RasMan: A connection between the VPN server and the VPN client xxx.xxx.xxx.xxx has been established, but the VPN connection cannot be completed. The most common cause for this is that a firewall or router between the VPN server and the VPN client is not configured to allow Generic Routing Encapsulation (GRE) packets (protocol 47). Verify that the firewalls and routers between your VPN server and the Internet allow GRE packets. Make sure the firewalls and routers on the user's network are also configured to allow GRE packets. If the problem persists, have the user contact the Internet service provider (ISP) to determine whether the ISP might be blocking GRE packets. Obviously this points to GRE being a potential problem. But seeing as I have other clients connectiong without problems, as well as PPTPSRV and PPTPCLNT being able to communicate, I'm suspecting this might be a red herring. EDIT: Here are the anonymized events logged by the client in chronological order: CoId={742CB15C-A7E0-47B7-8240-0EFA1139CBD9}: The user XXX\YYY has started dialing a VPN connection using a per-user connection profile named ZZZ. The connection settings are: Dial-in User = XXX\YYY VpnStrategy = PPTP DataEncryption = Require PrerequisiteEntry = AutoLogon = No UseRasCredentials = Yes Authentication Type = CHAP/MS-CHAPv2 Ipv4DefaultGateway = No Ipv4AddressAssignment = By Server Ipv4DNSServerAssignment = By Server Ipv6DefaultGateway = Yes Ipv6AddressAssignment = By Server Ipv6DNSServerAssignment = By Server IpDnsFlags = Register primary domain suffix IpNBTEnabled = Yes UseFlags = Private Connection ConnectOnWinlogon = No. CoId={742CB15C-A7E0-47B7-8240-0EFA1139CBD9}: The user XXX\YYY is trying to establish a link to the Remote Access Server for the connection named ZZZ using the following device: Server address/Phone Number = XXX.YYY.ZZZ.KKK Device = WAN Miniport (PPTP) Port = VPN3-4 MediaType = VPN. CoId={742CB15C-A7E0-47B7-8240-0EFA1139CBD9}: The user XXX\YYY has successfully established a link to the Remote Access Server using the following device: Server address/Phone Number = XXX.YYY.ZZZ.KKK Device = WAN Miniport (PPTP) Port = VPN3-4 MediaType = VPN. CoId={742CB15C-A7E0-47B7-8240-0EFA1139CBD9}: The link to the Remote Access Server has been established by user XXX\YYY. CoId={742CB15C-A7E0-47B7-8240-0EFA1139CBD9}: The user XXX\YYY dialed a connection named ZZZ which has failed. The error code returned on failure is 806. Running Wireshark on the client shows it trying and retrying to send a "71 Configuration Request" While the server shows the incoming client requests, but apparently without replying: Given that this is GRE traffic, I think rules out the GRE traffic being blocked. Question is, why doesn't the server reply? This is the Configuration Request the server receives from the non functioning client (meaning no response is sent to the client request): And this is the Configuration Request the server receives from the working client: To me they seem identical, except for differing keys and magic numbers, and the fact that one client receives a response while the other doesn't.

    Read the article

  • Intermittent 404 on select assets, LAMP stack

    - by Tom Lagier
    We have a LAMP stack WordPress server that is serving most assets correctly. However, one plugin's CSS file and several images are returning soft 404s roughly 20% of the time. I can't find any reference to the 404 in the access logs, but the browser is definitely receiving a 404 response from somewhere (WordPress, I would assume). When I use an alias URL that does not match the site URL but does resolve to the asset path, the resource loads correctly 100% of the time. However, using the site url only resolves for the select, problematic assets 20% of the time. You can test one of the problematic assets here: http://www.mreco.org/wp-content/uploads/2014/05/zero-cost.jpg However the alias link always resolves correctly: http://mr-eco.wordpress.promocampaigns.com/wp-content/uploads/2014/05/zero-cost.jpg Stranger, if I attempt to access outdated content that definitely does not exist on the server, at the live URL it returns the content roughly 50% of the time. Using the alias link, it 404s 100% of the time - the correct behavior. Error log and PHP error log are clean. A sample access log (pulled from grep 'zero-cost.jpg' /var/log/httpd/mr-eco-access_log) from several refreshes of the live direct link (where I am not seeing any 404's): 10.166.202.202 - - [28/May/2014:20:27:41 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 304 - 10.166.202.202 - - [28/May/2014:20:27:42 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 304 - 10.166.202.202 - - [28/May/2014:20:27:43 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 304 - 10.166.202.202 - - [28/May/2014:20:27:43 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 304 - 10.176.201.37 - - [28/May/2014:20:27:56 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 200 57027 Chrome's dev tools list the following network activity before displaying 404 page content: zero-cost.jpg /wp-content/uploads/2014/05 GET 404 Not Found text/html Other 15.9?KB 73.2?KB 953?ms 947?ms My Apache configuration is standard, I've listed the virtual host entry and .htaccess file below. I can provide other parts of Apache config if necessary. Virtual host: <VirtualHost *:80> DocumentRoot /var/www/public_html/mr-eco.wordpress.promocampaigns.com ServerName www.mreco.org ServerAlias mreco.org mr-eco.wordpress.promocampaigns.com ErrorLog logs/mr-eco-error_log CustomLog logs/mr-eco-access_log common <Directory /var/www/public_html/mr-eco.wordpress.promocampaigns.com> AllowOverride All SetOutputFilter DEFLATE </Directory> </VirtualHost> .htaccess: # BEGIN WordPress <IfModule mod_rewrite.c> RewriteEngine On RewriteBase / RewriteRule ^index\.php$ - [L] RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule . /index.php [L] </IfModule> # END WordPress I have checked for multiple A records and can confirm that there is a single A record pointing at the domain: ;; ANSWER SECTION: mreco.org. 60 IN A 50.18.58.174 I'm fairly new to systems administration, and at a complete loss as to what could cause this. In the past, inconsistently 404ing assets have been because of out-of-sync instances behind a load balancer. In this case, it is a single instance behind the load balancer. Because of the inconsistency, it feels like a caching issue. We don't make use of Apache caching, and as far as I know WordPress should not be caching either. What I've done so far: Reset WordPress permalinks Disabled WordPress plugins Re-generated WordPress .htaccess file Swapped ServerName and ServerAlias directives Cleared browser cache Confirmed disk location of resources Checked PHP, access, and error logs Confirmed correct DNS setup (can post if necessary) I'm at a total loss. Thanks for helping me out!

    Read the article

  • Site-to-site VPN using MD5 instead of SHA and getting regular disconnection

    - by Steven
    We are experiencing some strange behavior with a site-to-site IPsec VPN that goes down about every week for 30 minutes (Iam told 30 minutes exactly). I don't have access to the logs, so it's difficult to troubleshoot. What is also strange is that the two VPN devices are set to use SHA hash algorithm but apparently end up agreeing to use MD5. Does anybody have a clue? or is this just insufficient information? Edit: Here is an extract of the log of one of the two VPN devices, which is a Cisco 3000 series VPN concentrator. 27981 03/08/2010 10:02:16.290 SEV=4 IKE/41 RPT=16120 xxxxxxxx IKE Initiator: New Phase 1, Intf 2, IKE Peer xxxxxxxx local Proxy Address xxxxxxxx, remote Proxy Address xxxxxxxx, SA (L2L: 1A) 27983 03/08/2010 10:02:56.930 SEV=4 IKE/41 RPT=16121 xxxxxxxx IKE Initiator: New Phase 1, Intf 2, IKE Peer xxxxxxxx local Proxy Address xxxxxxxx, remote Proxy Address xxxxxxxx, SA (L2L: 1A) 27986 03/08/2010 10:03:35.370 SEV=4 IKE/41 RPT=16122 xxxxxxxx IKE Initiator: New Phase 1, Intf 2, IKE Peer xxxxxxxx local Proxy Address xxxxxxxx, remote Proxy Address xxxxxxxx, SA (L2L: 1A) [… same continues for another 15 minutes …] 28093 03/08/2010 10:19:46.710 SEV=4 IKE/41 RPT=16140 xxxxxxxx IKE Initiator: New Phase 1, Intf 2, IKE Peer xxxxxxxx local Proxy Address xxxxxxxx, remote Proxy Address xxxxxxxx, SA (L2L: 1A) 28096 03/08/2010 10:20:17.720 SEV=5 IKE/172 RPT=1291 xxxxxxxx Group [xxxxxxxx] Automatic NAT Detection Status: Remote end is NOT behind a NAT device This end IS behind a NAT device 28100 03/08/2010 10:20:17.820 SEV=3 IKE/134 RPT=79 xxxxxxxx Group [xxxxxxxx] Mismatch: Configured LAN-to-LAN proposal differs from negotiated proposal. Verify local and remote LAN-to-LAN connection lists. 28103 03/08/2010 10:20:17.820 SEV=4 IKE/119 RPT=1197 xxxxxxxx Group [xxxxxxxx] PHASE 1 COMPLETED 28104 03/08/2010 10:20:17.820 SEV=4 AUTH/22 RPT=1031 xxxxxxxx User [xxxxxxxx] Group [xxxxxxxx] connected, Session Type: IPSec/LAN- to-LAN 28106 03/08/2010 10:20:17.820 SEV=4 AUTH/84 RPT=39 LAN-to-LAN tunnel to headend device xxxxxxxx connected 28110 03/08/2010 10:20:17.920 SEV=5 IKE/25 RPT=1291 xxxxxxxx Group [xxxxxxxx] Received remote Proxy Host data in ID Payload: Address xxxxxxxx, Protocol 0, Port 0 28113 03/08/2010 10:20:17.920 SEV=5 IKE/24 RPT=88 xxxxxxxx Group [xxxxxxxx] Received local Proxy Host data in ID Payload: Address xxxxxxxx, Protocol 0, Port 0 28116 03/08/2010 10:20:17.920 SEV=5 IKE/66 RPT=1290 xxxxxxxx Group [xxxxxxxx] IKE Remote Peer configured for SA: L2L: 1A 28117 03/08/2010 10:20:17.930 SEV=5 IKE/25 RPT=1292 xxxxxxxx Group [xxxxxxxx] Received remote Proxy Host data in ID Payload: Address xxxxxxxx, Protocol 0, Port 0 28120 03/08/2010 10:20:17.930 SEV=5 IKE/24 RPT=89 xxxxxxxx Group [xxxxxxxx] Received local Proxy Host data in ID Payload: Address xxxxxxxx, Protocol 0, Port 0 28123 03/08/2010 10:20:17.930 SEV=5 IKE/66 RPT=1291 xxxxxxxx Group [xxxxxxxx] IKE Remote Peer configured for SA: L2L: 1A 28124 03/08/2010 10:20:18.070 SEV=4 IKE/173 RPT=17330 xxxxxxxx Group [xxxxxxxx] NAT-Traversal successfully negotiated! IPSec traffic will be encapsulated to pass through NAT devices. 28127 03/08/2010 10:20:18.070 SEV=4 IKE/49 RPT=17332 xxxxxxxx Group [xxxxxxxx] Security negotiation complete for LAN-to-LAN Group (xxxxxxxx) Responder, Inbound SPI = 0x56a4fe5c, Outbound SPI = 0xcdfc3892 28130 03/08/2010 10:20:18.070 SEV=4 IKE/120 RPT=17332 xxxxxxxx Group [xxxxxxxx] PHASE 2 COMPLETED (msgid=37b3b298) 28131 03/08/2010 10:20:18.750 SEV=4 IKE/41 RPT=16141 xxxxxxxx Group [xxxxxxxx] IKE Initiator: New Phase 2, Intf 2, IKE Peer xxxxxxxx local Proxy Address xxxxxxxx, remote Proxy Address xxxxxxxx, SA (L2L: 1A) 28135 03/08/2010 10:20:18.870 SEV=4 IKE/173 RPT=17331 xxxxxxxx Group [xxxxxxxx] NAT-Traversal successfully negotiated! IPSec traffic will be encapsulated to pass through NAT devices.

    Read the article

  • Varnish VCL - Regular Expression Evaluation

    - by Hugues ALARY
    I have been struggling for the past few days with this problem: Basically, I want to send to a client browser a cookie of the form foo[sha1oftheurl]=[randomvalue] if and only if the cookie has not already been set. e.g. If a client browser requests "/page.html", the HTTP response will be like: resp.http.Set-Cookie = "foo4c9ae249e9e061dd6e30893e03dc10a58cc40ee6=ABCD;" then, if the same client request "/index.html", the HTTP response will contain a header: resp.http.Set-Cookie = "foo14fe4559026d4c5b5eb530ee70300c52d99e70d7=QWERTY;" In the end, the client browser will have 2 cookies: foo4c9ae249e9e061dd6e30893e03dc10a58cc40ee6=ABCD foo14fe4559026d4c5b5eb530ee70300c52d99e70d7=QWERTY Now, that, is not complicated in itself. The following code does it: import digest; import random; ##This vmod does not exist, it's just for the example. sub vcl_recv() { ## We compute the sha1 of the requested URL and store it in req.http.Url-Sha1 set req.http.Url-Sha1 = digest.hash_sha1(req.url); set req.http.random-value = random.get_rand(); } sub vcl_deliver() { ## We create a cookie on the client browser by creating a "Set-Cookie" header ## In our case the cookie we create is of the form foo[sha1]=[randomvalue] ## e.g for a URL "/page.html" the cookie will be foo4c9ae249e9e061dd6e30893e03dc10a58cc40ee6=[randomvalue] set resp.http.Set-Cookie = {""} + resp.http.Set-Cookie + "foo"+req.http.Url-Sha1+"="+req.http.random-value; } However, this code does not take into account the case where the Cookie already exists. I need to check that the Cookie does not exists before generating a random value. So I thought about this code: import digest; import random; sub vcl_recv() { ## We compute the sha1 of the requested URL and store it in req.http.Url-Sha1 set req.http.Url-Sha1 = digest.hash_sha1(req.url); set req.http.random-value = random.get_rand(); set req.http.regex = "abtest"+req.http.Url-Sha1; if(!req.http.Cookie ~ req.http.regex) { set req.http.random-value = random.get_rand(); } } The problem is that Varnish does not compute Regular expression at run time. Which leads to this error when I try to compile: Message from VCC-compiler: Expected CSTR got 'req.http.regex' (program line 940), at ('input' Line 42 Pos 31) if(req.http.Cookie !~ req.http.regex) { ------------------------------##############--- Running VCC-compiler failed, exit 1 VCL compilation failed One could propose to solve my problem by matching on the "abtest" part of the cookie or even "abtest[a-fA-F0-9]{40}": if(!req.http.Cookie ~ "abtest[a-fA-F0-9]{40}") { set req.http.random-value = random.get_rand(); } But this code matches any cookie starting by 'abtest' and containing an hexadecimal string of 40 characters. Which means that if a client requests "/page.html" first, then "/index.html", the condition will evaluate to true even if the cookie for the "/index.html" has not been set. I found in bug report phk or someone else stating that computing regular expressions was extremely expensive which is why they are evaluated during compilation. Considering this, I believe that there is no way of achieving what I want the way I've been trying to. Is there any way of solving this problem, other than writting a vmod? Thanks for your help! -Hugues

    Read the article

  • How can I check if PHP was compiled with the UNICODE version of the Win32 API?

    - by Wesley Murch
    This is related to this Stack Overflow post: glob() can't find file names with multibyte characters on Windows? I'm having issues with PHP and files that have multibyte characters on Windows. Here's my test case: print_r(scandir('./uploads/')); print_r(glob('./uploads/*')); Correct Output on remote UNIX server: Array ( [0] => . [1] => .. [2] => filename-äöü.jpg [3] => filename.jpg [4] => test?test.jpg [5] => ??? ?????.jpg [6] => ?????????.jpg [7] => ???.jpg ) Array ( [0] => ./uploads/filename-äöü.jpg [1] => ./uploads/filename.jpg [2] => ./uploads/test?test.jpg [3] => ./uploads/??? ?????.jpg [4] => ./uploads/?????????.jpg [5] => ./uploads/???.jpg ) Incorrect Output locally on Windows: Array ( [0] => . [1] => .. [2] => ??? ?????.jpg [3] => ???.jpg [4] => ?????????.jpg [5] => filename-äöü.jpg [6] => filename.jpg [7] => test?test.jpg ) Array ( [0] => ./uploads/filename-äöü.jpg [1] => ./uploads/filename.jpg ) Here's a relevant excerpt from the answer I chose to accept (which actually is a quote from an article that was posted online over 2 years ago): From the comments on this article: http://www.rooftopsolutions.nl/blog/filesystem-encoding-and-php The output from your PHP installation on Windows is easy to explain : you installed the wrong version of PHP, and used a version not compiled to use the Unicode version of the Win32 API. For this reason, the filesystem calls used by PHP will use the legacy "ANSI" API and so the C/C++ libraries linked with this version of PHP will first try to convert yout UTF-8-encoded PHP string into the local "ANSI" codepage selected in the running environment (see the CHCP command before starting PHP from a command line window) Your version of Windows is MOST PROBABLY NOT responsible of this weird thing. Actually, this is YOUR version of PHP which is not compiled correctly, and that uses the legacy ANSI version of the Win32 API (for compatibility with the legacy 16-bit versions of Windows 95/98 whose filesystem support in the kernel actually had no direct support for Unicode, but used an internal conversion layer to convert Unicode to the local ANSI codepage before using the actual ANSI version of the API). Recompile PHP using the compiler option to use the UNICODE version of the Win32 API (which should be the default today, and anyway always the default for PHP installed on a server that will NEVER be Windows 95 or Windows 98...) I can't confirm whether this is my problem or not. I used phpinfo() and did not find anything interesting, but I wasn't sure what to look for. I've been using XAMPP for easy installations, so I'm really not sure exactly how it was installed. I'm using Windows 7, 64 bit - so forgive my ignorance, but I'm not even sure if "Win32" is relevant here. How can I check if my current version of PHP was compiled with the configuration mentioned above? PHP Version: 5.3.8 System: Windows NT WES-PC 6.1 build 7601 (Windows 7 Home Premium Edition Service Pack 1) i586 Build Date: Aug 23 2011 11:47:20 Compiler: MSVC9 (Visual C++ 2008) Architecture: x86 Configure Command: cscript /nologo configure.js "--enable-snapshot-build" "--disable-isapi" "--enable-debug-pack" "--disable-isapi" "--without-mssql" "--without-pdo-mssql" "--without-pi3web" "--with-pdo-oci=D:\php-sdk\oracle\instantclient10\sdk,shared" "--with-oci8=D:\php-sdk\oracle\instantclient10\sdk,shared" "--with-oci8-11g=D:\php-sdk\oracle\instantclient11\sdk,shared" "--enable-object-out-dir=../obj/" "--enable-com-dotnet" "--with-mcrypt=static" "--disable-static-analyze"

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Tips on installing Visual Studio 2010 SP1

    - by Jon Galloway
    Visual Studio SP1 went up on MSDN downloads (here) on March 8, and will be released publicly on March 10 here. Release announcements: Soma: Visual Studio 2010 enhancements Jason Zander: Announcing Visual Studio 2010 Service Pack 1 I started on this post with tips on installing VS2010 SP1 when I realized I’ve been writing these up for Visual Studio and .NET framework SP releases for a while (e.g. VS2008 / .NET 3.5 SP1 post, VS2005 SP1 post). Looking back the years of Visual Studio SP installs (and remembering when we’d get up to SP6 for a Visual Studio release), I’m happy to see that it just keeps getting easier. Service Packs are a lot less finicky about requiring beta software to be uninstalled, install more quickly, and are just generally a lot less scary. If I can’t have a jetpack, at least my future provided me faster, easier service packs. Disclaimer: These tips are just general things I've picked up over the years. I don't have any inside knowledge here. If you see anything wrong, be sure to let me know in the comments. You may want to check the readme file before installing - it's short, and it's in that new-fangled HTML format. On with the tips! Before starting, uninstall Visual Studio features you don't use Visual Studio service packs (and other Microsoft service packs as well) install patches for the specific features you’ve got installed. This is a big reason to always do a custom install when you first install Visual Studio, but it’s not difficult to update your existing installation. Here’s the quick way to do that: Tap the windows key and type “add or remove programs” and press enter (or click on the “Add or remove programs” link if you must).   Type “Visual Studio 2010” in the search box in the upper right corner, click on the Visual Studio program (the one with the VS infinity looking logo) and click on Uninstall/Change. Click on Add or Remove Features The next part’s up to you – what features do you actually use? I’ve been doing primarily ASP.NET MVC development in C# lately, so I selected Visual C# and Visual Web Developer. Remember that you can install features later if needed, and can also install the express versions if you want. Selecting everything just because it’s there - or you paid for it – means that you install updates for everything, every time. When you’ve made your changes, click on the Update button to uninstall unused features. Shut down all instances of Visual Studio It probably goes without saying that you should close a program down before installing it, partly to avoid the file-in-use-reboot-after-install horror. Additional "hunch / works on my machine" quality tip: On one computer I saw a note in the setup log about Visual Studio a prompt for user input to close Visual Studio, although I never saw the prompt. Just to  be sure, I'd personally open up Task Manager and kill any devenv.exe processes I saw running, as it couldn't hurt. Use the web installer I use the Web Installers whenever possible. There’s no point in downloading the DVD unless you’re doing multiple installs or won’t have internet access. The DVD IS is 1.5GB, since it needs to be able to service every possible supported installation option on both x86 and x64. The web installer is 776 KB (smaller than calc.exe), so you can start the installation right away. Like other web installers, the real benefit is that it only installs the updates you need (hence the reason for step 1 – uninstalling unused components). Instead of 1.5GB, my download was roughly 530MB. If you’re installing from MSDN (this link takes you right to the Visual Studio installs), select the first one on the list: The first step in the installation process is to analyze the machine configuration and tell you what needs to be installed. Since I've trimmed down my features, that's a pretty short list. The time's not far off where I may not install SQL Server on my dev machines, just using SQL Server Compact - that would shorten the list further. When I hit next, you can see that the download size has shrunk considerably. When I start the install, note that the installation begins while other components are downloading - another benefit of the web install. On my mid-range desktop machine, the install took 25 minutes. What if it takes longer? According to Heath Stewart (Visual Studio installer guru), average SP1 installs take roughly 45 minutes. An installation which takes hours to complete may be a sign of a problem: see his post Visual Studio 2010 Service Pack 1 installing for over 2 hours could be a sign of a problem. Why so long? Yes, even 25 minutes is a while. Heath's got another blog post explaining why the update can take longer than the initial install (see: A patch may take as long or longer to install than the target product) which explains all the additional steps and complexities a patch needs to deal with, as well as some mitigation steps that deployment authors can take to mitigate the impact. Other things to know about Visual Studio 2010 SP1 Installs over Visual Studio 2010 SP1 Beta That's nice. Previous Visual Studio versions did a number of annoying things when you installed SP's over beta's - fail with weird errors, get part way through and tell you needed to cancel and uninstall first, etc. I've installed this on two machines that had random beta stuff installed without tears. That Readme file you didn't read I mentioned the readme file earlier (http://go.microsoft.com/fwlink/?LinkId=210711 ). Some interesting things I picked up in there: 2.1.3. Visual Studio 2010 Service Pack 1 installation may fail when a USB drive or other removeable drive is connected 2.1.4. Visual Studio must be restarted after Visual Studio 2010 SP1 tooling for SQL Server Compact (Compact) 4.0 is installed 2.2.1. If Visual Studio 2010 Service Pack 1 is uninstalled, Visual Studio 2010 must be reinstalled to restore certain components 2.2.2. If Visual Studio 2010 Service Pack 1 is uninstalled, Visual Studio 2010 must be reinstalled before SP1 can be installed again 2.4.3.1. Async CTP If you installed the pre-SP1 version of Async CTP but did not uninstall it before you installed Visual Studio 2010 SP1, then your computer will be in a state in which the version of the C# compiler in the .NET Framework does not match the C# compiler in Visual Studio. To resolve this issue: After you install Visual Studio 2010 SP1, reinstall the SP1 version of the Async CTP from here. Hardware acceleration for Visual Studio is disabled on Windows XP Visual Studio 2010 SP1 disables hardware acceleration when running on Windows XP (only on XP). You can turn it back on in the Visual Studio options, under Environment / General, as shown below. See Jason Zander's post titled Performance Troubleshooting Article and VS2010 SP1 Change.

    Read the article

  • Converting a Visual Studio 2003 Web Project to a Visual Studio 2008 Web Application Project

    - by navaneeth
    This walkthrough describes how to convert a Visual Studio .NET 2002 or Visual Studio .NET 2003 Web project to a Visual Studio 2008 Web application project. The Visual Studio 2008 Web application project model is like the Visual Studio 2005 Web application project model. Therefore, the conversion processes are similar. For more information about Web application projects, see ASP.NET Web Application Projects. You can also convert from a Visual Studio .NET Web project to a Visual Studio 2008 Web site project. However, conversion to a Web application project is the approach that is supported, and gives you the convenience of tools to help with the conversion. For example, when you convert to a Visual Studio 2008 Web application project, you can use the Visual Studio Conversion Wizard to automate part of the process. For information about how to convert a Visual Studio .NET Web project to a Visual Studio 2008 Web site, see Common Web Project Conversion Issues and Solutions. There are two parts involved in converting a Visual Studio 2002 or 2003 Web project to a Visual Studio 2008 Web application project. The parts are as follows: Converting the project. You can use the Visual Studio Conversion Wizard for the initial conversion of the project and Web.config files. You can later use the Convert To Web Application command to update the project's files and structure. Upgrading the .NET Framework version of the project. You must upgrade the project's .NET Framework version to either .NET Framework 2.0 SP1 or to .NET Framework 3.5. This .NET Framework version upgrade is required because Visual Studio 2008 cannot target earlier versions of the .NET Framework. You can perform this upgrade during the project conversion, by using the Conversion Wizard. Alternatively, you can upgrade the .NET Framework version after you convert the project.   NoteYou can change a project's .NET Framework version manually. To do so, in Visual Studio open the property pages for the project, click the Application tab, and then select a new version from the Target Framework list. This walkthrough illustrates the following tasks: Opening the Visual Studio .NET project in Visual Studio 2008 and creating a backup of the project files. Upgrading the .NET Framework version that the project targets. Converting the project file and the Web.config file. Converting ASP.NET code files. Testing the converted project. Prerequisites    To complete this walkthrough, you will need: Visual Studio 2008. A Web site project that was created in Visual Studio .NET version 2002 or 2003 that compiles and runs without errors. Converting the Project and Upgrading the .NET Framework Version    To begin, you open the project in Visual Studio 2008, which starts the conversion. It offers you an opportunity to back up the project before converting it. NoteIt is strongly recommended that you back up the project. The conversion works on the original project files, which cannot be recovered if the conversion is not successful.To convert the project and back up the files In Visual Studio 2008, in the File menu, click Open and then click Project. The Open Project dialog box is displayed. Browse to the folder that contains the project or solution file for the Visual Studio .NET project, select the file, and then click Open. NoteMake sure that you open the project by using the Open Project command. If you use the Open Web Site command, the project will be converted to the Web site project format.The Conversion Wizard opens and prompts you to create a backup before converting the project. To create the backup, click Yes. Click Browse, select the folder in which the backup should be created, and then click Next. Click Finish. The backup starts. NoteThere might be significant delays as the Conversion Wizard copies files, with no updates or progress indicated. Wait until the process finishes before you continue.When the conversion finishes, the wizard prompts you to upgrade the targeted version of the .NET Framework for the project. To upgrade to the .NET Framework 3.5, click Yes. To upgrade the project to target the .NET Framework 2.0 SP1, click No. It is recommended that you leave the check box selected that asks whether you want to upgrade all Webs in the solution. If you upgrade to .NET Framework 3.5, the project's Web.config file is modified at the same time as the project file. When the upgrade and conversion have finished, a message is displayed that indicates that you have completed the first step in converting your project. Click OK. The wizard displays status information about the conversion. Click Close. Testing the Converted Project    After the conversion has finished, you can test the project to make sure that it runs. This will also help you identify code in the project that must be updated. To verify that the project runs If you know about changes that are required for the code to run with the new version of the .NET Framework, make those changes. In the Build menu, click Build. Any missing references or other compilation issues in the project are displayed in the Error List window. The most likely issues are missing assembly references or issues with dynamically generated types. In Solution Explorer, right-click the Web page that will be used to launch the application, and then click Set as Start Page. On the Debug menu, click Start Debugging. If debugging is not enabled, the Debugging Not Enabled dialog box is displayed. Select the option to add a Web.config file that has debugging enabled, and then click OK. Verify that the converted project runs as expected. Do not continue with the conversion process until all build and run-time errors are resolved. Converting ASP.NET Code Files    ASP.NET Web page files and user-control files in Visual Studio 2008 that use the code-behind model have an associated designer file. The files that you just converted will have an associated code-behind file, but no designer file. Therefore, the next step is to generate designer files. NoteOnly ASP.NET Web pages and user controls that have their code in a separate code file require a separate designer file. For pages that have inline code and no associated code file, no designer file will be generated.To convert ASP.NET code files In Solution Explorer, right-click the project node, and then click Convert To Web Application. The files are converted. Verify that the converted code files have a code file and a designer file. Build and run the project to verify the results of the conversion.

    Read the article

  • Try out Windows Phone 7 on your PC today

    - by Matthew Guay
    Anticipation has been building for the new Windows Phone 7 Series ever since Microsoft unveiled it at the Mobile World Congress in February.  Now, thanks to free developer tools, you can get a first-hand experience of the basic Windows Phone 7 Series devices on your PC. Windows Phone 7 Series represents a huge change in the mobile field for Microsoft, bringing the acclaimed Zune HD UI to an innovative phone platform.  Windows Mobile has often been criticized for being behind other Smartphone platforms, but Microsoft seeks to regain the lead with this new upcoming release.  A platform must have developers behind it to be useful, so they have released a full set of free development tools so anyone can make apps for it today.  Or, if you simply want to play with Windows Phone 7, you can use the included emulator to try out the new Metro UI.  Here’s how to do this today on your Vista or 7 computer. Please note: These tools are a Customer Technology Preview release, so only install them if you’re comfortable using pre-release software. Getting Started First, download the Windows Phone Developer Tools CTP (link below), and run the installer.  This will install the Customer Technology Preview (CTP) versions of Visual Studio 2010 Express for Windows Phone, Windows Phone Emulator, Silverlight for Windows Phone, and XNA 4.0 Game Studio on your computer, all of which are required and cannot be installed individually. Accept the license agreement when prompted. Click “Install Now” to install the tools you need.  The only setup customization option is where to save the files, so choose Customize if you need to do so. Setup will now automatically download and install the components you need, and will additionally download either 32 or 64 bit programs depending on your operating system. About halfway thorough the installation, you’ll be prompted to reboot your system.  Once your computer is rebooted, setup will automatically resume without further input.   When setup is finished, click “Run the Product Now” to get started. Running Windows Phone 7 on your PC Now that you’ve got the Windows Phone Developer tools installed, it’s time to get the Windows Phone emulator running.  If you clicked “Run the Product Now” when the setup finished, Visual Studio 2010 Express for Windows Phone should have already started.   If not, simply enter “visual studio” in your start menu search and select “Microsoft Visual Studio 2010 Express for Windows Phone”. Now, to run the Windows Phone 7 emulator, we have to test an application.  So, even if you don’t know how to program, we can open a phone application template, and then test it to run the emulator.  First, click New Project on the left hand side of the front page. Any of the application templates would work for this, but here let’s select “Windows Phone Application”, and then click Ok. Here’s your new application template, which already contains the basic phone application framework.  This is where you’d start if you want to develop a Windows Phone app, but for now we just want to see Windows Phone 7 in action. So, to run the emulator, click Debug in the menu and then select Start Debugging. Your new application will launch inside the Windows Phone 7 Series emulator.  The default template doesn’t give us much, but it does show an example application running in Windows Phone 7.   Exploring Windows Phone 7 Click the Windows button on the emulator to go to the home screen.  Notice the Zune HD-like transition animation.  The emulator only includes Internet Explorer, your test application, and a few settings. Click the arrow on the right to see the available applications in a list. Settings lets you change the theme, regional settings, and the date and time in your emulator.  It also has an applications settings pane, but this currently isn’t populated. The Time settings shows a unique Windows Phone UI. You can return to the home screen by pressing the Windows button.  Here’s the Internet Explorer app running, with the virtual keyboard open to enter an address.  Please note that this emulator can also accept input from your keyboard, so you can enter addresses without clicking on the virtual keyboard. And here’s Google running in Internet Explorer on Windows Phone 7. Windows Phone 7 supports accelerometers, and you can simulate this in the emulator.  Click one of the rotate buttons to rotate the screen in that direction. Here’s our favorite website in Internet Explorer on Windows Phone 7 in landscape mode. All this, running right inside your Windows 7 desktop… Developer tools for Windows Phone 7 Although it may be fun to play with the Windows Phone 7 emulator, developers will be more excited to actually be able to create new and exciting apps for it.  The Windows Phone Developer Tools download includes Visual Studio Express and XNA Game Studio 4.0 which lets you create enticing games and apps for Windows Phones.  All development for Windows Phones will be in C#, Silverlight, and the XNA game framework.  Visual Studio Express for Windows Phone includes templates for these, and additionally has code samples to help you get started with development. Conclusion Many features are still not functional in this preview version, such as the search button and most of the included applications.  However, this still gives you a great way to experience firsthand the future of the Windows Phone platform.  And, for developers, this is your chance to set your mark on the Windows Phone 7 Series even before it is released to the public.  Happy playing and developing! Links Download Windows Phone Developer Tools CTP Windows Phone Developer Site Similar Articles Productive Geek Tips Keep Track of Homework Assignments with SoshikuWeekend Fun: Watch Television On Your PC With TVUPlayerEasily Manage Your Downloads with Download StatusbarCreate a Shortcut or Hotkey to Mute the System Volume in WindowsHow-To Geek on Lifehacker: How to Make Windows Vista Less Annoying TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Convert the Quick Launch Bar into a Super Application Launcher Automate Tasks in Linux with Crontab Discover New Bundled Feeds in Google Reader Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family

    Read the article

< Previous Page | 173 174 175 176 177 178 179 180 181 182 183 184  | Next Page >