Search Results

Search found 23079 results on 924 pages for 'local variables'.

Page 179/924 | < Previous Page | 175 176 177 178 179 180 181 182 183 184 185 186  | Next Page >

  • Writing an optimised and efficient search engine with mySQL and ColdFusion

    - by Mel
    I have a search page with the following scenarios listed below. I was told there was a better way to do it, but not how, and that I am using too many if statements, and that it's prone to causing an error through url manipulation: Search.cfm will processes a search made from a search bar present on all pages, with one search input (titleName). If search.cfm is accessed manually (through URL not through using the simple search bar on all pages) it displays an advanced search form with three inputs (titleName, genreID, platformID) or it evaluates searchResponse variable and decides what to do. If simple search query is blank, has no results, or less than 3 characters it displays an error If advanced search query is blank, has no results, or less than 3 characters it displays an error If any successful search returns results, they come back normally. The top-of-page logic is as follows: <!---SET DEFAULT VARIABLE---> <cfparam name="variables.searchResponse" default=""> <!---CHECK TO SEE IF SIMPLE SEARCH A FORM WAS SUBMITTED AND EXECUTE SEARCH IF IT WAS---> <cfif IsDefined("Form.simpleSearch") AND Len(Trim(Form.titleName)) LTE 2> <cfset variables.searchResponse = "invalidString"> <cfelseif IsDefined("Form.simpleSearch") AND Len(Trim(Form.titleName)) GTE 3> <!---EXECUTE METHOD AND GET DATA---> <cfinvoke component="myComponent" method="simpleSearch" searchString="#Form.titleName#" returnvariable="simpleSearchResult"> <cfset variables.searchResponse = "simpleSearchResult"> </cfif> <!---CHECK IF ANY RECORDS WERE FOUND---> <cfif IsDefined("variables.simpleSearchResult") AND simpleSearchResult.RecordCount IS 0> <cfset variables.searchResponse = "noResult"> </cfif> <!---CHECK IF ADVANCED SEARCH FORM WAS SUBMITTED---> <cfif IsDefined("Form.AdvancedSearch") AND Len(Trim(Form.titleName)) LTE 2> <cfset variables.searchResponse = "invalidString"> <cfelseif IsDefined("Form.advancedSearch") AND Len(Trim(Form.titleName)) GTE 2> <!---EXECUTE METHOD AND GET DATA---> <cfinvoke component="myComponent" method="advancedSearch" returnvariable="advancedSearchResult" titleName="#Form.titleName#" genreID="#Form.genreID#" platformID="#Form.platformID#"> <cfset variables.searchResponse = "advancedSearchResult"> </cfif> <!---CHECK IF ANY RECORDS WERE FOUND---> <cfif IsDefined("variables.advancedSearchResult") AND advancedSearchResult.RecordCount IS 0> <cfset variables.searchResponse = "noResult"> </cfif> I'm using the searchResponse variable to decide what the the page displays, based on the following scenarios: <!---ALWAYS DISPLAY SIMPLE SEARCH BAR AS IT'S PART OF THE HEADER---> <form name="simpleSearch" action="search.cfm" method="post"> <input type="hidden" name="simpleSearch" /> <input type="text" name="titleName" /> <input type="button" value="Search" onclick="form.submit()" /> </form> <!---IF NO SEARCH WAS SUBMITTED DISPLAY DEFAULT FORM---> <cfif searchResponse IS ""> <h1>Advanced Search</h1> <!---DISPLAY FORM---> <form name="advancedSearch" action="search.cfm" method="post"> <input type="hidden" name="advancedSearch" /> <input type="text" name="titleName" /> <input type="text" name="genreID" /> <input type="text" name="platformID" /> <input type="button" value="Search" onclick="form.submit()" /> </form> </cfif> <!---IF SEARCH IS BLANK OR LESS THAN 3 CHARACTERS DISPLAY ERROR MESSAGE---> <cfif searchResponse IS "invalidString"> <cfoutput> <h1>INVALID SEARCH</h1> </cfoutput> </cfif> <!---IF SEARCH WAS MADE BUT NO RESULTS WERE FOUND---> <cfif searchResponse IS "noResult"> <cfoutput> <h1>NO RESULT FOUND</h1> </cfoutput> </cfif> <!---IF SIMPLE SEARCH WAS MADE A RESULT WAS FOUND---> <cfif searchResponse IS "simpleSearchResult"> <cfoutput> <h1>Search Results</h1> </cfoutput> <cfoutput query="simpleSearchResult"> <!---DISPLAY QUERY DATA---> </cfoutput> </cfif> <!---IF ADVANCED SEARCH WAS MADE A RESULT WAS FOUND---> <cfif searchResponse IS "advancedSearchResult"> <cfoutput> <h1>Search Results</h1> <p>Your search for "#Form.titleName#" returned #advancedSearchResult.RecordCount# result(s).</p> </cfoutput> <cfoutput query="advancedSearchResult"> <!---DISPLAY QUERY DATA---> </cfoutput> </cfif> Is my logic a) not efficient because my if statements/is there a better way to do this? And b) Can you see any scenarios where my code can break? I've tested it but I have not been able to find any issues with it. And I have no way of measuring performance. Any thoughts and ideas would be greatly appreciated. Many thanks

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • GKTank example is not working.

    - by david
    Hello, I'm trying to get the GKTank example working with 2 iPhones. Both have bluetooth enabled. I start the app on both devices and tap the screen. The Peer Picker comes up and the devices find each other. If I select one device in the list it says "Waiting for {other iPhone}..." forever. On the {other iPhone} the waiting phone gets grayed out. If I select the device to connect to from both devices at the same time both go into waiting state forever... The debug log says this if I select the other iPhone on the debugged device: 2010-05-30 23:20:24.331 GKTank[2433:4e03] handleEvents started (2) 2010-05-30 23:20:25.269 GKTank[2433:4e03] ~ DNSServiceRegister callback: Ref=135f70, Flags=2, ErrorType=0 name=00oRWv-0A..David’s iPhone regtype=_gktank._udp. domain=local. 2010-05-30 23:20:25.375 GKTank[2433:4e03] ~ DNSServiceBrowse callback: Ref=134f30, Flags=2, IFIndex=8 (name=[en2]), ErrorType=0 name=00oRWv-0A..David’s iPhone regtype=_gktank._udp. domain=local. 2010-05-30 23:20:30.691 GKTank[2433:4e03] ~ DNSServiceBrowse callback: Ref=134f30, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 name=00K83eS0A..iPhone von Tamara regtype=_gktank._udp. domain=local. 2010-05-30 23:20:30.855 GKTank[2433:4e03] ~ DNSServiceQueryRecord callback: Ref=13a320, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 fullname=00k83es0a..iphone\032von\032tamara._gktank._udp.local. rrtype=16 rrclass=1 rdlen=18 ttl=7200 2010-05-30 23:20:30.872 GKTank[2433:4e03] ** peer 480260628: oldbusy=0, newbusy=0 2010-05-30 23:20:35.215 GKTank[2433:207] ** Stop resolving? potentially previous resolves 2010-05-30 23:20:35.226 GKTank[2433:207] **** BEGIN RESOLVE: 480260628 and it stays that way. On the second iPhone the device is listed as not available and grayed out. If I select each other at the same time it says this: 2010-05-30 23:24:31.416 GKTank[2442:4e03] handleEvents started (2) 2010-05-30 23:24:32.321 GKTank[2442:4e03] ~ DNSServiceRegister callback: Ref=135120, Flags=2, ErrorType=0 name=006JiAZ0A..David’s iPhone regtype=_gktank._udp. domain=local. 2010-05-30 23:24:32.419 GKTank[2442:4e03] ~ DNSServiceBrowse callback: Ref=134f30, Flags=2, IFIndex=8 (name=[en2]), ErrorType=0 name=006JiAZ0A..David’s iPhone regtype=_gktank._udp. domain=local. 2010-05-30 23:24:57.156 GKTank[2442:4e03] ~ DNSServiceBrowse callback: Ref=134f30, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 name=004_n6C0A..iPhone von Tamara regtype=_gktank._udp. domain=local. 2010-05-30 23:24:57.308 GKTank[2442:4e03] ~ DNSServiceQueryRecord callback: Ref=13a320, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 fullname=004_n6c0a..iphone\032von\032tamara._gktank._udp.local. rrtype=16 rrclass=1 rdlen=18 ttl=7200 2010-05-30 23:24:57.314 GKTank[2442:4e03] ** peer 203104196: oldbusy=0, newbusy=0 2010-05-30 23:25:02.383 GKTank[2442:207] ** Stop resolving? potentially previous resolves 2010-05-30 23:25:02.425 GKTank[2442:207] **** BEGIN RESOLVE: 203104196 2010-05-30 23:25:13.562 GKTank[2442:4e03] ~ DNSServiceQueryRecord callback: Ref=13a320, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 fullname=004_n6c0a..iphone\032von\032tamara._gktank._udp.local. rrtype=16 rrclass=1 rdlen=18 ttl=7200 2010-05-30 23:25:13.569 GKTank[2442:4e03] ** peer 203104196: oldbusy=0, newbusy=1 2010-05-30 23:25:33.660 GKTank[2442:4e03] ~ DNSServiceBrowse callback: Ref=134f30, Flags=0, IFIndex=-3 (name=[]), ErrorType=0 name=004_n6C0A..iPhone von Tamara regtype=_gktank._udp. domain=local. 2010-05-30 23:25:33.671 GKTank[2442:4e03] Peer [203104196] removed? (0). 2010-05-30 23:25:33.683 GKTank[2442:4e03] GKPeer[139f10] 203104196 service count old=1 new=0 2010-05-30 23:25:37.786 GKTank[2442:4e03] ~ DNSServiceBrowse callback: Ref=134f30, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 name=004_n6C0A..iPhone von Tamara regtype=_gktank._udp. domain=local. 2010-05-30 23:25:37.816 GKTank[2442:4e03] GKPeer[139f10] 203104196 service count old=0 new=1 ... and waits forever. Does anybody know whats wrong with this sample??

    Read the article

  • Nginx and client certificates from hierarchical OpenSSL-based certification authorities

    - by Fmy Oen
    I'm trying to set up root certification authority, subordinate certification authority and to generate the client certificates signed by any of this CA that nginx 0.7.67 on Debian Squeeze will accept. My problem is that root CA signed client certificate works fine while subordinate CA signed one results in "400 Bad Request. The SSL certificate error". Step 1: nginx virtual host configuration: server { server_name test.local; access_log /var/log/nginx/test.access.log; listen 443 default ssl; keepalive_timeout 70; ssl_protocols SSLv3 TLSv1; ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5; ssl_certificate /etc/nginx/ssl/server.crt; ssl_certificate_key /etc/nginx/ssl/server.key; ssl_client_certificate /etc/nginx/ssl/client.pem; ssl_verify_client on; ssl_session_cache shared:SSL:10m; ssl_session_timeout 5m; location / { proxy_pass http://testsite.local/; } } Step 2: PKI infrastructure organization for both root and subordinate CA (based on this article): # mkdir ~/pki && cd ~/pki # mkdir rootCA subCA # cp -v /etc/ssl/openssl.cnf rootCA/ # cd rootCA/ # mkdir certs private crl newcerts; touch serial; echo 01 > serial; touch index.txt; touch crlnumber; echo 01 > crlnumber # cp -Rvp * ../subCA/ Almost no changes was made to rootCA/openssl.cnf: [ CA_default ] dir = . # Where everything is kept ... certificate = $dir/certs/rootca.crt # The CA certificate ... private_key = $dir/private/rootca.key # The private key and to subCA/openssl.cnf: [ CA_default ] dir = . # Where everything is kept ... certificate = $dir/certs/subca.crt # The CA certificate ... private_key = $dir/private/subca.key # The private key Step 3: Self-signed root CA certificate generation: # openssl genrsa -out ./private/rootca.key -des3 2048 # openssl req -x509 -new -key ./private/rootca.key -out certs/rootca.crt -config openssl.cnf Enter pass phrase for ./private/rootca.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:rootca Email Address []: Step 4: Subordinate CA certificate generation: # cd ../subCA # openssl genrsa -out ./private/subca.key -des3 2048 # openssl req -new -key ./private/subca.key -out subca.csr -config openssl.cnf Enter pass phrase for ./private/subca.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:subca Email Address []: Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []: An optional company name []: Step 5: Subordinate CA certificate signing by root CA certificate: # cd ../rootCA/ # openssl ca -in ../subCA/subca.csr -extensions v3_ca -config openssl.cnf Using configuration from openssl.cnf Enter pass phrase for ./private/rootca.key: Check that the request matches the signature Signature ok Certificate Details: Serial Number: 1 (0x1) Validity Not Before: Feb 4 10:49:43 2013 GMT Not After : Feb 4 10:49:43 2014 GMT Subject: countryName = AU stateOrProvinceName = Some-State organizationName = Internet Widgits Pty Ltd commonName = subca X509v3 extensions: X509v3 Subject Key Identifier: C9:E2:AC:31:53:81:86:3F:CD:F8:3D:47:10:FC:E5:8E:C2:DA:A9:20 X509v3 Authority Key Identifier: keyid:E9:50:E6:BF:57:03:EA:6E:8F:21:23:86:BB:44:3D:9F:8F:4A:8B:F2 DirName:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca serial:9F:FB:56:66:8D:D3:8F:11 X509v3 Basic Constraints: CA:TRUE Certificate is to be certified until Feb 4 10:49:43 2014 GMT (365 days) Sign the certificate? [y/n]:y 1 out of 1 certificate requests certified, commit? [y/n]y ... # cd ../subCA/ # cp -v ../rootCA/newcerts/01.pem certs/subca.crt Step 6: Server certificate generation and signing by root CA (for nginx virtual host): # cd ../rootCA # openssl genrsa -out ./private/server.key -des3 2048 # openssl req -new -key ./private/server.key -out server.csr -config openssl.cnf Enter pass phrase for ./private/server.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:test.local Email Address []: Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []: An optional company name []: # openssl ca -in server.csr -out certs/server.crt -config openssl.cnf Step 7: Client #1 certificate generation and signing by root CA: # openssl genrsa -out ./private/client1.key -des3 2048 # openssl req -new -key ./private/client1.key -out client1.csr -config openssl.cnf Enter pass phrase for ./private/client1.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:Client #1 Email Address []: Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []: An optional company name []: # openssl ca -in client1.csr -out certs/client1.crt -config openssl.cnf Step 8: Client #1 certificate converting to PKCS12 format: # openssl pkcs12 -export -out certs/client1.p12 -inkey private/client1.key -in certs/client1.crt -certfile certs/rootca.crt Step 9: Client #2 certificate generation and signing by subordinate CA: # cd ../subCA/ # openssl genrsa -out ./private/client2.key -des3 2048 # openssl req -new -key ./private/client2.key -out client2.csr -config openssl.cnf Enter pass phrase for ./private/client2.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:Client #2 Email Address []: Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []: An optional company name []: # openssl ca -in client2.csr -out certs/client2.crt -config openssl.cnf Step 10: Client #2 certificate converting to PKCS12 format: # openssl pkcs12 -export -out certs/client2.p12 -inkey private/client2.key -in certs/client2.crt -certfile certs/subca.crt Step 11: Passing server certificate and private key to nginx (performed with OS superuser privileges): # cd ../rootCA/ # cp -v certs/server.crt /etc/nginx/ssl/ # cp -v private/server.key /etc/nginx/ssl/ Step 12: Passing root and subordinate CA certificates to nginx (performed with OS superuser privileges): # cat certs/rootca.crt > /etc/nginx/ssl/client.pem # cat ../subCA/certs/subca.crt >> /etc/nginx/ssl/client.pem client.pem file look like this: # cat /etc/nginx/ssl/client.pem -----BEGIN CERTIFICATE----- MIID6TCCAtGgAwIBAgIJAJ/7VmaN048RMA0GCSqGSIb3DQEBBQUAMFYxCzAJBgNV BAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBX aWRnaXRzIFB0eSBMdGQxDzANBgNVBAMTBnJvb3RjYTAeFw0xMzAyMDQxMDM1NTda ... -----END CERTIFICATE----- Certificate: Data: Version: 3 (0x2) Serial Number: 1 (0x1) ... -----BEGIN CERTIFICATE----- MIID4DCCAsigAwIBAgIBATANBgkqhkiG9w0BAQUFADBWMQswCQYDVQQGEwJBVTET MBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0cyBQ dHkgTHRkMQ8wDQYDVQQDEwZyb290Y2EwHhcNMTMwMjA0MTA0OTQzWhcNMTQwMjA0 ... -----END CERTIFICATE----- It looks like everything is working fine: # service nginx reload # Reloading nginx configuration: Enter PEM pass phrase: # nginx. # Step 13: Installing *.p12 certificates in browser (Firefox in my case) gives the problem I've mentioned above. Client #1 = 200 OK, Client #2 = 400 Bad request/The SSL certificate error. Any ideas what should I do? Update 1: Results of SSL connection test attempts: # openssl s_client -connect test.local:443 -CAfile ~/pki/rootCA/certs/rootca.crt -cert ~/pki/rootCA/certs/client1.crt -key ~/pki/rootCA/private/client1.key -showcerts Enter pass phrase for tmp/testcert/client1.key: CONNECTED(00000003) depth=1 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = rootca verify return:1 depth=0 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = test.local verify return:1 --- Certificate chain 0 s:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=test.local i:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca -----BEGIN CERTIFICATE----- MIIDpjCCAo6gAwIBAgIBAjANBgkqhkiG9w0BAQUFADBWMQswCQYDVQQGEwJBVTET MBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0cyBQ dHkgTHRkMQ8wDQYDVQQDEwZyb290Y2EwHhcNMTMwMjA0MTEwNjAzWhcNMTQwMjA0 ... -----END CERTIFICATE----- 1 s:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca i:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca -----BEGIN CERTIFICATE----- MIID6TCCAtGgAwIBAgIJAJ/7VmaN048RMA0GCSqGSIb3DQEBBQUAMFYxCzAJBgNV BAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBX aWRnaXRzIFB0eSBMdGQxDzANBgNVBAMTBnJvb3RjYTAeFw0xMzAyMDQxMDM1NTda ... -----END CERTIFICATE----- --- Server certificate subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=test.local issuer=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca --- Acceptable client certificate CA names /C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca /C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=subca --- SSL handshake has read 3395 bytes and written 2779 bytes --- New, TLSv1/SSLv3, Cipher is AES256-SHA Server public key is 2048 bit Secure Renegotiation IS supported Compression: zlib compression Expansion: zlib compression SSL-Session: Protocol : TLSv1 Cipher : AES256-SHA Session-ID: 15BFC2029691262542FAE95A48078305E76EEE7D586400F8C4F7C516B0F9D967 Session-ID-ctx: Master-Key: 23246CF166E8F3900793F0A2561879E5DB07291F32E99591BA1CF53E6229491FEAE6858BFC9AACAF271D9C3706F139C7 Key-Arg : None PSK identity: None PSK identity hint: None SRP username: None TLS session ticket: 0000 - c2 5e 1d d2 b5 6d 40 23-b2 40 89 e4 35 75 70 07 .^...m@#[email protected]. 0010 - 1b bb 2b e6 e0 b5 ab 10-10 bf 46 6e aa 67 7f 58 ..+.......Fn.g.X 0020 - cf 0e 65 a4 67 5a 15 ba-aa 93 4e dd 3d 6e 73 4c ..e.gZ....N.=nsL 0030 - c5 56 f6 06 24 0f 48 e6-38 36 de f1 b5 31 c5 86 .V..$.H.86...1.. ... 0440 - 4c 53 39 e3 92 84 d2 d0-e5 e2 f5 8a 6a a8 86 b1 LS9.........j... Compression: 1 (zlib compression) Start Time: 1359989684 Timeout : 300 (sec) Verify return code: 0 (ok) --- Everything seems fine with Client #2 and root CA certificate but request returns 400 Bad Request error: # openssl s_client -connect test.local:443 -CAfile ~/pki/rootCA/certs/rootca.crt -cert ~/pki/subCA/certs/client2.crt -key ~/pki/subCA/private/client2.key -showcerts Enter pass phrase for tmp/testcert/client2.key: CONNECTED(00000003) depth=1 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = rootca verify return:1 depth=0 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = test.local verify return:1 ... Compression: 1 (zlib compression) Start Time: 1359989989 Timeout : 300 (sec) Verify return code: 0 (ok) --- GET / HTTP/1.0 HTTP/1.1 400 Bad Request Server: nginx/0.7.67 Date: Mon, 04 Feb 2013 15:00:43 GMT Content-Type: text/html Content-Length: 231 Connection: close <html> <head><title>400 The SSL certificate error</title></head> <body bgcolor="white"> <center><h1>400 Bad Request</h1></center> <center>The SSL certificate error</center> <hr><center>nginx/0.7.67</center> </body> </html> closed Verification fails with Client #2 certificate and subordinate CA certificate: # openssl s_client -connect test.local:443 -CAfile ~/pki/subCA/certs/subca.crt -cert ~/pki/subCA/certs/client2.crt -key ~/pki/subCA/private/client2.key -showcerts Enter pass phrase for tmp/testcert/client2.key: CONNECTED(00000003) depth=1 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = rootca verify error:num=19:self signed certificate in certificate chain verify return:0 ... Compression: 1 (zlib compression) Start Time: 1359990354 Timeout : 300 (sec) Verify return code: 19 (self signed certificate in certificate chain) --- GET / HTTP/1.0 HTTP/1.1 400 Bad Request ... Still getting 400 Bad Request error with concatenated CA certificates and Client #2 (but still everything ok with Client #1): # cat certs/rootca.crt ../subCA/certs/subca.crt > certs/concatenatedca.crt # openssl s_client -connect test.local:443 -CAfile ~/pki/rootCA/certs/concatenatedca.crt -cert ~/pki/subCA/certs/client2.crt -key ~/pki/subCA/private/client2.key -showcerts Enter pass phrase for tmp/testcert/client2.key: CONNECTED(00000003) depth=1 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = rootca verify return:1 depth=0 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = test.local verify return:1 --- ... Compression: 1 (zlib compression) Start Time: 1359990772 Timeout : 300 (sec) Verify return code: 0 (ok) --- GET / HTTP/1.0 HTTP/1.1 400 Bad Request ... Update 2: I've managed to recompile nginx with enabled debug. Here is the part of successfull conection by Client #1 track: 2013/02/05 14:08:23 [debug] 38701#0: *119 accept: <MY IP ADDRESS> fd:3 2013/02/05 14:08:23 [debug] 38701#0: *119 event timer add: 3: 60000:2856497512 2013/02/05 14:08:23 [debug] 38701#0: *119 kevent set event: 3: ft:-1 fl:0025 2013/02/05 14:08:23 [debug] 38701#0: *119 malloc: 28805200:660 2013/02/05 14:08:23 [debug] 38701#0: *119 malloc: 28834400:1024 2013/02/05 14:08:23 [debug] 38701#0: *119 posix_memalign: 28860000:4096 @16 2013/02/05 14:08:23 [debug] 38701#0: *119 http check ssl handshake 2013/02/05 14:08:23 [debug] 38701#0: *119 https ssl handshake: 0x16 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL server name: "test.local" 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_do_handshake: -1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_get_error: 2 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL handshake handler: 0 2013/02/05 14:08:23 [debug] 38701#0: *119 verify:1, error:0, depth:1, subject:"/C=AU /ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca" 2013/02/05 14:08:23 [debug] 38701#0: *119 verify:1, error:0, depth:0, subject:"/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=Client #1",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca" 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_do_handshake: 1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL: TLSv1, cipher: "AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1" 2013/02/05 14:08:23 [debug] 38701#0: *119 http process request line 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_read: -1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_get_error: 2 2013/02/05 14:08:23 [debug] 38701#0: *119 http process request line 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_read: 1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_read: 524 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_read: -1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_get_error: 2 2013/02/05 14:08:23 [debug] 38701#0: *119 http request line: "GET / HTTP/1.1" And here is the part of unsuccessfull conection by Client #2 track: 2013/02/05 13:51:34 [debug] 38701#0: *112 accept: <MY_IP_ADDRESS> fd:3 2013/02/05 13:51:34 [debug] 38701#0: *112 event timer add: 3: 60000:2855488975 2013/02/05 13:51:34 [debug] 38701#0: *112 kevent set event: 3: ft:-1 fl:0025 2013/02/05 13:51:34 [debug] 38701#0: *112 malloc: 28805200:660 2013/02/05 13:51:34 [debug] 38701#0: *112 malloc: 28834400:1024 2013/02/05 13:51:34 [debug] 38701#0: *112 posix_memalign: 28860000:4096 @16 2013/02/05 13:51:34 [debug] 38701#0: *112 http check ssl handshake 2013/02/05 13:51:34 [debug] 38701#0: *112 https ssl handshake: 0x16 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL server name: "test.local" 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_do_handshake: -1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_get_error: 2 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL handshake handler: 0 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_do_handshake: -1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_get_error: 2 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL handshake handler: 0 2013/02/05 13:51:34 [debug] 38701#0: *112 verify:0, error:20, depth:1, subject:"/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=subca",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca" 2013/02/05 13:51:34 [debug] 38701#0: *112 verify:0, error:27, depth:1, subject:"/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=subca",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca" 2013/02/05 13:51:34 [debug] 38701#0: *112 verify:1, error:27, depth:0, subject:"/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=Client #2",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=subca" 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_do_handshake: 1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL: TLSv1, cipher: "AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1" 2013/02/05 13:51:34 [debug] 38701#0: *112 http process request line 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_read: 1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_read: 524 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_read: -1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_get_error: 2 2013/02/05 13:51:34 [debug] 38701#0: *112 http request line: "GET / HTTP/1.1" So I'm getting OpenSSL error #20 and then #27. According to verify documentation: 20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: unable to get local issuer certificate the issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certificate cannot be found. 27 X509_V_ERR_CERT_UNTRUSTED: certificate not trusted the root CA is not marked as trusted for the specified purpose.

    Read the article

  • Currency Conversion in Oracle BI applications

    - by Saurabh Verma
    Authored by Vijay Aggarwal and Hichem Sellami A typical data warehouse contains Star and/or Snowflake schema, made up of Dimensions and Facts. The facts store various numerical information including amounts. Example; Order Amount, Invoice Amount etc. With the true global nature of business now-a-days, the end-users want to view the reports in their own currency or in global/common currency as defined by their business. This presents a unique opportunity in BI to provide the amounts in converted rates either by pre-storing or by doing on-the-fly conversions while displaying the reports to the users. Source Systems OBIA caters to various source systems like EBS, PSFT, Sebl, JDE, Fusion etc. Each source has its own unique and intricate ways of defining and storing currency data, doing currency conversions and presenting to the OLTP users. For example; EBS stores conversion rates between currencies which can be classified by conversion rates, like Corporate rate, Spot rate, Period rate etc. Siebel stores exchange rates by conversion rates like Daily. EBS/Fusion stores the conversion rates for each day, where as PSFT/Siebel store for a range of days. PSFT has Rate Multiplication Factor and Rate Division Factor and we need to calculate the Rate based on them, where as other Source systems store the Currency Exchange Rate directly. OBIA Design The data consolidation from various disparate source systems, poses the challenge to conform various currencies, rate types, exchange rates etc., and designing the best way to present the amounts to the users without affecting the performance. When consolidating the data for reporting in OBIA, we have designed the mechanisms in the Common Dimension, to allow users to report based on their required currencies. OBIA Facts store amounts in various currencies: Document Currency: This is the currency of the actual transaction. For a multinational company, this can be in various currencies. Local Currency: This is the base currency in which the accounting entries are recorded by the business. This is generally defined in the Ledger of the company. Global Currencies: OBIA provides five Global Currencies. Three are used across all modules. The last two are for CRM only. A Global currency is very useful when creating reports where the data is viewed enterprise-wide. Example; a US based multinational would want to see the reports in USD. The company will choose USD as one of the global currencies. OBIA allows users to define up-to five global currencies during the initial implementation. The term Currency Preference is used to designate the set of values: Document Currency, Local Currency, Global Currency 1, Global Currency 2, Global Currency 3; which are shared among all modules. There are four more currency preferences, specific to certain modules: Global Currency 4 (aka CRM Currency) and Global Currency 5 which are used in CRM; and Project Currency and Contract Currency, used in Project Analytics. When choosing Local Currency for Currency preference, the data will show in the currency of the Ledger (or Business Unit) in the prompt. So it is important to select one Ledger or Business Unit when viewing data in Local Currency. More on this can be found in the section: Toggling Currency Preferences in the Dashboard. Design Logic When extracting the fact data, the OOTB mappings extract and load the document amount, and the local amount in target tables. It also loads the exchange rates required to convert the document amount into the corresponding global amounts. If the source system only provides the document amount in the transaction, the extract mapping does a lookup to get the Local currency code, and the Local exchange rate. The Load mapping then uses the local currency code and rate to derive the local amount. The load mapping also fetches the Global Currencies and looks up the corresponding exchange rates. The lookup of exchange rates is done via the Exchange Rate Dimension provided as a Common/Conforming Dimension in OBIA. The Exchange Rate Dimension stores the exchange rates between various currencies for a date range and Rate Type. Two physical tables W_EXCH_RATE_G and W_GLOBAL_EXCH_RATE_G are used to provide the lookups and conversions between currencies. The data is loaded from the source system’s Ledger tables. W_EXCH_RATE_G stores the exchange rates between currencies with a date range. On the other hand, W_GLOBAL_EXCH_RATE_G stores the currency conversions between the document currency and the pre-defined five Global Currencies for each day. Based on the requirements, the fact mappings can decide and use one or both tables to do the conversion. Currency design in OBIA also taps into the MLS and Domain architecture, thus allowing the users to map the currencies to a universal Domain during the implementation time. This is especially important for companies deploying and using OBIA with multiple source adapters. Some Gotchas to Look for It is necessary to think through the currencies during the initial implementation. 1) Identify various types of currencies that are used by your business. Understand what will be your Local (or Base) and Documentation currency. Identify various global currencies that your users will want to look at the reports. This will be based on the global nature of your business. Changes to these currencies later in the project, while permitted, but may cause Full data loads and hence lost time. 2) If the user has a multi source system make sure that the Global Currencies and Global Rate Types chosen in Configuration Manager do have the corresponding source specific counterparts. In other words, make sure for every DW specific value chosen for Currency Code or Rate Type, there is a source Domain mapping already done. Technical Section This section will briefly mention the technical scenarios employed in the OBIA adaptors to extract data from each source system. In OBIA, we have two main tables which store the Currency Rate information as explained in previous sections. W_EXCH_RATE_G and W_GLOBAL_EXCH_RATE_G are the two tables. W_EXCH_RATE_G stores all the Currency Conversions present in the source system. It captures data for a Date Range. W_GLOBAL_EXCH_RATE_G has Global Currency Conversions stored at a Daily level. However the challenge here is to store all the 5 Global Currency Exchange Rates in a single record for each From Currency. Let’s voyage further into the Source System Extraction logic for each of these tables and understand the flow briefly. EBS: In EBS, we have Currency Data stored in GL_DAILY_RATES table. As the name indicates GL_DAILY_RATES EBS table has data at a daily level. However in our warehouse we store the data with a Date Range and insert a new range record only when the Exchange Rate changes for a particular From Currency, To Currency and Rate Type. Below are the main logical steps that we employ in this process. (Incremental Flow only) – Cleanup the data in W_EXCH_RATE_G. Delete the records which have Start Date > minimum conversion date Update the End Date of the existing records. Compress the daily data from GL_DAILY_RATES table into Range Records. Incremental map uses $$XRATE_UPD_NUM_DAY as an extra parameter. Generate Previous Rate, Previous Date and Next Date for each of the Daily record from the OLTP. Filter out the records which have Conversion Rate same as Previous Rates or if the Conversion Date lies within a single day range. Mark the records as ‘Keep’ and ‘Filter’ and also get the final End Date for the single Range record (Unique Combination of From Date, To Date, Rate and Conversion Date). Filter the records marked as ‘Filter’ in the INFA map. The above steps will load W_EXCH_RATE_GS. Step 0 updates/deletes W_EXCH_RATE_G directly. SIL map will then insert/update the GS data into W_EXCH_RATE_G. These steps convert the daily records in GL_DAILY_RATES to Range records in W_EXCH_RATE_G. We do not need such special logic for loading W_GLOBAL_EXCH_RATE_G. This is a table where we store data at a Daily Granular Level. However we need to pivot the data because the data present in multiple rows in source tables needs to be stored in different columns of the same row in DW. We use GROUP BY and CASE logic to achieve this. Fusion: Fusion has extraction logic very similar to EBS. The only difference is that the Cleanup logic that was mentioned in step 0 above does not use $$XRATE_UPD_NUM_DAY parameter. In Fusion we bring all the Exchange Rates in Incremental as well and do the cleanup. The SIL then takes care of Insert/Updates accordingly. PeopleSoft:PeopleSoft does not have From Date and To Date explicitly in the Source tables. Let’s look at an example. Please note that this is achieved from PS1 onwards only. 1 Jan 2010 – USD to INR – 45 31 Jan 2010 – USD to INR – 46 PSFT stores records in above fashion. This means that Exchange Rate of 45 for USD to INR is applicable for 1 Jan 2010 to 30 Jan 2010. We need to store data in this fashion in DW. Also PSFT has Exchange Rate stored as RATE_MULT and RATE_DIV. We need to do a RATE_MULT/RATE_DIV to get the correct Exchange Rate. We generate From Date and To Date while extracting data from source and this has certain assumptions: If a record gets updated/inserted in the source, it will be extracted in incremental. Also if this updated/inserted record is between other dates, then we also extract the preceding and succeeding records (based on dates) of this record. This is required because we need to generate a range record and we have 3 records whose ranges have changed. Taking the same example as above, if there is a new record which gets inserted on 15 Jan 2010; the new ranges are 1 Jan to 14 Jan, 15 Jan to 30 Jan and 31 Jan to Next available date. Even though 1 Jan record and 31 Jan have not changed, we will still extract them because the range is affected. Similar logic is used for Global Exchange Rate Extraction. We create the Range records and get it into a Temporary table. Then we join to Day Dimension, create individual records and pivot the data to get the 5 Global Exchange Rates for each From Currency, Date and Rate Type. Siebel: Siebel Facts are dependent on Global Exchange Rates heavily and almost none of them really use individual Exchange Rates. In other words, W_GLOBAL_EXCH_RATE_G is the main table used in Siebel from PS1 release onwards. As of January 2002, the Euro Triangulation method for converting between currencies belonging to EMU members is not needed for present and future currency exchanges. However, the method is still available in Siebel applications, as are the old currencies, so that historical data can be maintained accurately. The following description applies only to historical data needing conversion prior to the 2002 switch to the Euro for the EMU member countries. If a country is a member of the European Monetary Union (EMU), you should convert its currency to other currencies through the Euro. This is called triangulation, and it is used whenever either currency being converted has EMU Triangulation checked. Due to this, there are multiple extraction flows in SEBL ie. EUR to EMU, EUR to NonEMU, EUR to DMC and so on. We load W_EXCH_RATE_G through multiple flows with these data. This has been kept same as previous versions of OBIA. W_GLOBAL_EXCH_RATE_G being a new table does not have such needs. However SEBL does not have From Date and To Date columns in the Source tables similar to PSFT. We use similar extraction logic as explained in PSFT section for SEBL as well. What if all 5 Global Currencies configured are same? As mentioned in previous sections, from PS1 onwards we store Global Exchange Rates in W_GLOBAL_EXCH_RATE_G table. The extraction logic for this table involves Pivoting data from multiple rows into a single row with 5 Global Exchange Rates in 5 columns. As mentioned in previous sections, we use CASE and GROUP BY functions to achieve this. This approach poses a unique problem when all the 5 Global Currencies Chosen are same. For example – If the user configures all 5 Global Currencies as ‘USD’ then the extract logic will not be able to generate a record for From Currency=USD. This is because, not all Source Systems will have a USD->USD conversion record. We have _Generated mappings to take care of this case. We generate a record with Conversion Rate=1 for such cases. Reusable Lookups Before PS1, we had a Mapplet for Currency Conversions. In PS1, we only have reusable Lookups- LKP_W_EXCH_RATE_G and LKP_W_GLOBAL_EXCH_RATE_G. These lookups have another layer of logic so that all the lookup conditions are met when they are used in various Fact Mappings. Any user who would want to do a LKP on W_EXCH_RATE_G or W_GLOBAL_EXCH_RATE_G should and must use these Lookups. A direct join or Lookup on the tables might lead to wrong data being returned. Changing Currency preferences in the Dashboard: In the 796x series, all amount metrics in OBIA were showing the Global1 amount. The customer needed to change the metric definitions to show them in another Currency preference. Project Analytics started supporting currency preferences since 7.9.6 release though, and it published a Tech note for other module customers to add toggling between currency preferences to the solution. List of Currency Preferences Starting from 11.1.1.x release, the BI Platform added a new feature to support multiple currencies. The new session variable (PREFERRED_CURRENCY) is populated through a newly introduced currency prompt. This prompt can take its values from the xml file: userpref_currencies_OBIA.xml, which is hosted in the BI Server installation folder, under :< home>\instances\instance1\config\OracleBIPresentationServicesComponent\coreapplication_obips1\userpref_currencies.xml This file contains the list of currency preferences, like“Local Currency”, “Global Currency 1”,…which customers can also rename to give them more meaningful business names. There are two options for showing the list of currency preferences to the user in the dashboard: Static and Dynamic. In Static mode, all users will see the full list as in the user preference currencies file. In the Dynamic mode, the list shown in the currency prompt drop down is a result of a dynamic query specified in the same file. Customers can build some security into the rpd, so the list of currency preferences will be based on the user roles…BI Applications built a subject area: “Dynamic Currency Preference” to run this query, and give every user only the list of currency preferences required by his application roles. Adding Currency to an Amount Field When the user selects one of the items from the currency prompt, all the amounts in that page will show in the Currency corresponding to that preference. For example, if the user selects “Global Currency1” from the prompt, all data will be showing in Global Currency 1 as specified in the Configuration Manager. If the user select “Local Currency”, all amount fields will show in the Currency of the Business Unit selected in the BU filter of the same page. If there is no particular Business Unit selected in that filter, and the data selected by the query contains amounts in more than one currency (for example one BU has USD as a functional currency, the other has EUR as functional currency), then subtotals will not be available (cannot add USD and EUR amounts in one field), and depending on the set up (see next paragraph), the user may receive an error. There are two ways to add the Currency field to an amount metric: In the form of currency code, like USD, EUR…For this the user needs to add the field “Apps Common Currency Code” to the report. This field is in every subject area, usually under the table “Currency Tag” or “Currency Code”… In the form of currency symbol ($ for USD, € for EUR,…) For this, the user needs to format the amount metrics in the report as a currency column, by specifying the currency tag column in the Column Properties option in Column Actions drop down list. Typically this column should be the “BI Common Currency Code” available in every subject area. Select Column Properties option in the Edit list of a metric. In the Data Format tab, select Custom as Treat Number As. Enter the following syntax under Custom Number Format: [$:currencyTagColumn=Subjectarea.table.column] Where Column is the “BI Common Currency Code” defined to take the currency code value based on the currency preference chosen by the user in the Currency preference prompt.

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • ORDER BY job failed in the Pig script while running EmbeddedPig using Java

    - by C.c. Huang
    I have this following pig script, which works perfectly using grunt shell (stored the results to HDFS without any issues); however, the last job (ORDER BY) failed if I ran the same script using Java EmbeddedPig. If I replace the ORDER BY job by others, such as GROUP or FOREACH GENERATE, the whole script then succeeded in Java EmbeddedPig. So I think it's the ORDER BY which causes the issue. Anyone has any experience with this? Any help would be appreciated! The Pig script: REGISTER pig-udf-0.0.1-SNAPSHOT.jar; user_similarity = LOAD '/tmp/sample-sim-score-results-31/part-r-00000' USING PigStorage('\t') AS (user_id: chararray, sim_user_id: chararray, basic_sim_score: float, alt_sim_score: float); simplified_user_similarity = FOREACH user_similarity GENERATE $0 AS user_id, $1 AS sim_user_id, $2 AS sim_score; grouped_user_similarity = GROUP simplified_user_similarity BY user_id; ordered_user_similarity = FOREACH grouped_user_similarity { sorted = ORDER simplified_user_similarity BY sim_score DESC; top = LIMIT sorted 10; GENERATE group, top; }; top_influencers = FOREACH ordered_user_similarity GENERATE com.aol.grapevine.similarity.pig.udf.AssignPointsToTopInfluencer($1, 10); all_influence_scores = FOREACH top_influencers GENERATE FLATTEN($0); grouped_influence_scores = GROUP all_influence_scores BY bag_of_topSimUserTuples::user_id; influence_scores = FOREACH grouped_influence_scores GENERATE group AS user_id, SUM(all_influence_scores.bag_of_topSimUserTuples::points) AS influence_score; ordered_influence_scores = ORDER influence_scores BY influence_score DESC; STORE ordered_influence_scores INTO '/tmp/cc-test-results-1' USING PigStorage(); The error log from Pig: 12/04/05 10:00:56 INFO pigstats.ScriptState: Pig script settings are added to the job 12/04/05 10:00:56 INFO mapReduceLayer.JobControlCompiler: mapred.job.reduce.markreset.buffer.percent is not set, set to default 0.3 12/04/05 10:00:58 INFO mapReduceLayer.JobControlCompiler: Setting up single store job 12/04/05 10:00:58 INFO jvm.JvmMetrics: Cannot initialize JVM Metrics with processName=JobTracker, sessionId= - already initialized 12/04/05 10:00:58 INFO mapReduceLayer.MapReduceLauncher: 1 map-reduce job(s) waiting for submission. 12/04/05 10:00:58 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 12/04/05 10:00:58 INFO input.FileInputFormat: Total input paths to process : 1 12/04/05 10:00:58 INFO util.MapRedUtil: Total input paths to process : 1 12/04/05 10:00:58 INFO util.MapRedUtil: Total input paths (combined) to process : 1 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Creating tmp-1546565755 in /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134-work-6955502337234509704 with rwxr-xr-x 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Cached hdfs://localhost/tmp/temp1725960134/tmp-1546565755#pigsample_854728855_1333645258470 as /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134/tmp-1546565755 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Cached hdfs://localhost/tmp/temp1725960134/tmp-1546565755#pigsample_854728855_1333645258470 as /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134/tmp-1546565755 12/04/05 10:00:58 WARN mapred.LocalJobRunner: LocalJobRunner does not support symlinking into current working dir. 12/04/05 10:00:58 INFO mapred.TaskRunner: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134/tmp-1546565755 <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/pigsample_854728855_1333645258470 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/.job.jar.crc <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/.job.jar.crc 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/.job.split.crc <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/.job.split.crc 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/.job.splitmetainfo.crc <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/.job.splitmetainfo.crc 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/.job.xml.crc <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/.job.xml.crc 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/job.jar <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/job.jar 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/job.split <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/job.split 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/job.splitmetainfo <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/job.splitmetainfo 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/job.xml <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/job.xml 12/04/05 10:00:59 INFO mapred.Task: Using ResourceCalculatorPlugin : null 12/04/05 10:00:59 INFO mapred.MapTask: io.sort.mb = 100 12/04/05 10:00:59 INFO mapred.MapTask: data buffer = 79691776/99614720 12/04/05 10:00:59 INFO mapred.MapTask: record buffer = 262144/327680 12/04/05 10:00:59 WARN mapred.LocalJobRunner: job_local_0004 java.lang.RuntimeException: org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: file:/Users/cchuang/workspace/grapevine-rec/pigsample_854728855_1333645258470 at org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.partitioners.WeightedRangePartitioner.setConf(WeightedRangePartitioner.java:139) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:62) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:117) at org.apache.hadoop.mapred.MapTask$NewOutputCollector.<init>(MapTask.java:560) at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:639) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:323) at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:210) Caused by: org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: file:/Users/cchuang/workspace/grapevine-rec/pigsample_854728855_1333645258470 at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.listStatus(FileInputFormat.java:231) at org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigFileInputFormat.listStatus(PigFileInputFormat.java:37) at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.getSplits(FileInputFormat.java:248) at org.apache.pig.impl.io.ReadToEndLoader.init(ReadToEndLoader.java:153) at org.apache.pig.impl.io.ReadToEndLoader.<init>(ReadToEndLoader.java:115) at org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.partitioners.WeightedRangePartitioner.setConf(WeightedRangePartitioner.java:112) ... 6 more 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Deleted path /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134/tmp-1546565755 12/04/05 10:00:59 INFO mapReduceLayer.MapReduceLauncher: HadoopJobId: job_local_0004 12/04/05 10:01:04 INFO mapReduceLayer.MapReduceLauncher: job job_local_0004 has failed! Stop running all dependent jobs 12/04/05 10:01:04 INFO mapReduceLayer.MapReduceLauncher: 100% complete 12/04/05 10:01:04 ERROR pigstats.PigStatsUtil: 1 map reduce job(s) failed! 12/04/05 10:01:04 INFO pigstats.PigStats: Script Statistics: HadoopVersion PigVersion UserId StartedAt FinishedAt Features 0.20.2-cdh3u3 0.8.1-cdh3u3 cchuang 2012-04-05 10:00:34 2012-04-05 10:01:04 GROUP_BY,ORDER_BY Some jobs have failed! Stop running all dependent jobs Job Stats (time in seconds): JobId Maps Reduces MaxMapTime MinMapTIme AvgMapTime MaxReduceTime MinReduceTime AvgReduceTime Alias Feature Outputs job_local_0001 0 0 0 0 0 0 0 0 all_influence_scores,grouped_user_similarity,simplified_user_similarity,user_similarity GROUP_BY job_local_0002 0 0 0 0 0 0 0 0 grouped_influence_scores,influence_scores GROUP_BY,COMBINER job_local_0003 0 0 0 0 0 0 0 0 ordered_influence_scores SAMPLER Failed Jobs: JobId Alias Feature Message Outputs job_local_0004 ordered_influence_scores ORDER_BY Message: Job failed! Error - NA /tmp/cc-test-results-1, Input(s): Successfully read 0 records from: "/tmp/sample-sim-score-results-31/part-r-00000" Output(s): Failed to produce result in "/tmp/cc-test-results-1" Counters: Total records written : 0 Total bytes written : 0 Spillable Memory Manager spill count : 0 Total bags proactively spilled: 0 Total records proactively spilled: 0 Job DAG: job_local_0001 -> job_local_0002, job_local_0002 -> job_local_0003, job_local_0003 -> job_local_0004, job_local_0004 12/04/05 10:01:04 INFO mapReduceLayer.MapReduceLauncher: Some jobs have failed! Stop running all dependent jobs

    Read the article

  • Please help to clean up my RoR development environment

    - by PeterWong
    I started RoR development a few months ago, and being new to Mac... Time flies and now I have a lot different ruby versions, rails versions and gems versions located everywhere......And currently I installed rvm and things got even worst, all things messed! And so I started want to clean all things and use rvm again! I want to uninstall all gems, all rails, and all ruby versions, except the system's default one (the very old one born with the mac). Or any other better solutions or suggestions!? Please help! there is some info that I think will be useful: which -a ruby /opt/local/bin/ruby /opt/local/bin/ruby /usr/local/bin/ruby /usr/bin/ruby /usr/local/bin/ruby which -a rails /usr/local/bin/rails /usr/bin/rails /usr/local/bin/rails which -a compass # simliar for rspec and many other gems /usr/local/bin/compass /usr/local/bin/compass gem list *** LOCAL GEMS *** abstract (1.0.0) actionmailer (3.0.3, 3.0.1, 3.0.0, 3.0.0.rc2, 2.3.9, 2.3.5, 2.3.4) actionpack (3.0.3, 3.0.1, 3.0.0, 3.0.0.rc2, 2.3.9, 2.3.5, 2.3.4) activemodel (3.0.3, 3.0.1, 3.0.0, 3.0.0.rc2) activerecord (3.0.3, 3.0.1, 3.0.0, 3.0.0.rc2, 2.3.9, 2.3.5, 2.3.4) activeresource (3.0.3, 3.0.1, 3.0.0, 3.0.0.rc2, 2.3.9, 2.3.5, 2.3.4) activesupport (3.0.3, 3.0.1, 3.0.0, 3.0.0.rc2, 2.3.9, 2.3.5, 2.3.4) addressable (2.2.2) arel (2.0.6, 1.0.1, 1.0.0.rc1) authlogic (2.1.6, 2.1.3) aws-s3 (0.6.2) base32 (0.1.2) block_helpers (0.3.3) bluecloth (2.0.9) bowline (0.9.4) bowline-bundler (0.0.4) bson (1.1.2) builder (2.1.2) bundler (1.0.2, 1.0.0) compass (0.10.6) crack (0.1.7) devise (1.1.3) diff-lcs (1.1.2) differ (0.1.1) dynamic_form (1.1.3) engineyard (1.3.1) engineyard-serverside-adapter (1.3.3) erubis (2.6.6) escape (0.0.4) extlib (0.9.15) facebooker (1.0.75) faker (0.3.1) faraday (0.5.3, 0.5.2) fast_gettext (0.5.10, 0.4.17) fastercsv (1.5.3) fastthread (1.0.7) ffi (0.6.3) formatize (1.0.1) formtastic (1.1.0, 1.0.1) gemcutter (0.5.0) gettext (2.1.0) git (1.2.5) gosu (0.7.25 universal-darwin) haml (3.0.24, 3.0.23, 3.0.22, 3.0.21, 3.0.18) haml-rails (0.3.4) heroku (1.10.13, 1.9.13) highline (1.5.2) hirb (0.3.4, 0.3.3) hpricot (0.8.2) i18n (0.5.0, 0.4.2, 0.4.1, 0.3.7) jeweler (1.4.0) json (1.4.6) json_pure (1.4.3) linkedin (0.1.8) locale (2.0.5) mail (2.2.12, 2.2.11, 2.2.10, 2.2.9, 2.2.7, 2.2.6.1) memcache-client (1.8.5) meta_search (0.9.8, 0.9.7.2, 0.9.7.1, 0.9.6, 0.9.4) mime-types (1.16) mongo (1.1.2) mongoid (2.0.0.beta.20) multi_json (0.0.5) multipart-post (1.0.1) mysql (2.8.1) mysql2 (0.2.6, 0.2.4, 0.2.3) net-ldap (0.1.1) nice-ffi (0.4) nokogiri (1.4.4, 1.4.2) oa-basic (0.1.6) oa-core (0.1.6) oa-enterprise (0.1.6) oa-oauth (0.1.6) oa-openid (0.1.6) oauth (0.4.4, 0.4.3, 0.4.1) oauth-plugin (0.4.0.pre1) oauth2 (0.1.0) omniauth (0.1.6) paperclip (2.3.6, 2.3.4, 2.3.1.1) passenger (2.2.12) polyglot (0.3.1) pyu-ruby-sasl (0.0.3.2) querybuilder (0.9.2, 0.5.9) rack (1.2.1, 1.1.0, 1.0.1) rack-cache (0.5.3) rack-cache-purge (0.0.2, 0.0.1) rack-mount (0.6.13) rack-openid (1.2.0) rack-test (0.5.6, 0.5.4) railroady (0.11.2) rails (3.0.3, 3.0.1, 3.0.0, 3.0.0.rc2, 2.3.9, 2.3.5, 2.3.4) railties (3.0.3, 3.0.1, 3.0.0, 3.0.0.rc2) rake (0.8.7) RedCloth (3.0.4) rest-client (1.6.1) roxml (3.1.5) rscribd (1.2.0) rspec (2.3.0, 2.2.0, 2.1.0, 2.0.1) rspec-core (2.3.0, 2.2.1, 2.1.0, 2.0.1) rspec-expectations (2.3.0, 2.2.0, 2.1.0, 2.0.1) rspec-mocks (2.3.0, 2.2.0, 2.1.0, 2.0.1) rspec-rails (2.3.0, 2.2.0, 2.1.0, 2.0.1) ruby-hmac (0.4.0) ruby-mysql (2.9.3) ruby-ole (1.2.10.1) ruby-openid (2.1.8) ruby-openid-apps-discovery (1.2.0) ruby-recaptcha (1.0.2, 1.0.0) ruby-sdl-ffi (0.3) ruby-termios (0.9.6) ruby_parser (2.0.5) rubyforge (2.0.4) rubygame (2.6.4) rubygems-update (1.3.7) rubyless (0.7.0, 0.6.0, 0.3.5) rubyntlm (0.1.1) rubyzip2 (2.0.1) scribd_fu (2.0.6) searchlogic (2.4.27, 2.4.23) sequel (3.16.0, 3.15.0, 3.13.0) sexp_processor (3.0.5) shoulda (2.11.3) sinatra (1.0) slim (0.8.0) slim-rails (0.1.2) spreadsheet (0.6.4.1) sqlite3-ruby (1.3.2, 1.3.1) ssl_requirement (0.1.0) subdomain-fu (1.0.0.beta2, 0.5.4) supermodel (0.1.4) syntax (1.0.0) taps (0.3.13, 0.3.11) templater (1.0.0) temple (0.1.6) text-format (1.0.0) text-hyphen (1.0.0) thor (0.14.6, 0.14.4, 0.14.3, 0.14.1, 0.14.0) tilt (1.1) treetop (1.4.9, 1.4.8) tzinfo (0.3.23) uuidtools (2.1.1, 2.0.0) validates_timeliness (3.0.0.beta.4, 2.3.1) warden (0.10.7) will_paginate (3.0.pre2, 2.3.15, 2.3.14) xml-simple (1.0.12) ya2yaml (0.30) yajl-ruby (0.7.8, 0.7.7) yamltest (0.7.0) zena (0.16.9, 0.16.8) ====== I have ran sudo rvm implode and sudo rm -rf ~/.rvm, so no rvm now. gem env RubyGems Environment: - RUBYGEMS VERSION: 1.3.7 - RUBY VERSION: 1.8.7 (2009-06-12 patchlevel 174) [i686-darwin10.2.0] - INSTALLATION DIRECTORY: /usr/local/lib/ruby/gems/1.8 - RUBY EXECUTABLE: /usr/local/bin/ruby - EXECUTABLE DIRECTORY: /usr/local/bin - RUBYGEMS PLATFORMS: - ruby - x86-darwin-10 - GEM PATHS: - /usr/local/lib/ruby/gems/1.8 - /Users/peter/.gem/ruby/1.8 - GEM CONFIGURATION: - :update_sources => true - :verbose => true - :benchmark => false - :backtrace => false - :bulk_threshold => 1000 - :sources => ["http://rubygems.org/", "http://gems.github.com"] - REMOTE SOURCES: - http://rubygems.org/ - http://gems.github.com === ls -al /usr/local/lib/ total 5704 drwxr-xr-x 7 root wheel 238 Jun 1 2010 . drwxr-xr-x 9 root wheel 306 Dec 15 16:20 .. -rw-r--r-- 1 root wheel 1717208 Jun 1 2010 libruby-static.a -rwxr-xr-x 1 root wheel 1191880 Jun 1 2010 libruby.1.8.7.dylib lrwxrwxrwx 1 root wheel 19 Jun 1 2010 libruby.1.8.dylib -> libruby.1.8.7.dylib lrwxrwxrwx 1 root wheel 19 Jun 1 2010 libruby.dylib -> libruby.1.8.7.dylib drwxr-xr-x 6 root wheel 204 Jun 1 2010 ruby

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Let other computer view my localhost over a network...

    - by Smickie
    Hi, I have apache and what not running on my local machine (mac), there also another mac on the local network. How does this other machine access my localhost? For example I have a local website at example.local.net in my vhost. How can another computer on the network navigate to this site? Cheers!

    Read the article

  • PHP 5.3.2 + Fcgid 2.3.5 + Apache 2.2.14 + SuExec => Connection reset by peer: mod_fcgid: error reading data from FastCGI server

    - by Zigzag
    I'm trying to use PHP 5.3.2 + Fcgid 2.3.5 + Apache 2.2.14 but I always have the error : "Connection reset by peer: mod_fcgid: error reading data from FastCGI server". And Apache returns an error 500 each time I tried to execute a php page : I have compiled the Apache with this options: ./configure --with-mpm=worker --enable-userdir=shared --enable-actions=shared --enable-alias=shared --enable-auth=shared --enable-so --enable-deflate \ --enable-cache=shared --enable-disk-cache=shared --enable-info=shared --enable-rewrite=shared \ --enable-suexec=shared --with-suexec-caller=www-data --with-suexec-userdir=site --with-suexec-logfile=/usr/local/apache2/logs/suexec.log --with-suexec-docroot=/home Then PHP: ./configure --with-config-file-path=/usr/local/apache2/php --with-apxs2=/usr/local/apache2/bin/apxs --with-mysql --with-zlib --enable-exif --with-gd --enable-cgi Then FCdigd: APXS=/usr/local/apache2/bin/apxs ./configure.apxs The VHOST is: <Directory /home/website_panel/site/> FCGIWrapper /home/website_panel/cgi/php .php ... ErrorLog /home/website_panel/logs/error.log </Directory> cat /home/website_panel/logs/error.log [Sun Mar 07 22:19:41 2010] [warn] [client xx.xx.xx.xx] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Sun Mar 07 22:19:41 2010] [error] [client xx.xx.xx.xx] Premature end of script headers: test.php [Sun Mar 07 22:19:41 2010] [warn] [client xx.xx.xx.xx] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Sun Mar 07 22:19:41 2010] [error] [client xx.xx.xx.xx] Premature end of script headers: test.php [Sun Mar 07 22:19:42 2010] [warn] [client xx.xx.xx.xx] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Sun Mar 07 22:19:42 2010] [error] [client xx.xx.xx.xx] Premature end of script headers: test.php [Sun Mar 07 22:19:43 2010] [warn] [client xx.xx.xx.xx] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Sun Mar 07 22:19:43 2010] [error] [client xx.xx.xx.xx] Premature end of script headers: test.php The Suexec log: root:/usr/local/apache2# cat /var/log/apache2/suexec.log [2010-03-07 22:11:05]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:11:15]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:11:23]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:19:41]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:19:41]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:19:42]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:19:43]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php root:/usr/local/apache2# cat logs/error_log [Sun Mar 07 22:18:47 2010] [notice] suEXEC mechanism enabled (wrapper: /usr/local/apache2/bin/suexec) [Sun Mar 07 22:18:47 2010] [notice] mod_bw : Memory Allocated 0 bytes (each conf takes 32 bytes) [Sun Mar 07 22:18:47 2010] [notice] mod_bw : Version 0.7 - Initialized [0 Confs] [Sun Mar 07 22:18:47 2010] [notice] Apache/2.2.14 (Unix) mod_fcgid/2.3.5 configured -- resuming normal operations root:/usr/local/apache2# /home/website_panel/cgi/php -v PHP 5.3.2 (cli) (built: Mar 7 2010 16:01:49) Copyright (c) 1997-2010 The PHP Group Zend Engine v2.3.0, Copyright (c) 1998-2010 Zend Technologies If someone has got an idea, I want to hear it ^^ Thanks !

    Read the article

  • PHP 5.3.2 + Fcgid 2.3.5 + Apache 2.2.14 + SuExec => Connection reset by peer: mod_fcgid: error readi

    - by Zigzag
    Hi, I'm trying to use PHP 5.3.2 + Fcgid 2.3.5 + Apache 2.2.14 but I always have the error : "Connection reset by peer: mod_fcgid: error reading data from FastCGI server". And Apache returns an error 500 each time I tried to execute a php page : I have compiled the Apache with this options: ./configure --with-mpm=worker --enable-userdir=shared --enable-actions=shared --enable-alias=shared --enable-auth=shared --enable-so --enable-deflate \ --enable-cache=shared --enable-disk-cache=shared --enable-info=shared --enable-rewrite=shared \ --enable-suexec=shared --with-suexec-caller=www-data --with-suexec-userdir=site --with-suexec-logfile=/usr/local/apache2/logs/suexec.log --with-suexec-docroot=/home Then PHP: ./configure --with-config-file-path=/usr/local/apache2/php --with-apxs2=/usr/local/apache2/bin/apxs --with-mysql --with-zlib --enable-exif --with-gd --enable-cgi Then FCdigd: APXS=/usr/local/apache2/bin/apxs ./configure.apxs The VHOST is: <Directory /home/website_panel/site/> FCGIWrapper /home/website_panel/cgi/php .php ... ErrorLog /home/website_panel/logs/error.log </Directory> cat /home/website_panel/logs/error.log [Sun Mar 07 22:19:41 2010] [warn] [client xx.xx.xx.xx] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Sun Mar 07 22:19:41 2010] [error] [client xx.xx.xx.xx] Premature end of script headers: test.php [Sun Mar 07 22:19:41 2010] [warn] [client xx.xx.xx.xx] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Sun Mar 07 22:19:41 2010] [error] [client xx.xx.xx.xx] Premature end of script headers: test.php [Sun Mar 07 22:19:42 2010] [warn] [client xx.xx.xx.xx] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Sun Mar 07 22:19:42 2010] [error] [client xx.xx.xx.xx] Premature end of script headers: test.php [Sun Mar 07 22:19:43 2010] [warn] [client xx.xx.xx.xx] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Sun Mar 07 22:19:43 2010] [error] [client xx.xx.xx.xx] Premature end of script headers: test.php The Suexec log: root:/usr/local/apache2# cat /var/log/apache2/suexec.log [2010-03-07 22:11:05]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:11:15]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:11:23]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:19:41]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:19:41]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:19:42]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php [2010-03-07 22:19:43]: uid: (1001/website_panel) gid: (1001/website_panel) cmd: php root:/usr/local/apache2# cat logs/error_log [Sun Mar 07 22:18:47 2010] [notice] suEXEC mechanism enabled (wrapper: /usr/local/apache2/bin/suexec) [Sun Mar 07 22:18:47 2010] [notice] mod_bw : Memory Allocated 0 bytes (each conf takes 32 bytes) [Sun Mar 07 22:18:47 2010] [notice] mod_bw : Version 0.7 - Initialized [0 Confs] [Sun Mar 07 22:18:47 2010] [notice] Apache/2.2.14 (Unix) mod_fcgid/2.3.5 configured -- resuming normal operations root:/usr/local/apache2# /home/website_panel/cgi/php -v PHP 5.3.2 (cli) (built: Mar 7 2010 16:01:49) Copyright (c) 1997-2010 The PHP Group Zend Engine v2.3.0, Copyright (c) 1998-2010 Zend Technologies If someone has got an idea, I want to hear it ^^ Thanks !

    Read the article

  • Permissions problems with Apache / SVN

    - by Fred Wuerges
    I am installed a SVN server (v1.6) on a VPS contracted with CentOS 5, Apache 2.2 with WHM panel. I installed and configured all necessary modules and am able to create and access repositories via my web browser normally. The problem: I can not commit or import anything, always return permission errors: First error: Can not open file '/var/www/svn/test/db/txn-current-lock': Permission denied After fix the previous error: Can't open '/var/www/svn/test/db/tempfile.tmp': Permission denied And other... (and happends many others) Can't open file '/var/www/svn/test/db/txn-protorevs/0-1m.rev': Permission denied I've read and executed permissions on numerous tutorials regarding this errors, all without success. I've defined the owner as apache or nobody and different permissions for folders and files. I'm using TortoiseSVN to connect to the server. Some information that may find useful: I'm trying to perform commit through an external HTTP connection, like: svn commit http://example.com/svn/test SELinux is disabled. sestatus returns SELinux status: disabled Running the command to see the active processes of Apache, some processes are left with user/group "nobody". I tried changing the settings of Apache to not run with that user/group, but all my websites stopped working, returning this error: Forbidden You don't have permission to access / on this server. Additionally, a 403 Forbidden error was encountered while trying to use an ErrorDocument to handle the request. Apache process list: root@vps [/var/www]# ps aux | egrep '(apache|httpd)' root 19904 0.0 4.4 133972 35056 ? Ss 16:58 0:00 /usr/local/apache/bin/httpd -k start -DSSL nobody 20401 0.0 3.5 133972 27772 ? S 17:01 0:00 /usr/local/apache/bin/httpd -k start -DSSL root 20409 0.0 3.4 133972 27112 ? S 17:01 0:00 /usr/local/apache/bin/httpd -k start -DSSL nobody 20410 0.0 3.8 190040 30412 ? Sl 17:01 0:00 /usr/local/apache/bin/httpd -k start -DSSL nobody 20412 0.0 3.9 190344 30944 ? Sl 17:01 0:00 /usr/local/apache/bin/httpd -k start -DSSL nobody 20414 0.0 4.4 190160 35364 ? Sl 17:01 0:00 /usr/local/apache/bin/httpd -k start -DSSL nobody 20416 0.0 4.0 190980 32108 ? Sl 17:01 0:00 /usr/local/apache/bin/httpd -k start -DSSL nobody 20418 0.3 5.3 263028 42328 ? Sl 17:01 0:12 /usr/local/apache/bin/httpd -k start -DSSL root 32409 0.0 0.1 7212 816 pts/0 R+ 17:54 0:00 egrep (apache|httpd) SVN folder permission var/www/: drwxrwxr-x 3 apache apache 4096 Dec 11 16:41 svn/ Repository permission var/www/svn/: drwxrwxr-x 6 apache apache 4096 Dec 11 16:41 test/ Internal folders of repository var/www/svn/test: drwxrwxr-x 2 apache apache 4096 Dec 11 16:41 conf/ drwxrwxr-x 6 apache apache 4096 Dec 11 16:41 db/ -rwxrwxr-x 1 apache apache 2 Dec 11 16:41 format* drwxrwxr-x 2 apache apache 4096 Dec 11 16:41 hooks/ drwxrwxr-x 2 apache apache 4096 Dec 11 16:41 locks/ -rwxrwxr-x 1 apache apache 229 Dec 11 16:41 README.txt*

    Read the article

  • DHCP and DNS on none AD 2003 Server PTR is updating but no A records

    - by user29819
    I have a strange issue, I have a DHCP and DNS server running in a non AD environment, on Windows 2003 server. I setup DHCP to update DNS A and PTR records even if the client doesnt request it, but I only see PTR records updated, the A records are not created at all. The domain is "local" forward zone is called "local" and in the option 15 set to "local" (actual name) the PTR records are created with the right name (example: win64_ent.local), What am I missing here ?

    Read the article

  • Apache Error Upgrading to PHP 5.5

    - by user195385
    I am trying to upgrade php and received this error at the command line: httpd: Syntax error on line 493 of /private/etc/apache2/httpd.conf: Syntax error on line 8 of /private/etc/apache2/other/+php-osx.conf: Cannot load /usr/local/php5/libphp5.so into server: dlopen(/usr/local/php5/libphp5.so, 10): Symbol not found: _libiconv\n Referenced from: /usr/local/php5/lib/libintl.8.dylib\n Expected in: /usr/lib/libiconv.2.dylib\n in /usr/local/php5/lib/libintl.8.dylib I was trying to upgrade at http://php-osx.liip.ch/ using the command: curl -s http://php-osx.liip.ch/install.sh | bash -s 5.5 Any help would be appreciated!

    Read the article

  • Apache subdomain problem

    - by Rudiger
    Sorry if this is answered somewhere else but can't figure it out. Cant get my server to respond on the subdomain, only the main domain. Relevant info below, if you need more let me know. Listen 10.0.1.191:80 ServerName server.local:80 (i know a bit stupid but logical for me and it works) ServerName www.server.local ServerAlias server.local DocumentRoot /var/www/html/ ServerName qtp.server.local DocumentRoot /var/www/qtp/ Cheers

    Read the article

  • How can I make an alias expand to a list of recipients returned by a command?

    - by Frerich Raabe
    I have an rarely used /etc/aliases entry vmailusers: :include:/usr/local/etc/vmailusers The /usr/local/etc/vmailusers file is generated by a cronjob executing ls /home/vmail | grep -v lists > /usr/locale/etc/vmailusers chmod 0640 /usr/local/etc/vmailusers chmod mailnull:mail /usr/local/etc/vmailusers Is there a way to avoid having to run a cron job but rather execute the ls command in the very moment the vmailusers alias is used?

    Read the article

  • Network share permission issues

    - by JL
    I have an IIS server running a site, appPool is running under local system, this is done because its easier to have full permissions to certificates and other file based resources on the local server. Problem is when I try write or copy a file to a network share, permissions are obviously not in place on the remote system for the IIS server local system. Is it possible to grant permissions on the remote system to include read/write or even full access to the IIS servers local system account?

    Read the article

  • TFS Build Automation - Web Deployment Project error

    - by gracejz
    I'm trying to build a web deployment project using TFS automated build process. When I build the project directly in Visual Studio 2008, it works fine. But from TFS, I get the following error: "C:\Users\tfsservice\AppData\Local\Temp\TestProduct\TestSolution\BuildType\TFSBuild.proj" (EndToEndIteration target) (1) - "C:\Users\tfsservice\AppData\Local\Temp\TestProduct\TestSolution\BuildType\TFSBuild.proj" (CoreCompile target) (1:2) - "C:\Users\tfsservice\AppData\Local\Temp\TestProduct\TestSolution\BuildType\TFSBuild.proj" (CompileConfiguration target) (1:3) - "C:\Users\tfsservice\AppData\Local\Temp\TestProduct\TestSolution\BuildType\TFSBuild.proj" (CompileSolution target) (1:4) - "C:\Users\tfsservice\AppData\Local\Temp\TestProduct\TestSolution\Sources\TestSolution.sln" (default target) (6) - "C:\Users\tfsservice\AppData\Local\Temp\TestProduct\TestSolution\Sources\WebDeployment\WebDeployment.wdproj" (default target) (48) - (CreateVirtualDirectory target) - C:\Program Files\MSBuild\Microsoft\WebDeployment\v9.0\Microsoft.WebDeployment.targets(676,5): error : Some or all identity references could not be translated. I made sure that NETWORK SERVICE account has permission to access all the web folders. Any ideas?

    Read the article

  • Creating a multi-page PDF doc

    - by codemercenary
    Hi, has anyone already created a PDF document in an iPad app. i see that there are new functions in the UIKit to do this, but I can't find any code example for this. BOOL UIGraphicsBeginPDFContextToFile ( NSString *path, CGRect bounds, NSDictionary *documentInfo ); void UIGraphicsBeginPDFPage ( void ); I found an example that is supposed to work on the iPhone, but this gives me errors: Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: CGFont/Freetype: The function `create_subset' is currently unimplemented. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: invalid Type1 font: unable to stream font. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: FT_Load_Glyph failed: error 6. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: FT_Load_Glyph failed: error 6. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: FT_Load_Glyph failed: error 6. Fri Apr 30 11:55:32 wks104.hs.local PDF[1963] <Error>: FT_Load_Glyph failed: error 6.

    Read the article

  • RVM can't switch to Ruby 1.9.1

    - by Marco
    I installed Ruby 1.8.7 through apt-get. I then installed 1.9.1 through RVM. The RVM 1.9.1 installation was successful: root: rvm install 1.9.1 <i>Installing Ruby from source to: /usr/local/rvm/rubies/ruby-1.9.1-p378 </i> <i>/usr/local/rvm/src/ruby-1.9.1-p378 has already been extracted. </i> <i>Configuring ruby-1.9.1-p378, this may take a while depending on your cpu(s)... </i> <i>Compiling ruby-1.9.1-p378, this may take a while, depending on your cpu(s)... </i> <i>Installing ruby-1.9.1-p378 </i> <i>Installation of ruby-1.9.1-p378 is complete. </i> <i>Updating rubygems for /usr/local/rvm/gems/ruby-1.9.1-p378@global </i> <i>Updating rubygems for /usr/local/rvm/gems/ruby-1.9.1-p378 </i> <i>adjusting shebangs for ruby-1.9.1-p378 (gem irb erb ri rdoc testrb rake). </i> <i>Installing gems for ruby-1.9.1-p378 (rdoc rake). </i> <i>Installing rdoc to /usr/local/rvm/gems/ruby-1.9.1-p378@global </i> <i>Installing rdoc to /usr/local/rvm/gems/ruby-1.9.1-p378 </i> <i>Installing rake to /usr/local/rvm/gems/ruby-1.9.1-p378@global </i> <i>Installing rake to /usr/local/rvm/gems/ruby-1.9.1-p378 </i> <i>Installation of gems for ruby-1.9.1-p378 is complete. </i> However, I cannot get RVM to switch to the new version: root: ruby -v ruby 1.8.7 (2008-08-11 patchlevel 72) [x86_64-linux] root: rvm 1.9.1 root: ruby -v ruby 1.8.7 (2008-08-11 patchlevel 72) [x86_64-linux] Despite that, it seems to have installed fine: root: /usr/local/rvm/bin/ruby-1.9.1-p378 -v ruby 1.9.1p378 (2010-01-10 revision 26273) [x86_64-linux] I also tried setting the rvm --default to 1.9.1 but that did not help. Why can't RVM switch to the new version? Should I just set an alias for ruby=1.9.1? *running Debian

    Read the article

  • Wordpress, PHP, URL Encoding Issue

    - by Scott Porad
    Wordpress provides a function called "the_permalink()" that returns, you guessed it!, the permalink to a given post while in a loop of posts. I am trying to URL encode that permalink and when I execute this code: <?php print(the_permalink()); $permalink = the_permalink(); print($permalink); print(urlencode(the_permalink())); print(urlencode($permalink)); $url = 'http://wpmu.local/graphjam/2008/11/06/test4/'; print($url); print(urlencode($url)); ?> it produces these results in HTML: http://wpmu.local/graphjam/2008/11/06/test4/ http://wpmu.local/graphjam/2008/11/06/test4/ http://wpmu.local/graphjam/2008/11/06/test4/ http://wpmu.local/graphjam/2008/11/06/test4/ http%3A%2F%2Fwpmu.local%2Fgraphjam%2F2008%2F11%2F06%2Ftest4%2F I would expect lines 2, 3 and 5 of the output to be URL encoded, but only line 5 is so. Thoughts?

    Read the article

  • setting library include paths in c++

    - by Drew
    Hi all, I just installed gd2 using mac ports (sudo install gd2), which installed libraries in the following places: /opt/local/include/gd.h /opt/local/lib/libgd.dylib (link) /opt/local/lib/libgd.la /opt/local/lib/libgd.a So when I create my c++ app I add '#include "gd.h"', which throws: main.cpp:4:16: error: gd.h: No such file or directory If I set gd.h as an absolute path (as above)(not a solution, but was curious), I am thrown: g++ -L/opt/local/include -L/opt/local/lib main.o Heatmap_Map.o Heatmap_Point.o -o heatmap Undefined symbols: "_gdImagePng", referenced from: _main in main.o "_gdImageLine", referenced from: _main in main.o "_gdImageColorAllocate", referenced from: _main in main.o _main in main.o "_gdImageDestroy", referenced from: _main in main.o "_gdImageCreate", referenced from: _main in main.o "_gdImageJpeg", referenced from: _main in main.o ld: symbol(s) not found So, I understand this means that ld can not find the libraries it needs (hence trying to give it hints with the "-L" values). So after giving g++ the -L hints and the absolute path in #include, I can get it to work, but I don't think I have to do this, how can I make g++/ld search int eh right places for the libraries? Drew J. Sonne.

    Read the article

  • Is this a good centralized DVCS workflow?

    - by Chad Johnson
    I'm leaning toward using Mercurial, coming from Subversion, and I'd like to maintain a centralized workflow like I had with Subversion. Here is what I am thinking: stable (clone on server) default (branch) development (clone on server) default (branch) bugs (branch) developer1 (clone on local machine) developer2 (clone on local machine) developer3 (clone on local machine) feature1 (branch) developer3 (clone on local machine) feature2 (branch) developer1 (clone on local machine) developer2 (clone on local machine) As far as branches vs. clones is concerned, does this workflow sense? Do I have things straight? Also, the 'stable' clone IS the release. Does it make sense for the 'default' branch to be the release and what all other branches are ultimately merged into?

    Read the article

< Previous Page | 175 176 177 178 179 180 181 182 183 184 185 186  | Next Page >