Search Results

Search found 10845 results on 434 pages for 'member variables'.

Page 18/434 | < Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >

  • June 2012 Oracle Technology Network Member Offers

    - by programmarketingOTN
    Happy Friday!  Here are some NEW offers just for Oracle Technology Network (OTN) Members! Oracle Store - Save 10% on Your Next Purchase from the Oracle Store. Oracle Press - Now get 40% off select Ebook titles as well! Packt Publishing Offers - Get 25% off the print books and 35% off the eBooks listed below. Oracle SOA Infrastructure Implementation Certification Handbook (1Z0-451) Oracle BPM Suite 11g Developer's cookbook Apress Offers - Get 40% off Ebook of Beginning Database Design.Murach Offers -  Get 30% off Murach’s Oracle SQL and PL/SQL Get discount codes and links to buy for these offers at the OTN Members Discount page.

    Read the article

  • which style of member-access is preferable

    - by itwasntpete
    the purpose of oop using classes is to encapsulate members from the outer space. i always read that accessing members should be done by methods. for example: template<typename T> class foo_1 { T state_; public: // following below }; the most common doing that by my professor was to have a get and set method. // variant 1 T const& getState() { return state_; } void setState(T const& v) { state_ = v; } or like this: // variant 2 // in my opinion it is easier to read T const& state() { return state_; } void state(T const& v) { state_ = v; } assume the state_ is a variable, which is checked periodically and there is no need to ensure the value (state) is consistent. Is there any disadvantage of accessing the state by reference? for example: // variant 3 // do it by reference T& state() { return state_; } or even directly, if I declare the variable as public. template<typename T> class foo { public: // variant 4 T state; }; In variant 4 I could even ensure consistence by using c++11 atomic. So my question is, which one should I prefer?, Is there any coding standard which would decline one of these pattern? for some code see here

    Read the article

  • A colourblind member of our team...

    - by dbramhall
    We rely a lot on colour within our code within our team to outline features that need working on and what needs attention, we we think can be improved (we mainly colour the line of the code) for the application we're developing, however we have a close friend that is colourblind and he wants to join our team despite our heavily reliance on colour. Do you have any other recommendations as to how a team can highlight what needs work on without the use of colour - our team is about 25 people that are all accustom to the line colouring system and we have found it be most efficient.

    Read the article

  • Guide To Be An Active Facebook Member With Safety

    These days many people from all over the world have a fun time by browsing online social networking websites like Facebook. The reason is that they are the superb means to be in contact with friends ... [Author: Susan Miller - Computers and Internet - May 17, 2010]

    Read the article

  • Stairway to MDX - Level 10: “Relative” Member Functions: .CurrentMember, .PrevMember, and .NextMember

    SSAS Maestro, SQL Server MVP and Business Intelligence Architect Bill Pearson introduces three “major players” within the MDX “relative” functions. These basic, but highly employed, functions include the .CurrentMember, .PrevMember and .NextMember functions. Check SQL Server performance at a glanceWe consulted 1000 SQL Server professionals to make SQL Monitor’s UI as clear as possible. Start monitoring with a free trial.

    Read the article

  • Are local variables in Fortran 77 static or stack dynamic?

    - by mm2887
    For my programming languages class one hw problem asks: Are local variables in FORTRAN static or stack dynamic? Are local variables that are INITIALIZED to a default value static or stack dynamic? Show me some code with an explanation to back up your answer. Hint: The easiest way to check this is to have your program test the history sensitivity of a subprogram. Look at what happens when you initialize the local variable to a value and when you don’t. You may need to call more than one subprogram to lock in your answer with confidence. I wrote a few subroutines: - create a variable - print the variable - initialize the variable to a value - print the variable again Each successive call to the subroutine prints out the same random value for the variable when it is uninitialized and then it prints out the initialized value. What is this random value when the variable is uninitialized? Does this mean Fortran uses the same memory location for each call to the subroutine or it dynamically creates space and initializes the variable randomly? My second subroutine also creates a variable, but then calls the first subroutine. The result is the same except the random number printed of the uninitialized variable is different. I am very confused. Please help! Thank you so much.

    Read the article

  • Codeigniter - accessing variables from an array passed into a page.

    - by Matt
    Hello, I have a controller with an index function as follows: function index() { $this->load->model('products_model'); $data['product'] = $this->products_model->get(3); // 3 = product id $data['product_no'] = 3; $data['main_content'] = 'product_view'; //print_r($data['products']); $this->load->view('includes/template', $data); } This is the get function in the products_model file function get($id) { $results = $this->db->get_where('products', array('id' => $id))->result(); //get the first item $result = $results[0]; return $result; } The products table contains fields such as name, price etc. Please can you tell me how to output variables from $data['product'] after it is passed into the view? I have tried so many things but nothing is working, even though the print_r (commented out) shows the data - it is not being passed into the view. I thought it may have been because the view calls a template file which references the main_content variable: Template file contents: <?php $this->load->view('includes/header'); ?> <?php $this->load->view($main_content); ?> <?php $this->load->view('includes/footer'); ?> but i tried creating a flat view file and still couldn't access the variables. Many thanks,

    Read the article

  • C# return variables

    - by pb01
    In a debate regarding return variables, some members of the team prefer a method to return the result directly to the caller, whereas others prefer to declare a return variable that is then returned to the caller (see code examples below) The argument for the latter is that it allows a developer that is debugging the code to find the return value of the method before it returns to the caller thereby making the code easier to understand: This is especially true where method calls are daisy-chained. Are there any guidelines as to which is the most efficient and/or are there any other reasons why we should adopt one style over another? Thanks private bool Is2(int a) { return a == 2; } private bool Is3(int a) { var result = a == 3; return result; }

    Read the article

  • Algorithm for optimal combination of two variables

    - by AlanChavez
    I'm looking for an algorithm that would be able to determine the optimal combination of two variables, but I'm not sure where to start looking. For example, if I have 10,000 rows in a database and each row contains price, and square feet is there any algorithm out there that will be able to determine what combination of price and sq ft is optimal. I know this is vague, but I assume is along the lines of Fuzzy logic and fuzzy sets, but I'm not sure and I'd like to start digging in the right field to see if I can come up with something that solves my problem.

    Read the article

  • Credentials for Member server

    - by Lars
    So i am working on my member server right now and everytime I am adding accounts in security tab of a folder, I am asked for login name and password from the Domain Controller. How do select so I dont need to do this everytime? I am watching this video guide and the man there never need to fill in credentials on his member server.

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • Acessing a struct member, using a pointer to a vector of structs. Error:base operand of '->' has non-pointer type

    - by Matt Munson
    #include <iostream> #include <vector> using namespace std; struct s_Astruct { vector <int> z; }; int main () { vector <s_Astruct> v_a; for(int q=0;q<10;q++) { v_a.push_back(s_Astruct()); for(int w =0;w<5;w++) v_a[q].z.push_back(8); } vector <s_Astruct> * p_v_a = & v_a; cout << p_v_a[0]->z[4]; //error: base operand of '->' has non-pointer type //'__gnu_debug_def::vector<s_Astruct, std::allocator<s_Astruct> >' } There seems to be some issue with this sort of operation that I don't understand. In the code that I'm working on I actually have things like p_class-vector[]-vector[]-int; and I'm getting a similar error.

    Read the article

  • NHibernate Conventions

    - by Ricardo Peres
    Introduction It seems that nowadays everyone loves conventions! Not the ones that you go to, but the ones that you use, that is! It just happens that NHibernate also supports conventions, and we’ll see exactly how. Conventions in NHibernate are supported in two ways: Naming of tables and columns when not explicitly indicated in the mappings; Full domain mapping. Naming of Tables and Columns Since always NHibernate has supported the concept of a naming strategy. A naming strategy in NHibernate converts class and property names to table and column names and vice-versa, when a name is not explicitly supplied. In concrete, it must be a realization of the NHibernate.Cfg.INamingStrategy interface, of which NHibernate includes two implementations: DefaultNamingStrategy: the default implementation, where each column and table are mapped to identically named properties and classes, for example, “MyEntity” will translate to “MyEntity”; ImprovedNamingStrategy: underscores (_) are used to separate Pascal-cased fragments, for example, entity “MyEntity” will be mapped to a “my_entity” table. The naming strategy can be defined at configuration level (the Configuration instance) by calling the SetNamingStrategy method: 1: cfg.SetNamingStrategy(ImprovedNamingStrategy.Instance); Both the DefaultNamingStrategy and the ImprovedNamingStrategy classes offer singleton instances in the form of Instance static fields. DefaultNamingStrategy is the one NHibernate uses, if you don’t specify one. Domain Mapping In mapping by code, we have the choice of relying on conventions to do the mapping automatically. This means a class will inspect our classes and decide how they will relate to the database objects. The class that handles conventions is NHibernate.Mapping.ByCode.ConventionModelMapper, a specialization of the base by code mapper, NHibernate.Mapping.ByCode.ModelMapper. The ModelMapper relies on an internal SimpleModelInspector to help it decide what and how to map, but the mapper lets you override its decisions.  You apply code conventions like this: 1: //pick the types that you want to map 2: IEnumerable<Type> types = Assembly.GetExecutingAssembly().GetExportedTypes(); 3:  4: //conventions based mapper 5: ConventionModelMapper mapper = new ConventionModelMapper(); 6:  7: HbmMapping mapping = mapper.CompileMappingFor(types); 8:  9: //the one and only configuration instance 10: Configuration cfg = ...; 11: cfg.AddMapping(mapping); This is a very simple example, it lacks, at least, the id generation strategy, which you can add by adding an event handler like this: 1: mapper.BeforeMapClass += (IModelInspector modelInspector, Type type, IClassAttributesMapper classCustomizer) => 2: { 3: classCustomizer.Id(x => 4: { 5: //set the hilo generator 6: x.Generator(Generators.HighLow); 7: }); 8: }; The mapper will fire events like this whenever it needs to get information about what to do. And basically this is all it takes to automatically map your domain! It will correctly configure many-to-one and one-to-many relations, choosing bags or sets depending on your collections, will get the table and column names from the naming strategy we saw earlier and will apply the usual defaults to all properties, such as laziness and fetch mode. However, there is at least one thing missing: many-to-many relations. The conventional mapper doesn’t know how to find and configure them, which is a pity, but, alas, not difficult to overcome. To start, for my projects, I have this rule: each entity exposes a public property of type ISet<T> where T is, of course, the type of the other endpoint entity. Extensible as it is, NHibernate lets me implement this very easily: 1: mapper.IsOneToMany((MemberInfo member, Boolean isLikely) => 2: { 3: Type sourceType = member.DeclaringType; 4: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 5:  6: //check if the property is of a generic collection type 7: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 8: { 9: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 10:  11: //check if the type of the generic collection property is an entity 12: if (mapper.ModelInspector.IsEntity(destinationEntityType) == true) 13: { 14: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 15: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 16:  17: if (collectionInDestinationType != null) 18: { 19: return (false); 20: } 21: } 22: } 23:  24: return (true); 25: }); 26:  27: mapper.IsManyToMany((MemberInfo member, Boolean isLikely) => 28: { 29: //a relation is many to many if it isn't one to many 30: Boolean isOneToMany = mapper.ModelInspector.IsOneToMany(member); 31: return (!isOneToMany); 32: }); 33:  34: mapper.BeforeMapManyToMany += (IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) => 35: { 36: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 37: //set the mapping table column names from each source entity name plus the _Id sufix 38: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 39: }; 40:  41: mapper.BeforeMapSet += (IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) => 42: { 43: if (modelInspector.IsManyToMany(member.LocalMember) == true) 44: { 45: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 46:  47: Type sourceType = member.LocalMember.DeclaringType; 48: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 49: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 50:  51: //set inverse on the relation of the alphabetically first entity name 52: propertyCustomizer.Inverse(sourceType.Name == names.First()); 53: //set mapping table name from the entity names in alphabetical order 54: propertyCustomizer.Table(String.Join("_", names)); 55: } 56: }; We have to understand how the conventions mapper thinks: For each collection of entities found, it will ask the mapper if it is a one-to-many; in our case, if the collection is a generic one that has an entity as its generic parameter, and the generic parameter type has a similar collection, then it is not a one-to-many; Next, the mapper will ask if the collection that it now knows is not a one-to-many is a many-to-many; Before a set is mapped, if it corresponds to a many-to-many, we set its mapping table. Now, this is tricky: because we have no way to maintain state, we sort the names of the two endpoint entities and we combine them with a “_”; for the first alphabetical entity, we set its relation to inverse – remember, on a many-to-many relation, only one endpoint must be marked as inverse; finally, we set the column name as the name of the entity with an “_Id” suffix; Before the many-to-many relation is processed, we set the column name as the name of the other endpoint entity with the “_Id” suffix, as we did for the set. And that’s it. With these rules, NHibernate will now happily find and configure many-to-many relations, as well as all the others. You can wrap this in a new conventions mapper class, so that it is more easily reusable: 1: public class ManyToManyConventionModelMapper : ConventionModelMapper 2: { 3: public ManyToManyConventionModelMapper() 4: { 5: base.IsOneToMany((MemberInfo member, Boolean isLikely) => 6: { 7: return (this.IsOneToMany(member, isLikely)); 8: }); 9:  10: base.IsManyToMany((MemberInfo member, Boolean isLikely) => 11: { 12: return (this.IsManyToMany(member, isLikely)); 13: }); 14:  15: base.BeforeMapManyToMany += this.BeforeMapManyToMany; 16: base.BeforeMapSet += this.BeforeMapSet; 17: } 18:  19: protected virtual Boolean IsManyToMany(MemberInfo member, Boolean isLikely) 20: { 21: //a relation is many to many if it isn't one to many 22: Boolean isOneToMany = this.ModelInspector.IsOneToMany(member); 23: return (!isOneToMany); 24: } 25:  26: protected virtual Boolean IsOneToMany(MemberInfo member, Boolean isLikely) 27: { 28: Type sourceType = member.DeclaringType; 29: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 30:  31: //check if the property is of a generic collection type 32: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 33: { 34: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 35:  36: //check if the type of the generic collection property is an entity 37: if (this.ModelInspector.IsEntity(destinationEntityType) == true) 38: { 39: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 40: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 41:  42: if (collectionInDestinationType != null) 43: { 44: return (false); 45: } 46: } 47: } 48:  49: return (true); 50: } 51:  52: protected virtual new void BeforeMapManyToMany(IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) 53: { 54: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 55: //set the mapping table column names from each source entity name plus the _Id sufix 56: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 57: } 58:  59: protected virtual new void BeforeMapSet(IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) 60: { 61: if (modelInspector.IsManyToMany(member.LocalMember) == true) 62: { 63: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 64:  65: Type sourceType = member.LocalMember.DeclaringType; 66: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 67: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 68:  69: //set inverse on the relation of the alphabetically first entity name 70: propertyCustomizer.Inverse(sourceType.Name == names.First()); 71: //set mapping table name from the entity names in alphabetical order 72: propertyCustomizer.Table(String.Join("_", names)); 73: } 74: } 75: } Conclusion Of course, there is much more to mapping than this, I suggest you look at all the events and functions offered by the ModelMapper to see where you can hook for making it behave the way you want. If you need any help, just let me know!

    Read the article

  • How to set global variables to use everywhere in my application?

    - by user502052
    I am using Ruby on Rails 3 and I would like to set some global variable to use those everywhere in my application. In particular, the domain name. If, for example, my website URL is http://subname.domain.com I would like to set or retrieve the subname.domain.com value in order to use that in my application like this request_uri = "http://#{sub_domain_name}" Where and how I have to state\initialize the sub_domain_name variable or other variables at all?

    Read the article

  • [Iphone-Dev] Assigning values : difference between properties and class variables ?

    - by gotye
    Hey guys, I noticed that I rarely use properties, due to the fact that I rarely need to access my object's variables outside my class ;) So I usually do : NSMutableArray *myArray; // not a property ! My question is : even if i don't declare myArray as a property, does iphone make a retain anyway if I do myArray = arrayPassedToMe; I think so but I just wanted to confirm ;) Any thoughts welcome ! Gotye

    Read the article

  • How do I set Environment Variables in Visual Studio 2010?

    - by xarzu
    How do I set Environment Variables in Visual Studio 2010? I found this web page: http://msdn.microsoft.com/en-us/library/ee479070.aspx Which says: From the Project menu, choose Properties. In the left pane, select Configuration Properties, and then select Environment. But when I select "Configuration Properties", there is no "Enviroment" option: http://i67.photobucket.com/albums/h292/Athono/microsoft/newstuff.jpg This is an example in VS 2008: http://i21.photobucket.com/albums/b279/GrunchCan/env.jpg But how is it done in VS 2010?

    Read the article

  • Bash: how to process variables from an input file?

    - by gilgongo
    I've got a bash script that reads input from a file like this: while IFS="|" read -r a b do echo "$a something $b somethingelse" done < "$FILE" The file it reads looketh like this: http://someurl1.com|label1 http://someurl2.com|label2 However, I'd like to be able to insert the names of variables into that file when it suits me, and have the script process them when it sees them, so the file might look like this: http://someurl1.com?$VAR|label1 http://someurl2.com|label2 So $VAR could be, for example, today's date, producing an output like this: http://someurl1.com something label1 somethingelse http://someurl2.com?20100320 something label2 somethingelse

    Read the article

  • Passing variables from PHP to Javascript back to PHP using Ajax.

    - by ObjectiveJ
    I hope this makes sesne, please bare with me. So I have a PHP page that contains variables, I have some radial boxes, and on click of them, it calculates a price for the item you have clicked on. I do this by activating a js function that I have passed some variables to. Like so. PHP: <?php $result = mssql_query("SELECT * FROM Segments ORDER BY 'Squares'"); if (!$result) { echo 'query failed'; exit; } while ($row = mssql_fetch_array($result)) { ?> <span><?php echo $row["Squares"]; ?></span><input name="squares" type="radio" onclick="ajaxCases('<?php echo $row["Squares"]; ?>', '<?php echo $row["StartCaseID"]; ?>', '<?php echo $row["StartMatrixPrice"]; ?>')" value="<?php echo $row["Squares"]; ?>"<?php if ($row["Squares"] == "1") { ?> checked="checked" <?php }else{ ?> checked="" <?php } ?>/> <?php } ?> As you can see onclick it goes to a function called ajaxcases, this function looks like this. function ajaxCases(squares,start,price){ $('#step1').html('<p style="margin:100px 0px 0px 100px"><img src="images/ajax-loader-bigindic.gif" width="32" height="32" alt="" /></p>'); $('#step1').load("ajax-styles.php?squares="+squares); prevId1 = ""; document.varsForm.caseid.value=start; $('#step1price').html('<span style="margin:0px 0px 0px 30px"><img src="images/ajax-loader-price.gif" width="24" height="24" alt="" /></span>'); $('#step1price').load("ajax-step1-price.php?Squares="+Squares); return true; } This then goes to a php page called ajax-step1-price.php and I try to recall the variable Squares. However it doesn't work, I thought it was a GET however that returns undefined. In Summary: I would like to know how to pass a variable from PHP to JS then back to PHP, or if someone could just tell me where I am going wrong that would be greatly appreciated.

    Read the article

  • Where to store global variables like file paths in java ?

    - by Jules Olléon
    In my application I use some icons. Where should I store the path of the directory containing those icons ? The icons are used in different classes so it doesn't really make sense to store them in one of those classes in particular. I read that global variables are evil, but is it acceptable to use a class (eg Commons) containing only public static final fields to store this king of data ? What solution is used in professional applications ?

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >