Search Results

Search found 501 results on 21 pages for 'sequential'.

Page 18/21 | < Previous Page | 14 15 16 17 18 19 20 21  | Next Page >

  • How to define and work with an array of bits in C?

    - by Eddy
    I want to create a very large array on which I write '0's and '1's. I'm trying to simulate a physical process called random sequential adsorption, where units of length 2, dimers, are deposited onto an n-dimensional lattice at a random location, without overlapping each other. The process stops when there is no more room left on the lattice for depositing more dimers (lattice is jammed). Initially I start with a lattice of zeroes, and the dimers are represented by a pair of '1's. As each dimer is deposited, the site on the left of the dimer is blocked, due to the fact that the dimers cannot overlap. So I simulate this process by depositing a triple of '1's on the lattice. I need to repeat the entire simulation a large number of times and then work out the average coverage %. I've already done this using an array of chars for 1D and 2D lattices. At the moment I'm trying to make the code as efficient as possible, before working on the 3D problem and more complicated generalisations. This is basically what the code looks like in 1D, simplified: int main() { /* Define lattice */ array = (char*)malloc(N * sizeof(char)); total_c = 0; /* Carry out RSA multiple times */ for (i = 0; i < 1000; i++) rand_seq_ads(); /* Calculate average coverage efficiency at jamming */ printf("coverage efficiency = %lf", total_c/1000); return 0; } void rand_seq_ads() { /* Initialise array, initial conditions */ memset(a, 0, N * sizeof(char)); available_sites = N; count = 0; /* While the lattice still has enough room... */ while(available_sites != 0) { /* Generate random site location */ x = rand(); /* Deposit dimer (if site is available) */ if(array[x] == 0) { array[x] = 1; array[x+1] = 1; count += 1; available_sites += -2; } /* Mark site left of dimer as unavailable (if its empty) */ if(array[x-1] == 0) { array[x-1] = 1; available_sites += -1; } } /* Calculate coverage %, and add to total */ c = count/N total_c += c; } For the actual project I'm doing, it involves not just dimers but trimers, quadrimers, and all sorts of shapes and sizes (for 2D and 3D). I was hoping that I would be able to work with individual bits instead of bytes, but I've been reading around and as far as I can tell you can only change 1 byte at a time, so either I need to do some complicated indexing or there is a simpler way to do it? Thanks for your answers

    Read the article

  • Writing a managed wrapper for unmanaged (C++) code - custom types/structs

    - by Bobby
    faacEncConfigurationPtr FAACAPI faacEncGetCurrentConfiguration( faacEncHandle hEncoder); I'm trying to come up with a simple wrapper for this C++ library; I've never done more than very simple p/invoke interop before - like one function call with primitive arguments. So, given the above C++ function, for example, what should I do to deal with the return type, and parameter? FAACAPI is defined as: #define FAACAPI __stdcall faacEncConfigurationPtr is defined: typedef struct faacEncConfiguration { int version; char *name; char *copyright; unsigned int mpegVersion; unsigned long bitRate; unsigned int inputFormat; int shortctl; psymodellist_t *psymodellist; int channel_map[64]; } faacEncConfiguration, *faacEncConfigurationPtr; AFAIK this means that the return type of the function is a reference to this struct? And faacEncHandle is: typedef struct { unsigned int numChannels; unsigned long sampleRate; ... SR_INFO *srInfo; double *sampleBuff[MAX_CHANNELS]; ... double *freqBuff[MAX_CHANNELS]; double *overlapBuff[MAX_CHANNELS]; double *msSpectrum[MAX_CHANNELS]; CoderInfo coderInfo[MAX_CHANNELS]; ChannelInfo channelInfo[MAX_CHANNELS]; PsyInfo psyInfo[MAX_CHANNELS]; GlobalPsyInfo gpsyInfo; faacEncConfiguration config; psymodel_t *psymodel; /* quantizer specific config */ AACQuantCfg aacquantCfg; /* FFT Tables */ FFT_Tables fft_tables; int bitDiff; } faacEncStruct, *faacEncHandle; So within that struct we see a lot of other types... hmm. Essentially, I'm trying to figure out how to deal with these types in my managed wrapper? Do I need to create versions of these types/structs, in C#? Something like this: [StructLayout(LayoutKind.Sequential)] struct faacEncConfiguration { uint useTns; ulong bitRate; ... } If so then can the runtime automatically "map" these objects onto eachother? And, would I have to create these "mapped" types for all the types in these return types/parameter type hierarchies, all the way down until I get to all primitives? I know this is a broad topic, any advice on getting up-to-speed quickly on what I need to learn to make this happen would be very much appreciated! Thanks!

    Read the article

  • Calling CryptUIWizDigitalSign from .NET on x64

    - by Joe Kuemerle
    I am trying to digitally sign files using the CryptUIWizDigitalSign function from a .NET 2.0 application compiled to AnyCPU. The call works fine when running on x86 but fails on x64, it also works on an x64 OS when compiled to x86. Any idea on how to better marshall or call from x64? The Win32exception returned is "Error encountered during digital signing of the file ..." with a native error code of -2146762749. The relevant portion of the code are: [StructLayout(LayoutKind.Sequential)] public struct CRYPTUI_WIZ_DIGITAL_SIGN_INFO { public Int32 dwSize; public Int32 dwSubjectChoice; [MarshalAs(UnmanagedType.LPWStr)] public string pwszFileName; public Int32 dwSigningCertChoice; public IntPtr pSigningCertContext; [MarshalAs(UnmanagedType.LPWStr)] public string pwszTimestampURL; public Int32 dwAdditionalCertChoice; public IntPtr pSignExtInfo; } [DllImport("Cryptui.dll", CharSet=CharSet.Unicode, SetLastError=true)] public static extern bool CryptUIWizDigitalSign(int dwFlags, IntPtr hwndParent, string pwszWizardTitle, ref CRYPTUI_WIZ_DIGITAL_SIGN_INFO pDigitalSignInfo, ref IntPtr ppSignContext); CRYPTUI_WIZ_DIGITAL_SIGN_INFO digitalSignInfo = new CRYPTUI_WIZ_DIGITAL_SIGN_INFO(); digitalSignInfo = new CRYPTUI_WIZ_DIGITAL_SIGN_INFO(); digitalSignInfo.dwSize = Marshal.SizeOf(digitalSignInfo); digitalSignInfo.dwSubjectChoice = 1; digitalSignInfo.dwSigningCertChoice = 1; digitalSignInfo.pSigningCertContext = pSigningCertContext; digitalSignInfo.pwszTimestampURL = timestampUrl; digitalSignInfo.dwAdditionalCertChoice = 0; digitalSignInfo.pSignExtInfo = IntPtr.Zero; digitalSignInfo.pwszFileName = filepath; CryptUIWizDigitalSign(1, IntPtr.Zero, null, ref digitalSignInfo, ref pSignContext)); And here is how the SigningCertContext is retrieved (minus various error handling) public IntPtr GetCertContext(String pfxfilename, String pswd) IntPtr hMemStore = IntPtr.Zero; IntPtr hCertCntxt = IntPtr.Zero; IntPtr pProvInfo = IntPtr.Zero; uint provinfosize = 0; try { byte[] pfxdata = PfxUtility.GetFileBytes(pfxfilename); CRYPT_DATA_BLOB ppfx = new CRYPT_DATA_BLOB(); ppfx.cbData = pfxdata.Length; ppfx.pbData = Marshal.AllocHGlobal(pfxdata.Length); Marshal.Copy(pfxdata, 0, ppfx.pbData, pfxdata.Length); hMemStore = Win32.PFXImportCertStore(ref ppfx, pswd, CRYPT_USER_KEYSET); pswd = null; if (hMemStore != IntPtr.Zero) { Marshal.FreeHGlobal(ppfx.pbData); while ((hCertCntxt = Win32.CertEnumCertificatesInStore(hMemStore, hCertCntxt)) != IntPtr.Zero) { if (Win32.CertGetCertificateContextProperty(hCertCntxt, CERT_KEY_PROV_INFO_PROP_ID, IntPtr.Zero, ref provinfosize)) pProvInfo = Marshal.AllocHGlobal((int)provinfosize); else continue; if (Win32.CertGetCertificateContextProperty(hCertCntxt, CERT_KEY_PROV_INFO_PROP_ID, pProvInfo, ref provinfosize)) break; } } finally { if (pProvInfo != IntPtr.Zero) Marshal.FreeHGlobal(pProvInfo); if (hMemStore != IntPtr.Zero) Win32.CertCloseStore(hMemStore, 0); } return hCertCntxt; }

    Read the article

  • Marshalling non-Blittable Structs from C# to C++

    - by Greggo
    I'm in the process of rewriting an overengineered and unmaintainable chunk of my company's library code that interfaces between C# and C++. I've started looking into P/Invoke, but it seems like there's not much in the way of accessible help. We're passing a struct that contains various parameters and settings down to unmanaged codes, so we're defining identical structs. We don't need to change any of those parameters on the C++ side, but we do need to access them after the P/Invoked function has returned. My questions are: What is the best way to pass strings? Some are short (device id's which can be set by us), and some are file paths (which may contain Asian characters) Should I pass an IntPtr to the C# struct or should I just let the Marshaller take care of it by putting the struct type in the function signature? Should I be worried about any non-pointer datatypes like bools or enums (in other, related structs)? We have the treat warnings as errors flag set in C++ so we can't use the Microsoft extension for enums to force a datatype. Is P/Invoke actually the way to go? There was some Microsoft documentation about Implicit P/Invoke that said it was more type-safe and performant. For reference, here is one of the pairs of structs I've written so far: C++ /** Struct used for marshalling Scan parameters from managed to unmanaged code. */ struct ScanParameters { LPSTR deviceID; LPSTR spdClock; LPSTR spdStartTrigger; double spinRpm; double startRadius; double endRadius; double trackSpacing; UINT64 numTracks; UINT32 nominalSampleCount; double gainLimit; double sampleRate; double scanHeight; LPWSTR qmoPath; //includes filename LPWSTR qzpPath; //includes filename }; C# /// <summary> /// Struct used for marshalling scan parameters between managed and unmanaged code. /// </summary> [StructLayout(LayoutKind.Sequential)] public struct ScanParameters { [MarshalAs(UnmanagedType.LPStr)] public string deviceID; [MarshalAs(UnmanagedType.LPStr)] public string spdClock; [MarshalAs(UnmanagedType.LPStr)] public string spdStartTrigger; public Double spinRpm; public Double startRadius; public Double endRadius; public Double trackSpacing; public UInt64 numTracks; public UInt32 nominalSampleCount; public Double gainLimit; public Double sampleRate; public Double scanHeight; [MarshalAs(UnmanagedType.LPWStr)] public string qmoPath; [MarshalAs(UnmanagedType.LPWStr)] public string qzpPath; }

    Read the article

  • Technical non-terminating condition in a loop

    - by Snarfblam
    Most of us know that a loop should not have a non-terminating condition. For example, this C# loop has a non-terminating condition: any even value of i. This is an obvious logic error. void CountByTwosStartingAt(byte i) { // If i is even, it never exceeds 254 for(; i < 255; i += 2) { Console.WriteLine(i); } } Sometimes there are edge cases that are extremely unlikeley, but technically constitute non-exiting conditions (stack overflows and out-of-memory errors aside). Suppose you have a function that counts the number of sequential zeros in a stream: int CountZeros(Stream s) { int total = 0; while(s.ReadByte() == 0) total++; return total; } Now, suppose you feed it this thing: class InfiniteEmptyStream:Stream { // ... Other members ... public override int Read(byte[] buffer, int offset, int count) { Array.Clear(buffer, offset, count); // Output zeros return count; // Never returns -1 (end of stream) } } Or more realistically, maybe a stream that returns data from external hardware, which in certain cases might return lots of zeros (such as a game controller sitting on your desk). Either way we have an infinite loop. This particular non-terminating condition stands out, but sometimes they don't. A completely real-world example as in an app I'm writing. An endless stream of zeros will be deserialized into infinite "empty" objects (until the collection class or GC throws an exception because I've exceeded two billion items). But this would be a completely unexpected circumstance (considering my data source). How important is it to have absolutely no non-terminating conditions? How much does this affect "robustness?" Does it matter if they are only "theoretically" non-terminating (is it okay if an exception represents an implicit terminating condition)? Does it matter whether the app is commercial? If it is publicly distributed? Does it matter if the problematic code is in no way accessible through a public interface/API? Edit: One of the primary concerns I have is unforseen logic errors that can create the non-terminating condition. If, as a rule, you ensure there are no non-terminating conditions, you can identify or handle these logic errors more gracefully, but is it worth it? And when? This is a concern orthogonal to trust.

    Read the article

  • jQuery image loop not displaying any images

    - by user1871097
    I'm trying to create a very basic image gallery in jQuery. The goal is to have 3 images fade in and out in a sequential order. So image 1 is displayed, fades to image 2 etc. then the whole thing loops again. My HTML code so far is as follows: <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Slider</title> <style type="text/css"> .slider{ width: 2848px; height: 2136px; overflow: hidden; margin: 30px auto; } .slider img{ width:2848px; height:2136px; display:none; } </style> <script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script> <script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.9.2/jquery-ui.min.js"></script> <script src="Slider2.js"></script> </head> <body onload="Slider2"();> <div class="slider"> <img id="1" src="31.jpg" border="0" alt="city"/> <img id="2" src="2vrtigo2.jpg" border="0" alt="roof"/> <img id="3" src="3.jpg" border="0" alt="sea"/> </div> </body> And the jQuery code looks like this: function Slider2() { var total = $(".slider img").size(); for (i=1; i<=total; i+=1) { $(".slider #"+i).fadeIn(600); $(".slider #"+i).delay(2000).hide; }} A quick syntactical note, I've also tried using i++ in the last argument of the For Loop. The result of this code is a blank, white page. I know some of the HTML is being compiled because the enormous 2848x2136 div creates scroll bars on the browser. If anyone could help me out, that would be greatly appreciated. Obviously I'm relatively new to web programming and would love some insight into why this isn't working. Thanks!

    Read the article

  • Powershell script to change screen Orientation

    - by user161964
    I wrote a script to change Primary screen orientation to portrait. my screen is 1920X1200 It runs and no error reported. But the screen does not rotated as i expected. The code was modified from Set-ScreenResolution (Andy Schneider) Does anybody can help me take a look? some reference site: 1.set-screenresolution http://gallery.technet.microsoft.com/ScriptCenter/2a631d72-206d-4036-a3f2-2e150f297515/ 2.C code for change oridentation (MSDN) Changing Screen Orientation Programmatically http://msdn.microsoft.com/en-us/library/ms812499.aspx my code as below: Function Set-ScreenOrientation { $pinvokeCode = @" using System; using System.Runtime.InteropServices; namespace Resolution { [StructLayout(LayoutKind.Sequential)] public struct DEVMODE1 { [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)] public string dmDeviceName; public short dmSpecVersion; public short dmDriverVersion; public short dmSize; public short dmDriverExtra; public int dmFields; public short dmOrientation; public short dmPaperSize; public short dmPaperLength; public short dmPaperWidth; public short dmScale; public short dmCopies; public short dmDefaultSource; public short dmPrintQuality; public short dmColor; public short dmDuplex; public short dmYResolution; public short dmTTOption; public short dmCollate; [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)] public string dmFormName; [MarshalAs(UnmanagedType.U4)] public short dmDisplayOrientation public short dmLogPixels; public short dmBitsPerPel; public int dmPelsWidth; public int dmPelsHeight; public int dmDisplayFlags; public int dmDisplayFrequency; public int dmICMMethod; public int dmICMIntent; public int dmMediaType; public int dmDitherType; public int dmReserved1; public int dmReserved2; public int dmPanningWidth; public int dmPanningHeight; }; class User_32 { [DllImport("user32.dll")] public static extern int EnumDisplaySettings(string deviceName, int modeNum, ref DEVMODE1 devMode); [DllImport("user32.dll")] public static extern int ChangeDisplaySettings(ref DEVMODE1 devMode, int flags); public const int ENUM_CURRENT_SETTINGS = -1; public const int CDS_UPDATEREGISTRY = 0x01; public const int CDS_TEST = 0x02; public const int DISP_CHANGE_SUCCESSFUL = 0; public const int DISP_CHANGE_RESTART = 1; public const int DISP_CHANGE_FAILED = -1; } public class PrmaryScreenOrientation { static public string ChangeOrientation() { DEVMODE1 dm = GetDevMode1(); if (0 != User_32.EnumDisplaySettings(null, User_32.ENUM_CURRENT_SETTINGS, ref dm)) { dm.dmDisplayOrientation = DMDO_90 dm.dmPelsWidth = 1200; dm.dmPelsHeight = 1920; int iRet = User_32.ChangeDisplaySettings(ref dm, User_32.CDS_TEST); if (iRet == User_32.DISP_CHANGE_FAILED) { return "Unable To Process Your Request. Sorry For This Inconvenience."; } else { iRet = User_32.ChangeDisplaySettings(ref dm, User_32.CDS_UPDATEREGISTRY); switch (iRet) { case User_32.DISP_CHANGE_SUCCESSFUL: { return "Success"; } case User_32.DISP_CHANGE_RESTART: { return "You Need To Reboot For The Change To Happen.\n If You Feel Any Problem After Rebooting Your Machine\nThen Try To Change Resolution In Safe Mode."; } default: { return "Failed"; } } } } else { return "Failed To Change."; } } private static DEVMODE1 GetDevMode1() { DEVMODE1 dm = new DEVMODE1(); dm.dmDeviceName = new String(new char[32]); dm.dmFormName = new String(new char[32]); dm.dmSize = (short)Marshal.SizeOf(dm); return dm; } } } "@ Add-Type $pinvokeCode -ErrorAction SilentlyContinue [Resolution.PrmaryScreenOrientation]::ChangeOrientation() }

    Read the article

  • Windows 7: How to place SuperFetch cache on an SSD?

    - by Ian Boyd
    I'm thinking of adding a solid state drive (SSD) to my existing Windows 7 installation. I know I can (and should) move my paging file to the SSD: Should the pagefile be placed on SSDs? Yes. Most pagefile operations are small random reads or larger sequential writes, both of which are types of operations that SSDs handle well. In looking at telemetry data from thousands of traces and focusing on pagefile reads and writes, we find that Pagefile.sys reads outnumber pagefile.sys writes by about 40 to 1, Pagefile.sys read sizes are typically quite small, with 67% less than or equal to 4 KB, and 88% less than 16 KB. Pagefile.sys writes are relatively large, with 62% greater than or equal to 128 KB and 45% being exactly 1 MB in size. In fact, given typical pagefile reference patterns and the favorable performance characteristics SSDs have on those patterns, there are few files better than the pagefile to place on an SSD. What I don't know is if I even can put a SuperFetch cache (i.e. ReadyBoost cache) on the solid state drive. I want to get the benefit of Windows being able to cache gigabytes of frequently accessed data on a relativly small (e.g. 30GB) solid state drive. This is exactly what SuperFetch+ReadyBoost (or SuperFetch+ReadyDrive) was designed for. Will Windows offer (or let) me place a ReadyBoost cache on a solid state flash drive connected via SATA? A problem with the ReadyBoost cache over the ReadyDrive cache is that the ReadyBoost cache does not survive between reboots. The cache is encrypted with a per-session key, making its existing contents unusable during boot and SuperFetch pre-fetching during login. Update One I know that Windows Vista limited you to only one ReadyBoost.sfcache file (I do not know if Windows 7 removed that limitation): Q: Can use use multiple devices for EMDs? A: Nope. We've limited Vista to one ReadyBoost per machine Q: Why just one device? A: Time and quality. Since this is the first revision of the feature, we decided to focus on making the single device exceptional, without the difficulties of managing multiple caches. We like the idea, though, and it's under consideration for future versions. I also know that the 4GB limit on the cache file was a limitation of the FAT filesystem used on most USB sticks - an SSD drive would be formatted with NTFS: Q: What's the largest amount of flash that I can use for ReadyBoost? A: You can use up to 4GB of flash for ReadyBoost (which turns out to be 8GB of cache w/ the compression) Q: Why can't I use more than 4GB of flash? A: The FAT32 filesystem limits our ReadyBoost.sfcache file to 4GB Can a ReadyBoost cache on an NTFS volume be larger than 4GB? Update Two The ReadyBoost cache is encrypted with a per-boot session key. This means that the cache has to be re-built after each boot, and cannot be used to help speed boot times, or latency from login to usable. Windows ReadyDrive technology takes advantage of non-volatile (NV) memory (i.e. flash) that is incorporated with some hybrid hard drives. This flash cache can be used to help Windows boot, or resume from hibernate faster. Will Windows 7 use an internal SSD drive as a ReadyBoost/*ReadyDrive*/SuperFetch cache? Is it possible to make Windows store a SuperFetch cache (i.e. ReadyBoost) on a non-removable SSD? Is it possible to not encrypt the ReadyBoost cache, and if so will Windows 7 use the cache at boot time? See also SuperUser.com: ReadyBoost + SSD = ? Windows 7 - ReadyBoost & SSD drives? Support and Q&A for Solid-State Drives Using SDD as a cache for HDD, is there a solution? Performance increase using SSD for paging/fetch/cache or ReadyBoost? (Win7) Windows 7 To Boost SSD Performance How to Disable Nonvolatile Caching

    Read the article

  • How to place SuperFetch cache on an SSD?

    - by Ian Boyd
    I'm thinking of adding a solid state drive (SSD) to my existing Windows 7 installation. I know I can (and should) move my paging file to the SSD: Should the pagefile be placed on SSDs? Yes. Most pagefile operations are small random reads or larger sequential writes, both of which are types of operations that SSDs handle well. In looking at telemetry data from thousands of traces and focusing on pagefile reads and writes, we find that Pagefile.sys reads outnumber pagefile.sys writes by about 40 to 1, Pagefile.sys read sizes are typically quite small, with 67% less than or equal to 4 KB, and 88% less than 16 KB. Pagefile.sys writes are relatively large, with 62% greater than or equal to 128 KB and 45% being exactly 1 MB in size. In fact, given typical pagefile reference patterns and the favorable performance characteristics SSDs have on those patterns, there are few files better than the pagefile to place on an SSD. What I don't know is if I even can put a SuperFetch cache (i.e. ReadyBoost cache) on the solid state drive. I want to get the benefit of Windows being able to cache gigabytes of frequently accessed data on a relativly small (e.g. 30GB) solid state drive. This is exactly what SuperFetch+ReadyBoost (or SuperFetch+ReadyDrive) was designed for. Will Windows offer (or let) me place a ReadyBoost cache on a solid state flash drive connected via SATA? A problem with the ReadyBoost cache over the ReadyDrive cache is that the ReadyBoost cache does not survive between reboots. The cache is encrypted with a per-session key, making its existing contents unusable during boot and SuperFetch pre-fetching during login. Update One I know that Windows Vista limited you to only one ReadyBoost.sfcache file (I do not know if Windows 7 removed that limitation): Q: Can use use multiple devices for EMDs? A: Nope. We've limited Vista to one ReadyBoost per machine Q: Why just one device? A: Time and quality. Since this is the first revision of the feature, we decided to focus on making the single device exceptional, without the difficulties of managing multiple caches. We like the idea, though, and it's under consideration for future versions. I also know that the 4GB limit on the cache file was a limitation of the FAT filesystem used on most USB sticks - an SSD drive would be formatted with NTFS: Q: What's the largest amount of flash that I can use for ReadyBoost? A: You can use up to 4GB of flash for ReadyBoost (which turns out to be 8GB of cache w/ the compression) Q: Why can't I use more than 4GB of flash? A: The FAT32 filesystem limits our ReadyBoost.sfcache file to 4GB Can a ReadyBoost cache on an NTFS volume be larger than 4GB? Update Two The ReadyBoost cache is encrypted with a per-boot session key. This means that the cache has to be re-built after each boot, and cannot be used to help speed boot times, or latency from login to usable. Windows ReadyDrive technology takes advantage of non-volatile (NV) memory (i.e. flash) that is incorporated with some hybrid hard drives. This flash cache can be used to help Windows boot, or resume from hibernate faster. Will Windows 7 use an internal SSD drive as a ReadyBoost/*ReadyDrive*/SuperFetch cache? Is it possible to make Windows store a SuperFetch cache (i.e. ReadyBoost) on a non-removable SSD? Is it possible to not encrypt the ReadyBoost cache, and if so will Windows 7 use the cache at boot time? See also SuperUser.com: ReadyBoost + SSD = ? Windows 7 - ReadyBoost & SSD drives? Support and Q&A for Solid-State Drives Using SDD as a cache for HDD, is there a solution? Performance increase using SSD for paging/fetch/cache or ReadyBoost? (Win7) Windows 7 To Boost SSD Performance How to Disable Nonvolatile Caching

    Read the article

  • Linux software RAID6: rebuild slow

    - by Ole Tange
    I am trying to find the bottleneck in the rebuilding of a software raid6. ## Pause rebuilding when measuring raw I/O performance # echo 1 > /proc/sys/dev/raid/speed_limit_min # echo 1 > /proc/sys/dev/raid/speed_limit_max ## Drop caches so that does not interfere with measuring # sync ; echo 3 | tee /proc/sys/vm/drop_caches >/dev/null # time parallel -j0 "dd if=/dev/{} bs=256k count=4000 | cat >/dev/null" ::: sdbd sdbc sdbf sdbm sdbl sdbk sdbe sdbj sdbh sdbg 4000+0 records in 4000+0 records out 1048576000 bytes (1.0 GB) copied, 7.30336 s, 144 MB/s [... similar for each disk ...] # time parallel -j0 "dd if=/dev/{} skip=15000000 bs=256k count=4000 | cat >/dev/null" ::: sdbd sdbc sdbf sdbm sdbl sdbk sdbe sdbj sdbh sdbg 4000+0 records in 4000+0 records out 1048576000 bytes (1.0 GB) copied, 12.7991 s, 81.9 MB/s [... similar for each disk ...] So we can read sequentially at 140 MB/s in the outer tracks and 82 MB/s in the inner tracks on all the drives simultaneously. Sequential write performance is similar. This would lead me to expect a rebuild speed of 82 MB/s or more. # echo 800000 > /proc/sys/dev/raid/speed_limit_min # echo 800000 > /proc/sys/dev/raid/speed_limit_max # cat /proc/mdstat md2 : active raid6 sdbd[10](S) sdbc[9] sdbf[0] sdbm[8] sdbl[7] sdbk[6] sdbe[11] sdbj[4] sdbi[3](F) sdbh[2] sdbg[1] 27349121408 blocks super 1.2 level 6, 128k chunk, algorithm 2 [9/8] [UUU_UUUUU] [=========>...........] recovery = 47.3% (1849905884/3907017344) finish=855.9min speed=40054K/sec But we only get 40 MB/s. And often this drops to 30 MB/s. # iostat -dkx 1 sdbc 0.00 8023.00 0.00 329.00 0.00 33408.00 203.09 0.70 2.12 1.06 34.80 sdbd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sdbe 13.00 0.00 8334.00 0.00 33388.00 0.00 8.01 0.65 0.08 0.06 47.20 sdbf 0.00 0.00 8348.00 0.00 33388.00 0.00 8.00 0.58 0.07 0.06 48.00 sdbg 16.00 0.00 8331.00 0.00 33388.00 0.00 8.02 0.71 0.09 0.06 48.80 sdbh 961.00 0.00 8314.00 0.00 37100.00 0.00 8.92 0.93 0.11 0.07 54.80 sdbj 70.00 0.00 8276.00 0.00 33384.00 0.00 8.07 0.78 0.10 0.06 48.40 sdbk 124.00 0.00 8221.00 0.00 33380.00 0.00 8.12 0.88 0.11 0.06 47.20 sdbl 83.00 0.00 8262.00 0.00 33380.00 0.00 8.08 0.96 0.12 0.06 47.60 sdbm 0.00 0.00 8344.00 0.00 33376.00 0.00 8.00 0.56 0.07 0.06 47.60 iostat says the disks are not 100% busy (but only 40-50%). This fits with the hypothesis that the max is around 80 MB/s. Since this is software raid the limiting factor could be CPU. top says: PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 38520 root 20 0 0 0 0 R 64 0.0 2947:50 md2_raid6 6117 root 20 0 0 0 0 D 53 0.0 473:25.96 md2_resync So md2_raid6 and md2_resync are clearly busy taking up 64% and 53% of a CPU respectively, but not near 100%. The chunk size (128k) of the RAID was chosen after measuring which chunksize gave the least CPU penalty. If this speed is normal: What is the limiting factor? Can I measure that? If this speed is not normal: How can I find the limiting factor? Can I change that?

    Read the article

  • Distributed and/or Parallel SSIS processing

    - by Jeff
    Background: Our company hosts SaaS DSS applications, where clients provide us data Daily and/or Weekly, which we process & merge into their existing database. During business hours, load in the servers are pretty minimal as it's mostly users running simple pre-defined queries via the website, or running drill-through reports that mostly hit the SSAS OLAP cube. I manage the IT Operations Team, and so far this has presented an interesting "scaling" issue for us. For our daily-refreshed clients, the server is only "busy" for about 4-6 hrs at night. For our weekly-refresh clients, the server is only "busy" for maybe 8-10 hrs per week! We've done our best to use some simple methods of distributing the load by spreading the daily clients evenly among the servers such that we're not trying to process daily clients back-to-back over night. But long-term this scaling strategy creates two notable issues. First, it's going to consume a pretty immense amount of hardware that sits idle for large periods of time. Second, it takes significant Production Support over-head to basically "schedule" the ETL such that they don't over-lap, and move clients/schedules around if they out-grow the resources on a particular server or allocated time-slot. As the title would imply, one option we've tried is running multiple SSIS packages in parallel, but in most cases this has yielded VERY inconsistent results. The most common failures are DTExec, SQL, and SSAS fighting for physical memory and throwing out-of-memory errors, and ETLs running 3,4,5x longer than expected. So from my practical experience thus far, it seems like running multiple ETL packages on the same hardware isn't a good idea, but I can't be the first person that doesn't want to scale multiple ETLs around manual scheduling, and sequential processing. One option we've considered is virtualizing the servers, which obviously doesn't give you any additional resources, but moves the resource contention onto the hypervisor, which (from my experience) seems to manage simultaneous CPU/RAM/Disk I/O a little more gracefully than letting DTExec, SQL, and SSAS battle it out within Windows. Question to the forum: So my question to the forum is, are we missing something obvious here? Are there tools out there that can help manage running multiple SSIS packages on the same hardware? Would it be more "efficient" in terms of parallel execution if instead of running DTExec, SQL, and SSAS same machine (with every machine running that configuration), we run in pairs of three machines with SSIS running on one machine, SQL on another, and SSAS on a third? Obviously that would only make sense if we could process more than the three ETL we were able to process on the machine independently. Another option we've considered is completely re-architecting our SSIS package to have one "master" package for all clients that attempts to intelligently chose a server based off how "busy" it already is in terms of CPU/Memory/Disk utilization, but that would be a herculean effort, and seems like we're trying to reinvent something that you would think someone would sell (although I haven't had any luck finding it). So in summary, are we missing an obvious solution for this, and does anyone know if any tools (for free or for purchase, doesn't matter) that facilitate running multiple SSIS ETL packages in parallel and on multiple servers? (What I would call a "queue & node based" system, but that's not an official term). Ultimately VMWare's Distributed Resource Scheduler addresses this as you simply run a consistent number of clients per VM that you know will never conflict scheduleing-wise, then leave it up to VMWare to move the VMs around to balance out hardware usage. I'm definitely not against using VMWare to do this, but since we're a 100% Microsoft app stack, it seems like -someone- out there would have solved this problem at the application layer instead of the hypervisor layer by checking on resource utilization at the OS, SQL, SSAS levels. I'm open to ANY discussion on this, and remember no suggestion is too crazy or radical! :-) Right now, VMWare is the only option we've found to get away from "manually" balancing our resources, so any suggestions that leave us on a pure Microsoft stack would be great. Thanks guys, Jeff

    Read the article

  • Asserting with JustMock

    - by mehfuzh
    In this post, i will be digging in a bit deep on Mock.Assert. This is the continuation from previous post and covers up the ways you can use assert for your mock expectations. I have used another traditional sample of Talisker that has a warehouse [Collaborator] and an order class [SUT] that will call upon the warehouse to see the stock and fill it up with items. Our sample, interface of warehouse and order looks similar to : public interface IWarehouse {     bool HasInventory(string productName, int quantity);     void Remove(string productName, int quantity); }   public class Order {     public string ProductName { get; private set; }     public int Quantity { get; private set; }     public bool IsFilled { get; private set; }       public Order(string productName, int quantity)     {         this.ProductName = productName;         this.Quantity = quantity;     }       public void Fill(IWarehouse warehouse)     {         if (warehouse.HasInventory(ProductName, Quantity))         {             warehouse.Remove(ProductName, Quantity);             IsFilled = true;         }     }   }   Our first example deals with mock object assertion [my take] / assert all scenario. This will only act on the setups that has this “MustBeCalled” flag associated. To be more specific , let first consider the following test code:    var order = new Order(TALISKER, 0);    var wareHouse = Mock.Create<IWarehouse>();      Mock.Arrange(() => wareHouse.HasInventory(Arg.Any<string>(), 0)).Returns(true).MustBeCalled();    Mock.Arrange(() => wareHouse.Remove(Arg.Any<string>(), 0)).Throws(new InvalidOperationException()).MustBeCalled();    Mock.Arrange(() => wareHouse.Remove(Arg.Any<string>(), 100)).Throws(new InvalidOperationException());      //exercise    Assert.Throws<InvalidOperationException>(() => order.Fill(wareHouse));    // it will assert first and second setup.    Mock.Assert(wareHouse); Here, we have created the order object, created the mock of IWarehouse , then I setup our HasInventory and Remove calls of IWarehouse with my expected, which is called by the order.Fill internally. Now both of these setups are marked as “MustBeCalled”. There is one additional IWarehouse.Remove that is invalid and is not marked.   On line 9 ,  as we do order.Fill , the first and second setups will be invoked internally where the third one is left  un-invoked. Here, Mock.Assert will pass successfully as  both of the required ones are called as expected. But, if we marked the third one as must then it would fail with an  proper exception. Here, we can also see that I have used the same call for two different setups, this feature is called sequential mocking and will be covered later on. Moving forward, let’s say, we don’t want this must call, when we want to do it specifically with lamda. For that let’s consider the following code: //setup - data var order = new Order(TALISKER, 50); var wareHouse = Mock.Create<IWarehouse>();   Mock.Arrange(() => wareHouse.HasInventory(TALISKER, 50)).Returns(true);   //exercise order.Fill(wareHouse);   //verify state Assert.True(order.IsFilled); //verify interaction Mock.Assert(()=> wareHouse.HasInventory(TALISKER, 50));   Here, the snippet shows a case for successful order, i haven’t used “MustBeCalled” rather i used lamda specifically to assert the call that I have made, which is more justified for the cases where we exactly know the user code will behave. But, here goes a question that how we are going assert a mock call if we don’t know what item a user code may request for. In that case, we can combine the matchers with our assert calls like we do it for arrange: //setup - data  var order = new Order(TALISKER, 50);  var wareHouse = Mock.Create<IWarehouse>();    Mock.Arrange(() => wareHouse.HasInventory(TALISKER, Arg.Matches<int>( x => x <= 50))).Returns(true);    //exercise  order.Fill(wareHouse);    //verify state  Assert.True(order.IsFilled);    //verify interaction  Mock.Assert(() => wareHouse.HasInventory(Arg.Any<string>(), Arg.Matches<int>(x => x <= 50)));   Here, i have asserted a mock call for which i don’t know the item name,  but i know that number of items that user will request is less than 50.  This kind of expression based assertion is now possible with JustMock. We can extent this sample for properties as well, which will be covered shortly [in other posts]. In addition to just simple assertion, we can also use filters to limit to times a call has occurred or if ever occurred. Like for the first test code, we have one setup that is never invoked. For such, it is always valid to use the following assert call: Mock.Assert(() => wareHouse.Remove(Arg.Any<string>(), 100), Occurs.Never()); Or ,for warehouse.HasInventory we can do the following: Mock.Assert(() => wareHouse.HasInventory(Arg.Any<string>(), 0), Occurs.Once()); Or,  to be more specific, it’s even better with: Mock.Assert(() => wareHouse.HasInventory(Arg.Any<string>(), 0), Occurs.Exactly(1));   There are other filters  that you can apply here using AtMost, AtLeast and AtLeastOnce but I left those to the readers. You can try the above sample that is provided in the examples shipped with JustMock.Please, do check it out and feel free to ping me for any issues.   Enjoy!!

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SPARC T4-4 Beats 8-CPU IBM POWER7 on TPC-H @3000GB Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered a world record TPC-H @3000GB benchmark result for systems with four processors. This result beats eight processor results from IBM (POWER7) and HP (x86). The SPARC T4-4 server also delivered better performance per core than these eight processor systems from IBM and HP. Comparisons below are based upon system to system comparisons, highlighting Oracle's complete software and hardware solution. This database world record result used Oracle's Sun Storage 2540-M2 arrays (rotating disk) connected to a SPARC T4-4 server running Oracle Solaris 11 and Oracle Database 11g Release 2 demonstrating the power of Oracle's integrated hardware and software solution. The SPARC T4-4 server based configuration achieved a TPC-H scale factor 3000 world record for four processor systems of 205,792 QphH@3000GB with price/performance of $4.10/QphH@3000GB. The SPARC T4-4 server with four SPARC T4 processors (total of 32 cores) is 7% faster than the IBM Power 780 server with eight POWER7 processors (total of 32 cores) on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 36% better in price performance compared to the IBM Power 780 server on the TPC-H @3000GB Benchmark. The SPARC T4-4 server is 29% faster than the IBM Power 780 for data loading. The SPARC T4-4 server is up to 3.4 times faster than the IBM Power 780 server for the Refresh Function. The SPARC T4-4 server with four SPARC T4 processors is 27% faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 52% faster than the HP ProLiant DL980 G7 server for data loading. The SPARC T4-4 server is up to 3.2 times faster than the HP ProLiant DL980 G7 for the Refresh Function. The SPARC T4-4 server achieved a peak IO rate from the Oracle database of 17 GB/sec. This rate was independent of the storage used, as demonstrated by the TPC-H @3000TB benchmark which used twelve Sun Storage 2540-M2 arrays (rotating disk) and the TPC-H @1000TB benchmark which used four Sun Storage F5100 Flash Array devices (flash storage). [*] The SPARC T4-4 server showed linear scaling from TPC-H @1000GB to TPC-H @3000GB. This demonstrates that the SPARC T4-4 server can handle the increasingly larger databases required of DSS systems. [*] The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase. [*] The TPC believes that comparisons of results published with different scale factors are misleading and discourages such comparisons. Performance Landscape The table lists the leading TPC-H @3000GB results for non-clustered systems. TPC-H @3000GB, Non-Clustered Systems System Processor P/C/T – Memory Composite(QphH) $/perf($/QphH) Power(QppH) Throughput(QthH) Database Available SPARC Enterprise M9000 3.0 GHz SPARC64 VII+ 64/256/256 – 1024 GB 386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11 SPARC T4-4 3.0 GHz SPARC T4 4/32/256 – 1024 GB 205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12 SPARC Enterprise M9000 2.88 GHz SPARC64 VII 32/128/256 – 512 GB 198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10 IBM Power 780 4.1 GHz POWER7 8/32/128 – 1024 GB 192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64/128 – 512 GB 162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10 P/C/T = Processors, Cores, Threads QphH = the Composite Metric (bigger is better) $/QphH = the Price/Performance metric in USD (smaller is better) QppH = the Power Numerical Quantity QthH = the Throughput Numerical Quantity The following table lists data load times and refresh function times during the power run. TPC-H @3000GB, Non-Clustered Systems Database Load & Database Refresh System Processor Data Loading(h:m:s) T4Advan RF1(sec) T4Advan RF2(sec) T4Advan SPARC T4-4 3.0 GHz SPARC T4 04:08:29 1.0x 67.1 1.0x 39.5 1.0x IBM Power 780 4.1 GHz POWER7 05:51:50 1.5x 147.3 2.2x 133.2 3.4x HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 08:35:17 2.1x 173.0 2.6x 126.3 3.2x Data Loading = database load time RF1 = power test first refresh transaction RF2 = power test second refresh transaction T4 Advan = the ratio of time to T4 time Complete benchmark results found at the TPC benchmark website http://www.tpc.org. Configuration Summary and Results Hardware Configuration: SPARC T4-4 server 4 x SPARC T4 3.0 GHz processors (total of 32 cores, 128 threads) 1024 GB memory 8 x internal SAS (8 x 300 GB) disk drives External Storage: 12 x Sun Storage 2540-M2 array storage, each with 12 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 Enterprise Edition Audited Results: Database Size: 3000 GB (Scale Factor 3000) TPC-H Composite: 205,792.0 QphH@3000GB Price/performance: $4.10/QphH@3000GB Available: 05/31/2012 Total 3 year Cost: $843,656 TPC-H Power: 190,325.1 TPC-H Throughput: 222,515.9 Database Load Time: 4:08:29 Benchmark Description The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC. TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system. The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor. Key Points and Best Practices Twelve Sun Storage 2540-M2 arrays were used for the benchmark. Each Sun Storage 2540-M2 array contains 12 15K RPM drives and is connected to a single dual port 8Gb FC HBA using 2 ports. Each Sun Storage 2540-M2 array showed 1.5 GB/sec for sequential read operations and showed linear scaling, achieving 18 GB/sec with twelve Sun Storage 2540-M2 arrays. These were stand alone IO tests. The peak IO rate measured from the Oracle database was 17 GB/sec. Oracle Solaris 11 11/11 required very little system tuning. Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric in which to compare systems. The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle Database parallel processes. Six Sun Storage 2540-M2 arrays were mirrored to another six Sun Storage 2540-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays. The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.) See Also Transaction Processing Performance Council (TPC) Home Page Ideas International Benchmark Page SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Sun Storage 2540-M2 Array oracle.com OTN Disclosure Statement TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

    Read the article

  • Pixel Shader Giving Black output

    - by Yashwinder
    I am coding in C# using Windows Forms and the SlimDX API to show the effect of a pixel shader. When I am setting the pixel shader, I am getting a black output screen but if I am not using the pixel shader then I am getting my image rendered on the screen. I have the following C# code using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms; using System.Runtime.InteropServices; using SlimDX.Direct3D9; using SlimDX; using SlimDX.Windows; using System.Drawing; using System.Threading; namespace WindowsFormsApplication1 { // Vertex structure. [StructLayout(LayoutKind.Sequential)] struct Vertex { public Vector3 Position; public float Tu; public float Tv; public static int SizeBytes { get { return Marshal.SizeOf(typeof(Vertex)); } } public static VertexFormat Format { get { return VertexFormat.Position | VertexFormat.Texture1; } } } static class Program { public static Device D3DDevice; // Direct3D device. public static VertexBuffer Vertices; // Vertex buffer object used to hold vertices. public static Texture Image; // Texture object to hold the image loaded from a file. public static int time; // Used for rotation caculations. public static float angle; // Angle of rottaion. public static Form1 Window =new Form1(); public static string filepath; static VertexShader vertexShader = null; static ConstantTable constantTable = null; static ImageInformation info; [STAThread] static void Main() { filepath = "C:\\Users\\Public\\Pictures\\Sample Pictures\\Garden.jpg"; info = new ImageInformation(); info = ImageInformation.FromFile(filepath); PresentParameters presentParams = new PresentParameters(); // Below are the required bare mininum, needed to initialize the D3D device. presentParams.BackBufferHeight = info.Height; // BackBufferHeight, set to the Window's height. presentParams.BackBufferWidth = info.Width+200; // BackBufferWidth, set to the Window's width. presentParams.Windowed =true; presentParams.DeviceWindowHandle = Window.panel2 .Handle; // DeviceWindowHandle, set to the Window's handle. // Create the device. D3DDevice = new Device(new Direct3D (), 0, DeviceType.Hardware, Window.Handle, CreateFlags.HardwareVertexProcessing, presentParams); // Create the vertex buffer and fill with the triangle vertices. (Non-indexed) // Remember 3 vetices for a triangle, 2 tris per quad = 6. Vertices = new VertexBuffer(D3DDevice, 6 * Vertex.SizeBytes, Usage.WriteOnly, VertexFormat.None, Pool.Managed); DataStream stream = Vertices.Lock(0, 0, LockFlags.None); stream.WriteRange(BuildVertexData()); Vertices.Unlock(); // Create the texture. Image = Texture.FromFile(D3DDevice,filepath ); // Turn off culling, so we see the front and back of the triangle D3DDevice.SetRenderState(RenderState.CullMode, Cull.None); // Turn off lighting D3DDevice.SetRenderState(RenderState.Lighting, false); ShaderBytecode sbcv = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\vertexShader.vs", "vs_main", "vs_1_1", ShaderFlags.None); constantTable = sbcv.ConstantTable; vertexShader = new VertexShader(D3DDevice, sbcv); ShaderBytecode sbc = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\pixelShader.txt", "ps_main", "ps_3_0", ShaderFlags.None); PixelShader ps = new PixelShader(D3DDevice, sbc); VertexDeclaration vertexDecl = new VertexDeclaration(D3DDevice, new[] { new VertexElement(0, 0, DeclarationType.Float3, DeclarationMethod.Default, DeclarationUsage.PositionTransformed, 0), new VertexElement(0, 12, DeclarationType.Float2 , DeclarationMethod.Default, DeclarationUsage.TextureCoordinate , 0), VertexElement.VertexDeclarationEnd }); Application.EnableVisualStyles(); MessagePump.Run(Window, () => { // Clear the backbuffer to a black color. D3DDevice.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.Black, 1.0f, 0); // Begin the scene. D3DDevice.BeginScene(); // Setup the world, view and projection matrices. //D3DDevice.VertexShader = vertexShader; //D3DDevice.PixelShader = ps; // Render the vertex buffer. D3DDevice.SetStreamSource(0, Vertices, 0, Vertex.SizeBytes); D3DDevice.VertexFormat = Vertex.Format; // Setup our texture. Using Textures introduces the texture stage states, // which govern how Textures get blended together (in the case of multiple // Textures) and lighting information. D3DDevice.SetTexture(0, Image); // Now drawing 2 triangles, for a quad. D3DDevice.DrawPrimitives(PrimitiveType.TriangleList , 0, 2); // End the scene. D3DDevice.EndScene(); // Present the backbuffer contents to the screen. D3DDevice.Present(); }); if (Image != null) Image.Dispose(); if (Vertices != null) Vertices.Dispose(); if (D3DDevice != null) D3DDevice.Dispose(); } private static Vertex[] BuildVertexData() { Vertex[] vertexData = new Vertex[6]; vertexData[0].Position = new Vector3(-1.0f, 1.0f, 0.0f); vertexData[0].Tu = 0.0f; vertexData[0].Tv = 0.0f; vertexData[1].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[1].Tu = 0.0f; vertexData[1].Tv = 1.0f; vertexData[2].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[2].Tu = 1.0f; vertexData[2].Tv = 0.0f; vertexData[3].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[3].Tu = 0.0f; vertexData[3].Tv = 1.0f; vertexData[4].Position = new Vector3(1.0f, -1.0f, 0.0f); vertexData[4].Tu = 1.0f; vertexData[4].Tv = 1.0f; vertexData[5].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[5].Tu = 1.0f; vertexData[5].Tv = 0.0f; return vertexData; } } } And my pixel shader and vertex shader code are as following // Pixel shader input structure struct PS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Pixel shader output structure struct PS_OUTPUT { float4 Color : COLOR0; }; // Global variables sampler2D Tex0; // Name: Simple Pixel Shader // Type: Pixel shader // Desc: Fetch texture and blend with constant color // PS_OUTPUT ps_main( in PS_INPUT In ) { PS_OUTPUT Out; //create an output pixel Out.Color = tex2D(Tex0, In.Texture); //do a texture lookup Out.Color *= float4(0.9f, 0.8f, 0.0f, 1); //do a simple effect return Out; //return output pixel } // Vertex shader input structure struct VS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Vertex shader output structure struct VS_OUTPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Global variables float4x4 WorldViewProj; // Name: Simple Vertex Shader // Type: Vertex shader // Desc: Vertex transformation and texture coord pass-through // VS_OUTPUT vs_main( in VS_INPUT In ) { VS_OUTPUT Out; //create an output vertex Out.Position = mul(In.Position, WorldViewProj); //apply vertex transformation Out.Texture = In.Texture; //copy original texcoords return Out; //return output vertex }

    Read the article

  • Free Document/Content Management System Using SharePoint 2010

    - by KunaalKapoor
    That’s right, it’s true. You can use the free version of SharePoint 2010 to meet your document and content management needs and even run your public facing website or an internal knowledge bank.  SharePoint Foundation 2010 is free. It may not have all the features that you get in the enterprise license but it still has enough to cater to your needs to build a document management system and replace age old file shares or folders. I’ve built a dozen content management sites for internal and public use exploiting SharePoint. There are hundreds of web content management systems out there (see CMS Matrix).  On one hand we have commercial platforms like SharePoint, SiteCore, and Ektron etc. which are the most frequently used and on the other hand there are free options like WordPress, Drupal, Joomla, and Plone etc. which are pretty common popular as well. But I would be very surprised if anyone was able to find a single CMS platform that is all things to all people. Infact not a lot of people consider SharePoint’s free version under the free CMS side but its high time organizations benefit from this. Through this blog post I wanted to present SharePoint Foundation as an option for running a FREE CMS platform. Even if you knew that there is a free version of SharePoint, what most people don’t realize is that SharePoint Foundation is a great option for running web sites of all kinds – not just team sites. It is a great option for many reasons, but in reality it is supported by Microsoft, and above all it is FREE (yay!), and it is extremely easy to get started.  From a functionality perspective – it’s hard to beat SharePoint. Even the free version, SharePoint Foundation, offers simple data connectivity (through BCS), cross browser support, accessibility, support for Office Web Apps, blogs, wikis, templates, document support, health analyzer, support for presence, and MUCH more.I often get asked: “Can I use SharePoint 2010 as a document management system?” The answer really depends on ·          What are your specific requirements? ·          What systems you currently have in place for managing documents. ·          And of course how much money you have J Benefits? Not many large organizations have benefited from SharePoint yet. For some it has been an IT project to see what they can achieve with it, for others it has been used as a collaborative platform or in many cases an extended intranet. SharePoint 2010 has changed the game slightly as the improvements that Microsoft have made have been noted by organizations, and we are seeing a lot of companies starting to build specific business applications using SharePoint as the basis, and nearly every business process will require documents at some stage. If you require a document management system and have SharePoint in place then it can be a relatively straight forward decision to use SharePoint, as long as you have reviewed the considerations just discussed. The collaborative nature of SharePoint 2010 is also a massive advantage, as specific departmental or project sites can be created quickly and easily that allow workers to interact in a variety of different ways using one source of information.  This also benefits an organization with regards to how they manage the knowledge that they have, as if all of their information is in one source then it is naturally easier to search and manage. Is SharePoint right for your organization? As just discussed, this can only be determined after defining your requirements and also planning a longer term strategy for how you will manage your documents and information. A key factor to look at is how the users would interact with the system and how much value would it get for your organization. The amount of data and documents that organizations are creating is increasing rapidly each year. Therefore the ability to archive this information, whilst keeping the ability to know what you have and where it is, is vital to any organizations management of their information life cycle. SharePoint is best used for the initial life of business documents where they need to be referenced and accessed after time. It is often beneficial to archive these to overcome for storage and performance issues. FREE CMS – SharePoint, Really? In order to show some of the completely of what comes with this free version of SharePoint 2010, I thought it would make sense to use Wikipedia (since every one trusts it as a credible source). Wikipedia shows that a web content management system typically has the following components: Document Management:   -       CMS software may provide a means of managing the life cycle of a document from initial creation time, through revisions, publication, archive, and document destruction. SharePoint is king when it comes to document management.  Version history, exclusive check-out, security, publication, workflow, and so much more.  Content Virtualization:   -       CMS software may provide a means of allowing each user to work within a virtual copy of the entire Web site, document set, and/or code base. This enables changes to multiple interdependent resources to be viewed and/or executed in-context prior to submission. Through the use of versioning, each content manager can preview, publish, and roll-back content of pages, wiki entries, blog posts, documents, or any other type of content stored in SharePoint.  The idea of each user having an entire copy of the website virtualized is a bit odd to me – not sure why anyone would need that for anything but the simplest of websites. Automated Templates:   -       Create standard output templates that can be automatically applied to new and existing content, allowing the appearance of all content to be changed from one central place. Through the use of Master Pages and Themes, SharePoint provides the ability to change the entire look and feel of site.  Of course, the older brother version of SharePoint – SharePoint Server 2010 – also introduces the concept of Page Layouts which allows page template level customization and even switching the layout of an individual page using different page templates.  I think many organizations really think they want this but rarely end up using this bit of functionality.  Easy Edits:   -       Once content is separated from the visual presentation of a site, it usually becomes much easier and quicker to edit and manipulate. Most WCMS software includes WYSIWYG editing tools allowing non-technical individuals to create and edit content. This is probably easier described with a screen cap of a vanilla SharePoint Foundation page in edit mode.  Notice the page editing toolbar, the multiple layout options…  It’s actually easier to use than Microsoft Word. Workflow management: -       Workflow is the process of creating cycles of sequential and parallel tasks that must be accomplished in the CMS. For example, a content creator can submit a story, but it is not published until the copy editor cleans it up and the editor-in-chief approves it. Workflow, it’s in there. In fact, the same workflow engine is running under SharePoint Foundation that is running under the other versions of SharePoint.  The primary difference is that with SharePoint Foundation – you need to configure the workflows yourself.   Web Standards: -       Active WCMS software usually receives regular updates that include new feature sets and keep the system up to current web standards. SharePoint is in the fourth major iteration under Microsoft with the 2010 release.  In addition to the innovation that Microsoft continuously adds, you have the entire global ecosystem available. Scalable Expansion:   -       Available in most modern WCMSs is the ability to expand a single implementation (one installation on one server) across multiple domains. SharePoint Foundation can run multiple sites using multiple URLs on a single server install.  Even more powerful, SharePoint Foundation is scalable and can be part of a multi-server farm to ensure that it will handle any amount of traffic that can be thrown at it. Delegation & Security:  -       Some CMS software allows for various user groups to have limited privileges over specific content on the website, spreading out the responsibility of content management. SharePoint Foundation provides very granular security capabilities. Read @ http://msdn.microsoft.com/en-us/library/ee537811.aspx Content Syndication:  -       CMS software often assists in content distribution by generating RSS and Atom data feeds to other systems. They may also e-mail users when updates are available as part of the workflow process. SharePoint Foundation nails it.  With RSS syndication and email alerts available out of the box, content syndication is already in the platform. Multilingual Support: -       Ability to display content in multiple languages. SharePoint Foundation 2010 supports more than 40 languages. Read More Read more @ http://msdn.microsoft.com/en-us/library/dd776256(v=office.12).aspxYou can download the free version from http://www.microsoft.com/en-us/download/details.aspx?id=5970

    Read the article

  • Introduction to Human Workflow 11g

    - by agiovannetti
    Human Workflow is a component of SOA Suite just like BPEL, Mediator, Business Rules, etc. The Human Workflow component allows you to incorporate human intervention in a business process. You can use Human Workflow to create a business process that requires a manager to approve purchase orders greater than $10,000; or a business process that handles article reviews in which a group of reviewers need to vote/approve an article before it gets published. Human Workflow can handle the task assignment and routing as well as the generation of notifications to the participants. There are three common patterns or usages of Human Workflow: 1) Approval Scenarios: manage documents and other transactional data through approval chains . For example: approve expense report, vacation approval, hiring approval, etc. 2) Reviews by multiple users or groups: group collaboration and review of documents or proposals. For example, processing a sales quote which is subject to review by multiple people. 3) Case Management: workflows around work management or case management. For example, processing a service request. This could be routed to various people who all need to modify the task. It may also incorporate ad hoc routing which is unknown at design time. SOA 11g Human Workflow includes the following features: Assignment and routing of tasks to the correct users or groups. Deadlines, escalations, notifications, and other features required for ensuring the timely performance of a task. Presentation of tasks to end users through a variety of mechanisms, including a Worklist application. Organization, filtering, prioritization and other features required for end users to productively perform their tasks. Reports, reassignments, load balancing and other features required by supervisors and business owners to manage the performance of tasks. Human Workflow Architecture The Human Workflow component is divided into 3 modules: the service interface, the task definition and the client interface module. The Service Interface handles the interaction with BPEL and other components. The Client Interface handles the presentation of task data through clients like the Worklist application, portals and notification channels. The task definition module is in charge of managing the lifecycle of a task. Who should get the task assigned? What should happen next with the task? When must the task be completed? Should the task be escalated?, etc Stages and Participants When you create a Human Task you need to specify how the task is assigned and routed. The first step is to define the stages and participants. A stage is just a logical group. A participant can be a user, a group of users or an application role. The participants indicate the type of assignment and routing that will be performed. Stages can be sequential or in parallel. You can combine them to create any usage you require. See diagram below: Assignment and Routing There are different ways a task can be assigned and routed: Single Approver: task is assigned to a single user, group or role. For example, a vacation request is assigned to a manager. If the manager approves or rejects the request, the employee is notified with the decision. If the task is assigned to a group then once one of managers acts on it, the task is completed. Parallel : task is assigned to a set of people that must work in parallel. This is commonly used for voting. For example, a task gets approved once 50% of the participants approve it. You can also set it up to be a unanimous vote. Serial : participants must work in sequence. The most common scenario for this is management chain escalation. FYI (For Your Information) : task is assigned to participants who can view it, add comments and attachments, but can not modify or complete the task. Task Actions The following is the list of actions that can be performed on a task: Claim : if a task is assigned to a group or multiple users, then the task must be claimed first to be able to act on it. Escalate : if the participant is not able to complete a task, he/she can escalate it. The task is reassigned to his/her manager (up one level in a hierarchy). Pushback : the task is sent back to the previous assignee. Reassign :if the participant is a manager, he/she can delegate a task to his/her reports. Release : if a task is assigned to a group or multiple users, it can be released if the user who claimed the task cannot complete the task. Any of the other assignees can claim and complete the task. Request Information and Submit Information : use when the participant needs to supply more information or to request more information from the task creator or any of the previous assignees. Suspend and Resume :if a task is not relevant, it can be suspended. A suspension is indefinite. It does not expire until Resume is used to resume working on the task. Withdraw : if the creator of a task does not want to continue with it, for example, he wants to cancel a vacation request, he can withdraw the task. The business process determines what happens next. Renew : if a task is about to expire, the participant can renew it. The task expiration date is extended one week. Notifications Human Workflow provides a mechanism for sending notifications to participants to alert them of changes on a task. Notifications can be sent via email, telephone voice message, instant messaging (IM) or short message service (SMS). Notifications can be sent when the task status changes to any of the following: Assigned/renewed/delegated/reassigned/escalated Completed Error Expired Request Info Resume Suspended Added/Updated comments and/or attachments Updated Outcome Withdraw Other Actions (e.g. acquiring a task) Here is an example of an email notification: Worklist Application Oracle BPM Worklist application is the default user interface included in SOA Suite. It allows users to access and act on tasks that have been assigned to them. For example, from the Worklist application, a loan agent can review loan applications or a manager can approve employee vacation requests. Through the Worklist Application users can: Perform authorized actions on tasks, acquire and check out shared tasks, define personal to-do tasks and define subtasks. Filter tasks view based on various criteria. Work with standard work queues, such as high priority tasks, tasks due soon and so on. Work queues allow users to create a custom view to group a subset of tasks in the worklist, for example, high priority tasks, tasks due in 24 hours, expense approval tasks and more. Define custom work queues. Gain proxy access to part of another user's tasks. Define custom vacation rules and delegation rules. Enable group owners to define task dispatching rules for shared tasks. Collect a complete workflow history and audit trail. Use digital signatures for tasks. Run reports like Unattended tasks, Tasks productivity, etc. Here is a screenshoot of what the Worklist Application looks like. On the right hand side you can see the tasks that have been assigned to the user and the task's detail. References Introduction to SOA Suite 11g Human Workflow Webcast Note 1452937.2 Human Workflow Information Center Using the Human Workflow Service Component 11.1.1.6 Human Workflow Samples Human Workflow APIs Java Docs

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 11, Divide and Conquer via Parallel.Invoke

    - by Reed
    Many algorithms are easily written to work via recursion.  For example, most data-oriented tasks where a tree of data must be processed are much more easily handled by starting at the root, and recursively “walking” the tree.  Some algorithms work this way on flat data structures, such as arrays, as well.  This is a form of divide and conquer: an algorithm design which is based around breaking up a set of work recursively, “dividing” the total work in each recursive step, and “conquering” the work when the remaining work is small enough to be solved easily. Recursive algorithms, especially ones based on a form of divide and conquer, are often a very good candidate for parallelization. This is apparent from a common sense standpoint.  Since we’re dividing up the total work in the algorithm, we have an obvious, built-in partitioning scheme.  Once partitioned, the data can be worked upon independently, so there is good, clean isolation of data. Implementing this type of algorithm is fairly simple.  The Parallel class in .NET 4 includes a method suited for this type of operation: Parallel.Invoke.  This method works by taking any number of delegates defined as an Action, and operating them all in parallel.  The method returns when every delegate has completed: Parallel.Invoke( () => { Console.WriteLine("Action 1 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 2 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 3 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); } ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Running this simple example demonstrates the ease of using this method.  For example, on my system, I get three separate thread IDs when running the above code.  By allowing any number of delegates to be executed directly, concurrently, the Parallel.Invoke method provides us an easy way to parallelize any algorithm based on divide and conquer.  We can divide our work in each step, and execute each task in parallel, recursively. For example, suppose we wanted to implement our own quicksort routine.  The quicksort algorithm can be designed based on divide and conquer.  In each iteration, we pick a pivot point, and use that to partition the total array.  We swap the elements around the pivot, then recursively sort the lists on each side of the pivot.  For example, let’s look at this simple, sequential implementation of quicksort: public static void QuickSort<T>(T[] array) where T : IComparable<T> { QuickSortInternal(array, 0, array.Length - 1); } private static void QuickSortInternal<T>(T[] array, int left, int right) where T : IComparable<T> { if (left >= right) { return; } SwapElements(array, left, (left + right) / 2); int last = left; for (int current = left + 1; current <= right; ++current) { if (array[current].CompareTo(array[left]) < 0) { ++last; SwapElements(array, last, current); } } SwapElements(array, left, last); QuickSortInternal(array, left, last - 1); QuickSortInternal(array, last + 1, right); } static void SwapElements<T>(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } Here, we implement the quicksort algorithm in a very common, divide and conquer approach.  Running this against the built-in Array.Sort routine shows that we get the exact same answers (although the framework’s sort routine is slightly faster).  On my system, for example, I can use framework’s sort to sort ten million random doubles in about 7.3s, and this implementation takes about 9.3s on average. Looking at this routine, though, there is a clear opportunity to parallelize.  At the end of QuickSortInternal, we recursively call into QuickSortInternal with each partition of the array after the pivot is chosen.  This can be rewritten to use Parallel.Invoke by simply changing it to: // Code above is unchanged... SwapElements(array, left, last); Parallel.Invoke( () => QuickSortInternal(array, left, last - 1), () => QuickSortInternal(array, last + 1, right) ); } This routine will now run in parallel.  When executing, we now see the CPU usage across all cores spike while it executes.  However, there is a significant problem here – by parallelizing this routine, we took it from an execution time of 9.3s to an execution time of approximately 14 seconds!  We’re using more resources as seen in the CPU usage, but the overall result is a dramatic slowdown in overall processing time. This occurs because parallelization adds overhead.  Each time we split this array, we spawn two new tasks to parallelize this algorithm!  This is far, far too many tasks for our cores to operate upon at a single time.  In effect, we’re “over-parallelizing” this routine.  This is a common problem when working with divide and conquer algorithms, and leads to an important observation: When parallelizing a recursive routine, take special care not to add more tasks than necessary to fully utilize your system. This can be done with a few different approaches, in this case.  Typically, the way to handle this is to stop parallelizing the routine at a certain point, and revert back to the serial approach.  Since the first few recursions will all still be parallelized, our “deeper” recursive tasks will be running in parallel, and can take full advantage of the machine.  This also dramatically reduces the overhead added by parallelizing, since we’re only adding overhead for the first few recursive calls.  There are two basic approaches we can take here.  The first approach would be to look at the total work size, and if it’s smaller than a specific threshold, revert to our serial implementation.  In this case, we could just check right-left, and if it’s under a threshold, call the methods directly instead of using Parallel.Invoke. The second approach is to track how “deep” in the “tree” we are currently at, and if we are below some number of levels, stop parallelizing.  This approach is a more general-purpose approach, since it works on routines which parse trees as well as routines working off of a single array, but may not work as well if a poor partitioning strategy is chosen or the tree is not balanced evenly. This can be written very easily.  If we pass a maxDepth parameter into our internal routine, we can restrict the amount of times we parallelize by changing the recursive call to: // Code above is unchanged... SwapElements(array, left, last); if (maxDepth < 1) { QuickSortInternal(array, left, last - 1, maxDepth); QuickSortInternal(array, last + 1, right, maxDepth); } else { --maxDepth; Parallel.Invoke( () => QuickSortInternal(array, left, last - 1, maxDepth), () => QuickSortInternal(array, last + 1, right, maxDepth)); } We no longer allow this to parallelize indefinitely – only to a specific depth, at which time we revert to a serial implementation.  By starting the routine with a maxDepth equal to Environment.ProcessorCount, we can restrict the total amount of parallel operations significantly, but still provide adequate work for each processing core. With this final change, my timings are much better.  On average, I get the following timings: Framework via Array.Sort: 7.3 seconds Serial Quicksort Implementation: 9.3 seconds Naive Parallel Implementation: 14 seconds Parallel Implementation Restricting Depth: 4.7 seconds Finally, we are now faster than the framework’s Array.Sort implementation.

    Read the article

  • Internationalize WebCenter Portal - Content Presenter

    - by Stefan Krantz
    Lately we have been involved in engagements where internationalization has been holding the project back from success. In this post we are going to explain how to get Content Presenter and its editorials to comply with the current selected locale for the WebCenter Portal session. As you probably know by now WebCenter Portal leverages the Localization support from Java Server Faces (JSF), in this post we will assume that the localization is controlled and enforced by switching the current browsers locale between English and Spanish. There is two main scenarios in internationalization of a content enabled pages, since Content Presenter offers both presentation of information as well as contribution of information, in this post we will look at how to enable seamless integration of correct localized version of the back end content file and how to enable the editor/author to edit the correct localized version of the file based on the current browser locale. Solution Scenario 1 - Localization aware content presentation Due to the amount of steps required to implement the enclosed solution proposal I have decided to share the solution with you in group components for each facet of the solution. If you want to get more details on each step, you can review the enclosed components. This post will guide you through the steps of enabling each component and what it enables/changes in each section of the system. Enable Content Presenter Customization By leveraging a predictable naming convention of the data files used to hold the content for the Content Presenter instance we can easily develop a component that will dynamically switch the name out before presenting the information. The naming convention we have leverage is the industry best practice by having a shared identifier as prefix (ContentABC) and a language enabled suffix (_EN) (_ES). So the assumption is that each file pair in above example should look like following:- English version - (ContentABC_EN)- Spanish version - (ContentABC_ES) Based on above theory we can now easily regardless of the primary version assigned to the content presenter instance switch the language out by using the localization support from JSF. Below java bean (oracle.webcenter.doclib.internal.view.presenter.NLSHelperBean) is enclosed in the customization project available for download at the bottom of the post: 1: public static final String CP_D_DOCNAME_FORMAT = "%s_%s"; 2: public static final int CP_UNIQUE_ID_INDEX = 0; 3: private ContentPresenter presenter = null; 4:   5:   6: public NLSHelperBean() { 7: super(); 8: } 9:   10: /** 11: * This method updates the configuration for the pageFlowScope to have the correct datafile 12: * for the current Locale 13: */ 14: public void initLocaleForDataFile() { 15: String dataFile = null; 16: // Checking that state of presenter is present, also make sure the item is eligible for localization by locating the "_" in the name 17: if(presenter.getConfiguration().getDatasource() != null && 18: presenter.getConfiguration().getDatasource().isNodeDatasource() && 19: presenter.getConfiguration().getDatasource().getNodeIdDatasource() != null && 20: !presenter.getConfiguration().getDatasource().getNodeIdDatasource().equals("") && 21: presenter.getConfiguration().getDatasource().getNodeIdDatasource().indexOf("_") > 0) { 22: dataFile = presenter.getConfiguration().getDatasource().getNodeIdDatasource(); 23: FacesContext fc = FacesContext.getCurrentInstance(); 24: //Leveraging the current faces contenxt to get current localization language 25: String currentLocale = fc.getViewRoot().getLocale().getLanguage().toUpperCase(); 26: String newDataFile = dataFile; 27: String [] uniqueIdArr = dataFile.split("_"); 28: if(uniqueIdArr.length > 0) { 29: newDataFile = String.format(CP_D_DOCNAME_FORMAT, uniqueIdArr[CP_UNIQUE_ID_INDEX], currentLocale); 30: } 31: //Replacing the current Node datasource with localized datafile. 32: presenter.getConfiguration().getDatasource().setNodeIdDatasource(newDataFile); 33: } 34: } With this bean code available to our WebCenter Portal implementation we can start the next step, by overriding the standard behavior in content presenter by applying a MDS Taskflow customization to the content presenter taskflow, following taskflow customization has been applied to the customization project attached to this post:- Library: WebCenter Document Library Service View- Path: oracle.webcenter.doclib.view.jsf.taskflows.presenter- File: contentPresenter.xml Changes made in above customization view:1. A new method invocation activity has been added (initLocaleForDataFile)2. The method invocation invokes the new NLSHelperBean3. The default activity is moved to the new Method invocation (initLocaleForDataFile)4. The outcome from the method invocation goes to determine-navigation (original default activity) The above changes concludes the presentation modification to support a compatible localization scenario for a content driven page. In addition this customization do not limit or disables the out of the box capabilities of WebCenter Portal. Steps to enable above customization Start JDeveloper and open your WebCenter Portal Application Select "Open Project" and include the extracted project you downloaded (CPNLSCustomizations.zip) Make sure the build out put from CPNLSCustomizations project is a dependency to your Portal project Deploy your Portal Application to your WC_CustomPortal managed server Make sure your naming convention of the two data files follow above recommendation Example result of the solution: Solution Scenario 2 - Localization aware content creation and authoring As you could see from Solution Scenario 1 we require the naming convention to be strictly followed, this means in the hands of a user with limited technology knowledge this can be one of the failing links in this solutions. Therefore I strongly recommend that you also follow this part since this will eliminate this risk and also increase the editors/authors usability with a magnitude. The current WebCenter Portal Architecture leverages WebCenter Content today to maintain, publish and manage content, therefore we need to make few efforts in making sure this part of the architecture is on board with our new naming practice and also simplifies the creation of content for our end users. As you probably remember the naming convention required a prefix to be common so I propose we enable a new component that help you auto name the content items dDocName (this means that the readable title can still be in a human readable format). The new component (WCP-LocalizationSupport.zip) built for this scenario will enable a couple of things: 1. A new service where a sequential number can be generate on request - service name: GET_WCP_LOCALE_CONTENTID 2. The content presenter is leveraging a specific function when launching the content creation wizard from within Content Presenter. Assumption is that users will create the content by clicking "Create Web Content" button. When clicking the button the wizard opened is actually running in side of WebCenter Content server, file executed (contentwizard.hcsp). This file uses JSON commands that will generate operations in the content server, I have extend this file to create two identical data files instead of one.- First it creates the English version by leveraging the new Service and a Global Rule to set the dDocName on the original check in screen, this global rule is available in a configuration package attached to this blog (NLSContentProfileRule.zip)- Secondly we run a set of JSON javascripts to create the Spanish version with the same details except for the name where we replace the suffix with (_ES)- Then content creation wizard ends with its out of the box behavior and assigns the Content Presenter instance the English versionSee Javascript markup below - this can be changed in the (WCP-LocalizationSupport.zip/component/WCP-LocalizationSupport/publish/webcenter) 1: //---------------------------------------A-TEAM--------------------------------------- 2: WCM.ContentWizard.CheckinContentPage.OnCheckinComplete = function(returnParams) 3: { 4: var callback = WCM.ContentWizard.CheckinContentPage.checkinCompleteCallback; 5: WCM.ContentWizard.ChooseContentPage.OnSelectionComplete(returnParams, callback); 6: // Load latest DOC_INFO_SIMPLE 7: var cgiPath = DOCLIB.config.httpCgiPath; 8: var jsonBinder = new WCM.Idc.JSONBinder(); 9: jsonBinder.SetLocalDataValue('IdcService', 'DOC_INFO_SIMPLE'); 10: jsonBinder.SetLocalDataValue('dID', returnParams.dID); 11: jsonBinder.Send(cgiPath, $CB(this, function(http) { 12: var ret = http.GetResponseText(); 13: var binder = new WCM.Idc.JSONBinder(ret); 14: var dDocName = binder.GetResultSetValue('DOC_INFO', 'dDocName', 0); 15: if(dDocName.indexOf("_") > 0){ 16: var ssBinder = new WCM.Idc.JSONBinder(); 17: ssBinder.SetLocalDataValue('IdcService', 'SS_CHECKIN_NEW'); 18: //Additional Localization dDocName generated 19: ssBinder.SetLocalDataValue('dDocName', getLocalizedDocName(dDocName, "es")); 20: ssBinder.SetLocalDataValue('primaryFile', 'default.xml'); 21: ssBinder.SetLocalDataValue('ssDefaultDocumentToken', 'SSContributorDataFile'); 22:   23: for(var n = 0 ; n < binder.GetResultSetFields('DOC_INFO').length ; n++) { 24: var field = binder.GetResultSetFields('DOC_INFO')[n]; 25: if(field != 'dID' && 26: field != 'dDocName' && 27: field != 'dID' && 28: field != 'dReleaseState' && 29: field != 'dRevClassID' && 30: field != 'dRevisionID' && 31: field != 'dRevLabel') { 32: ssBinder.SetLocalDataValue(field, binder.GetResultSetValue('DOC_INFO', field, 0)); 33: } 34: } 35: ssBinder.Send(cgiPath, $CB(this, function(http) {})); 36: } 37: })); 38: } 39:   40: //Support function to create localized dDocNames 41: function getLocalizedDocName(dDocName, lang) { 42: var result = dDocName.replace("_EN", ("_" + lang)); 43: return result; 44: } 45: //---------------------------------------A-TEAM--------------------------------------- 3. By applying the enclosed NLSContentProfileRule.zip, the check in screen for DataFile creation will have auto naming enabled with localization suffix (default is English)You can change the default language by updating the GlobalNlsRule and assign preferred prefix.See Rule markup for dDocName field below: <$executeService("GET_WCP_LOCALE_CONTENTID")$><$dprDefaultValue=WCP_LOCALE.LocaleContentId & "_EN"$> Steps to enable above extensions and configurations Install WebCenter Component (WCP-LocalizationSupport.zip), via the AdminServer in WebCenter Content Administration menus Enable the component and restart the content server Apply the configuration bundle to enable the new Global Rule (GlobalNlsRule), via the WebCenter Content Administration/Config Migration Admin New Content Creation Experience Result Content EditingContent editing will by default be enabled for authoring in the current select locale since the content file is selected by (Solution Scenario 1), this means that a user can switch his browser locale and then get the editing experience adaptable to the current selected locale. NotesA-Team are planning to post a solution on how to inline switch the locale of the WebCenter Portal Session, so the Content Presenter, Navigation Model and other Face related features are localized accordingly. Content Presenter examples used in this post is an extension to following post:https://blogs.oracle.com/ATEAM_WEBCENTER/entry/enable_content_editing_of_iterative Downloads CPNLSCustomizations.zip - WebCenter Portal, Content Presenter Customization https://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/CPNLSCustomizations.zip WCP-LocalizationSupport.zip - WebCenter Content, Extension Component to enable localization creation of files with compliant auto naminghttps://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/WCP-LocalizationSupport.zip NLSContentProfileRule.zip - WebCenter Content, Configuration Update Bundle to enable Global rule for new check in naming of data fileshttps://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/NLSContentProfileRule.zip

    Read the article

  • CodePlex Daily Summary for Thursday, May 27, 2010

    CodePlex Daily Summary for Thursday, May 27, 2010New ProjectsBinding Navigator: Clone of WinForms BindingNavigator that is able to work with any type of DataSource. For full functionality it requires the DataSource to implement...DEWD: DEWD is an Umbraco 4.0 extension used to edit sequential data such as rows in a SQL server database table. It's meant to allow developers to quickl...Eletronic Invoice Extensions: A simple DLL to use against XSD and validate a XML.EssionCalendar: EssionCal EssionCalExpression Encoder Batch Processor: Importing your videotapes into Windows is easy with the built-in utilities, but if your importer does not encode to your desired format, you need t...Feedback Form: Feedback application makes it easier for attendees who attend an seminar/event and event organizers. Organizers of the event will no longer need to...Find in Start Menu: Find in Start MenuIE8 Web Slices Pack: IE8 Web Slices Pack is a package of 5 types of web slices ready to be customized via a mini-CMS for your web site or for your custom IE8 installer....KafTK: Iskakov AzamatMicrosoft Dynamics NAV text export splitter: Utility for splitting Microsoft Dynamics NAV object exports (in text format) into files that each contain a single object. MultiPoint Vote: Voting is more innovative and catchy through this MultiPoint application. Using MultiPoint SDK 1.5 and Visual C#, this prototype emphasizes the cap...NebDotNet: NebDotNetnsim: Some simulation issues.OpenLight Group Common Lib: This project is a set of classes commonly used across OpenLight Group projects.pstsdk.net: .NET port of PST File Format SDK: pstsdk.net makes it easier for .NET developers to access the PST file format. This is a direct C# port of the PST File Format SDK project which is ...RavenMVC: A NoSQL Demo App using RavenDB and ASP.NET MVC 2.Remics: Remics is a toolkit for reverse engineering tools. Open source (MIT license). The goal of Remics is enabling developers (or researchers) quickly...RIA Services to Legacy DAL Integration Library: RIA Services to Legacy DAL Integration LibrarySharePoint List Adapters for SSIS: SSIS source and destination components to access SharePoint lists using basic authenticationSql Query Modelling Language: This project library creates simple Sql queries.Thumb nail creator and image resizer: a user control to create thubnails and resize images for displayTK: study projectViperWorks Ignition: Ignition is application framework for WinForms and WPF business applications. Built in webservice generation, reporting and rapid application devel...XNA Image Reflector: XNA Image Reflector allows you to add Web 2.0-like reflections to images in a few clicksXNArkanoid: XNArkanoid is a Windows Phone 7 remake of the classic Taito´s Arkanoid. It´s developed in C#, using XNA Framework v4.0.New ReleasesAcies: Acies - Alpha Build 0.0.5: First alpha release. Requires Microsoft XNA Framework Redistributable 3.1 (http://www.microsoft.com/downloads/details.aspx?FamilyID=53867a2a-e249...Ajax Toolkit for ASP.NET MVC: Ajax Toolkit for ASP.NET MVC v20100527: change array datasource to json datasource allow lowercaseAttribute Builder: Attribute Builder 1.0: Attribute Builder 1.0Support for parameter-less constructors, constructors with parameters and object initialization with field and property assign...Binding Navigator: TTBindingNavigator preview: First binary release. Only control without samples.Bojinx: Bojinx Core V4.5.15: Bugs fixed: Clean up in the event handler Added more disposal features to better clean up contexts on unload. Optimized command processing fur...CBM-Command: Version 1.0 - 2010-05-26: Release Notes - 2010-05-26 - Version 1.0New Features None Changes Fixed bug where you could move to an unopened panel Fixed bug where you could ...Community Forums NNTP bridge: Community Forums NNTP Bridge V03: This is the second release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open sourcen NNTP Bridge. ...Community Forums NNTP bridge: Community Forums NNTP Bridge V04: This is the second release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open sourcen NNTP Bridge. ...Community Forums NNTP bridge: Community Forums NNTP Bridge V05: This is the second release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open sourcen NNTP Bridge. ...Community Forums NNTP bridge: Community Forums NNTP Bridge V06: This is the second release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open sourcen NNTP Bridge. ...Community Forums NNTP bridge: Community Forums NNTP Bridge V07: Release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open sourcen NNTP Bridge. This release solves...Community Forums NNTP bridge: Community Forums NNTP Bridge V08: Release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open source NNTP bridge. This release solves ...Dot Game: Dot Game Network version: Now, you can play over network.EpsiRisk: EPSI RISK V1: First Stable Version of EpsiRISK ! Enjoy !Event Scavenger: Viewer 3.3.0: Added grouping functionality to Viewer. Group expanding/collapsing only supported under Windows Vista/7 and onwards. Viewer version set to 3.3.0.FAST for Sharepoint MOSS 2010 Query Tool: Version 1.0: Full Release Added sorting Added custom trim duplicates Added UI improvements Added ignore certificate errorsFoursquare for Windows Phone 7: Foursquare 2010.05.26.01: Foursquare 2010.05.26.01 Updates: Corrected issue with isPrivate, sendToTwitter, and sendToFacebookHobbyBrew Mobile: Beta 3: ATTENZIONE notifica nuove versioni via email disponibile (leggi in fondo)! Supporto alla rotazione dello schermo: Malti e Luppoli si affiancano or...IE8 Web Slices Pack: IE8 Web Slices Pack v2.0: This release of the Web Slices Pack supports 5 different Web Slices and a mini CMS to administer the info in the Web Slices.manx: manx data 1.0: Initial dump of data. This is a raw SQL dump script that deletes all existing data and inserts the initial dataset as received from Paul Williams....Microsoft Web Protection Library: WPL May CTP: This preview of the Web Protection Library includes AntiXSS - an updated Anti-Cross Site Scripting Library removes some bugs and is now usable in ...MultiPoint Vote: MultiPoint Vote v.1: MultiPoint Vote v1 Features This accepts user inputs: number of participants, poll/survey title and the list of options A text file containing th...NLog - Advanced .NET Logging: Nightly Build 2010.05.26.001: Changes since the last build:2010-05-25 19:21:49 Jarek Kowalski Reordered parameters of AsynchronousAction<T> 2010-05-25 19:16:02 Jarek Kowalski N...NodeXL: Network Overview, Discovery and Exploration for Excel: NodeXL Class Libraries, version 1.0.1.124: The NodeXL class libraries can be used to display network graphs in .NET applications. To include a NodeXL network graph in a WPF desktop or Windo...NodeXL: Network Overview, Discovery and Exploration for Excel: NodeXL Excel 2007 Template, version 1.0.1.124: The NodeXL Excel 2007 template displays a network graph using edge and vertex lists stored in an Excel 2007 workbook. What's NewThis is a minor re...OpenExpressApp let business people build application: OpenExpressApp for .Net4: 从.Net3.5 SP1 升级到.Net4 ,升级主要内容: 1. 解决了一些内存泄露问题 2. 修改了一些bug 3. 进行了部分代码重构 4. 使用MEF替代了PrismRavenMVC: RavenMVC 0.1: A NoSQL demo app in ASP.NET MVC using RavenDB.SharePoint List Adapters for SSIS: Initial Release: Contains the raw assemblies necessary to use the SharePoint list adapters with basic authentication. See the read me file for details on using in ...Sql Query Modelling Language: Sql Qml V1: This is first versionThumb nail creator and image resizer: ThumbnailCreator 1.0: This is the very first release I built it for my self so it a bit rough but i thought others might fint it usefulluptime.exe: uptime.exe v1.1: Changed the calculation of the uptime. It's now based on the LastbootUpTime value obtained from WMI.VCC: Latest build, v2.1.30526.0: Automatic drop of latest buildViperWorks Ignition: Test: TestXmlCodeEditor: Release 0.91 Alpha: Release 0.91 AlphaXNA Image Reflector: XNA Image Reflector v 1.1: This release has been compiled with XNA Game Studio 3.1, so you will need to download the XNA Runtime 3.1 in order to run it.Xna.Extend: Xna Extend (Ver 0.0.1 beta): This is the betas, betas, beta, test version (Version 0.0.1 beta). It includes only the input and audio components. If you experience any errors, o...XNArkanoid: XNArkanoid v 0.2b: XNArkanoid v 0.2. Initial beta releaseMost Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)patterns & practices – Enterprise LibraryMicrosoft SQL Server Community & SamplesPHPExcelASP.NETMost Active ProjectsAStar.netpatterns & practices – Enterprise Librarypatterns & practices: Windows Azure Security GuidanceSqlServerExtensionsMono.AddinsBlogEngine.NETCustomer Portal Accelerator for Microsoft Dynamics CRMRawrCodeReviewGMap.NET - Great Maps for Windows Forms & Presentation

    Read the article

  • Row Number Transformation

    The Row Number Transformation calculates a row number for each row, and adds this as a new output column to the data flow. The column number is a sequential number, based on a seed value. Each row receives the next number in the sequence, based on the defined increment value. The final row number can be stored in a variable for later analysis, and can be used as part of a process to validate the integrity of the data movement. The Row Number transform has a variety of uses, such as generating surrogate keys, or as the basis for a data partitioning scheme when combined with the Conditional Split transformation. Properties Property Data Type Description Seed Int32 The first row number or seed value. Increment Int32 The value added to the previous row number to make the next row number. OutputVariable String The name of the variable into which the final row number is written post execution. (Optional). The three properties have been configured to support expressions, or they can set directly in the normal manner. Expressions on components are only visible on the hosting Data Flow task, not at the individual component level. Sometimes the data type of the property is incorrectly set when the properties are created, see the Troubleshooting section below for details on how to fix this. Installation The component is provided as an MSI file which you can download and run to install it. This simply places the files on disk in the correct locations and also installs the assemblies in the Global Assembly Cache as per Microsoft’s recommendations. You may need to restart the SQL Server Integration Services service, as this caches information about what components are installed, as well as restarting any open instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. For 2005/2008 Only - Finally you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the Row Number transformation in the Choose Toolbox Items window. This process has been described in detail in the related FAQ entry for How do I install a task or transform component? We recommend you follow best practice and apply the current Microsoft SQL Server Service pack to your SQL Server servers and workstations, and this component requires a minimum of SQL Server 2005 Service Pack 1. Downloads The Row Number Transformation  is available for SQL Server 2005, SQL Server 2008 (includes R2) and SQL Server 2012. Please choose the version to match your SQL Server version, or you can install multiple versions and use them side by side if you have more than one version of SQL Server installed. Row Number Transformation for SQL Server 2005 Row Number Transformation for SQL Server 2008 Row Number Transformation for SQL Server 2012 Version History SQL Server 2012 Version 3.0.0.6 - SQL Server 2012 release. Includes upgrade support for both 2005 and 2008 packages to 2012. (5 Jun 2012) SQL Server 2008 Version 2.0.0.5 - SQL Server 2008 release. (15 Oct 2008) SQL Server 2005 Version 1.2.0.34 – Updated installer. (25 Jun 2008) Version 1.2.0.7 - SQL Server 2005 RTM Refresh. SP1 Compatibility Testing. Added the ability to reuse an existing column to hold the generated row number, as an alternative to the default of adding a new column to the output. (18 Jun 2006) Version 1.2.0.7 - SQL Server 2005 RTM Refresh. SP1 Compatibility Testing. Added the ability to reuse an existing column to hold the generated row number, as an alternative to the default of adding a new column to the output. (18 Jun 2006) Version 1.0.0.0 - Public Release for SQL Server 2005 IDW 15 June CTP (29 Aug 2005) Screenshot Code Sample The following code sample demonstrates using the Data Generator Source and Row Number Transformation programmatically in a very simple package. Package package = new Package(); package.Name = "Data Generator & Row Number"; // Add the Data Flow Task Executable taskExecutable = package.Executables.Add("STOCK:PipelineTask"); // Get the task host wrapper, and the Data Flow task TaskHost taskHost = taskExecutable as TaskHost; MainPipe dataFlowTask = (MainPipe)taskHost.InnerObject; // Add Data Generator Source IDTSComponentMetaData100 componentSource = dataFlowTask.ComponentMetaDataCollection.New(); componentSource.Name = "Data Generator"; componentSource.ComponentClassID = "Konesans.Dts.Pipeline.DataGenerator.DataGenerator, Konesans.Dts.Pipeline.DataGenerator, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b"; CManagedComponentWrapper instanceSource = componentSource.Instantiate(); instanceSource.ProvideComponentProperties(); instanceSource.SetComponentProperty("RowCount", 10000); // Add Row Number Tx IDTSComponentMetaData100 componentRowNumber = dataFlowTask.ComponentMetaDataCollection.New(); componentRowNumber.Name = "FlatFileDestination"; componentRowNumber.ComponentClassID = "Konesans.Dts.Pipeline.RowNumberTransform.RowNumberTransform, Konesans.Dts.Pipeline.RowNumberTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b"; CManagedComponentWrapper instanceRowNumber = componentRowNumber.Instantiate(); instanceRowNumber.ProvideComponentProperties(); instanceRowNumber.SetComponentProperty("Increment", 10); // Connect the two components together IDTSPath100 path = dataFlowTask.PathCollection.New(); path.AttachPathAndPropagateNotifications(componentSource.OutputCollection[0], componentRowNumber.InputCollection[0]); #if DEBUG // Save package to disk, DEBUG only new Application().SaveToXml(String.Format(@"C:\Temp\{0}.dtsx", package.Name), package, null); #endif package.Execute(); foreach (DtsError error in package.Errors) { Console.WriteLine("ErrorCode : {0}", error.ErrorCode); Console.WriteLine(" SubComponent : {0}", error.SubComponent); Console.WriteLine(" Description : {0}", error.Description); } package.Dispose(); Troubleshooting Make sure you have downloaded the version that matches your version of SQL Server. We offer separate downloads for SQL Server 2005, SQL Server 2008 and SQL Server 2012. If you get an error when you try and use the component along the lines of The component could not be added to the Data Flow task. Please verify that this component is properly installed.  ... The data flow object "Konesans ..." is not installed correctly on this computer, this usually indicates that the internal cache of SSIS components needs to be updated. This is held by the SSIS service, so you need restart the the SQL Server Integration Services service. You can do this from the Services applet in Control Panel or Administrative Tools in Windows. You can also restart the computer if you prefer. You may also need to restart any current instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. Once installation is complete you need to manually add the task to the toolbox before you will see it and to be able add it to packages - How do I install a task or transform component? Please also make sure you have installed a minimum of SP1 for SQL 2005. The IDtsPipelineEnvironmentService was added in SQL Server 2005 Service Pack 1 (SP1) (See  http://support.microsoft.com/kb/916940). If you get an error Could not load type 'Microsoft.SqlServer.Dts.Design.IDtsPipelineEnvironmentService' from assembly 'Microsoft.SqlServer.Dts.Design, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91'. when trying to open the user interface, it implies that your development machine has not had SP1 applied. Very occasionally we get a problem to do with the properties not being created with the correct data type. Since there is no way to programmatically to define the data type of a pipeline component property, it can only infer it. Whilst we set an integer value as we create the property, sometimes SSIS decides to define it is a decimal. This is often highlighted when you use a property expression against the property and get an error similar to Cannot convert System.Int32 to System.Decimal. Unfortunately this is beyond our control and there appears to be no pattern as to when this happens. If you do have more information we would be happy to hear it. To fix this issue you can manually edit the package file. In Visual Studio right click the package file from the Solution Explorer and select View Code, which will open the package as raw XML. You can now search for the properties by name or the component name. You can then change the incorrect property data types highlighted below from Decimal to Int32. <component id="37" name="Row Number Transformation" componentClassID="{BF01D463-7089-41EE-8F05-0A6DC17CE633}" … >     <properties>         <property id="38" name="UserComponentTypeName" …>         <property id="41" name="Seed" dataType="System.Int32" ...>10</property>         <property id="42" name="Increment" dataType="System.Decimal" ...>10</property>         ... If you are still having issues then contact us, but please provide as much detail as possible about error, as well as which version of the the task you are using and details of the SSIS tools installed.

    Read the article

  • CodePlex Daily Summary for Monday, January 03, 2011

    CodePlex Daily Summary for Monday, January 03, 2011Popular ReleasesStyleCop for ReSharper: StyleCop for ReSharper 5.1.14977.000: Prerequisites: ============== o Visual Studio 2008 / Visual Studio 2010 o ReSharper 5.1.1753.4 o StyleCop 4.4.1.2 Preview This release adds no new features, has bug fixes around performance and unhandled errors reported on YouTrack.Morphine: Morphine Alpha Build 30: - Optimization - Some fixes with playlists - Added kinetic scrolling to tracklist view - Updated animations - Added controls to tracklist view Media opens by clicking "No media" or song title now.BloodSim: BloodSim - 1.3.1.0: - Restructured simulation log back end to something less stupid to drastically reduce simulation time and memory usage - Removed a debug log entry that was left over from testing of 1.3.0.0 - Fixed a rounding and calculation error with Haste rating - Added option for Rune of SwordshatteringDbDocument: DbDoc Initial Version: DbDoc Initial versionUltimateJB: UltimateJB 2.03 PL3 KAKAROTO: Voici une version attendu avec impatience pour beaucoup : - La version PL3 KAKAROTO intégre ses dernières modification et intégre maintenant le firmware 2.43 !!! Conclusion : - ultimateJB DEFAULT => Pas de spoof mais disponible pour les PS3 suivantes : 3.41_kiosk 3.41 3.40 3.30 3.21 3.15 3.10 3.01 2.76 2.70 2.60 2.53 2.43ASP .NET MVC CMS (Content Management System): Atomic CMS 2.1.2: Atomic CMS 2.1.2 release notes Atomic CMS installation guide Kind Of Magic MSBuild Task: Beta 4: Update to keep up with latest bug fixes. To those who don't like Magic/NoMagic attributes, you may change these names in KindOfMagic.targets file: Change this line: <MagicTask Assembly="@(IntermediateAssembly)" References="@(ReferencePath)"/> to something like this: <MagicTask Assembly="@(IntermediateAssembly)" References="@(ReferencePath)" MagicAttribute="MyMagicAttribute" NoMagicAttribute="MyNoMagicAttribute"/>N2 CMS: 2.1: N2 is a lightweight CMS framework for ASP.NET. It helps you build great web sites that anyone can update. Major Changes Support for auto-implemented properties ({get;set;}, based on contribution by And Poulsen) All-round improvements and bugfixes File manager improvements (multiple file upload, resize images to fit) New image gallery Infinite scroll paging on news Content templates First time with N2? Try the demo site Download one of the template packs (above) and open the proj...Wii Backup Fusion: Wii Backup Fusion 1.0: - Norwegian translation - French translation - German translation - WBFS dump for analysis - Scalable full HQ cover - Support for log file - Load game images improved - Support for image splitting - Diff for images after transfer - Support for scrubbing modes - Search functionality for log - Recurse depth for Files/Load - Show progress while downloading game cover - Supports more databases for cover download - Game cover loading routines improvedAutoLoL: AutoLoL v1.5.1: Fix: Fixed a bug where pressing Save As would not select the Mastery Directory by default Unexpected errors are now always reported to the user before closing AutoLoL down.* Extracted champion data to Data directory** Added disclaimer to notify users this application has nothing to do with Riot Games Inc. Updated Codeplex image * An error report will be shown to the user which can help the developers to find out what caused the error, this should improve support ** We are working on ...Random password generator written in F#.: VS 2010 solution + exe: Download a VS 2010 solution (unzip before opening) or a ready to go exe.TortoiseHg: TortoiseHg 1.1.8: TortoiseHg 1.1.8 is a minor bug fix release, with minor improvementsBlogEngine.NET: BlogEngine.NET 2.0: Get DotNetBlogEngine for 3 Months Free! Click Here for More Info 3 Months FREE – BlogEngine.NET Hosting – Click Here! If you want to set up and start using BlogEngine.NET right away, you should download the Web project. If you want to extend or modify BlogEngine.NET, you should download the source code. If you are upgrading from a previous version of BlogEngine.NET, please take a look at the Upgrading to BlogEngine.NET 2.0 instructions. To get started, be sure to check out our installatio...EnhSim: EnhSim 2.2.8 ALPHA: 2.2.8 ALPHAThis release supports WoW patch 4.03a at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 Rebuilt Feral Spir...Free Silverlight & WPF Chart Control - Visifire: Visifire SL and WPF Charts v3.6.6 Released: Hi, Today we are releasing final version of Visifire, v3.6.6 with the following new feature: * TextDecorations property is implemented in Title for Chart. * TitleTextDecorations property is implemented in Axis. * MinPointHeight property is now applicable for Column and Bar Charts. Also this release includes few bug fixes: * ToolTipText property of DataSeries was not getting applied from Style. * Chart threw exception if IndicatorEnabled property was set to true and Too...StyleCop Compliant Visual Studio Code Snippets: Visual Studio Code Snippets - January 2011: StyleCop Compliant Visual Studio Code Snippets Visual Studio 2010 provides C# developers with 38 code snippets, enhancing developer productivty and increasing the consistency of the code. Within this project the original code snippets have been refactored to provide StyleCop compliant versions of the original code snippets while also adding many new code snippets. Within the January 2011 release you'll find 82 code snippets to make you more productive and the code you write more consistent!...WPF Application Framework (WAF): WPF Application Framework (WAF) 2.0.0.2: Version: 2.0.0.2 (Milestone 2): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Remark The sample applications are using Microsoft’s IoC container MEF. However, the WPF Application Framework (WAF) doesn’t force you to use the same IoC container in your application. You can use ...Cosmos (C# Open Source Managed Operating System): 71406: This is the second release supporting the full line of Visual Studio 2010 editions. Changes since release 71246 include: Debug info is now stored in a single .cpdb file (which is a Firebird database) Keyboard input works now (using Console.ReadLine) Console colors work (using Console.ForegroundColor and .BackgroundColor)Paint.NET PSD Plugin: 1.6.0: Handling of layer masks has been greatly improved. Improved reliability. Many PSD files that previously loaded in as garbage will now load in correctly. Parallelized loading. PSD files containing layer masks will load in a bit quicker thanks to the removal of the sequential bottleneck. Hidden layers are no longer made visible on save. Many thanks to the users who helped expose the layer masks problem: Rob Horowitz, M_Lyons10. Please keep sending in those bug reports and PSD repro files!Facebook C# SDK: 4.1.1: From 4.1.1 Release: Authentication bug fix caused by facebook change (error with redirects in Safari) Authenticator fix, always returning true From 4.1.0 Release Lots of bug fixes Removed Dynamic Runtime Language dependencies from non-dynamic platforms. Samples included in release for ASP.NET, MVC, Silverlight, Windows Phone 7, WPF, WinForms, and one Visual Basic Sample Changed internal serialization to use Json.net BREAKING CHANGE: Canvas Session is no longer supported. Use Signed...New ProjectsAndroid Battery Indicator: Small widget that shows the battery life as a percentageBudget: A personal exploration into C#. A quickly thrown together project that allows you to track expenses by week. MS Access back end.Cafeteria Dotnetnuke Module: Simple Dotnetnuke Module about Managing Cafeteria. This module was applied at Ho Chi Minh City International University Portal Website.E Book Database & Organizer: This Is a project to organize ebooks and retrive information about them very fast.Later a free e-library software may be developed based on this project. This project mainly developed with visual C#2008express edition.It also can compiled by mono. It use SQLite as database. GrowlWebBridge: Using c# Growl connector library, accept notification parameters via querystring and fire off to Growl. I'm personally using it to have my Vera 2 (www.micasaverde.com) send growls when things happen.JakoPiste: N/AJAudit: Static analysis for java programs. Helps audit java code. Reports possible code improvements. 100% C#.Morphine: Morphine is a nice WPF media player with Android Honeycomb interface.NUnit test template for VS2010 Express MVC 2: This is an attempt to create a set of template of NUnit (a test framework) for MVC 2 in Visual Studio 2010 Express.Orchard Image Field Module: Orchard Image Field Module adds a new Image editor to content type management. PDB2MOBI batch convert: Converts PDB files to MOBI format in batch. Used primary to convert large PDB libraries for Kindle.Random password generator written in F#.: A password generator that creates random and strong passwords. It's developed in F#. Robots Routing using Swarm Intelligence: A project to simulate and test a multiagent algorithm for finding multiple noisy radiation Sources with spatial and communication constraints with an emulated environment with different parameters and conditions. sanmei: sanmeiServer DateTime: Server DateTime renders the date and time from the server and make it active using javascript. It is in Military Time Format.Windows K: Microsoft Imagine Cup 2011 Project

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21  | Next Page >