Search Results

Search found 563 results on 23 pages for 'vertices'.

Page 18/23 | < Previous Page | 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • Memory allocation strategy for the vertex buffers (DirectX 10/11)

    - by Alex
    I have the following question. I write CAD system. So I have a 3D scene and there are many different objects (walls, doors, windows and so on). User can add or delete some objects. The question is: how can I organise the keeping of vertices for all my objects. I can create vertex buffer for every object. But I think drawing/switching from one buffer to another would have performance penalty. Another way - I can create several big buffers for every object type. But I don't understand how to update such buffers. It is too big to update whole buffer (for example buffer for all walls). What I need to do if I want to delete the object from the middle of the buffer? Actually I have the similar question: http://stackoverflow.com/questions/5515700/how-to-properly-update-vertex-buffers-in-directx-10 Most examples I've found work with very static models. Therefore, they tend to create a single vertex buffer with their list of points, and then are just manipulated by matrix transformations. I, on the other hand, will be updating the scene very often.

    Read the article

  • OpenGL Application displays only 1 frame

    - by Avi
    EDIT: I have verified that the problem is not the VBO class or the vertex array class, but rather something else. I have a problem where my vertex buffer class works the first time its called, but displays nothing any other time its called. I don't know why this is, and it's also the same in my vertex array class. I'm calling the functions in this order to set up the buffers: enable client states bind buffers set buffer / array data unbind buffers disable client states Then in the draw function, that's called every frame: enable client states bind buffers set pointers unbind buffers bind index buffer draw elements unbind index buffer disable client states Is there something wrong with the order in which I'm calling the functions, or is it a more specific code error? EDIT: here's some of the code Code for setting pointers: //element is the vertex attribute being drawn (e.g. normals, colors, etc.) static void makeElementPointer(VertexBufferElements::VBOElement element, Shader *shade, void *elementLocation) { //elementLocation is BUFFER_OFFSET(n) if a buffer is bound switch (element) { .... glVertexPointer(3, GL_FLOAT, 0, elementLocation); //changes based on element .... //but I'm only dealing with } //vertices for now } And that's basically all the code that isn't just a straight OpenGL function call.

    Read the article

  • How do I improve terrain rendering batch counts using DirectX?

    - by gamer747
    We have determined that our terrain rendering system needs some work to minimize the number of batches being transferred to the GPU in order to improve performance. I'm looking for suggestions on how best to improve what we're trying to accomplish. We logically split our terrain mesh into smaller grid cells which are 32x32 world units. Each cell has meta data that dictates the four 256x256 textures that are used for spatting along with the alpha blend data, shadow, and light mappings. Each cell contains 81 vertices in a 9x9 grid. Presently, we examine each cell and determine the four textures that are being used to spat the cell. We combine that geometry with any other cell that perhaps uses the same four textures regardless of spat order. If the spat order for a cell differs, the blend map is adjusted so that the spat order is maintained the same as other like cells and blending happens in the right order too. But even with this batching approach, it isn't uncommon when looking out across an area of open terrain to have between 1200-1700 batch count depending upon how frequently textures differ or have different texture blends are between cells. We are only doing frustum culling presently. So using texture spatting, are there other alternatives that can reduce the batch count and allow rendering to be extremely performance-friendly even under DirectX9c? We considered using texture atlases since we're targeting DirectX 9c & older OpenGL platforms but trying to repeat textures using atlases and shaders result in seam artifacts which we haven't been able to eliminate with the exception of disabling mipmapping. Disabling mipmapping results in poor quality textures from a distance. How have others batched together terrain geometry such that one could spat terrain using various textures, minimizing batch count and texture state switches so that rendering performance isn't negatively impacted?

    Read the article

  • How computers display raw, low-level text and graphics

    - by panic
    My ever-growing interest in computers is making me ask deeper questions, that we don't seem to have to ask anymore. Our computers, at boot, as far as I understand it, are in text mode, in which a character can be displayed using the software interrupt 0x10 when AH=0x0e. We've all seen the famous booting font that always looks the same, regardless of what computer is booting. So, how on earth do computers output graphics at the lowest level, say, below the OS? And also, surely graphics aren't outputted a pixel at a time using software interrupts, as that sounds very slow? Is there a standard that defines basic outputting of vertices, polygons, fonts, etc. (below OpenGL for example, which OpenGL might use)? What makes me ask is why OS' can often be fine without official drivers installed; how do they do that? Apologies if my assumptions are incorrect. I would be very grateful for elaboration on these topics!

    Read the article

  • 3d point cloud render from x,y,z 2d array with texture

    - by user1733628
    Need some direction on 3d point cloud display using OpenGL in c++ (vs2008). I am brand new to OpenGL and trying to do a 3d point cloud display with a texture. I have 3 2D arrays (each same size 1024x512) representing x,y,z of each point. I think I am on the right track with glBegin(GL_POLYGON); for(int i=0; i<1024; i++) { for(int j=0; j<512; j++) { glVertex3f(x[i][j], y[i][j], z[i][j]); } } glEnd(); Now this loads all the vertices in the buffer (I think) but from here I am not sure how to proceed. Or I am completely wrong here. Then I have another 2D array (same size) that contains color data (values from 0-255) that I want to use as texture on the 3D point cloud and display. I understand that this maybe a very basic OpenGL implementation for some but for me this is a huge learning curve. So any pointers, nudge or kick in the right direction will be appreciated.

    Read the article

  • opengl 3d point cloud render from x,y,z 2d array with texture

    - by user1733628
    Need some direction on 3d point cloud display using openGl in c++ (vs2008). I am brand new to openGl and trying to do a 3d point cloud display with a texture. I have 3 2D arrays (each same size 1024x512) representing x,y,z of each point. I think I am on the right track with glBegin(GL_POLYGON); for(int i=0; i<1024; i++) { for(int j=0; j<512; j++) { glVertex3f(x[i][j], y[i][j], z[i][j]); } } glEnd(); Now this loads all the vertices in the buffer (i think) but from here I am not sure how to proceed. Or I am completely wrong here. Then I have another 2D array (same size) that contains color data (values from 0-255) that I want to use as texture on the 3D point cloud and display. I understand that this maybe a very basic opengl implementation for some but for me this is a huge learning curve. So any pointers, nudge or kick in the right direction will be appreciated.

    Read the article

  • OpenGL, objects disappear at a certain z distance

    - by smoth190
    I'm writing a managed OpenGL library in C++, and I'm having a pretty annoying problem. Whenever I set an objects position to -2.0 or lower, the object disappears. And at distances 0 through -1.9, it doesn't appear to move away from them camera. I have a world matrix (which is multiplied by the objects position to move it), a view matrix (which is just the identity matrix currently) and a projection matrix, which is setup like this: FOV: 45.0f Aspect Ratio: 1 zNear: 0.1f zFar: 100.0f using GLMs glm::perspective method. The order the matrices are multiplied by in the shader is world, view, projection, then position. I can move the object along the X and Y axis perfectly fine. I have depth testing enabled, using GL_LEQUAL. I can change the actually vertices positions to anything I want, and they move away from the camera or towards it perfectly fine. It just seems to be the world matrix acting up. I'm using glm::mat4 for the world matrix, and glm::vec3 for positions. Whats going on here? I'm also using OpenGL 3.1, GLSL version 140 (1.4?).

    Read the article

  • Draw "vision cone" / targetting element onto game world

    - by gkimsey
    I'm wanting to indicate various things using a "pie slice" sort of shape as below. Similar to vision cones in stealth game minimaps, or targetting indicators in RTS type games for frontal area attacks. Something generic enough to be used for both would be ideal. I need to be able to procedurally (and efficiently) change things like the slice width and length, color, transparency, position in the world, etc. For my particular situation, there's no concern with elevation, funky terrain, or really any third axis at all as far as this element is concerned. I have two first inclinations on how to accomplish this: 1) Manually generate the vertices for a main triangle, (possibly two, superimposed to get the border effect), a handful more to approximate the arc at the end, and roll it into a mesh. 2) Use some sort of 2D drawing library to create a circle and mask it off at the right angles, render to texture, and use that. For reference, I have some experience with Ogre3D, but I'm not attached to it as this is a mostly academic pursuit at the moment. Other technologies that might be better at accomplishing this are more than welcome. Finally, I'm kind of curious about how to do a "flashlight" or similar 3D effect that could produce the same result, but on all surfaces in the lit area.

    Read the article

  • Can someone explain the (reasons for the) implications of colum vs row major in multiplication/concatenation?

    - by sebf
    I am trying to learn how to construct view and projection matrices, and keep reaching difficulties in my implementation owing to my confusion about the two standards for matrices. I know how to multiply a matrix, and I can see that transposing before multiplication would completely change the result, hence the need to multiply in a different order. What I don't understand though is whats meant by only 'notational convention' - from the articles here and here the authors appear to assert that it makes no difference to how the matrix is stored, or transferred to the GPU, but on the second page that matrix is clearly not equivalent to how it would be laid out in memory for row-major; and if I look at a populated matrix in my program I see the translation components occupying the 4th, 8th and 12th elements. Given that: "post-multiplying with column-major matrices produces the same result as pre-multiplying with row-major matrices. " Why in the following snippet of code: Matrix4 r = t3 * t2 * t1; Matrix4 r2 = t1.Transpose() * t2.Transpose() * t3.Transpose(); Does r != r2 and why does pos3 != pos for: Vector4 pos = wvpM * new Vector4(0f, 15f, 15f, 1); Vector4 pos3 = wvpM.Transpose() * new Vector4(0f, 15f, 15f, 1); Does the multiplication process change depending on whether the matrices are row or column major, or is it just the order (for an equivalent effect?) One thing that isn't helping this become any clearer, is that when provided to DirectX, my column major WVP matrix is used successfully to transform vertices with the HLSL call: mul(vector,matrix) which should result in the vector being treated as row-major, so how can the column major matrix provided by my math library work?

    Read the article

  • how does HDR work?

    - by dotminic
    I'm trying to understand what HDR is and how it works. I understand the basic concepts and have an slight idea of how it is implemented with D3D/hlsl. However it's still pretty foggy. Say I'm rendering a sphere with a texture of the earth and a small point list of vertices to act as stars, how would I render this in HDR ? Here are a few things I'm confused about: I'm guessing, I can't use just any basic image format for the texture as the values would be limited to [0, 255] and clamped to [0, 1] in a shader. Same goes for the back buffer, I take it the format needs to be a float point format ? What are the other steps involved ? Surely there has to be more than just using floating point formats to render to a render target and then apply some bloom as a post process ? (considering the output will be 8bpp anyway) Basically, what are the steps for HDR ? How does it work ? I can't seem to find any good papers / articles that describe the process, other than this one, but it seems to skim over the basics a little, so it's confusing.

    Read the article

  • Certain grid lines not rendering as expected

    - by row1
    I am drawing a simple quad (a triangle strip with 4 vertices) as the floor and then drawing an 8x8 grid over top (a collection of vertex pairs for a line list). The vertical grid lines work fine (apart from being very aliased), but some of the horizontal lines do not get rendered. The grid renders fine if I do not draw the quad. foreach (EffectPass pass in _Effect.CurrentTechnique.Passes) { pass.Apply(); CurrentGraphicsDevice.SetVertexBuffer(_VertexFloorBuffer); _Engine.CurrentGraphicsDevice.DrawPrimitives(PrimitiveType.TriangleStrip, 0, 2); //Some of the horizontal lines seems to disappear if we draw the above quad. CurrentGraphicsDevice.SetVertexBuffer(_VertexGridBuffer); CurrentGraphicsDevice.DrawPrimitives(PrimitiveType.LineList, 0, _VertexGridBuffer.VertexCount / 2); } What could be causing these lines to not be rendered? Update: I added the below code after I draw my quad and grid and it started working. But I am not sure why that works as I thought this code was to draw the WPF controls elementRenderer.Render(); spriteBatch.Begin(); spriteBatch.Draw(elementRenderer.Texture, Vector2.Zero, Color.White); spriteBatch.End();

    Read the article

  • Building an interleaved buffer for pyopengl and numpy

    - by Nick Sonneveld
    I'm trying to batch up a bunch of vertices and texture coords in an interleaved array before sending it to pyOpengl's glInterleavedArrays/glDrawArrays. The only problem is that I'm unable to find a suitably fast enough way to append data into a numpy array. Is there a better way to do this? I would have thought it would be quicker to preallocate the array and then fill it with data but instead, generating a python list and converting it to a numpy array is "faster". Although 15ms for 4096 quads seems slow. I have included some example code and their timings. #!/usr/bin/python import timeit import numpy import ctypes import random USE_RANDOM=True USE_STATIC_BUFFER=True STATIC_BUFFER = numpy.empty(4096*20, dtype=numpy.float32) def render(i): # pretend these are different each time if USE_RANDOM: tex_left, tex_right, tex_top, tex_bottom = random.random(), random.random(), random.random(), random.random() left, right, top, bottom = random.random(), random.random(), random.random(), random.random() else: tex_left, tex_right, tex_top, tex_bottom = 0.0, 1.0, 1.0, 0.0 left, right, top, bottom = -1.0, 1.0, 1.0, -1.0 ibuffer = ( tex_left, tex_bottom, left, bottom, 0.0, # Lower left corner tex_right, tex_bottom, right, bottom, 0.0, # Lower right corner tex_right, tex_top, right, top, 0.0, # Upper right corner tex_left, tex_top, left, top, 0.0, # upper left ) return ibuffer # create python list.. convert to numpy array at end def create_array_1(): ibuffer = [] for x in xrange(4096): data = render(x) ibuffer += data ibuffer = numpy.array(ibuffer, dtype=numpy.float32) return ibuffer # numpy.array, placing individually by index def create_array_2(): if USE_STATIC_BUFFER: ibuffer = STATIC_BUFFER else: ibuffer = numpy.empty(4096*20, dtype=numpy.float32) index = 0 for x in xrange(4096): data = render(x) for v in data: ibuffer[index] = v index += 1 return ibuffer # using slicing def create_array_3(): if USE_STATIC_BUFFER: ibuffer = STATIC_BUFFER else: ibuffer = numpy.empty(4096*20, dtype=numpy.float32) index = 0 for x in xrange(4096): data = render(x) ibuffer[index:index+20] = data index += 20 return ibuffer # using numpy.concat on a list of ibuffers def create_array_4(): ibuffer_concat = [] for x in xrange(4096): data = render(x) # converting makes a diff! data = numpy.array(data, dtype=numpy.float32) ibuffer_concat.append(data) return numpy.concatenate(ibuffer_concat) # using numpy array.put def create_array_5(): if USE_STATIC_BUFFER: ibuffer = STATIC_BUFFER else: ibuffer = numpy.empty(4096*20, dtype=numpy.float32) index = 0 for x in xrange(4096): data = render(x) ibuffer.put( xrange(index, index+20), data) index += 20 return ibuffer # using ctype array CTYPES_ARRAY = ctypes.c_float*(4096*20) def create_array_6(): ibuffer = [] for x in xrange(4096): data = render(x) ibuffer += data ibuffer = CTYPES_ARRAY(*ibuffer) return ibuffer def equals(a, b): for i,v in enumerate(a): if b[i] != v: return False return True if __name__ == "__main__": number = 100 # if random, don't try and compare arrays if not USE_RANDOM and not USE_STATIC_BUFFER: a = create_array_1() assert equals( a, create_array_2() ) assert equals( a, create_array_3() ) assert equals( a, create_array_4() ) assert equals( a, create_array_5() ) assert equals( a, create_array_6() ) t = timeit.Timer( "testing2.create_array_1()", "import testing2" ) print 'from list:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_2()", "import testing2" ) print 'array: indexed:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_3()", "import testing2" ) print 'array: slicing:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_4()", "import testing2" ) print 'array: concat:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_5()", "import testing2" ) print 'array: put:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_6()", "import testing2" ) print 'ctypes float array:', t.timeit(number)/number*1000.0, 'ms' Timings using random numbers: $ python testing2.py from list: 15.0486779213 ms array: indexed: 24.8184704781 ms array: slicing: 50.2214789391 ms array: concat: 44.1691994667 ms array: put: 73.5879898071 ms ctypes float array: 20.6674289703 ms edit note: changed code to produce random numbers for each render to reduce object reuse and to simulate different vertices each time. edit note2: added static buffer and force all numpy.empty() to use dtype=float32 note 1/Apr/2010: still no progress and I don't really feel that any of the answers have solved the problem yet.

    Read the article

  • How to use Boost 1.41.0 graph layout algorithmes

    - by daniil-k
    Hi I have problem using boost graph layout algorithmes. boost verision 1_41_0 mingw g++ 4.4.0. So there are issues I have encountered Can you suggest me with them? The function fruchterman_reingold_force_directed_layout isn't compiled. The kamada_kawai_spring_layout compiled but program crashed. Boost documentation to layout algorithms is wrong, sample to fruchterman_reingold_force_directed_layout isn't compiled. This is my example. To use function just uncomment one. String 60, 61, 63. #include <boost/config.hpp> #include <boost/graph/adjacency_list.hpp> #include <boost/graph/graph_utility.hpp> #include <boost/graph/simple_point.hpp> #include <boost/property_map/property_map.hpp> #include <boost/graph/circle_layout.hpp> #include <boost/graph/fruchterman_reingold.hpp> #include <boost/graph/kamada_kawai_spring_layout.hpp> #include <iostream> //typedef boost::square_topology<>::point_difference_type Point; typedef boost::square_topology<>::point_type Point; struct VertexProperties { std::size_t index; Point point; }; struct EdgeProperty { EdgeProperty(const std::size_t &w):weight(w) {} double weight; }; typedef boost::adjacency_list<boost::listS, boost::listS, boost::undirectedS, VertexProperties, EdgeProperty > Graph; typedef boost::property_map<Graph, std::size_t VertexProperties::*>::type VertexIndexPropertyMap; typedef boost::property_map<Graph, Point VertexProperties::*>::type PositionMap; typedef boost::property_map<Graph, double EdgeProperty::*>::type WeightPropertyMap; typedef boost::graph_traits<Graph>::vertex_descriptor VirtexDescriptor; int main() { Graph graph; VertexIndexPropertyMap vertexIdPropertyMap = boost::get(&VertexProperties::index, graph); for (int i = 0; i < 3; ++i) { VirtexDescriptor vd = boost::add_vertex(graph); vertexIdPropertyMap[vd] = i + 2; } boost::add_edge(boost::vertex(1, graph), boost::vertex(0, graph), EdgeProperty(5), graph); boost::add_edge(boost::vertex(2, graph), boost::vertex(0, graph), EdgeProperty(5), graph); std::cout << "Vertices\n"; boost::print_vertices(graph, vertexIdPropertyMap); std::cout << "Edges\n"; boost::print_edges(graph, vertexIdPropertyMap); PositionMap positionMap = boost::get(&VertexProperties::point, graph); WeightPropertyMap weightPropertyMap = boost::get(&EdgeProperty::weight, graph); boost::circle_graph_layout(graph, positionMap, 100); // boost::fruchterman_reingold_force_directed_layout(graph, positionMap, boost::square_topology<>()); boost::kamada_kawai_spring_layout(graph, positionMap, weightPropertyMap, boost::square_topology<>(), boost::side_length<double>(10), boost::layout_tolerance<>(), 1, vertexIdPropertyMap); std::cout << "Coordinates\n"; boost::graph_traits<Graph>::vertex_iterator i, end; for (boost::tie(i, end) = boost::vertices(graph); i != end; ++i) { std::cout << "ID: (" << vertexIdPropertyMap[*i] << ") x: " << positionMap[*i][0] << " y: " << positionMap[*i][1] << "\n"; } return 0; }

    Read the article

  • Problem when trying to use simple Shaders + VBOs

    - by Mr.Gando
    Hello I'm trying to convert the following functions to a VBO based function for learning purposes, it displays a static texture on screen. I'm using OpenGL ES 2.0 with shaders on the iPhone (should be almost the same than regular OpenGL in this case), this is what I got working: //Works! - (void) drawAtPoint:(CGPoint)point depth:(CGFloat)depth { GLfloat coordinates[] = { 0, 1, 1, 1, 0, 0, 1, 0 }; GLfloat width = (GLfloat)_width * _maxS, height = (GLfloat)_height * _maxT; GLfloat vertices[] = { -width / 2 + point.x, -height / 2 + point.y, width / 2 + point.x, -height / 2 + point.y, -width / 2 + point.x, height / 2 + point.y, width / 2 + point.x, height / 2 + point.y, }; glBindTexture(GL_TEXTURE_2D, _name); //Attrib position and attrib_tex coord are handles for the shader attributes glVertexAttribPointer(ATTRIB_POSITION, 2, GL_FLOAT, GL_FALSE, 0, vertices); glEnableVertexAttribArray(ATTRIB_POSITION); glVertexAttribPointer(ATTRIB_TEXCOORD, 2, GL_FLOAT, GL_FALSE, 0, coordinates); glEnableVertexAttribArray(ATTRIB_TEXCOORD); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } I tried to do this to convert to a VBO however I don't see anything displaying on-screen with this version: //Doesn't display anything - (void) drawAtPoint:(CGPoint)point depth:(CGFloat)depth { GLfloat width = (GLfloat)_width * _maxS, height = (GLfloat)_height * _maxT; GLfloat position[] = { -width / 2 + point.x, -height / 2 + point.y, width / 2 + point.x, -height / 2 + point.y, -width / 2 + point.x, height / 2 + point.y, width / 2 + point.x, height / 2 + point.y, }; //Texture on-screen position ( each vertex is x,y in on-screen coords ) GLfloat coordinates[] = { 0, 1, 1, 1, 0, 0, 1, 0 }; // Texture coords from 0 to 1 glBindVertexArrayOES(vao); glGenVertexArraysOES(1, &vao); glGenBuffers(2, vbo); //Buffer 1 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]); glBufferData(GL_ARRAY_BUFFER, 8 * sizeof(GLfloat), position, GL_STATIC_DRAW); glEnableVertexAttribArray(ATTRIB_POSITION); glVertexAttribPointer(ATTRIB_POSITION, 2, GL_FLOAT, GL_FALSE, 0, position); //Buffer 2 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]); glBufferData(GL_ARRAY_BUFFER, 8 * sizeof(GLfloat), coordinates, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(ATTRIB_TEXCOORD); glVertexAttribPointer(ATTRIB_TEXCOORD, 2, GL_FLOAT, GL_FALSE, 0, coordinates); //Draw glBindVertexArrayOES(vao); glBindTexture(GL_TEXTURE_2D, _name); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } In both cases I'm using this simple Vertex Shader //Vertex Shader attribute vec2 position;//Bound to ATTRIB_POSITION attribute vec4 color; attribute vec2 texcoord;//Bound to ATTRIB_TEXCOORD varying vec2 texcoordVarying; uniform mat4 mvp; void main() { //You CAN'T use transpose before in glUniformMatrix4fv so... here it goes. gl_Position = mvp * vec4(position.x, position.y, 0.0, 1.0); texcoordVarying = texcoord; } The gl_Position is equal to product of mvp * vec4 because I'm simulating glOrthof in 2D with that mvp And this Fragment Shader //Fragment Shader uniform sampler2D sampler; varying mediump vec2 texcoordVarying; void main() { gl_FragColor = texture2D(sampler, texcoordVarying); } I really need help with this, maybe my shaders are wrong for the second case ? thanks in advance.

    Read the article

  • Lighting and OpenGL ES

    - by FX
    Hi all, I'm working on getting a simple lighting right on my OpenGL ES iPhone scene. I'm displaying a simple object centered on the origin, and using an arcball to rotate it by touching the screen. All this works nicely, except I try to add one fixed light (fixed w.r.t. eye position) and it is badly screwed: the whole object (an icosahedron in this example) is lit uniformly, i.e. it all appears in the same color. I have simplified my code as much as possible so it's standalone and still reproduces what I experience: glClearColor (0.25, 0.25, 0.25, 1.); glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable (GL_DEPTH_TEST); glEnable(GL_LIGHTING); glMatrixMode (GL_PROJECTION); glLoadIdentity (); glOrthof(-1, 1, -(float)backingWidth/backingHeight, (float)backingWidth/backingHeight, -10, 10); glMatrixMode (GL_MODELVIEW); glLoadIdentity (); GLfloat ambientLight[] = { 0.2f, 0.2f, 0.2f, 1.0f }; GLfloat diffuseLight[] = { 0.8f, 0.8f, 0.8, 1.0f }; GLfloat specularLight[] = { 0.5f, 0.5f, 0.5f, 1.0f }; GLfloat position[] = { -1.5f, 1.0f, -400.0f, 0.0f }; glEnable(GL_LIGHT0); glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight); glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight); glLightfv(GL_LIGHT0, GL_SPECULAR, specularLight); glLightfv(GL_LIGHT0, GL_POSITION, position); glShadeModel(GL_SMOOTH); glEnable(GL_NORMALIZE); float currRot[4]; [arcball getCurrentRotation:currRot]; glRotatef (currRot[0], currRot[1], currRot[2], currRot[3]); float f[4]; f[0] = 0.5; f[1] = 0; f[2] = 0; f[3] = 1; glMaterialfv (GL_FRONT_AND_BACK, GL_AMBIENT, f); glMaterialfv (GL_FRONT_AND_BACK, GL_DIFFUSE, f); f[0] = 0.2; f[1] = 0.2; f[2] = 0.2; f[3] = 1; glMaterialfv (GL_FRONT_AND_BACK, GL_SPECULAR, f); glEnableClientState (GL_VERTEX_ARRAY); drawSphere(0, 0, 0, 1); where the drawSphere function actually draws an icosahedron: static void drawSphere (float x, float y, float z, float rad) { glPushMatrix (); glTranslatef (x, y, z); glScalef (rad, rad, rad); // Icosahedron const float vertices[] = { 0., 0., -1., 0., 0., 1., -0.894427, 0., -0.447214, 0.894427, 0., 0.447214, 0.723607, -0.525731, -0.447214, 0.723607, 0.525731, -0.447214, -0.723607, -0.525731, 0.447214, -0.723607, 0.525731, 0.447214, -0.276393, -0.850651, -0.447214, -0.276393, 0.850651, -0.447214, 0.276393, -0.850651, 0.447214, 0.276393, 0.850651, 0.447214 }; const GLubyte indices[] = { 1, 11, 7, 1, 7, 6, 1, 6, 10, 1, 10, 3, 1, 3, 11, 4, 8, 0, 5, 4, 0, 9, 5, 0, 2, 9, 0, 8, 2, 0, 11, 9, 7, 7, 2, 6, 6, 8, 10, 10, 4, 3, 3, 5, 11, 4, 10, 8, 5, 3, 4, 9, 11, 5, 2, 7, 9, 8, 6, 2 }; glVertexPointer (3, GL_FLOAT, 0, vertices); glDrawElements (GL_TRIANGLES, sizeof(indices)/sizeof(indices[0]), GL_UNSIGNED_BYTE, indices); glPopMatrix (); } A movie of what I see as the result is here. Thanks to anyone who can shed some light into this (no kidding!). I'm sure it will look embarassingly trivial to someone, but I swear I have looked at many lighting tutorials before this and am stuck.

    Read the article

  • Scala: Recursively building all pathes in a graph?

    - by DarqMoth
    Trying to build all existing paths for an udirected graph defined as a map of edges using the following algorithm: Start: with a given vertice A Find an edge (X.A, X.B) or (X.B, X.A), add this edge to path Find all edges Ys fpr which either (Y.C, Y.B) or (Y.B, Y.C) is true For each Ys: A=B, goto Start Providing edges are defined as the following map, where keys are tuples consisting of two vertices: val edges = Map( ("n1", "n2") -> "n1n2", ("n1", "n3") -> "n1n3", ("n3", "n4") -> "n3n4", ("n5", "n1") -> "n5n1", ("n5", "n4") -> "n5n4") As an output I need to get a list of ALL pathes where each path is a list of adjecent edges like this: val allPaths = List( List(("n1", "n2") -> "n1n2"), List(("n1", "n3") -> "n1n3", ("n3", "n4") -> "n3n4"), List(("n5", "n1") -> "n5n1"), List(("n5", "n4") -> "n5n4"), List(("n2", "n1") -> "n1n2", ("n1", "n3") -> "n1n3", ("n3", "n4") -> "n3n4", ("n5", "n4") -> "n5n4")) //... //... more pathes to go } Note: Edge XY = (x,y) - "xy" and YX = (y,x) - "yx" exist as one instance only, either as XY or YX So far I have managed to implement code that duplicates edges in the path, which is wrong and I can not find the error: object Graph2 { type Vertice = String type Edge = ((String, String), String) type Path = List[((String, String), String)] val edges = Map( //(("v1", "v2") , "v1v2"), (("v1", "v3") , "v1v3"), (("v3", "v4") , "v3v4") //(("v5", "v1") , "v5v1"), //(("v5", "v4") , "v5v4") ) def main(args: Array[String]): Unit = { val processedVerticies: Map[Vertice, Vertice] = Map() val processedEdges: Map[(Vertice, Vertice), (Vertice, Vertice)] = Map() val path: Path = List() println(buildPath(path, "v1", processedVerticies, processedEdges)) } /** * Builds path from connected by edges vertices starting from given vertice * Input: map of edges * Output: list of connected edges like: List(("n1", "n2") -> "n1n2"), List(("n1", "n3") -> "n1n3", ("n3", "n4") -> "n3n4"), List(("n5", "n1") -> "n5n1"), List(("n5", "n4") -> "n5n4"), List(("n2", "n1") -> "n1n2", ("n1", "n3") -> "n1n3", ("n3", "n4") -> "n3n4", ("n5", "n4") -> "n5n4")) */ def buildPath(path: Path, vertice: Vertice, processedVerticies: Map[Vertice, Vertice], processedEdges: Map[(Vertice, Vertice), (Vertice, Vertice)]): List[Path] = { println("V: " + vertice + " VM: " + processedVerticies + " EM: " + processedEdges) if (!processedVerticies.contains(vertice)) { val edges = children(vertice) println("Edges: " + edges) val x = edges.map(edge => { if (!processedEdges.contains(edge._1)) { addToPath(vertice, processedVerticies.++(Map(vertice -> vertice)), processedEdges, path, edge) } else { println("ALready have edge: "+edge+" Return path:"+path) path } }) val y = x.toList y } else { List(path) } } def addToPath( vertice: Vertice, processedVerticies: Map[Vertice, Vertice], processedEdges: Map[(Vertice, Vertice), (Vertice, Vertice)], path: Path, edge: Edge): Path = { val newPath: Path = path ::: List(edge) val key = edge._1 val nextVertice = neighbor(vertice, key) val x = buildPath (newPath, nextVertice, processedVerticies, processedEdges ++ (Map((vertice, nextVertice) -> (vertice, nextVertice))) ).flatten // need define buidPath type x } def children(vertice: Vertice) = { edges.filter(p => (p._1)._1 == vertice || (p._1)._2 == vertice) } def containsPair(x: (Vertice, Vertice), m: Map[(Vertice, Vertice), (Vertice, Vertice)]): Boolean = { m.contains((x._1, x._2)) || m.contains((x._2, x._1)) } def neighbor(vertice: String, key: (String, String)): String = key match { case (`vertice`, x) => x case (x, `vertice`) => x } } Running this results in: List(List(((v1,v3),v1v3), ((v1,v3),v1v3), ((v3,v4),v3v4))) Why is that?

    Read the article

  • How to use onSensorChanged sensor data in combination with OpenGL

    - by Sponge
    I have written a TestSuite to find out how to calculate the rotation angles from the data you get in SensorEventListener.onSensorChanged(). I really hope you can complete my solution to help people who will have the same problems like me. Here is the code, i think you will understand it after reading it. Feel free to change it, the main idea was to implement several methods to send the orientation angles to the opengl view or any other target which would need it. method 1 to 4 are working, they are directly sending the rotationMatrix to the OpenGl view. all other methods are not working or buggy and i hope someone knows to get them working. i think the best method would be method 5 if it would work, because it would be the easiest to understand but i'm not sure how efficient it is. the complete code isn't optimized so i recommend to not use it as it is in your project. here it is: import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGL10; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import static javax.microedition.khronos.opengles.GL10.*; import android.app.Activity; import android.content.Context; import android.content.pm.ActivityInfo; import android.hardware.Sensor; import android.hardware.SensorEvent; import android.hardware.SensorEventListener; import android.hardware.SensorManager; import android.opengl.GLSurfaceView; import android.opengl.GLSurfaceView.Renderer; import android.os.Bundle; import android.util.Log; import android.view.WindowManager; /** * This class provides a basic demonstration of how to use the * {@link android.hardware.SensorManager SensorManager} API to draw a 3D * compass. */ public class SensorToOpenGlTests extends Activity implements Renderer, SensorEventListener { private static final boolean TRY_TRANSPOSED_VERSION = false; /* * MODUS overview: * * 1 - unbufferd data directly transfaired from the rotation matrix to the * modelview matrix * * 2 - buffered version of 1 where both acceleration and magnetometer are * buffered * * 3 - buffered version of 1 where only magnetometer is buffered * * 4 - buffered version of 1 where only acceleration is buffered * * 5 - uses the orientation sensor and sets the angles how to rotate the * camera with glrotate() * * 6 - uses the rotation matrix to calculate the angles * * 7 to 12 - every possibility how the rotationMatrix could be constructed * in SensorManager.getRotationMatrix (see * http://www.songho.ca/opengl/gl_anglestoaxes.html#anglestoaxes for all * possibilities) */ private static int MODUS = 2; private GLSurfaceView openglView; private FloatBuffer vertexBuffer; private ByteBuffer indexBuffer; private FloatBuffer colorBuffer; private SensorManager mSensorManager; private float[] rotationMatrix = new float[16]; private float[] accelGData = new float[3]; private float[] bufferedAccelGData = new float[3]; private float[] magnetData = new float[3]; private float[] bufferedMagnetData = new float[3]; private float[] orientationData = new float[3]; // private float[] mI = new float[16]; private float[] resultingAngles = new float[3]; private int mCount; final static float rad2deg = (float) (180.0f / Math.PI); private boolean mirrorOnBlueAxis = false; private boolean landscape; public SensorToOpenGlTests() { } /** Called with the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE); openglView = new GLSurfaceView(this); openglView.setRenderer(this); setContentView(openglView); } @Override protected void onResume() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onResume(); openglView.onResume(); if (((WindowManager) getSystemService(WINDOW_SERVICE)) .getDefaultDisplay().getOrientation() == 1) { landscape = true; } else { landscape = false; } mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD), SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_ORIENTATION), SensorManager.SENSOR_DELAY_GAME); } @Override protected void onPause() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onPause(); openglView.onPause(); mSensorManager.unregisterListener(this); } public int[] getConfigSpec() { // We want a depth buffer, don't care about the // details of the color buffer. int[] configSpec = { EGL10.EGL_DEPTH_SIZE, 16, EGL10.EGL_NONE }; return configSpec; } public void onDrawFrame(GL10 gl) { // clear screen and color buffer: gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); // set target matrix to modelview matrix: gl.glMatrixMode(GL10.GL_MODELVIEW); // init modelview matrix: gl.glLoadIdentity(); // move camera away a little bit: if ((MODUS == 1) || (MODUS == 2) || (MODUS == 3) || (MODUS == 4)) { if (landscape) { // in landscape mode first remap the rotationMatrix before using // it with glMultMatrixf: float[] result = new float[16]; SensorManager.remapCoordinateSystem(rotationMatrix, SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X, result); gl.glMultMatrixf(result, 0); } else { gl.glMultMatrixf(rotationMatrix, 0); } } else { //in all other modes do the rotation by hand: gl.glRotatef(resultingAngles[1], 1, 0, 0); gl.glRotatef(resultingAngles[2], 0, 1, 0); gl.glRotatef(resultingAngles[0], 0, 0, 1); if (mirrorOnBlueAxis) { //this is needed for mode 6 to work gl.glScalef(1, 1, -1); } } //move the axis to simulate augmented behaviour: gl.glTranslatef(0, 2, 0); // draw the 3 axis on the screen: gl.glVertexPointer(3, GL_FLOAT, 0, vertexBuffer); gl.glColorPointer(4, GL_FLOAT, 0, colorBuffer); gl.glDrawElements(GL_LINES, 6, GL_UNSIGNED_BYTE, indexBuffer); } public void onSurfaceChanged(GL10 gl, int width, int height) { gl.glViewport(0, 0, width, height); float r = (float) width / height; gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glFrustumf(-r, r, -1, 1, 1, 10); } public void onSurfaceCreated(GL10 gl, EGLConfig config) { gl.glDisable(GL10.GL_DITHER); gl.glClearColor(1, 1, 1, 1); gl.glEnable(GL10.GL_CULL_FACE); gl.glShadeModel(GL10.GL_SMOOTH); gl.glEnable(GL10.GL_DEPTH_TEST); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); // load the 3 axis and there colors: float vertices[] = { 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }; float colors[] = { 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1 }; byte indices[] = { 0, 1, 0, 2, 0, 3 }; ByteBuffer vbb; vbb = ByteBuffer.allocateDirect(vertices.length * 4); vbb.order(ByteOrder.nativeOrder()); vertexBuffer = vbb.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); vbb = ByteBuffer.allocateDirect(colors.length * 4); vbb.order(ByteOrder.nativeOrder()); colorBuffer = vbb.asFloatBuffer(); colorBuffer.put(colors); colorBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public void onAccuracyChanged(Sensor sensor, int accuracy) { } public void onSensorChanged(SensorEvent event) { // load the new values: loadNewSensorData(event); if (MODUS == 1) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); } if (MODUS == 2) { rootMeanSquareBuffer(bufferedAccelGData, accelGData); rootMeanSquareBuffer(bufferedMagnetData, magnetData); SensorManager.getRotationMatrix(rotationMatrix, null, bufferedAccelGData, bufferedMagnetData); } if (MODUS == 3) { rootMeanSquareBuffer(bufferedMagnetData, magnetData); SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, bufferedMagnetData); } if (MODUS == 4) { rootMeanSquareBuffer(bufferedAccelGData, accelGData); SensorManager.getRotationMatrix(rotationMatrix, null, bufferedAccelGData, magnetData); } if (MODUS == 5) { // this mode uses the sensor data recieved from the orientation // sensor resultingAngles = orientationData.clone(); if ((-90 > resultingAngles[1]) || (resultingAngles[1] > 90)) { resultingAngles[1] = orientationData[0]; resultingAngles[2] = orientationData[1]; resultingAngles[0] = orientationData[2]; } } if (MODUS == 6) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); final float[] anglesInRadians = new float[3]; SensorManager.getOrientation(rotationMatrix, anglesInRadians); if ((-90 < anglesInRadians[2] * rad2deg) && (anglesInRadians[2] * rad2deg < 90)) { // device camera is looking on the floor // this hemisphere is working fine mirrorOnBlueAxis = false; resultingAngles[0] = anglesInRadians[0] * rad2deg; resultingAngles[1] = anglesInRadians[1] * rad2deg; resultingAngles[2] = anglesInRadians[2] * -rad2deg; } else { mirrorOnBlueAxis = true; // device camera is looking in the sky // this hemisphere is mirrored at the blue axis resultingAngles[0] = (anglesInRadians[0] * rad2deg); resultingAngles[1] = (anglesInRadians[1] * rad2deg); resultingAngles[2] = (anglesInRadians[2] * rad2deg); } } if (MODUS == 7) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in x y z * order Rx*Ry*Rz */ resultingAngles[2] = (float) (Math.asin(rotationMatrix[2])); final float cosB = (float) Math.cos(resultingAngles[2]); resultingAngles[2] = resultingAngles[2] * rad2deg; resultingAngles[0] = -(float) (Math.acos(rotationMatrix[0] / cosB)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[10] / cosB)) * rad2deg; } if (MODUS == 8) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in z y x */ resultingAngles[2] = (float) (Math.asin(-rotationMatrix[8])); final float cosB = (float) Math.cos(resultingAngles[2]); resultingAngles[2] = resultingAngles[2] * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[9] / cosB)) * rad2deg; resultingAngles[0] = (float) (Math.asin(rotationMatrix[4] / cosB)) * rad2deg; } if (MODUS == 9) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in z x y * * note z axis looks good at this one */ resultingAngles[1] = (float) (Math.asin(rotationMatrix[9])); final float minusCosA = -(float) Math.cos(resultingAngles[1]); resultingAngles[1] = resultingAngles[1] * rad2deg; resultingAngles[2] = (float) (Math.asin(rotationMatrix[8] / minusCosA)) * rad2deg; resultingAngles[0] = (float) (Math.asin(rotationMatrix[1] / minusCosA)) * rad2deg; } if (MODUS == 10) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in y x z */ resultingAngles[1] = (float) (Math.asin(-rotationMatrix[6])); final float cosA = (float) Math.cos(resultingAngles[1]); resultingAngles[1] = resultingAngles[1] * rad2deg; resultingAngles[2] = (float) (Math.asin(rotationMatrix[2] / cosA)) * rad2deg; resultingAngles[0] = (float) (Math.acos(rotationMatrix[5] / cosA)) * rad2deg; } if (MODUS == 11) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in y z x */ resultingAngles[0] = (float) (Math.asin(rotationMatrix[4])); final float cosC = (float) Math.cos(resultingAngles[0]); resultingAngles[0] = resultingAngles[0] * rad2deg; resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC)) * rad2deg; } if (MODUS == 12) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in x z y */ resultingAngles[0] = (float) (Math.asin(-rotationMatrix[1])); final float cosC = (float) Math.cos(resultingAngles[0]); resultingAngles[0] = resultingAngles[0] * rad2deg; resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC)) * rad2deg; } logOutput(); } /** * transposes the matrix because it was transposted (inverted, but here its * the same, because its a rotation matrix) to be used for opengl * * @param source * @return */ private float[] transpose(float[] source) { final float[] result = source.clone(); if (TRY_TRANSPOSED_VERSION) { result[1] = source[4]; result[2] = source[8]; result[4] = source[1]; result[6] = source[9]; result[8] = source[2]; result[9] = source[6]; } // the other values in the matrix are not relevant for rotations return result; } private void rootMeanSquareBuffer(float[] target, float[] values) { final float amplification = 200.0f; float buffer = 20.0f; target[0] += amplification; target[1] += amplification; target[2] += amplification; values[0] += amplification; values[1] += amplification; values[2] += amplification; target[0] = (float) (Math .sqrt((target[0] * target[0] * buffer + values[0] * values[0]) / (1 + buffer))); target[1] = (float) (Math .sqrt((target[1] * target[1] * buffer + values[1] * values[1]) / (1 + buffer))); target[2] = (float) (Math .sqrt((target[2] * target[2] * buffer + values[2] * values[2]) / (1 + buffer))); target[0] -= amplification; target[1] -= amplification; target[2] -= amplification; values[0] -= amplification; values[1] -= amplification; values[2] -= amplification; } private void loadNewSensorData(SensorEvent event) { final int type = event.sensor.getType(); if (type == Sensor.TYPE_ACCELEROMETER) { accelGData = event.values.clone(); } if (type == Sensor.TYPE_MAGNETIC_FIELD) { magnetData = event.values.clone(); } if (type == Sensor.TYPE_ORIENTATION) { orientationData = event.values.clone(); } } private void logOutput() { if (mCount++ > 30) { mCount = 0; Log.d("Compass", "yaw0: " + (int) (resultingAngles[0]) + " pitch1: " + (int) (resultingAngles[1]) + " roll2: " + (int) (resultingAngles[2])); } } }

    Read the article

  • Naming conventions and field naming question for CakePHP

    - by jphenow
    Okay so two questions very related: 1) Does following the naming convention for classes, controllers, database fields, etc. affect the framework's ability to work the way it was intended? (I'm a little new to working with a framework from the beginning of app development) 2) This question is more important if 1 is a yes. Say I have a table, A, that has 2 foreign keys pointing at the same table, B, but different entries (they're like edges of a graph that point at two vertices) how would I follow the naming convention of their database fields? All I can think to do is something like vertex_1_id and vertex_2_id but I don't know how the framework would handle that if the naming conventions are necessary for its functioning correctly.

    Read the article

  • OPENGLES 2.0 equivalent of glorthof?

    - by Zippo
    Hi Guys, In my iphone app, i need to project 3d scene into the 2D coordinates of the screen for some calculations. My objects go through various rotations, translations and scaling. So i figured i need to multiply the vertices with ModelView matrix first, then i need to multiply it with the Orthogonal projection matrix. First of all am on the right track? I have the Model View Matrix, but need the projection matrix. Is there a glorthof equivalent in ES 2.0? PS: i am new to opengl. Thanks for your help. Zippo

    Read the article

  • What is the relaxation condition in graph theory

    - by windopal
    Hi, I'm trying to understand the main concepts of graph theory and the algorithms within it. Most algorithms seem to contain a "Relaxation Condition" I'm unsure about what this is. Could some one explain it to me please. An example of this is dijkstras algorithm, here is the pseudo-code. 1 function Dijkstra(Graph, source): 2 for each vertex v in Graph: // Initializations 3 dist[v] := infinity // Unknown distance function from source to v 4 previous[v] := undefined // Previous node in optimal path from source 5 dist[source] := 0 // Distance from source to source 6 Q := the set of all nodes in Graph // All nodes in the graph are unoptimized - thus are in Q 7 while Q is not empty: // The main loop 8 u := vertex in Q with smallest dist[] 9 if dist[u] = infinity: 10 break // all remaining vertices are inaccessible from source 11 remove u from Q 12 for each neighbor v of u: // where v has not yet been removed from Q. 13 alt := dist[u] + dist_between(u, v) 14 if alt < dist[v]: // Relax (u,v,a) 15 dist[v] := alt 16 previous[v] := u 17 return dist[] Thanks

    Read the article

  • Interpolating 2d data that is piecewise constant on faces

    - by celil
    I have an irregular mesh which is described by two variables - a faces array that stores the indices of the vertices that constitute each face, and a verts array that stores the coordinates of each vertex. I also have a function that is assumed to be piecewise constant over each face, and it is stored in the form of an array of values per face. I am looking for a way to construct a function f from this data. Something along the following lines: faces = [[0,1,2], [1,2,3], [2,3,4] ...] verts = [[0,0], [0,1], [1,0], [1,1],....] vals = [0.0, 1.0, 0.5, 3.0,....] f = interpolate(faces, verts, vals) f(0.2, 0.2) = 0.0 # point inside face [0,1,2] f(0.6, 0.6) = 1.0 # point inside face [1,2,3] The manual way of evaluating f(x,y) would be to find the corresponding face that the point x,y lies in, and return the value that is stored in that face. Is there a function that already implements this in scipy (or in matlab)?

    Read the article

  • Howto project a planar polygon on a plane in 3d-space

    - by sum1stolemyname
    I want to project my Polygon along a vector to a plane in 3d Space. I would preferably use a single transformation matrix to do this, but I don't know how to build a matrix of this kind. Given the plane's parameters (ax+by+cz+d), the world coordinates of my Polygon. As stated in the the headline, all vertices of my polygon lie in another plane. the direction vector along which to project my Polygon (currently the polygon's plane's normal vector) goal -a 4x4 transformation matrix which performs the required projection, or some insight on how to construct one myself

    Read the article

  • Prim's MST algorithm implementation with Java

    - by user1290164
    I'm trying to write a program that'll find the MST of a given undirected weighted graph with Kruskal's and Prim's algorithms. I've successfully implemented Kruskal's algorithm in the program, but I'm having trouble with Prim's. To be more precise, I can't figure out how to actually build the Prim function so that it'll iterate through all the vertices in the graph. I'm getting some IndexOutOfBoundsException errors during program execution. I'm not sure how much information is needed for others to get the idea of what I have done so far, but hopefully there won't be too much useless information. This is what I have so far: I have a Graph, Edge and a Vertex class. Vertex class mostly just an information storage that contains the name (number) of the vertex. Edge class can create a new Edge that has gets parameters (Vertex start, Vertex end, int edgeWeight). The class has methods to return the usual info like start vertex, end vertex and the weight. Graph class reads data from a text file and adds new Edges to an ArrayList. The text file also tells us how many vertecis the graph has, and that gets stored too. In the Graph class, I have a Prim() -method that's supposed to calculate the MST: public ArrayList<Edge> Prim(Graph G) { ArrayList<Edge> edges = G.graph; // Copies the ArrayList with all edges in it. ArrayList<Edge> MST = new ArrayList<Edge>(); Random rnd = new Random(); Vertex startingVertex = edges.get(rnd.nextInt(G.returnVertexCount())).returnStartingVertex(); // This is just to randomize the starting vertex. // This is supposed to be the main loop to find the MST, but this is probably horribly wrong.. while (MST.size() < returnVertexCount()) { Edge e = findClosestNeighbour(startingVertex); MST.add(e); visited.add(e.returnStartingVertex()); visited.add(e.returnEndingVertex()); edges.remove(e); } return MST; } The method findClosesNeighbour() looks like this: public Edge findClosestNeighbour(Vertex v) { ArrayList<Edge> neighbours = new ArrayList<Edge>(); ArrayList<Edge> edges = graph; for (int i = 0; i < edges.size() -1; ++i) { if (edges.get(i).endPoint() == s.returnVertexID() && !visited(edges.get(i).returnEndingVertex())) { neighbours.add(edges.get(i)); } } return neighbours.get(0); // This is the minimum weight edge in the list. } ArrayList<Vertex> visited and ArrayList<Edges> graph get constructed when creating a new graph. Visited() -method is simply a boolean check to see if ArrayList visited contains the Vertex we're thinking about moving to. I tested the findClosestNeighbour() independantly and it seemed to be working but if someone finds something wrong with it then that feedback is welcome also. Mainly though as I mentioned my problem is with actually building the main loop in the Prim() -method, and if there's any additional info needed I'm happy to provide it. Thank you. Edit: To clarify what my train of thought with the Prim() method is. What I want to do is first randomize the starting point in the graph. After that, I will find the closest neighbor to that starting point. Then we'll add the edge connecting those two points to the MST, and also add the vertices to the visited list for checking later, so that we won't form any loops in the graph. Here's the error that gets thrown: Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0 at java.util.ArrayList.rangeCheck(Unknown Source) at java.util.ArrayList.get(Unknown Source) at Graph.findClosestNeighbour(graph.java:203) at Graph.Prim(graph.java:179) at MST.main(MST.java:49) Line 203: return neighbour.get(0); in findClosestNeighbour() Line 179: Edge e = findClosestNeighbour(startingVertex); in Prim()

    Read the article

  • How to get a flat, non-interpolated color when using vertex shaders.

    - by Brett
    Hi, Is there a way to achieve this? If I draw lines like this glShadeModel(GL_FLAT); glBegin(GL_LINES); glColor3f(1.0, 1.0, 0.0); glVertex3fv(bottomLeft); glVertex3fv(topRight); glColor3f(1.0, 0.0, 0.0); glVertex3fv(topRight); glVertex3fv(topLeft); . . (draw a square) . . glEnd(); I get the desired result (a different colour for each edge) but I want to be able to calculate the fragment values in a shader. If I do the same after setting up my shader program I always get interpolated colors between vertices. Is there a way around this? (would be even better if I could get the same results using quads) Thanks

    Read the article

  • Math for a geodesic sphere

    - by Marcelo Cantos
    I'm trying to create a very specific geodesic tessellation, but I can't find anything online about it. It is normal to subdivide the triangles of an icosahedron into triangle patches and project them onto the sphere. However, I noticed an animated GIF on the Wikipedia entry for Geodesic Domes that appears not to follow this scheme. Geodesic spheres generally comprise a mixture of mostly hexagonal triangle patches, with pentagonal patches forming at the vertices of the original icosahedron; in most cases, these pentagons are linked together; that is, following a straight edge from the center of one pentagon leads to the center of another pentagon. In the Wikipedia animation, however, the edge from the center of one pentagon doesn't appear to intersect the center of an adjacent pentagons; instead it intersects the side of the other pentagon. Hopefully the drawing below makes this clear: Where can I go to learn about the math behind this particular geometry? Ideally, I'd like to know of an algorithm for generating such tessellations.

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21 22 23  | Next Page >