Search Results

Search found 6559 results on 263 pages for 'parallel foreach'.

Page 181/263 | < Previous Page | 177 178 179 180 181 182 183 184 185 186 187 188  | Next Page >

  • Invoking different methods on threads

    - by Kraken
    I have a main process main. It creates 10 threads (say) and then what i want to do is the following: while(required){ Thread t= new Thread(new ClassImplementingRunnable()); t.start(); counter++; } Now i have the list of these threads, and for each thread i want to do a set of process, same for all, hence i put that implementation in the run method of ClassImplementingRunnable. Now after the threads have done their execution, i wan to wait for all of them to stop, and then evoke them again, but this time i want to do them serially not in parallel. for this I join each thread, to wait for them to finish execution but after that i am not sure how to evoke them again and run that piece of code serially. Can i do something like for(each thread){ t.reevoke(); //how can i do that. t.doThis(); // Also where does `dothis()` go, given that my ClassImplementingRunnable is an inner class. } Also, i want to use the same thread, i.e. i want the to continue from where they left off, but in a serial manner. I am not sure how to go about the last piece of pseudo code. Kindly help. Working with with java.

    Read the article

  • exit /B 0 does not work...

    - by murxx
    Hi, I have the following problem: I have created a batch script which calls itself in there (for being able to write a log in parallel). In the script I start another process (like start startServer.bat) which starts up a java process and keeps opened up all the time. In my original script I wait 30 seconds, check if the process is running and do an: exit /B 0 Unfortunately that does not work, the window shows that the exit /B 0 is being evaluated, but the window still keeps open. When I close the window with the other process (meaning the "child" processes started up in my .bat) my script continues its run. So: scriptA.bat - in there I call: start startServer.bat - wait 30 seconds - check is server is started - exit /B 0 Process hangs up! What's very odd, if I wrap another script around, like: scriptB.bat - call scriptA.bat ----- in there I call: start startServer.bat ----- wait 30 seconds ----- check is server is started ----- exit /B 0 - scriptA.bat continues without any hangup! I also tried the same with exit 0 (without /B) also, same result! In the first case it hangs up, in the second case my window closes as expected... Has anyone of you ever had such a problem before and knows what's wrong here? Process hangs up!

    Read the article

  • Small openmp programm freezes sometimes (gcc, c, linux)

    - by osgx
    Hello Just write a small omp test, and it does not work correctly all the times: #include <omp.h> int main() { int i,j=0; #pragma omp parallel for(i=0;i<1000;i++) { #pragma omp barrier j+= j^i; } return j; } The usage of j for writing from all threads is incorrect in this example, BUT there must be only nondeterministic value of j I have a freeze. Compiled with gcc-4.3.1 -fopenmp a.c -o gcc -static Run on 4-core x86_Core2 Linux server: $ ./gcc and got freeze (sometimes; like 1 freeze for 4-5 fast runs). Strace: [pid 13118] <... futex resumed> ) = 0 [pid 13118] futex(0x80d3014, FUTEX_WAIT, 2, NULL <unfinished ...> [pid 13120] <... futex resumed> ) = 0 [pid 13119] futex(0x80d3014, FUTEX_WAIT, 2, NULL <unfinished ...> [pid 13120] futex(0x80d3014, FUTEX_WAKE, 1) = 1 [pid 13120] futex(0x80cd798, FUTEX_WAIT, 1, NULL <unfinished ...> [pid 13109] <... futex resumed> ) = 0 [pid 13109] futex(0x80d3014, FUTEX_WAKE, 1) = 1 [pid 13109] futex(0x80d3020, FUTEX_WAIT, 251, NULL <unfinished ...> [pid 13118] <... futex resumed> ) = 0 [pid 13118] futex(0x80d3014, FUTEX_WAKE, 1) = 1 [pid 13119] <... futex resumed> ) = 0 [pid 13118] futex(0x80d3020, FUTEX_WAIT, 251, NULL <unfinished ...> [pid 13119] futex(0x80d3014, FUTEX_WAKE, 1) = 0 [pid 13119] futex(0x80d3020, FUTEX_WAIT, 251, NULL <freeze> Why do I have a freeze (deadlock)?

    Read the article

  • std::vector elements initializing

    - by Chameleon
    std::vector<int> v1(1000); std::vector<std::vector<int>> v2(1000); std::vector<std::vector<int>::const_iterator> v3(1000); How elements of these 3 vectors initialized? About int, I test it and I saw that all elements become 0. Is this standard? I believed that primitives remain undefined. I create a vector with 300000000 elements, give non-zero values, delete it and recreate it, to avoid OS memory clear for data safety. Elements of recreated vector were 0 too. What about iterator? Is there a initial value (0) for default constructor or initial value remains undefined? When I check this, iterators point to 0, but this can be OS When I create a special object to track constructors, I saw that for first object, vector run the default constructor and for all others it run the copy constructor. Is this standard? Is there a way to completely avoid initialization of elements? Or I must create my own vector? (Oh my God, I always say NOT ANOTHER VECTOR IMPLEMENTATION) I ask because I use ultra huge sparse matrices with parallel processing, so I cannot use push_back() and of course I don't want useless initialization, when later I will change the value.

    Read the article

  • GNU Makefile: multiple outputs from single rule + preventing intermediate files from being deleted

    - by makesaurus
    This is sort of a continuation of question from link text. The problem is that there is a rule generating multiple outputs from a single input, and the command is time-consuming so we would prefer to avoid recomputation. Now there is an additional twist, that we want to keep files from being deleted as intermediate files, and rules involve wildcards to allow for parameters. The solution suggested was that we set up the following rule: file-a.out: program file.in ./program file.in file-a.out file-b.out file-c.out file-b.out: file-a.out @ file-c.out: file-b.out @ Then, calling make file-c.out creates both and we avoid issues with running make in parallel with -j switch. All fine so far. The problem is the following. Because the above solution sets up a chain in the DAG, make considers it differently; the files file-a.out and file-b.out are treated as intermediate files, and they by default get deleted as unnecessary as soon as file-c.out is ready. A way of avoiding that was mentioned somewhere here, and consists of adding file-a.out and file-b.out as dependencies of a target .SECONDARY, which keeps them from being deleted. Unfortunately, this does not solve my case because my rules use wildcard patters; specifically, my rules look more like this: file-a-%.out: program file.in ./program $* file.in file-a-$*.out file-b-$*.out file-c-$*.out file-b-%.out: file-a-%.out @ file-c-%.out: file-b-%.out @ so that one can pass a parameter that gets included in the file name, for example by running make file-c-12.out The solution that make documentation suggests is to add these as implicit rules to the list of dependencies of .PRECIOUS, thus keeping these files from being deleted. The solution with .PRECIOUS works, but it also prevents these files from being deleted when a rule fails and files are incomplete. Is there any other way to make this work?

    Read the article

  • How do I efficiently parse a CSV file in Perl?

    - by Mike
    I'm working on a project that involves parsing a large csv formatted file in Perl and am looking to make things more efficient. My approach has been to split() the file by lines first, and then split() each line again by commas to get the fields. But this suboptimal since at least two passes on the data are required. (once to split by lines, then once again for each line). This is a very large file, so cutting processing in half would be a significant improvement to the entire application. My question is, what is the most time efficient means of parsing a large CSV file using only built in tools? note: Each line has a varying number of tokens, so we can't just ignore lines and split by commas only. Also we can assume fields will contain only alphanumeric ascii data (no special characters or other tricks). Also, i don't want to get into parallel processing, although it might work effectively. edit It can only involve built-in tools that ship with Perl 5.8. For bureaucratic reasons, I cannot use any third party modules (even if hosted on cpan) another edit Let's assume that our solution is only allowed to deal with the file data once it is entirely loaded into memory. yet another edit I just grasped how stupid this question is. Sorry for wasting your time. Voting to close.

    Read the article

  • Elegant way to import XHTML nodes from xhr.responseXML into HTML document in IE?

    - by Weston Ruter
    While navigating through a site, I'm dynamically loading pages via Ajax and then only updating the elements of the page that are changed, such as the navigation state and main content area. This is similar to Lala. I am serving the site as XHTML in order to be able to have access to xhr.responseXML which I then traverse in parallel with the current document and copy the nodes over. This works very well in browsers other than IE. For IE, I have to iterate over all of the properties of each XML element I want to import into the HTML document to create it from scratch (using a function convertXMLElementToHTML()). Here's the code I'm currently using: try { nodeB = document.importNode(nodeB, true); } catch(e){ nodeB = nodeB.cloneNode(true); if(document.adoptNode) document.adoptNode(nodeB); } try { //This works in all browsers other than IE nodeA.parentNode.replaceChild(nodeB, nodeA); } //Manually clone the nodes into HTML; required for IE catch(e){ nodeA.parentNode.replaceChild(convertXMLElementToHTML(nodeB), nodeA); } Is there a more elegant solution to mirror-translating XML nodes into HTML?

    Read the article

  • What is the best way of doing this? (WCF 4)

    - by Jason Porter
    I have a multith-threaded, continusly running application that connects with multiple devices via TCP/IP sockets and exposes a set of WCF API's for controlling, monitoring and reporting on these devices. I would like to host this on IIS for the ususal reasons of not having to worry about re-starting the app in case of errors. So the issue I have is the main application running in parallel with the WCF Servies. To accomplish this I use the static AppInitialize class to start a thread which has the main applicaiton loop. The WCF services mostly report or control the shared objects with this thread. There are two problems that I see with this approach. One is that if the thread dies, IIS has no clue to re-start it so I have to play some tricks with some WCF calls. The other is that the backrgound thread deals with potentially thousands of devices that are connected permanently (typically a thread per socket connection). So I am not sure if IIS is buying me anything in this case. Another approach that I am thinking is to use WF for the main application that deals with the sockets and host both the WF and my WCF services in IIS using AppFabric. Since I have not use WF or AppFabric I am reaching out to see if this would be good approach or there are better alternative.

    Read the article

  • Low Throughput on Windows Named Pipe Over WAN

    - by MichaelB76
    I'm having problems with low performance using a Windows named pipe. The throughput drops off rapidly as the network latency increases. There is a roughly linear relationship between messages sent per second and round trip time. It seems that the client must ack each message before the server will send the next one. This leads to very poor performance, I can only send 5 (~100 byte) messages per second over a link with an RTT of 200 ms. The pipe is asynchronous, using multiple overlapped write operations (and multiple overlapped reads at the client end), but this is not improving throughput. Is it possible to send messages in parallel over a named pipe? The pipe is created using PIPE_TYPE_MESSAGE, would PIPE_READMODE_BYTE work better? Is there any other way I can improve performance? This is a deployed solution, so I can't simply replace the pipe with a socket connection (I've read that Windows named pipe aren't recommended for use over a WAN, and I'm wondering if this is why). I'd be grateful for any help with this matter.

    Read the article

  • Sharing code between two or more rails apps... alternatives to git submodules?

    - by jtgameover
    We have two separate rails_app, foo/ and bar/ (separate for good reason). They both depend on some models, etc. in a common/ folder, currently parallel to foo and bar. Our current svn setup uses svn:externals to share common/. This weekend we wanted to try out git. After much research, it appears that the "kosher" way to solve this is using git submodule. We got that working after separating foo,bar,common into separate repositories, but then realized all the strings attached: Always commit the submodule before committing the parent. Always push the submodule before pushing the parent. Make sure that the submodule's HEAD points to a branch before committing to it. (If you're a bash user, I recommend using git-completion to put the current branch name in your prompt.) Always run 'git submodule update' after switching branches or pulling changes. All these gotchas complicate things further than add,commit,push. We're looking for simpler ways to share common in git. This guy seems to have success using the git subtree extension, but that deviates from standard gitand still doesn't look that simple. Is this the best we can do given our project structure? I don't know enough about rails plugins/engines, but that seems like a possible RoR-ish way to share libraries. Thanks in advance.

    Read the article

  • What are your suggestions for best practises for regular data updates in a website database?

    - by bboyle1234
    My shared-hosting asp.net website must automatically run data update routines at regular times of day. Once it has finished running certain update routines, it can run update routines that are dependent on the previous updates. I have done this type of work before, using quite complicated setups. Some features of the framework I created are: A cron job from another server makes a request which starts a data update routine on the main server Each updater is loaded from web.config Each updater overrides a "canRunUpdate" method that determines whether its dependencies have finished updating Each updater overrides a "hasFinishedUpdate" method Each updater overrides a "runUpdate" method Updaters start and run in parallel threads The initial request from the cron job server started each updater in its own thread and then ended. As a result, the threads containing the updaters would be terminated before the updaters were finished. Therefore I had to give the updaters the ability to save partial results and continue the update job next time they are started up. As a result, the cron server had to call the updater many times to ensure the job is done. Sometimes the cron server would continue making update requests long after all the updates were completed. Sometimes the cron server would finish calling the update requests and leave some updates uncompleted. It's not the best system. I'm looking for inspiration. Any ideas please? Thank you :)

    Read the article

  • Infile incomplete type error

    - by kd7vdb
    I am building a program that takes a input file in this format: title author title author etc and outputs to screen title (author) title (author) etc The Problem I am currently getting is a error "ifstream infile has incomplee type and cannot be defined" #include <iostream> #include <string> #include <ifstream> using namespace std; string bookTitle [14]; string bookAuthor [14]; int loadData (string pathname); void showall (int counter); int main () { int counter; string pathname; cout<<"Input the name of the file to be accessed: "; cin>>pathname; loadData (pathname); showall (counter); } int loadData (string pathname) // Loads data from infile into arrays { ifstream infile; int counter = 0; infile.open(pathname); //Opens file from user input in main if( infile.fail() ) { cout << "File failed to open"; return 0; } while (!infile.eof()) { infile >> bookTitle [14]; //takes input and puts into parallel arrays infile >> bookAuthor [14]; counter++; } infile.close; } void showall (int counter) // shows input in title(author) format { cout<<bookTitle<<"("<<bookAuthor<<")"; } Thanks ahead of time, kd7vdb

    Read the article

  • How to multi-thread this?

    - by WilliamKF
    I wish to have two threads. The first thread1 occasionally calls the following pseudo function: void waitForThread2() { if (thread2 is not idle) { return; } notifyThread2IamReady(); while (thread2IsExclusive) { } } The second thread2 is forever in the following pseudo loop: for (;;) { Notify thread1 I am idle. while (!thread1IsReady()) { } Notify thread1 I am exclusive. Do some work while thread1 is blocked. Notify thread1 I am busy. Do some work in parallel with thread1. } What is the best way to write this such that both thread1 and thread2 are kept as busy as possible on a machine with multiple cores. I would like to avoid long delays between notification in one thread and detection by the other. I tried using pthread condition variables but found the delay between thread2 doing 'notify thread1 I am busy' and the loop in waitForThread2() on thear2IsExclusive() can be up to almost one second delay. I then tried using a volatile sig_atomic_t shared variable to control the same, but something is going wrong, so I must not be doing it correctly.

    Read the article

  • Migrate from Oracle to MySQL

    - by Cassy
    Hi together. We ran into serious performance problems with our Oracle database and we would like to try to migrate to a MySQL-based database (either MySQL directly or, more preferrable, Infobright). The thing is, we need to let the old and the new system overlap for at least some weeks if not months, before we actually know, if all features of the new database match our needs. So, here is our situation: The Oracle database consists of multiple tables with each millions of rows. During the day, there are literally thousands of statements, which we cannot stop for migration. Every morning, new data is imported into the Oracle database, replacing some thousands of rows. Copying this process is not a problem, so we could, in theory, import in both databases in parallel. But, and here lies the challenge, for this to work, we need to have an export from the Oracle database with a consistent state from one day. (We cannot export some tables on Monday and some others on Tuesday, etc.) This means, that at least the export should be finished in less than one day. Our first thought was to dump the schema, but I wasn't able to find a tool to import an Oracle dump file into mysql. Exporting tables in CSV files might work, but I'm afraid it could take too long. So my question now is: What should I do? Is there any tool to import Oracle dump files into MySQL? Does anybody have any experience with such a large-scale migration? Thanks in advance, Cassy PS: Please, don't suggest performance optimization techniques for Oracle, we already tried a lot :-)

    Read the article

  • How do I pause main() until all other threads have died?

    - by thechiman
    In my program, I am creating several threads in the main() method. The last line in the main method is a call to System.out.println(), which I don't want to call until all the threads have died. I have tried calling Thread.join() on each thread however that blocks each thread so that they execute sequentially instead of in parallel. Is there a way to block the main() thread until all other threads have finished executing? Here is the relevant part of my code: public static void main(String[] args) { //some other initialization code //Make array of Thread objects Thread[] racecars = new Thread[numberOfRaceCars]; //Fill array with RaceCar objects for(int i=0; i<numberOfRaceCars; i++) { racecars[i] = new RaceCar(laps, args[i]); } //Call start() on each Thread for(int i=0; i<numberOfRaceCars; i++) { racecars[i].start(); try { racecars[i].join(); //This is where I tried to using join() //It just blocks all other threads until the current //thread finishes. } catch(InterruptedException e) { e.printStackTrace(); } } //This is the line I want to execute after all other Threads have finished System.out.println("It's Over!"); } Thanks for the help guys! Eric

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • An Xml Serializable PropertyBag Dictionary Class for .NET

    - by Rick Strahl
    I don't know about you but I frequently need property bags in my applications to store and possibly cache arbitrary data. Dictionary<T,V> works well for this although I always seem to be hunting for a more specific generic type that provides a string key based dictionary. There's string dictionary, but it only works with strings. There's Hashset<T> but it uses the actual values as keys. In most key value pair situations for me string is key value to work off. Dictionary<T,V> works well enough, but there are some issues with serialization of dictionaries in .NET. The .NET framework doesn't do well serializing IDictionary objects out of the box. The XmlSerializer doesn't support serialization of IDictionary via it's default serialization, and while the DataContractSerializer does support IDictionary serialization it produces some pretty atrocious XML. What doesn't work? First off Dictionary serialization with the Xml Serializer doesn't work so the following fails: [TestMethod] public void DictionaryXmlSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXml(bag)); } public string ToXml(object obj) { if (obj == null) return null; StringWriter sw = new StringWriter(); XmlSerializer ser = new XmlSerializer(obj.GetType()); ser.Serialize(sw, obj); return sw.ToString(); } The error you get with this is: System.NotSupportedException: The type System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.Object, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]] is not supported because it implements IDictionary. Got it! BTW, the same is true with binary serialization. Running the same code above against the DataContractSerializer does work: [TestMethod] public void DictionaryDataContextSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXmlDcs(bag)); } public string ToXmlDcs(object value, bool throwExceptions = false) { var ser = new DataContractSerializer(value.GetType(), null, int.MaxValue, true, false, null); MemoryStream ms = new MemoryStream(); ser.WriteObject(ms, value); return Encoding.UTF8.GetString(ms.ToArray(), 0, (int)ms.Length); } This DOES work but produces some pretty heinous XML (formatted with line breaks and indentation here): <ArrayOfKeyValueOfstringanyType xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <KeyValueOfstringanyType> <Key>key</Key> <Value i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">Value</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key2</Key> <Value i:type="a:decimal" xmlns:a="http://www.w3.org/2001/XMLSchema">100.10</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key3</Key> <Value i:type="a:guid" xmlns:a="http://schemas.microsoft.com/2003/10/Serialization/">2cd46d2a-a636-4af4-979b-e834d39b6d37</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key4</Key> <Value i:type="a:dateTime" xmlns:a="http://www.w3.org/2001/XMLSchema">2011-09-19T17:17:05.4406999-07:00</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key5</Key> <Value i:type="a:boolean" xmlns:a="http://www.w3.org/2001/XMLSchema">true</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key7</Key> <Value i:type="a:base64Binary" xmlns:a="http://www.w3.org/2001/XMLSchema">Ki1C</Value> </KeyValueOfstringanyType> </ArrayOfKeyValueOfstringanyType> Ouch! That seriously hurts the eye! :-) Worse though it's extremely verbose with all those repetitive namespace declarations. It's good to know that it works in a pinch, but for a human readable/editable solution or something lightweight to store in a database it's not quite ideal. Why should I care? As a little background, in one of my applications I have a need for a flexible property bag that is used on a free form database field on an otherwise static entity. Basically what I have is a standard database record to which arbitrary properties can be added in an XML based string field. I intend to expose those arbitrary properties as a collection from field data stored in XML. The concept is pretty simple: When loading write the data to the collection, when the data is saved serialize the data into an XML string and store it into the database. When reading the data pick up the XML and if the collection on the entity is accessed automatically deserialize the XML into the Dictionary. (I'll talk more about this in another post). While the DataContext Serializer would work, it's verbosity is problematic both for size of the generated XML strings and the fact that users can manually edit this XML based property data in an advanced mode. A clean(er) layout certainly would be preferable and more user friendly. Custom XMLSerialization with a PropertyBag Class So… after a bunch of experimentation with different serialization formats I decided to create a custom PropertyBag class that provides for a serializable Dictionary. It's basically a custom Dictionary<TType,TValue> implementation with the keys always set as string keys. The result are PropertyBag<TValue> and PropertyBag (which defaults to the object type for values). The PropertyBag<TType> and PropertyBag classes provide these features: Subclassed from Dictionary<T,V> Implements IXmlSerializable with a cleanish XML format ToXml() and FromXml() methods to export and import to and from XML strings Static CreateFromXml() method to create an instance It's simple enough as it's merely a Dictionary<string,object> subclass but that supports serialization to a - what I think at least - cleaner XML format. The class is super simple to use: [TestMethod] public void PropertyBagTwoWayObjectSerializationTest() { var bag = new PropertyBag(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42,45,66 } ); bag.Add("Key8", null); bag.Add("Key9", new ComplexObject() { Name = "Rick", Entered = DateTime.Now, Count = 10 }); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag["key"] as string == "Value"); Assert.IsInstanceOfType( bag["Key3"], typeof(Guid)); Assert.IsNull(bag["Key8"]); //Assert.IsNull(bag["Key10"]); Assert.IsInstanceOfType(bag["Key9"], typeof(ComplexObject)); } This uses the PropertyBag class which uses a PropertyBag<string,object> - which means it returns untyped values of type object. I suspect for me this will be the most common scenario as I'd want to store arbitrary values in the PropertyBag rather than one specific type. The same code with a strongly typed PropertyBag<decimal> looks like this: [TestMethod] public void PropertyBagTwoWayValueTypeSerializationTest() { var bag = new PropertyBag<decimal>(); bag.Add("key", 10M); bag.Add("Key1", 100.10M); bag.Add("Key2", 200.10M); bag.Add("Key3", 300.10M); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag.Get("Key1") == 100.10M); Assert.IsTrue(bag.Get("Key3") == 300.10M); } and produces typed results of type decimal. The types can be either value or reference types the combination of which actually proved to be a little more tricky than anticipated due to null and specific string value checks required - getting the generic typing right required use of default(T) and Convert.ChangeType() to trick the compiler into playing nice. Of course the whole raison d'etre for this class is the XML serialization. You can see in the code above that we're doing a .ToXml() and .FromXml() to serialize to and from string. The XML produced for the first example looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value>Value</value> </item> <item> <key>Key2</key> <value type="decimal">100.10</value> </item> <item> <key>Key3</key> <value type="___System.Guid"> <guid>f7a92032-0c6d-4e9d-9950-b15ff7cd207d</guid> </value> </item> <item> <key>Key4</key> <value type="datetime">2011-09-26T17:45:58.5789578-10:00</value> </item> <item> <key>Key5</key> <value type="boolean">true</value> </item> <item> <key>Key7</key> <value type="base64Binary">Ki1C</value> </item> <item> <key>Key8</key> <value type="nil" /> </item> <item> <key>Key9</key> <value type="___Westwind.Tools.Tests.PropertyBagTest+ComplexObject"> <ComplexObject> <Name>Rick</Name> <Entered>2011-09-26T17:45:58.5789578-10:00</Entered> <Count>10</Count> </ComplexObject> </value> </item> </properties>   The format is a bit cleaner than the DataContractSerializer. Each item is serialized into <key> <value> pairs. If the value is a string no type information is written. Since string tends to be the most common type this saves space and serialization processing. All other types are attributed. Simple types are mapped to XML types so things like decimal, datetime, boolean and base64Binary are encoded using their Xml type values. All other types are embedded with a hokey format that describes the .NET type preceded by a three underscores and then are encoded using the XmlSerializer. You can see this best above in the ComplexObject encoding. For custom types this isn't pretty either, but it's more concise than the DCS and it works as long as you're serializing back and forth between .NET clients at least. The XML generated from the second example that uses PropertyBag<decimal> looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value type="decimal">10</value> </item> <item> <key>Key1</key> <value type="decimal">100.10</value> </item> <item> <key>Key2</key> <value type="decimal">200.10</value> </item> <item> <key>Key3</key> <value type="decimal">300.10</value> </item> </properties>   How does it work As I mentioned there's nothing fancy about this solution - it's little more than a subclass of Dictionary<T,V> that implements custom Xml Serialization and a couple of helper methods that facilitate getting the XML in and out of the class more easily. But it's proven very handy for a number of projects for me where dynamic data storage is required. Here's the code: /// <summary> /// Creates a serializable string/object dictionary that is XML serializable /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> [XmlRoot("properties")] public class PropertyBag : PropertyBag<object> { /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml">Serialize</param> /// <returns></returns> public static PropertyBag CreateFromXml(string xml) { var bag = new PropertyBag(); bag.FromXml(xml); return bag; } } /// <summary> /// Creates a serializable string for generic types that is XML serializable. /// /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> /// <typeparam name="TValue">Must be a reference type. For value types use type object</typeparam> [XmlRoot("properties")] public class PropertyBag<TValue> : Dictionary<string, TValue>, IXmlSerializable { /// <summary> /// Not implemented - this means no schema information is passed /// so this won't work with ASMX/WCF services. /// </summary> /// <returns></returns> public System.Xml.Schema.XmlSchema GetSchema() { return null; } /// <summary> /// Serializes the dictionary to XML. Keys are /// serialized to element names and values as /// element values. An xml type attribute is embedded /// for each serialized element - a .NET type /// element is embedded for each complex type and /// prefixed with three underscores. /// </summary> /// <param name="writer"></param> public void WriteXml(System.Xml.XmlWriter writer) { foreach (string key in this.Keys) { TValue value = this[key]; Type type = null; if (value != null) type = value.GetType(); writer.WriteStartElement("item"); writer.WriteStartElement("key"); writer.WriteString(key as string); writer.WriteEndElement(); writer.WriteStartElement("value"); string xmlType = XmlUtils.MapTypeToXmlType(type); bool isCustom = false; // Type information attribute if not string if (value == null) { writer.WriteAttributeString("type", "nil"); } else if (!string.IsNullOrEmpty(xmlType)) { if (xmlType != "string") { writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } } else { isCustom = true; xmlType = "___" + value.GetType().FullName; writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } // Actual deserialization if (!isCustom) { if (value != null) writer.WriteValue(value); } else { XmlSerializer ser = new XmlSerializer(value.GetType()); ser.Serialize(writer, value); } writer.WriteEndElement(); // value writer.WriteEndElement(); // item } } /// <summary> /// Reads the custom serialized format /// </summary> /// <param name="reader"></param> public void ReadXml(System.Xml.XmlReader reader) { this.Clear(); while (reader.Read()) { if (reader.NodeType == XmlNodeType.Element && reader.Name == "key") { string xmlType = null; string name = reader.ReadElementContentAsString(); // item element reader.ReadToNextSibling("value"); if (reader.MoveToNextAttribute()) xmlType = reader.Value; reader.MoveToContent(); TValue value; if (xmlType == "nil") value = default(TValue); // null else if (string.IsNullOrEmpty(xmlType)) { // value is a string or object and we can assign TValue to value string strval = reader.ReadElementContentAsString(); value = (TValue) Convert.ChangeType(strval, typeof(TValue)); } else if (xmlType.StartsWith("___")) { while (reader.Read() && reader.NodeType != XmlNodeType.Element) { } Type type = ReflectionUtils.GetTypeFromName(xmlType.Substring(3)); //value = reader.ReadElementContentAs(type,null); XmlSerializer ser = new XmlSerializer(type); value = (TValue)ser.Deserialize(reader); } else value = (TValue)reader.ReadElementContentAs(XmlUtils.MapXmlTypeToType(xmlType), null); this.Add(name, value); } } } /// <summary> /// Serializes this dictionary to an XML string /// </summary> /// <returns>XML String or Null if it fails</returns> public string ToXml() { string xml = null; SerializationUtils.SerializeObject(this, out xml); return xml; } /// <summary> /// Deserializes from an XML string /// </summary> /// <param name="xml"></param> /// <returns>true or false</returns> public bool FromXml(string xml) { this.Clear(); // if xml string is empty we return an empty dictionary if (string.IsNullOrEmpty(xml)) return true; var result = SerializationUtils.DeSerializeObject(xml, this.GetType()) as PropertyBag<TValue>; if (result != null) { foreach (var item in result) { this.Add(item.Key, item.Value); } } else // null is a failure return false; return true; } /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml"></param> /// <returns></returns> public static PropertyBag<TValue> CreateFromXml(string xml) { var bag = new PropertyBag<TValue>(); bag.FromXml(xml); return bag; } } } The code uses a couple of small helper classes SerializationUtils and XmlUtils for mapping Xml types to and from .NET, both of which are from the WestWind,Utilities project (which is the same project where PropertyBag lives) from the West Wind Web Toolkit. The code implements ReadXml and WriteXml for the IXmlSerializable implementation using old school XmlReaders and XmlWriters (because it's pretty simple stuff - no need for XLinq here). Then there are two helper methods .ToXml() and .FromXml() that basically allow your code to easily convert between XML and a PropertyBag object. In my code that's what I use to actually to persist to and from the entity XML property during .Load() and .Save() operations. It's sweet to be able to have a string key dictionary and then be able to turn around with 1 line of code to persist the whole thing to XML and back. Hopefully some of you will find this class as useful as I've found it. It's a simple solution to a common requirement in my applications and I've used the hell out of it in the  short time since I created it. Resources You can find the complete code for the two classes plus the helpers in the Subversion repository for Westwind.Utilities. You can grab the source files from there or download the whole project. You can also grab the full Westwind.Utilities assembly from NuGet and add it to your project if that's easier for you. PropertyBag Source Code SerializationUtils and XmlUtils Westwind.Utilities Assembly on NuGet (add from Visual Studio) © Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Class Mapping Error: 'T' must be a non-abstract type with a public parameterless constructor

    - by Amit Ranjan
    Hi, While mapping class i am getting error 'T' must be a non-abstract type with a public parameterless constructor in order to use it as parameter 'T' in the generic type or method. Below is my SqlReaderBase Class public abstract class SqlReaderBase<T> : ConnectionProvider { #region Abstract Methods protected abstract string commandText { get; } protected abstract CommandType commandType { get; } protected abstract Collection<IDataParameter> GetParameters(IDbCommand command); **protected abstract MapperBase<T> GetMapper();** #endregion #region Non Abstract Methods /// <summary> /// Method to Execute Select Queries for Retrieveing List of Result /// </summary> /// <returns></returns> public Collection<T> ExecuteReader() { //Collection of Type on which Template is applied Collection<T> collection = new Collection<T>(); // initializing connection using (IDbConnection connection = GetConnection()) { try { // creates command for sql operations IDbCommand command = connection.CreateCommand(); // assign connection to command command.Connection = connection; // assign query command.CommandText = commandText; //state what type of query is used, text, table or Sp command.CommandType = commandType; // retrieves parameter from IDataParameter Collection and assigns it to command object foreach (IDataParameter param in GetParameters(command)) command.Parameters.Add(param); // Establishes connection with database server connection.Open(); // Since it is designed for executing Select statements that will return a list of results // so we will call command's execute reader method that return a Forward Only reader with // list of results inside. using (IDataReader reader = command.ExecuteReader()) { try { // Call to Mapper Class of the template to map the data to its // respective fields MapperBase<T> mapper = GetMapper(); collection = mapper.MapAll(reader); } catch (Exception ex) // catch exception { throw ex; // log errr } finally { reader.Close(); reader.Dispose(); } } } catch (Exception ex) { throw ex; } finally { connection.Close(); connection.Dispose(); } } return collection; } #endregion } What I am trying to do is , I am executine some command and filling my class dynamically. The class is given below: namespace FooZo.Core { public class Restaurant { #region Private Member Variables private int _restaurantId = 0; private string _email = string.Empty; private string _website = string.Empty; private string _name = string.Empty; private string _address = string.Empty; private string _phone = string.Empty; private bool _hasMenu = false; private string _menuImagePath = string.Empty; private int _cuisine = 0; private bool _hasBar = false; private bool _hasHomeDelivery = false; private bool _hasDineIn = false; private int _type = 0; private string _restaurantImagePath = string.Empty; private string _serviceAvailableTill = string.Empty; private string _serviceAvailableFrom = string.Empty; public string Name { get { return _name; } set { _name = value; } } public string Address { get { return _address; } set { _address = value; } } public int RestaurantId { get { return _restaurantId; } set { _restaurantId = value; } } public string Website { get { return _website; } set { _website = value; } } public string Email { get { return _email; } set { _email = value; } } public string Phone { get { return _phone; } set { _phone = value; } } public bool HasMenu { get { return _hasMenu; } set { _hasMenu = value; } } public string MenuImagePath { get { return _menuImagePath; } set { _menuImagePath = value; } } public string RestaurantImagePath { get { return _restaurantImagePath; } set { _restaurantImagePath = value; } } public int Type { get { return _type; } set { _type = value; } } public int Cuisine { get { return _cuisine; } set { _cuisine = value; } } public bool HasBar { get { return _hasBar; } set { _hasBar = value; } } public bool HasHomeDelivery { get { return _hasHomeDelivery; } set { _hasHomeDelivery = value; } } public bool HasDineIn { get { return _hasDineIn; } set { _hasDineIn = value; } } public string ServiceAvailableFrom { get { return _serviceAvailableFrom; } set { _serviceAvailableFrom = value; } } public string ServiceAvailableTill { get { return _serviceAvailableTill; } set { _serviceAvailableTill = value; } } #endregion public Restaurant() { } } } For filling my class properties dynamically i have another class called MapperBase Class with following methods: public abstract class MapperBase<T> where T : new() { protected T Map(IDataRecord record) { T instance = new T(); string fieldName; PropertyInfo[] properties = typeof(T).GetProperties(); for (int i = 0; i < record.FieldCount; i++) { fieldName = record.GetName(i); foreach (PropertyInfo property in properties) { if (property.Name == fieldName) { property.SetValue(instance, record[i], null); } } } return instance; } public Collection<T> MapAll(IDataReader reader) { Collection<T> collection = new Collection<T>(); while (reader.Read()) { collection.Add(Map(reader)); } return collection; } } There is another class which inherits the SqlreaderBaseClass called DefaultSearch. Code is below public class DefaultSearch: SqlReaderBase<Restaurant> { protected override string commandText { get { return "Select Name from vw_Restaurants"; } } protected override CommandType commandType { get { return CommandType.Text; } } protected override Collection<IDataParameter> GetParameters(IDbCommand command) { Collection<IDataParameter> parameters = new Collection<IDataParameter>(); parameters.Clear(); return parameters; } protected override MapperBase<Restaurant> GetMapper() { MapperBase<Restaurant> mapper = new RMapper(); return mapper; } } But whenever I tried to build , I am getting error 'T' must be a non-abstract type with a public parameterless constructor in order to use it as parameter 'T' in the generic type or method. Even T here is Restaurant has a Parameterless Public constructor.

    Read the article

  • Dependency Property WPF Grid

    - by developer
    Hi All, I want to Bind the textblock text in WPF datagrid to a dependency property. Somehow, nothing gets displayed, but when I use the same textblock binding outside the grid, everything works fine. Below is my code, <Window.Resources> <Style x:Key="cellCenterAlign" TargetType="{x:Type toolkit:DataGridCell}"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type toolkit:DataGridCell}"> <Grid Background="{TemplateBinding Background}"> <ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center"/> </Grid> </ControlTemplate> </Setter.Value> </Setter> </Style> <Style x:Key="ColumnHeaderStyle" TargetType="{x:Type toolkit:DataGridColumnHeader}"> <Setter Property="VerticalContentAlignment" Value="Center" /> <Setter Property="HorizontalContentAlignment" Value="Center"/> </Style> <ObjectDataProvider MethodName="GetValues" ObjectType="{x:Type sys:Enum}" x:Key="RoleValues"> <ObjectDataProvider.MethodParameters> <x:Type TypeName="domain:SubscriptionRole"/> </ObjectDataProvider.MethodParameters> </ObjectDataProvider> <DataTemplate x:Key="myTemplate"> <StackPanel> <TextBlock Text="{Binding Path=OtherSubs}"/> </StackPanel> </DataTemplate> </Window.Resources> <Grid> <Grid.RowDefinitions> <RowDefinition Height="220"/> <RowDefinition Height="Auto"/> </Grid.RowDefinitions> <StackPanel Grid.Row="0"> <toolkit:DataGrid Name="definitionGrid" Margin="0,10,0,0" AutoGenerateColumns="False" CanUserAddRows="False" CanUserDeleteRows="False" IsReadOnly="False" RowHeight="25" FontWeight="Normal" ItemsSource="{Binding programSubscription}" ColumnHeaderStyle="{DynamicResource ColumnHeaderStyle}" SelectionMode="Single" ScrollViewer.HorizontalScrollBarVisibility="Disabled" Width="450" ScrollViewer.VerticalScrollBarVisibility="Auto" Height="200"> <toolkit:DataGrid.Columns> <toolkit:DataGridTextColumn Header="Program" Width="80" Binding="{Binding Program.JobNum}" CellStyle="{StaticResource cellCenterAlign}" IsReadOnly="True"/> <toolkit:DataGridTemplateColumn Header="Role" Width="80" CellStyle="{StaticResource cellCenterAlign}"> <toolkit:DataGridTemplateColumn.CellTemplate> <DataTemplate> <ComboBox SelectedItem="{Binding Role}" ItemsSource="{Binding Source={StaticResource RoleValues}}" Width="70"> <ComboBox.Style> <Style> <Style.Triggers> <DataTrigger Binding="{Binding Path=Role}" Value="Owner"> <Setter Property="ComboBox.Focusable" Value="False"/> <Setter Property="ComboBox.IsEnabled" Value="False"/> <Setter Property="ComboBox.IsHitTestVisible" Value="False"/> </DataTrigger> </Style.Triggers> </Style> </ComboBox.Style> </ComboBox> </DataTemplate> </toolkit:DataGridTemplateColumn.CellTemplate> </toolkit:DataGridTemplateColumn> <toolkit:DataGridCheckBoxColumn Header="Email" Width="60" Binding="{Binding ReceivesEmail}" CellStyle="{StaticResource cellCenterAlign}"/> <!--<toolkit:DataGridTextColumn Header="Others" Width="220" Binding="{Binding programSubscription1.Subscriber.Username}" CellStyle="{StaticResource cellCenterAlign}" IsReadOnly="True"/>--> <toolkit:DataGridTemplateColumn Header="Others" Width="220" CellStyle="{StaticResource cellCenterAlign}" IsReadOnly="True"> <toolkit:DataGridTemplateColumn.CellTemplate> <DataTemplate> <TextBlock Text="{Binding Path=OtherSubs}"/> </DataTemplate> </toolkit:DataGridTemplateColumn.CellTemplate> </toolkit:DataGridTemplateColumn> </toolkit:DataGrid.Columns> </toolkit:DataGrid> <TextBlock Text="{Binding Path=OtherSubs}"/> </StackPanel> <Grid Grid.Row="1"> <Grid.ColumnDefinitions> <ColumnDefinition Width="200"/> <ColumnDefinition Width="*"/> </Grid.ColumnDefinitions> <StackPanel Grid.Column="0" HorizontalAlignment="Center" VerticalAlignment="Center"> <CheckBox Content="Show Only Active Programs" IsChecked="True" Margin="0,0,8,0"/> </StackPanel> <StackPanel Orientation="Horizontal" VerticalAlignment="Center" Grid.Column="1" HorizontalAlignment="Right"> <Button Content="Save" Height="23" Width="75" Margin="0,0,8,0" Click="Save_Click"/> <Button Content="Cancel" Height="23" Width="75" Margin="0,0,8,0" Click="Cancel_Click" /> </StackPanel> </Grid> </Grid> Code-Behind public partial class ProgramSubscriptions : Window { public static ObservableCollection programSubscription { get; set; } public string OtherSubs { get { return (string)GetValue(OtherSubsProperty); } set { SetValue(OtherSubsProperty, value); } } public static readonly DependencyProperty OtherSubsProperty = DependencyProperty.Register("OtherSubs", typeof(string), typeof(ProgramSubscriptions), new UIPropertyMetadata(string.Empty)); private string CurrentUsername = "test"; public ProgramSubscriptions() { InitializeComponent(); DataContext = this; LoadData(); } protected void LoadData() { programSubscription = new ObservableCollection<ProgramSubscriptionViewModel>(); if (res != null && res.TotalResults > 0) { List<ProgramSubscriptionViewModel> UserPrgList = new List<ProgramSubscriptionViewModel>(); //other.... List<ProgramSubscriptionViewModel> OtherPrgList = new List<ProgramSubscriptionViewModel>(); ArrayList myList = new ArrayList(); foreach (DomainObject obj in res.ResultSet) { ProgramSubscription prg = (ProgramSubscription)obj; if (prg.Subscriber.Username == CurrentUsername) { UserPrgList.Add(new ProgramSubscriptionViewModel(prg)); myList.Add(prg.Program.ID); } else OtherPrgList.Add(new ProgramSubscriptionViewModel(prg)); } for (int i = 0; i < UserPrgList.Count; i++) { ProgramSubscriptionViewModel item = UserPrgList[i]; programSubscription.Add(item); } //other.... for (int i = 0; i < OtherPrgList.Count; i++) { foreach (int y in myList) { ProgramSubscriptionViewModel otheritem = OtherPrgList[i]; if (y == otheritem.Program.ID) OtherSubs += otheritem.Subscriber.Username + ", "; } } } } } I posted the entire code. What exactly I want to do is in the datagridtemplatecolumn for others I want to display the usernames that are not in CurrentUsername, but they have the same program Id as the CurrentUsername. Please do let me know if there is another way that i can make this work, instead of using a dependencyproperty, althouht for testing I did put a textblock below datagrid, and it works perfectly fine.. Help!

    Read the article

  • Benchmark Linq2SQL, Subsonic2, Subsonic3 - Any other ideas to make them faster ?

    - by Aristos
    I am working with Subsonic 2 more than 3 years now... After Linq appears and then Subsonic 3, I start thinking about moving to the new Linq futures that are connected to sql. I must say that I start move and port my subsonic 2 with SubSonic 3, and very soon I discover that the speed was so slow thats I didn't believe it - and starts all that tests. Then I test Linq2Sql and see also a delay - compare it with Subsonic 2. My question here is, especial for the linq2sql, and the up-coming dotnet version 4, what else can I do to speed it up ? What else on linq2sql settings, or classes, not on this code that I have used for my messures I place here the project that I make the tests, also the screen shots of the results. How I make the tests - and the accurate of my measures. I use only for my question Google chrome, because its difficult for me to show here a lot of other measures that I have done with more complex programs. This is the most simple one, I just measure the Data Read. How can I prove that. I make a simple Thread.Sleep(10 seconds) and see if I see that 10 seconds on Google Chrome Measure, and yes I see it. here are more test with this Sleep thead to see whats actually Chrome gives. 10 seconds delay 100 ms delay Zero delay There is only a small 15ms thats get on messure, is so small compare it with the rest of my tests that I do not care about. So what I measure I measure just the data read via each method - did not count the data or database delay, or any disk read or anything like that. Later on the image with the result I show that no disk activity exist on the measures See this image to see what really I measure and if this is correct Why I chose this kind of test Its simple, it's real, and it's near my real problem that I found the delay of subsonic 3 in real program with real data. Now lets tests the dals Start by see this image I have 4-5 calls on every method, the one after the other. The results are. For a loop of 100 times, ask for 5 Rows, one not exist, approximatively.. Simple adonet:81ms SubSonic 2 :210ms linq2sql :1.70sec linq2sql using CompiledQuery.Compile :239ms Subsonic 3 :15.00sec (wow - extreme slow) The project http://www.planethost.gr/DalSpeedTests.rar Can any one confirm this benchmark, or make any optimizations to help me out ? Other tests Some one publish here this link http://ormbattle.net/ (and then remove it - don not know why) In this page you can find a really useful advanced tests for all, except subsonic 2 and subsonic 3 that I have here ! Optimizing What I really ask here is if some one can now any trick how to optimize the DALs, not by changing the test code, but by changing the code and the settings on each dal. For example... Optimizing Linq2SQL I start search how to optimize Linq2sql and found this article, and maybe more exist. Finally I make the tricks from that page to run, and optimize the code using them all. The speed was near 1.50sec from 1.70.... big improvement, but still slow. Then I found a different way - same idea article, and wow ! the speed is blow up. Using this trick with CompiledQuery.Compile, the time from 1.5sec is now 239ms. Here is the code for the precompiled... Func<DataClassesDataContext, int, IQueryable<Product>> compiledQuery = CompiledQuery.Compile((DataClassesDataContext meta, int IdToFind) => (from myData in meta.Products where myData.ProductID.Equals(IdToFind) select myData)); StringBuilder Test = new StringBuilder(); int[] MiaSeira = { 5, 6, 10, 100, 7 }; using (DataClassesDataContext context = new DataClassesDataContext()) { context.ObjectTrackingEnabled = false; for (int i = 0; i < 100; i++) { foreach (int EnaID in MiaSeira) { var oFindThat2P = compiledQuery(context, EnaID); foreach (Product One in oFindThat2P) { Test.Append("<br />"); Test.Append(One.ProductName); } } } } Optimizing SubSonic 3 and problems I make many performance profiling, and start change the one after the other and the speed is better but still too slow. I post them on subsonic group but they ignore the problem, they say that everything is fast... Here is some capture of my profiling and delay points inside subsonic source code I have end up that subsonic3 make more call on the structure of the database rather than on data itself. Needs to reconsider the hole way of asking for data, and follow the subsonic2 idea if this is possible. Try to make precompile to subsonic 3 like I did in linq2Sql but fail for the moment... Optimizing SubSonic 2 After I discover that subsonic 3 is extreme slow, I start my checks on subsonic 2 - that I have never done before believing that is fast. (and it is) So its come up with some points that can be faster. For example there are many loops like this ones that actually is slow because of string manipulation and compares inside the loop. I must say to you that this code called million of times ! on a period of few minutes ! of data asking from the program. On small amount of tables and small fields maybe this is not a big think for some people, but on large amount of tables, the delay is even more. So I decide and optimize the subsonic 2 by my self, by replacing the string compares, with number compares! Simple. I do that almost on every point that profiler say that is slow. I change also all small points that can be even a little faster, and disable some not so used thinks. The results, 5% faster on NorthWind database, near 20% faster on my database with 250 tables. That is count with 500ms less in 10 seconds process on northwind, 100ms faster on my database on 500ms process time. I do not have captures to show you for that because I have made them with different code, different time, and track them down on paper. Anyway this is my story and my question on all that, what else do you know to make them even faster... For this measures I have use Subsonic 2.2 optimized by me, Subsonic 3.0.0.3 a little optimized by me, and Dot.Net 3.5

    Read the article

  • Unix sort keys cause performance problems

    - by KenFar
    My data: It's a 71 MB file with 1.5 million rows. It has 6 fields All six fields combine to form a unique key - so that's what I need to sort on. Sort statement: sort -t ',' -k1,1 -k2,2 -k3,3 -k4,4 -k5,5 -k6,6 -o output.csv input.csv The problem: If I sort without keys, it takes 30 seconds. If I sort with keys, it takes 660 seconds. I need to sort with keys to keep this generic and useful for other files that have non-key fields as well. The 30 second timing is fine, but the 660 is a killer. More details using unix time: sort input.csv -o output.csv = 28 seconds sort -t ',' -k1 input.csv -o output.csv = 28 seconds sort -t ',' -k1,1 input.csv -o output.csv = 64 seconds sort -t ',' -k1,1 -k2,2 input.csv -o output.csv = 194 seconds sort -t ',' -k1,1 -k2,2 -k3,3 input.csv -o output.csv = 328 seconds sort -t ',' -k1,1 -k2,2 -k3,3 -k4,4 input.csv -o output.csv = 483 seconds sort -t ',' -k1,1 -k2,2 -k3,3 -k4,4 -k5,5 input.csv -o output.csv = 561 seconds sort -t ',' -k1,1 -k2,2 -k3,3 -k4,4 -k5,5 -k6,6 input.csv -o output.csv = 660 seconds I could theoretically move the temp directory to SSD, and/or split the file into 4 parts, sort them separately (in parallel) then merge the results, etc. But I'm hoping for something simpler since looks like sort is just picking a bad algorithm. Any suggestions? Testing Improvements using buffer-size: With 2 keys I got a 5% improvement with 8, 20, 24 MB and best performance of 8% improvement with 16MB, but 6% worse with 128MB With 6 keys I got a 5% improvement with 8, 20, 24 MB and best performance of 9% improvement with 16MB. Testing improvements using dictionary order (just 1 run each): sort -d --buffer-size=8M -t ',' -k1,1 -k2,2 input.csv -o output.csv = 235 seconds (21% worse) sort -d --buffer-size=8M -t ',' -k1,1 -k2,2 input.csv -o ouput.csv = 232 seconds (21% worse) conclusion: it makes sense that this would slow the process down, not useful Testing with different file system on SSD - I can't do this on this server now. Testing with code to consolidate adjacent keys: def consolidate_keys(key_fields, key_types): """ Inputs: - key_fields - a list of numbers in quotes: ['1','2','3'] - key_types - a list of types of the key_fields: ['integer','string','integer'] Outputs: - key_fields - a consolidated list: ['1,2','3'] - key_types - a list of types of the consolidated list: ['string','integer'] """ assert(len(key_fields) == len(key_types)) def get_min(val): vals = val.split(',') assert(len(vals) <= 2) return vals[0] def get_max(val): vals = val.split(',') assert(len(vals) <= 2) return vals[len(vals)-1] i = 0 while True: try: if ( (int(get_max(key_fields[i])) + 1) == int(key_fields[i+1]) and key_types[i] == key_types[i+1]): key_fields[i] = '%s,%s' % (get_min(key_fields[i]), key_fields[i+1]) key_types[i] = key_types[i] key_fields.pop(i+1) key_types.pop(i+1) continue i = i+1 except IndexError: break # last entry return key_fields, key_types While this code is just a work-around that'll only apply to cases in which I've got a contiguous set of keys - it speeds up the code by 95% in my worst case scenario.

    Read the article

  • Reflect.Emit Dynamic Type Memory Blowup

    - by Firestrand
    Using C# 3.5 I am trying to generate dynamic types at runtime using reflection emit. I used the Dynamic Query Library sample from Microsoft to create a class generator. Everything works, my problem is that 100 generated types inflate the memory usage by approximately 25MB. This is a completely unacceptable memory profile as eventually I want to support having several hundred thousand types generated in memory. Memory profiling shows that the memory is apparently being held by various System.Reflection.Emit types and methods though I can't figure out why. I haven't found others talking about this problem so I am hoping someone in this community either knows what I am doing wrong or if this is expected behavior. Contrived Example below: using System; using System.Collections.Generic; using System.Text; using System.Reflection; using System.Reflection.Emit; namespace SmallRelfectExample { class Program { static void Main(string[] args) { int typeCount = 100; int propCount = 100; Random rand = new Random(); Type dynType = null; for (int i = 0; i < typeCount; i++) { List<DynamicProperty> dpl = new List<DynamicProperty>(propCount); for (int j = 0; j < propCount; j++) { dpl.Add(new DynamicProperty("Key" + rand.Next().ToString(), typeof(String))); } SlimClassFactory scf = new SlimClassFactory(); dynType = scf.CreateDynamicClass(dpl.ToArray(), i); //Optionally do something with the type here } Console.WriteLine("SmallRelfectExample: {0} Types generated.", typeCount); Console.ReadLine(); } } public class SlimClassFactory { private readonly ModuleBuilder module; public SlimClassFactory() { AssemblyName name = new AssemblyName("DynamicClasses"); AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(name, AssemblyBuilderAccess.Run); module = assembly.DefineDynamicModule("Module"); } public Type CreateDynamicClass(DynamicProperty[] properties, int Id) { string typeName = "DynamicClass" + Id.ToString(); TypeBuilder tb = module.DefineType(typeName, TypeAttributes.Class | TypeAttributes.Public, typeof(DynamicClass)); FieldInfo[] fields = GenerateProperties(tb, properties); GenerateEquals(tb, fields); GenerateGetHashCode(tb, fields); Type result = tb.CreateType(); return result; } static FieldInfo[] GenerateProperties(TypeBuilder tb, DynamicProperty[] properties) { FieldInfo[] fields = new FieldBuilder[properties.Length]; for (int i = 0; i < properties.Length; i++) { DynamicProperty dp = properties[i]; FieldBuilder fb = tb.DefineField("_" + dp.Name, dp.Type, FieldAttributes.Private); PropertyBuilder pb = tb.DefineProperty(dp.Name, PropertyAttributes.HasDefault, dp.Type, null); MethodBuilder mbGet = tb.DefineMethod("get_" + dp.Name, MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.HideBySig, dp.Type, Type.EmptyTypes); ILGenerator genGet = mbGet.GetILGenerator(); genGet.Emit(OpCodes.Ldarg_0); genGet.Emit(OpCodes.Ldfld, fb); genGet.Emit(OpCodes.Ret); MethodBuilder mbSet = tb.DefineMethod("set_" + dp.Name, MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.HideBySig, null, new Type[] { dp.Type }); ILGenerator genSet = mbSet.GetILGenerator(); genSet.Emit(OpCodes.Ldarg_0); genSet.Emit(OpCodes.Ldarg_1); genSet.Emit(OpCodes.Stfld, fb); genSet.Emit(OpCodes.Ret); pb.SetGetMethod(mbGet); pb.SetSetMethod(mbSet); fields[i] = fb; } return fields; } static void GenerateEquals(TypeBuilder tb, FieldInfo[] fields) { MethodBuilder mb = tb.DefineMethod("Equals", MethodAttributes.Public | MethodAttributes.ReuseSlot | MethodAttributes.Virtual | MethodAttributes.HideBySig, typeof(bool), new Type[] { typeof(object) }); ILGenerator gen = mb.GetILGenerator(); LocalBuilder other = gen.DeclareLocal(tb); Label next = gen.DefineLabel(); gen.Emit(OpCodes.Ldarg_1); gen.Emit(OpCodes.Isinst, tb); gen.Emit(OpCodes.Stloc, other); gen.Emit(OpCodes.Ldloc, other); gen.Emit(OpCodes.Brtrue_S, next); gen.Emit(OpCodes.Ldc_I4_0); gen.Emit(OpCodes.Ret); gen.MarkLabel(next); foreach (FieldInfo field in fields) { Type ft = field.FieldType; Type ct = typeof(EqualityComparer<>).MakeGenericType(ft); next = gen.DefineLabel(); gen.EmitCall(OpCodes.Call, ct.GetMethod("get_Default"), null); gen.Emit(OpCodes.Ldarg_0); gen.Emit(OpCodes.Ldfld, field); gen.Emit(OpCodes.Ldloc, other); gen.Emit(OpCodes.Ldfld, field); gen.EmitCall(OpCodes.Callvirt, ct.GetMethod("Equals", new Type[] { ft, ft }), null); gen.Emit(OpCodes.Brtrue_S, next); gen.Emit(OpCodes.Ldc_I4_0); gen.Emit(OpCodes.Ret); gen.MarkLabel(next); } gen.Emit(OpCodes.Ldc_I4_1); gen.Emit(OpCodes.Ret); } static void GenerateGetHashCode(TypeBuilder tb, FieldInfo[] fields) { MethodBuilder mb = tb.DefineMethod("GetHashCode", MethodAttributes.Public | MethodAttributes.ReuseSlot | MethodAttributes.Virtual | MethodAttributes.HideBySig, typeof(int), Type.EmptyTypes); ILGenerator gen = mb.GetILGenerator(); gen.Emit(OpCodes.Ldc_I4_0); foreach (FieldInfo field in fields) { Type ft = field.FieldType; Type ct = typeof(EqualityComparer<>).MakeGenericType(ft); gen.EmitCall(OpCodes.Call, ct.GetMethod("get_Default"), null); gen.Emit(OpCodes.Ldarg_0); gen.Emit(OpCodes.Ldfld, field); gen.EmitCall(OpCodes.Callvirt, ct.GetMethod("GetHashCode", new Type[] { ft }), null); gen.Emit(OpCodes.Xor); } gen.Emit(OpCodes.Ret); } } public abstract class DynamicClass { public override string ToString() { PropertyInfo[] props = GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public); StringBuilder sb = new StringBuilder(); sb.Append("{"); for (int i = 0; i < props.Length; i++) { if (i > 0) sb.Append(", "); sb.Append(props[i].Name); sb.Append("="); sb.Append(props[i].GetValue(this, null)); } sb.Append("}"); return sb.ToString(); } } public class DynamicProperty { private readonly string name; private readonly Type type; public DynamicProperty(string name, Type type) { if (name == null) throw new ArgumentNullException("name"); if (type == null) throw new ArgumentNullException("type"); this.name = name; this.type = type; } public string Name { get { return name; } } public Type Type { get { return type; } } } }

    Read the article

  • Can someone explain RAID-0 in plain English?

    - by Edward Tanguay
    I've heard about and read about RAID throughout the years and understand it theoretically as a way to help e.g. server PCs reduce the chance of data loss, but now I am buying a new PC which I want to be as fast as possible and have learned that having two drives can considerably increase the perceived performance of your machine. In the question Recommendations for hard drive performance boost, the author says he is going to RAID-0 two 7200 RPM drives together. What does this mean in practical terms for me with Windows 7 installed, e.g. can I buy two drives, go into the device manager and "raid-0 them together"? I am not a network administrator or a hardware guy, I'm just a developer who is going to have a computer store build me a super fast machine next week. I can read the wikipedia page on RAID but it is just way too many trees and not enough forest to help me build a faster PC: RAID-0: "Striped set without parity" or "Striping". Provides improved performance and additional storage but no redundancy or fault tolerance. Because there is no redundancy, this level is not actually a Redundant Array of Inexpensive Disks, i.e. not true RAID. However, because of the similarities to RAID (especially the need for a controller to distribute data across multiple disks), simple strip sets are normally referred to as RAID 0. Any disk failure destroys the array, which has greater consequences with more disks in the array (at a minimum, catastrophic data loss is twice as severe compared to single drives without RAID). A single disk failure destroys the entire array because when data is written to a RAID 0 drive, the data is broken into fragments. The number of fragments is dictated by the number of disks in the array. The fragments are written to their respective disks simultaneously on the same sector. This allows smaller sections of the entire chunk of data to be read off the drive in parallel, increasing bandwidth. RAID 0 does not implement error checking so any error is unrecoverable. More disks in the array means higher bandwidth, but greater risk of data loss. So in plain English, how can "RAID-0" help me build a faster Windows-7 PC that I am going to order next week?

    Read the article

< Previous Page | 177 178 179 180 181 182 183 184 185 186 187 188  | Next Page >