Search Results

Search found 5623 results on 225 pages for 'inline assembly'.

Page 182/225 | < Previous Page | 178 179 180 181 182 183 184 185 186 187 188 189  | Next Page >

  • The SmartAssembly Rearchitecture

    - by Simon Cooper
    You may have noticed that not a lot has happened to SmartAssembly in the past few months. However, the team has been very busy behind the scenes working on an entirely new version of SmartAssembly. SmartAssembly 6.5 Over the past few releases of SmartAssembly, the team had come to the realisation that the current 'architecture' - grown organically, way before RedGate bought it, from a simple name obfuscator over the years into a full-featured obfuscator and assembly instrumentation tool - was simply not up to the task. Not for what we wanted to do with it at the time, and not what we have planned for the future. Not only was it not up to what we wanted it to do, but it was severely limiting our development capabilities; long-standing bugs in the root architecture that couldn't be fixed, some rather...interesting...design decisions, and convoluted logic that increased the complexity of any bugfix or new feature tenfold. So, we set out to fix this. Earlier this year, a new engine was written on which SmartAssembly would be based. Over the following few months, each feature was ported over to the new engine and extensively tested by our existing unit and integration tests. The engine was linked into the existing UI (no easy task, due to the tight coupling between the UI and old engine), and existing RedGate products were tested on the new SmartAssembly to ensure the new engine acted in the same way. The result is SmartAssembly 6.5. The risks of a rearchitecture Are there risks to rearchitecting a product like SmartAssembly? Of course. There was a lot of undocumented behaviour in the old engine, and as part of the rearchitecture we had to find this behaviour, define it, and document it. In the process we found some behaviour of the old engine that simply did not make sense; hence the changes in pruning & obfuscation behaviour in the release notes. All the special edge cases we had to find, document, and re-implement. There was a chance that these special cases would not be found until near the end of the project, when everything is functionally complete and interacting together. By that stage, it would be hard to go back and change anything without a whole lot of extra work, delaying the release by months. We always knew this was a possibility; our initial estimate of the time required was '4 months, ± 4 months'. And that was including various mitigation strategies to reduce the likelihood of these issues being found right at the end. Fortunately, this worst-case did not happen. However, the rearchitecture did produce some benefits. As well as numerous bug fixes that we could not fix any other way, we've also added logging that lets you find out exactly why a particular field or property wasn't pruned or obfuscated. There's a new command line interface, we've tested it with WP7.1 and Silverlight 5, and we've added a new option to error reporting to improve the performance of instrumented apps by ~10%, at the cost of inaccurate line numbers in reports. So? What differences will I see? Largely none. SmartAssembly 6.5 produces the same output as SmartAssembly 6.2. The performance of 6.5 will be much faster for some users, and generally the same as 6.2 for the remaining. If you've encountered a bug with previous versions of SmartAssembly, I encourage you to try 6.5, as it has most likely been fixed in the rearchitecture. If you encounter a bug with 6.5, please do tell us; we'll be doing another release quite soon, so we'll aim to fix any issues caused by 6.5 in that release. Most importantly, the new architecture finally allows us to implement some Big Things with SmartAssembly we've been planning for many months; these will fundamentally change how you build, release and monitor your application. Stay tuned for further updates!

    Read the article

  • Subterranean IL: Custom modifiers

    - by Simon Cooper
    In IL, volatile is an instruction prefix used to set a memory barrier at that instruction. However, in C#, volatile is applied to a field to indicate that all accesses on that field should be prefixed with volatile. As I mentioned in my previous post, this means that the field definition needs to store this information somehow, as such a field could be accessed from another assembly. However, IL does not have a concept of a 'volatile field'. How is this information stored? Attributes The standard way of solving this is to apply a VolatileAttribute or similar to the field; this extra metadata notifies the C# compiler that all loads and stores to that field should use the volatile prefix. However, there is a problem with this approach, namely, the .NET C++ compiler. C++ allows methods to be overloaded using properties, like volatile or const, on the parameters; this is perfectly legal C++: public ref class VolatileMethods { void Method(int *i) {} void Method(volatile int *i) {} } If volatile was specified using a custom attribute, then the VolatileMethods class wouldn't be compilable to IL, as there is nothing to differentiate the two methods from each other. This is where custom modifiers come in. Custom modifiers Custom modifiers are similar to custom attributes, but instead of being applied to an IL element separately to its declaration, they are embedded within the field or parameter's type signature itself. The VolatileMethods class would be compiled to the following IL: .class public VolatileMethods { .method public instance void Method(int32* i) {} .method public instance void Method( int32 modreq( [mscorlib]System.Runtime.CompilerServices.IsVolatile)* i) {} } The modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile) is the custom modifier. This adds a TypeDef or TypeRef token to the signature of the field or parameter, and even though they are mostly ignored by the CLR when it's executing the program, this allows methods and fields to be overloaded in ways that wouldn't be allowed using attributes. Because the modifiers are part of the signature, they need to be fully specified when calling such a method in IL: call instance void Method( int32 modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile)*) There are two ways of applying modifiers; modreq specifies required modifiers (like IsVolatile), and modopt specifies optional modifiers that can be ignored by compilers (like IsLong or IsConst). The type specified as the modifier argument are simple placeholders; if you have a look at the definitions of IsVolatile and IsLong they are completely empty. They exist solely to be referenced by a modifier. Custom modifiers are used extensively by the C++ compiler to specify concepts that aren't expressible in IL, but still need to be taken into account when calling method overloads. C++ and C# That's all very well and good, but how does this affect C#? Well, the C++ compiler uses modreq(IsVolatile) to specify volatility on both method parameters and fields, as it would be slightly odd to have the same concept represented using a modifier or attribute depending on what it was applied to. Once you've compiled your C++ project, it can then be referenced and used from C#, so the C# compiler has to recognise the modreq(IsVolatile) custom modifier applied to fields, and vice versa. So, even though you can't overload fields or parameters with volatile using C#, volatile needs to be expressed using a custom modifier rather than an attribute to guarentee correct interoperability and behaviour with any C++ dlls that happen to come along. Next up: a closer look at attributes, and how certain attributes compile in unexpected ways.

    Read the article

  • Thoughts on C# Extension Methods

    - by Damon
    I'm not a huge fan of extension methods.  When they first came out, I remember seeing a method on an object that was fairly useful, but when I went to use it another piece of code that method wasn't available.  Turns out it was an extension method and I hadn't included the appropriate assembly and imports statement in my code to use it.  I remember being a bit confused at first about how the heck that could happen (hey, extension methods were new, cut me some slack) and it took a bit of time to track down exactly what it was that I needed to include to get that method back.  I just imagined a new developer trying to figure out why a method was missing and fruitlessly searching on MSDN for a method that didn't exist and it just didn't sit well with me. I am of the opinion that if you have an object, then you shouldn't have to include additional assemblies to get additional instance level methods out of that object.  That opinion applies to namespaces as well - I do not like it when the contents of a namespace are split out into multiple assemblies.  I prefer to have static utility classes instead of extension methods to keep things nicely packaged into a cohesive unit.  It also makes it abundantly clear where utility methods are used in code.  I will concede, however, that it can make code a bit more verbose and lengthy.  There is always a trade-off. Some people harp on extension methods because it breaks the tenants of object oriented development and allows you to add methods to sealed classes.  Whatever.  Extension methods are just utility methods that you can tack onto an object after the fact.  Extension methods do not give you any more access to an object than the developer of that object allows, so I say that those who cry OO foul on extension methods really don't have much of an argument on which to stand.  In fact, I have to concede that my dislike of them is really more about style than anything of great substance. One interesting thing that I found regarding extension methods is that you can call them on null objects. Take a look at this extension method: namespace ExtensionMethods {   public static class StringUtility   {     public static int WordCount(this string str)     {       if(str == null) return 0;       return str.Split(new char[] { ' ', '.', '?' },         StringSplitOptions.RemoveEmptyEntries).Length;     }   }   } Notice that the extension method checks to see if the incoming string parameter is null.  I was worried that the runtime would perform a check on the object instance to make sure it was not null before calling an extension method, but that is apparently not the case.  So, if you call the following code it runs just fine. string s = null; int words = s.WordCount(); I am a big fan of things working, but this seems to go against everything I've come to know about instance level methods.  However, an extension method is really a static method masquerading as an instance-level method, so I suppose it would be far more frustrating if it failed since there is really no reason it shouldn't succeed. Although I'm not a fan of extension methods, I will say that if you ever find yourself at an impasse with a die-hard fan of either the utility class or extension method approach, then there is a common ground.  Extension methods are defined in static classes, and you call them from those static classes as well as directly from the objects they extend.  So if you build your utility classes using extension methods, then you can have it your way and they can have it theirs. 

    Read the article

  • Breaking through the class sealing

    - by Jason Crease
    Do you understand 'sealing' in C#?  Somewhat?  Anyway, here's the lowdown. I've done this article from a C# perspective, but I've occasionally referenced .NET when appropriate. What is sealing a class? By sealing a class in C#, you ensure that you ensure that no class can be derived from that class.  You do this by simply adding the word 'sealed' to a class definition: public sealed class Dog {} Now writing something like " public sealed class Hamster: Dog {} " you'll get a compile error like this: 'Hamster: cannot derive from sealed type 'Dog' If you look in an IL disassembler, you'll see a definition like this: .class public auto ansi sealed beforefieldinit Dog extends [mscorlib]System.Object Note the addition of the word 'sealed'. What about sealing methods? You can also seal overriding methods.  By adding the word 'sealed', you ensure that the method cannot be overridden in a derived class.  Consider the following code: public class Dog : Mammal { public sealed override void Go() { } } public class Mammal { public virtual void Go() { } } In this code, the method 'Go' in Dog is sealed.  It cannot be overridden in a subclass.  Writing this would cause a compile error: public class Dachshund : Dog { public override void Go() { } } However, we can 'new' a method with the same name.  This is essentially a new method; distinct from the 'Go' in the subclass: public class Terrier : Dog { public new void Go() { } } Sealing properties? You can also seal seal properties.  You add 'sealed' to the property definition, like so: public sealed override string Name {     get { return m_Name; }     set { m_Name = value; } } In C#, you can only seal a property, not the underlying setters/getters.  This is because C# offers no override syntax for setters or getters.  However, in underlying IL you seal the setter and getter methods individually - a property is just metadata. Why bother sealing? There are a few traditional reasons to seal: Invariance. Other people may want to derive from your class, even though your implementation may make successful derivation near-impossible.  There may be twisted, hacky logic that could never be second-guessed by another developer.  By sealing your class, you're protecting them from wasting their time.  The CLR team has sealed most of the framework classes, and I assume they did this for this reason. Security.  By deriving from your type, an attacker may gain access to functionality that enables him to hack your system.  I consider this a very weak security precaution. Speed.  If a class is sealed, then .NET doesn't need to consult the virtual-function-call table to find the actual type, since it knows that no derived type can exist.  Therefore, it could emit a 'call' instead of 'callvirt' or at least optimise the machine code, thus producing a performance benefit.  But I've done trials, and have been unable to demonstrate this If you have an example, please share! All in all, I'm not convinced that sealing is interesting or important.  Anyway, moving-on... What is automatically sealed? Value types and structs.  If they were not always sealed, all sorts of things would go wrong.  For instance, structs are laid-out inline within a class.  But what if you assigned a substruct to a struct field of that class?  There may be too many fields to fit. Static classes.  Static classes exist in C# but not .NET.  The C# compiler compiles a static class into an 'abstract sealed' class.  So static classes are already sealed in C#. Enumerations.  The CLR does not track the types of enumerations - it treats them as simple value types.  Hence, polymorphism would not work. What cannot be sealed? Interfaces.  Interfaces exist to be implemented, so sealing to prevent implementation is dumb.  But what if you could prevent interfaces from being extended (i.e. ban declarations like "public interface IMyInterface : ISealedInterface")?  There is no good reason to seal an interface like this.  Sealing finalizes behaviour, but interfaces have no intrinsic behaviour to finalize Abstract classes.  In IL you can create an abstract sealed class.  But C# syntax for this already exists - declaring a class as a 'static', so it forces you to declare it as such. Non-override methods.  If a method isn't declared as override it cannot be overridden, so sealing would make no difference.  Note this is stated from a C# perspective - the words are opposite in IL.  In IL, you have four choices in total: no declaration (which actually seals the method), 'virtual' (called 'override' in C#), 'sealed virtual' ('sealed override' in C#) and 'newslot virtual' ('new virtual' or 'virtual' in C#, depending on whether the method already exists in a base class). Methods that implement interface methods.  Methods that implement an interface method must be virtual, so cannot be sealed. Fields.  A field cannot be overridden, only hidden (using the 'new' keyword in C#), so sealing would make no sense.

    Read the article

  • Building ATLAS (and later Octave w/ ATLAS)

    - by David Parks
    I'm trying to set up ATLAS (so I can later compile octave with ATLAS support). If I'm correct, I still need to build this manually due to the environment specific optimizations. I do see a package for ATLAS, but it looks like it's using the cross platform generic build options (e.g. "it'll be slow"). So, running the configure script as described in the docs seems to go poorly. As a java developer I never do well at making heads or tails of errors in these build processes. Am I missing dependencies (if so is there any documentation on what I need)? allusers@vbubuntu:~/Downloads/atlas3.10.1/build_vbubuntu$ ../configure -b 64 -D c -DPentiumCPS=3000 --with-netlib-lapack-tarfile=/home/allusers/Downloads/lapack-3.5.0.tgz make: `xconfig' is up to date. ./xconfig -d s /home/allusers/Downloads/atlas3.10.1/build_vbubuntu/../ -d b /home/allusers/Downloads/atlas3.10.1/build_vbubuntu -b 64 -D c -DPentiumCPS=3000 -Si lapackref 1 OS configured as Linux (1) Assembly configured as GAS_x8664 (2) Vector ISA Extension configured as SSE3 (6,448) ERROR: enum fam=3, chip=2, mach=0 make[3]: *** [atlas_run] Error 44 make[2]: *** [IRunArchInfo_x86] Error 2 Architecture configured as Corei1 (25) ERROR: enum fam=3, chip=2, mach=0 make[3]: *** [atlas_run] Error 44 make[2]: *** [IRunArchInfo_x86] Error 2 Clock rate configured as 2350Mhz ERROR: enum fam=3, chip=2, mach=0 make[3]: *** [atlas_run] Error 44 make[2]: *** [IRunArchInfo_x86] Error 2 Maximum number of threads configured as 4 Parallel make command configured as '$(MAKE) -j 4' ERROR: enum fam=3, chip=2, mach=0 make[3]: *** [atlas_run] Error 44 make[2]: *** [IRunArchInfo_x86] Error 2 Cannot detect CPU throttling. rm -f config1.out make atlas_run atldir=/home/allusers/Downloads/atlas3.10.1/build_vbubuntu exe=xprobe_comp redir=config1.out \ args="-v 0 -o atlconf.txt -O 1 -A 25 -Si nof77 0 -V 448 -b 64 -d b /home/allusers/Downloads/atlas3.10.1/build_vbubuntu" make[1]: Entering directory `/home/allusers/Downloads/atlas3.10.1/build_vbubuntu' cd /home/allusers/Downloads/atlas3.10.1/build_vbubuntu ; ./xprobe_comp -v 0 -o atlconf.txt -O 1 -A 25 -Si nof77 0 -V 448 -b 64 -d b /home/allusers/Downloads/atlas3.10.1/build_vbubuntu > config1.out make[2]: gfortran: Command not found make[2]: *** [IRunF77Comp] Error 127 make[2]: g77: Command not found make[2]: *** [IRunF77Comp] Error 127 make[2]: f77: Command not found make[2]: *** [IRunF77Comp] Error 127 Unable to find usable compiler for F77; abortingMake sure compilers are in your path, and specify good compilers to configure (see INSTALL.txt or 'configure --help' for details)make[1]: *** [atlas_run] Error 8 make[1]: Leaving directory `/home/allusers/Downloads/atlas3.10.1/build_vbubuntu' make: *** [IRun_comp] Error 2 ERROR 512 IN SYSCMND: 'make IRun_comp args="-v 0 -o atlconf.txt -O 1 -A 25 -Si nof77 0 -V 448 -b 64"' mkdir src bin tune interfaces mkdir: cannot create directory ‘src’: File exists mkdir: cannot create directory ‘bin’: File exists mkdir: cannot create directory ‘tune’: File exists mkdir: cannot create directory ‘interfaces’: File exists make: *** [make_subdirs] Error 1 make -f Make.top startup make[1]: Entering directory `/home/allusers/Downloads/atlas3.10.1/build_vbubuntu' Make.top:1: Make.inc: No such file or directory Make.top:325: warning: overriding commands for target `/AtlasTest' Make.top:76: warning: ignoring old commands for target `/AtlasTest' make[1]: *** No rule to make target `Make.inc'. Stop. make[1]: Leaving directory `/home/allusers/Downloads/atlas3.10.1/build_vbubuntu' make: *** [startup] Error 2 mv: cannot move ‘lapack-3.5.0’ to ‘../reference/lapack-3.5.0’: Directory not empty mv: cannot stat ‘lib/Makefile’: No such file or directory ../configure: 450: ../configure: cannot create lib/Makefile: Directory nonexistent ../configure: 451: ../configure: cannot create lib/Makefile: Directory nonexistent ../configure: 452: ../configure: cannot create lib/Makefile: Directory nonexistent ../configure: 453: ../configure: cannot create lib/Makefile: Directory nonexistent ../configure: 509: ../configure: cannot create lib/Makefile: Directory nonexistent DONE configure

    Read the article

  • Build-time dependency resolving coming to Entity Framework. Now, how about those BI tools too?

    - by jamiet
    Three months ago I wrote a blog post entitled Some thoughts on Visual Studio database references and how they should be used for SQL Server BI where I shared some thoughts on a feature available to database developers in Visual Studio 2010 that I would love to see added to SQL Server Integration Services (SSIS), Analysis Services (SSAS) and Reporting Services (SSRS). In there I said: Over the past few weeks I have been making heavy use of the Database tools in Visual Studio 2010 and one of the features that has most impressed me has been database references.   Database references allow you to have stored procedures in your database project that refer to objects (tables, views, stored procedures etc…) that exist in other database projects and hence when you build your database project it is able to resolve those references.   It occurred to me that similar functionality would be incredibly useful for SQL Server Integration Services(SSIS), Analysis Services (SSAS) & Reporting Services (SSRS) projects. After all reports, packages and data source views are rife with references to database objects – why shouldn’t we be able to have design-time dependency checking in our BI projects the same way that database and .Net developers do? In that blog post I shared links to three Connect submissions where I requested this feature be added to SSIS, SSAS & SSRS. In addition I also submitted a request that the feature be extended to .Net projects so that any reference to a database object in a .Net assembly can be resolved at build time. That Connect submission is at [Entity FX] Use database references to constrain the EDM and overnight it received this comment from Microsoft: We have been working on this feature for a while and and will be available soon This is really good news - it improves the Microsoft developer ecosystem by ensuring invalid references to database references get caught at build time (ideally as part of a Continuous integration build) rather than run time. [Hopefully it might nip this code-first nonsense in the bud too (Ooo...way to incite flame comments :) ) ]. If you want to see this feature in action then check out a video from Teched Europe last month entitled SQL Server Developer Tools Code-named "Juneau" where it is demo'd by Lance Delano and Tim Laverty.   The point of this blog post though is not just to draw attention to this forthcoming feature for .Net developers, it is to ask you to petition Microsoft to get this feature added to SSIS/SSAS/SSRS too. After all, we already know (from the video above) that the feature is coming to this new code-name Juneau development environment plus we also know that Juneau will be the development environment for SSIS/SSAS/SSRS as well - is it really much of a stretch to expect the BI tools to have access to this great feature too? I don't think so and if you agree with me then I urge you to vote and add a comment to the Connection submissions that are requesting this feature. They are at: [SSAS] Declare Object Dependancies [SSRS] Declare Object Dependancies [SSIS] Declare Object Dependancies (Update, Apparently someone at Microsoft has deemed it necassary to set this to private and I am not able to change it back even though I submitted it. You can still vote on the other two though.) Let's close that SQL Developer Gap!   @Jamiet    

    Read the article

  • 45 minutes to talk about C# [closed]

    - by Philip
    I have the opportunity to give a 45 minute talk on C# in the theory of programming languages class I'm taking. The college teaches Java almost exclusively, so that's what all the students are most familiar with. (There's a little C, assembly, Prolog and LISP as well.) I decide what to talk about. It seems to me the best approach is to focus on a few of the big, obvious differences between C# and Java. I don't intend it to be a recommendation to use C# -- there are reasons to use each, mostly because of their ecosystems. So I want to focus on C# as a language. I don't want to go too fast and end up listing a whole bunch of features without showing their usefulness. My current plan is this: Functions as first class objects. This is, in my opinion, one of the biggest differences between C# and Java. The professor briefly mentioned this notion and showed a LISP example, but many of the students have probably never used it. I can show real world examples where it's made my code more readable. Lambda expressions as concise syntax for anonymous functions. Obviously with examples to show how this is useful. The real hit-home examples will be at the end when it's combined with the rest. I don't see an advantage to first showing the old delegate syntax and then replacing it with lambdas -- most of us won't have ever seen delegates anyway so it would just be confusing. The yield keyword and how it's different from returning an array. I have the impression that a lot of C# developers aren't familiar with how to use this. It will likely be very foreign to Java developers. I have some examples from my own work where it was really useful, such as iterating over a tree traversal, or iterating over neighbors in a graph where the neighbors aren't stored in memory. In both cases, doing it in Java would likely mean returning a complete list -- with yield I can stop iterating if I find what I want early on, without using memory for superfluous lists or arrays. Extension methods as a way to write implementation on interfaces. We'll all be familiar with how interfaces don't allow method implementation, and how this leads to code duplication. I'll show a specific example of this and how the extension method can solve the problem. Demonstrate how the above can be combined by implementing some simple Linq methods and using them. Where, Select, First, maybe more depending on how much time is left. Ideas on which ones might 'hit home' the best? There are other things I could talk about such as generics, value types, properties and more. I haven't yet though of good ways to incorporate these. In the case of generics and value types, the advantages might not be obvious or as relevant. Properties are obviously useful, particularly since we're taught strict JavaBeans here, but I don't know if I could integrate it with the "path to Linq" discussion above without it feeling tacked on. So I'm looking for thoughts on how to talk about C#, and what to talk about. Even minor details. I'm sure there are more experienced C# developers than me here who have good insight about what's really important in the language, and what would miss the point.

    Read the article

  • ArchBeat Link-o-Rama Top 10 for September 9-15, 2012

    - by Bob Rhubart
    The Top 10 most-viewed items shared on the OTN ArchBeat Facebook page for the week of September 9-15, 2017. 15 Lessons from 15 Years as a Software Architect | Ingo Rammer In this presentation from the GOTO Conference in Copenhagen, Ingo Rammer shares 15 tips regarding people, complexity and technology that he learned doing software architecture for 15 years. Attend OTN Architect Day – by Architects, for Architects – October 25 You won't need 3D glasses to take in these live presentations (8 sessions, two tracks) on Cloud computing, SOA, and engineered systems. And the ticket price is: Zero. Nothing. Absolutely free. Register now for Oracle Technology Network Architect Day in Los Angeles. Thursday October 25, 2012, 8:00 a.m. – 5:00 p.m. Sofitel Los Angeles , 8555 Beverly Boulevard , Los Angeles, CA 90048. Cloud API and service designers, stop thinking small | Cloud Computing - InfoWorld "The focus must shift away from fine-grained APIs that provide some type of primitive service, such as pushing data to a block of storage or perhaps making a request to a cloud-rooted database," says InfoWorld's David Linthicum. "To go beyond primitives, you must understand how these services should be used in a much larger architectural context. In other words, you need to understand how businesses will employ these services to form real workplace solutions—inside and outside the enterprise." Adding a runtime picker to a taskflow parameter in WebCenter | Yannick Ongena Oracle ACE Yannick Ongena shows how to create an Oracle WebCenter popup to allow users to "select items or do more complex things." Oracle IAM 11g R2 docs are now available "One of the great things about the new doc set is the inclusion of ePub files," says Fusion Middleware A-Team blogger Chris Johnson. "This means that if you have an iPad you can load up the doc library onto that and read the docs on the couch." Setting up a local Yum Server using the Exalogic ZFS Storage Appliance | Donald A concise technical post from the man named Donald. What's New in Oracle VM VirtualBox 4.2? | The Fat Bloke Sings "One of the trends we've seen is that as the average host platform becomes more powerful, our users are consistently running more and more vm's," says The Fat Bloke. "Some of our users have large libraries of vm's of various vintages, whilst others have groups of vm's that are run together as an assembly of the various tiers in a multi-tiered software solution, for example, a database tier, middleware tier, and front-ends." The new VirtualBox release, a year in the making, addresses the needs of these users, he explains. Configuring Oracle Business Intelligence 11g MDS XML Source Control Management with Git Version Control | Christian Screen Oracle ACE Christian Screen developed this tutorial for those interested in learning how to configure the Oracle Business Intelligence 11g (11.1.1.6) metadata repository for development using the new MDS XML source control management functionality. Identity and Access Management at Oracle Open World 2012 | Brian Eidelman Fusion Middleware A-Team blogger Brian Eideleman highlights three Oracle Openworld sessions that will put Identity and Access Management in the spotlight, and shares a link to the "Focus On: Identity Management" document, a comprehensive listing of Openworld activities also dealing with IM. Starting and stopping WebLogic automatically using Upstart | Chris Johnson "In Ubuntu, RedHat and Oracle Linux there's a new flavor of init called Upstart that all the kids are using," says Oracle Fusion Middleware A-Team member Chris Johnson. "It's the new hotness when it comes to making programs into daemons and wiring them to start and stop at appropriate times." Thought for the Day "The purpose of software engineering is to control complexity, not to create it." — Pamela Zave Source: SoftwareQuotes.com

    Read the article

  • Orchestrating the Virtual Enterprise, Part I

    - by Kathryn Perry
    A guest post by Jon Chorley, Oracle's Chief Sustainability Officer & Vice President, SCM Product Strategy During the American Industrial Revolution, the Ford Motor Company did it all. It turned raw materials into a showroom full of Model Ts. It owned a steel mill, a glass factory, and an automobile assembly line. The company was both self-sufficient and innovative and went on to become one of the largest and most profitable companies in the world. Nowadays, it's unusual for any business to follow this vertical integration model because its much harder to be best in class across such a wide a range of capabilities and services. Instead, businesses focus on their core competencies and outsource other business functions to specialized suppliers. They exchange vertical integration for collaboration. When done well, all parties benefit from this arrangement and the collaboration leads to the creation of an agile, lean and successful "virtual enterprise." Case in point: For Sun hardware, Oracle outsources most of its manufacturing and all of its logistics to third parties. These are vital activities, but ones where Oracle doesn't have a core competency, so we shift them to business partners who do. Within our enterprise, we always retain the core functions of product development, support, and most of the sales function, because that's what constitutes our core value to our customers. This is a perfect example of a virtual enterprise.  What are the implications of this? It means that we must exchange direct internal control for indirect external collaboration. This fundamentally changes the relative importance of different business processes, the boundaries of security and information sharing, and the relationship of the supply chain systems to the ERP. The challenge is that the systems required to support this virtual paradigm are still mired in "island enterprise" thinking. But help is at hand. Developments such as the Web, social networks, collaboration, and rules-based orchestration offer great potential to fundamentally re-architect supply chain systems to better support the virtual enterprise.  Supply Chain Management Systems in a Virtual Enterprise Historically enterprise software was constructed to automate the ERP - and then the supply chain systems extended the ERP. They were joined at the hip. In virtual enterprises, the supply chain system needs to be ERP agnostic, sitting above each of the ERPs that are distributed across the virtual enterprise - most of which are operating in other businesses. This is vital so that the supply chain system can manage the flow of material and the related information through the multiple enterprises. It has to have strong collaboration tools. It needs to be highly flexible. Users need to be able to see information that's coming from multiple sources and be able to react and respond to events across those sources.  Oracle Fusion Distributed Order Orchestration (DOO) is a perfect example of a supply chain system designed to operate in this virtual way. DOO embraces the idea that a company's fulfillment challenge is a distributed, multi-enterprise problem. It enables users to manage the process and the trading partners in a uniform way and deliver a consistent user experience while operating over a heterogeneous, virtual enterprise. This is a fundamental shift at the core of managing supply chains. It forces virtual enterprises to think architecturally about how best to construct their supply chain systems. In my next post, I will share examples of companies that have made that shift and talk more about the distributed orchestration process.

    Read the article

  • Clever memory usage through the years

    - by Ben Emmett
    A friend and I were recently talking about the really clever tricks people have used to get the most out of memory. I thought I’d share my favorites, and would love to hear yours too! Interleaving on drum memory Back in the ye olde days before I’d been born (we’re talking the 50s / 60s here), working memory commonly took the form of rotating magnetic drums. These would spin at a constant speed, and a fixed head would read from memory when the correct part of the drum passed it by, a bit like a primitive platter disk. Because each revolution took a few milliseconds, programmers took to manually arranging information non-sequentially on the drum, timing when an instruction or memory address would need to be accessed, then spacing information accordingly around the edge of the drum, thus reducing the access delay. Similar techniques were still used on hard disks and floppy disks into the 90s, but have become irrelevant with modern disk technologies. The Hashlife algorithm Conway’s Game of Life has attracted numerous implementations over the years, but Bill Gosper’s Hashlife algorithm is particularly impressive. Taking advantage of the repetitive nature of many cellular automata, it uses a quadtree structure to store the hashes of pieces of the overall grid. Over time there are fewer and fewer new structures which need to be evaluated, so it starts to run faster with larger grids, drastically outperforming other algorithms both in terms of speed and the size of grid which can be simulated. The actual amount of memory used is huge, but it’s used in a clever way, so makes the list . Elite’s procedural generation Ok, so this isn’t exactly a memory optimization – more a storage optimization – but it gets an honorable mention anyway. When writing Elite, David Braben and Ian Bell wanted to build a rich world which gamers could explore, but their 22K memory was something of a limitation (for comparison that’s about the size of my avatar picture at the top of this page). They procedurally generated all the characteristics of the 2048 planets in their virtual universe, including the names, which were stitched together using a lookup table of parts of names. In fact the original plans were for 2^52 planets, but it was decided that that was probably too many. Oh, and they did that all in assembly language. Other games of the time used similar techniques too – The Sentinel’s landscape generation algorithm being another example. Modern Garbage Collectors Garbage collection in managed languages like Java and .NET ensures that most of the time, developers stop needing to care about how they use and clean up memory as the garbage collector handles it automatically. Achieving this without killing performance is a near-miraculous feet of software engineering. Much like when learning chemistry, you find that every time you think you understand how the garbage collector works, it turns out to be a mere simplification; that there are yet more complexities and heuristics to help it run efficiently. Of course introducing memory problems is still possible (and there are tools like our memory profiler to help if that happens to you) but they’re much, much rarer. A cautionary note In the examples above, there were good and well understood reasons for the optimizations, but cunningly optimized code has usually had to trade away readability and maintainability to achieve its gains. Trying to optimize memory usage without being pretty confident that there’s actually a problem is doing it wrong. So what have I missed? Tell me about the ingenious (or stupid) tricks you’ve seen people use. Ben

    Read the article

  • How the SPARC T4 Processor Optimizes Throughput Capacity: A Case Study

    - by Ruud
    This white paper demonstrates the architected latency hiding features of Oracle’s UltraSPARC T2+ and SPARC T4 processors That is the first sentence from this technical white paper, but what does it exactly mean? Let's consider a very simple example, the computation of a = b + c. This boils down to the following (pseudo-assembler) instructions that need to be executed: load @b, r1 load @c, r2 add r1,r2,r3 store r3, @a The first two instructions load variables b and c from an address in memory (here symbolized by @b and @c respectively). These values go into registers r1 and r2. The third instruction adds the values in r1 and r2. The result goes into register r3. The fourth instruction stores the contents of r3 into the memory address symbolized by @a. If we're lucky, both b and c are in a nearby cache and the load instructions only take a few processor cycles to execute. That is the good case, but what if b or c, or both, have to come from very far away? Perhaps both of them are in the main memory and then it easily takes hundreds of cycles for the values to arrive in the registers. Meanwhile the processor is doing nothing and simply waits for the data to arrive. Actually, it does something. It burns cycles while waiting. That is a waste of time and energy. Why not use these cycles to execute instructions from another application or thread in case of a parallel program? That is exactly what latency hiding on the SPARC T-Series processors does. It is a hardware feature totally transparent to the user and application. As soon as there is a delay in the execution, the hardware uses these otherwise idle cycles to execute instructions from another process. As a result, the throughput capacity of the system improves because idle cycles are no longer wasted and therefore more jobs can be run per unit of time. This feature has been in the SPARC T-series from the beginning, so why this paper? The difference with previous publications on this topic is in the amount of detail given. How this all works under the hood is fully explained using two example programs. Starting from the assembly language instructions, it is demonstrated in what way these programs execute. To really see what is happening we go down to the processor pipeline level, where the gaps in the execution are, and show in what way these idle cycles are filled by other copies of the same program running simultaneously. Both the SPARC T4 as well as the older UltraSPARC T2+ processor are covered. You may wonder why the UltraSPARC T2+ is included. The focus of this work is on the SPARC T4 processor, but to explain the basic concept of latency hiding at this very low level, we start with the UltraSPARC T2+ processor because it is architecturally a much simpler design. From the single issue, in-order pipelines of this processor we then shift gears and cover how this all works on the much more advanced dual issue, out-of-order architecture of the T4. The analysis and performance experiments have been conducted on both processors. The results depend on the processor, but in all cases the theoretical estimates are confirmed by the experiments. If you're interested to read a lot more about this and find out how things really work under the hood, you can download a copy of the paper here. A paper like this could not have been produced without the help of several other people. I want to thank the co-author of this paper, Jared Smolens, for his very valuable contributions and our highly inspiring discussions. I'm also indebted to Thomas Nau (Ulm University, Germany), Shane Sigler and Mark Woodyard (both at Oracle) for their feedback on earlier versions of this paper. Karen Perkins (Perkins Technical Writing and Editing) and Rick Ramsey at Oracle were very helpful in providing editorial and publishing assistance.

    Read the article

  • what differs a computer scientist/software engineer to regular people who learn programming language and APIs?

    - by Amumu
    In University, we learn and reinvent the wheel a lot to truly learn the programming concepts. For example, we may learn assembly language to understand, what happens inside the box, and how the system operates, when we execute our code. This helps understanding higher level concepts deeper. For example, memory management like in C is just an abstraction of manually managed memory contents and addresses. The problem is, when we're going to work, usually productivity is required more. I could program my own containers, or string class, or date/time (using POSIX with C system call) to do the job, but then, it would take much longer time to use existing STL or Boost library, which abstract all of those thing and very easy to use. This leads to an issue, that a regular person doesn't need to get through all the low level/under the hood stuffs, who learns only one programming language and using language-related APIs. These people may eventually compete with the mainstream graduates from computer science or software engineer and call themselves programmers. At first, I don't think it's valid to call them programmers. I used to think, a real programmer needs to understand the computer deeply (but not at the electronic level). But then I changed my mind. After all, they get the job done and satisfy all the test criteria (logic, performance, security...), and in business environment, who cares if you're an expert and understand how computer works or not. You may get behind the "amateurs" if you spend to much time learning about how things work inside. It is totally valid for those people to call themselves programmers. This makes me confuse. So, after all, programming should be considered an universal skill? Does programming language and concepts matter or the problems we solve matter? For example, many C/C++ vs Java and other high level language, one of the main reason is because C/C++ features performance, as well as accessing low level facility. One of the main reason (in my opinion), is coding in C/C++ seems complex, so people feel good about it (not trolling anyone, just my observation, and my experience as well. Try to google "C hacker syndrome"). While Java on the other hand, made for simplifying programming tasks to help developers concentrate on solving their problems. Based on Java rationale, if the programing language keeps evolve, one day everyone can map their logic directly with natural language. Everyone can program. On that day, maybe real programmers are mathematicians, who could perform most complex logic (including business logic and academic logic) without worrying about installing/configuring compiler, IDEs? What's our job as a computer scientist/software engineer? To solve computer specific problems or to solve problems in general? For example, take a look at this exame: http://cm.baylor.edu/ICPCWiki/attach/Problem%20Resources/2010WorldFinalProblemSet.pdf . The example requires only basic knowledge about the programming language, but focus more on problem solving with the language. In sum, what differs a computer scientist/software engineer to regular people who learn programming language and APIs? A mathematician can be considered a programmer, if he is good enough to use programming language to implement his formula. Can we programmer do this? Probably not for most of us, since we specialize about computer, not math. An electronic engineer, who learns how to use C to program for his devices, can be considered a programmer. If the programming languages keep being simplified, may one day the software engineers, who implements business logic and create softwares, be obsolete? (Not for computer scientist though, since many of the CS topics are scientific, and science won't change, but technology will).

    Read the article

  • Development Quirk From ASP.NET Dynamic Compilation

    - by jkauffman
    The Problem I got a compilation error in my ASP.NET MVC3 project that tested my sanity today. (As always, names are changed to protect the innocent) The type or namespace name 'FishViewModel' does not exist in the namespace 'Company.Product.Application.Models' (are you missing an assembly reference?) Sure looks easy! There must be something in the project referring to a FishViewModel. The Confusing Part The first thing I noticed was the that error was occuring in a folder clearly not in my project and in files that I definitely had not created: %SystemRoot%\Microsoft.NET\Framework\(versionNumber)\Temporary ASP.NET Files\ App_Web_mezpfjae.1.cs I also ascertained these facts, each of which made me more confused than the last: Rebuild and Clean had no effect. No controllers in the project ever returned a ViewResult using FishViewModel. No views in the project defined that they use FishViewModel. Searching across all files included in the project for “FishViewModel” provided no results. The build server did not report a problem. The Solution The problem stemmed from a file that was not included in the project but still present on the file system: (By the way, if you don’t know this trick already, there is a toolbar button in the Solution Explorer window to “Show All Files” which allows you to see files all files in the file system) In my situation, I was working on the mission-critical Fish view before abandoning the feature. Instead of deleting the file, I excluded it from the project. However, this was a bad move. It caused the build failure, and in order to fix the error, this file must be deleted. By the way, this file was not in source control, so the build server did not have it. This explains why my build server did not report a problem for me. The Explanation So, what’s going on? This file isn’t even a part of the project, so why is it failing the build? This is a behavior of the ASP.NET Dynamic Compilation. This is the same process that occurs when deploying a webpage; ASP.NET compiles the web application’s code. When this occurs on a production server, it has to do so without the .csproj file (which isn’t usually deployed, if you’ve taken your time to do a deployment cleanly). This process has merely the file system available to identify what to compile. So, back in the world of developing the webpage in visual studio on my developer box, I run into the situation because the same process is occuring there. This is true even though I have more files on my machine than will actually get deployed. I can’t help but think that this error could be attributed back to the real culprit file (Fish.cshtml, rather than the temporary files) with some work, but at least the error had enough information in it to narrow it down. The Conclusion I had previously been accustomed to the idea that for c# projects, the .csproj file always “defines” the build behavior. This investigation has taught me that I’ll need to shift my thinking a bit to remember that the file system has the final say when it comes to web applications, even on the developer’s machine!

    Read the article

  • Defining scope for Record Count functoid:

    - by ArunManick
    Defining scope for Record Count functoid: Problem: One of the most common scenarios in BizTalk is calculating the record count of repeating structure. BizTalk has come up with an advanced functoid called Record Count functoid which will give the record count for the repeating structure however you cannot define the scope for a Record Count functoid. Because Record Count functoid accepts exactly one parameter which can be repeating record or field element.   If somebody don’t know what “scope” means I will explain with a simple example. Consider that we have a source schema having a structure Country -> State -> City. Country will have various states and each state will have different cities. Now you want to calculate no. of cities present in each state. Here scope is defined at the parent node “State”. Traditional Record Count functoid will give the total no. of cities present in the source message and not the State level city count.   Source Schema:   Destination Schema:   Soultion #1: As the title indicates we are not going to add one more parameter to the record count functoid. Instead of that, we are going to achieve the solution with the help of Scripting functoid with Inline XSLT script. XSLT is basically the transformation language used in the mapping.     “No.OfCities” indicates the destination field name to which we are going to send the value. In count(City), “count” refers to built in XPath function used in XSLT and “City” refers to source schema record name. Here you can find the list of built-in functions available in XSLT.   The mapping will look like as follows:   The 2 Record Count functoids used in this map will give the total number of states and total number of cities as that of input message.   Soultion #2:  If someone doesn’t like XSLT code and they wish to achieve the solution using functoids alone, then here is another solution.   Use logical Existence functoid to check whether “City” exist or not Connect the output of Logical Existence functoid to the Value Mapping functoid with second parameter as constant “1”. Hence if the first parameter is TRUE it will give the output as “1”. Connect the output of Value Mapping functoid to the Cumulative Sum functoid with scope as “1”   This will calculate the City count at the state level. The mapping will look like as follows:     Let us see the sample input and the map output.   Input: <?xml version="1.0" encoding="utf-8"?> <ns0:Country xmlns:ns0="http://RecordCount.Source">   <State>     <StateName>Tamilnadu</StateName>     <City>       <CityName>Pollachi</CityName>     </City>     <City>       <CityName>Coimbatore</CityName>     </City>     <City>       <CityName>Chennai</CityName>     </City>   </State>   <State>     <StateName>Kerala</StateName>     <City>       <CityName>Palakad</CityName>     </City>   </State>   <State>     <StateName>Karnataka</StateName>     <City>       <CityName>Bangalore</CityName>     </City>     <City>       <CityName>Mangalore</CityName>     </City>   </State> </ns0:Country>     Output: <ns0:Country xmlns:ns0="http://RecordCount.Destination">           <No.OfStates>3</No.OfStates>           <No.OfCities>6</No.OfCities>           <States>                    <No.OfCities>3</No.OfCities>           </States>           <States>                    <No.OfCities>1</No.OfCities>           </States>           <States>                    <No.OfCities>2</No.OfCities>           </States> </ns0:Country>   Conclusion: This is my first post and I hope you enjoyed it.   -Arun

    Read the article

  • Parameterized StreamInsight Queries

    - by Roman Schindlauer
    The changes in our APIs enable a set of scenarios that were either not possible before or could only be achieved through workarounds. One such use case that people ask about frequently is the ability to parameterize a query and instantiate it with different values instead of re-deploying the entire statement. I’ll demonstrate how to do this in StreamInsight 2.1 and combine it with a method of using subjects for dynamic query composition in a mini-series of (at least) two blog articles. Let’s start with something really simple: I want to deploy a windowed aggregate to a StreamInsight server, and later use it with different window sizes. The LINQ statement for such an aggregate is very straightforward and familiar: var result = from win in stream.TumblingWindow(TimeSpan.FromSeconds(5))               select win.Avg(e => e.Value); Obviously, we had to use an existing input stream object as well as a concrete TimeSpan value. If we want to be able to re-use this construct, we can define it as a IQStreamable: var avg = myApp     .DefineStreamable((IQStreamable<SourcePayload> s, TimeSpan w) =>         from win in s.TumblingWindow(w)         select win.Avg(e => e.Value)); The DefineStreamable API lets us define a function, in our case from a IQStreamable (the input stream) and a TimeSpan (the window length) to an IQStreamable (the result). We can then use it like a function, with the input stream and the window length as parameters: var result = avg(stream, TimeSpan.FromSeconds(5)); Nice, but you might ask: what does this save me, except from writing my own extension method? Well, in addition to defining the IQStreamable function, you can actually deploy it to the server, to make it re-usable by another process! When we deploy an artifact in V2.1, we give it a name: var avg = myApp     .DefineStreamable((IQStreamable<SourcePayload> s, TimeSpan w) =>         from win in s.TumblingWindow(w)         select win.Avg(e => e.Value))     .Deploy("AverageQuery"); When connected to the same server, we can now use that name to retrieve the IQStreamable and use it with our own parameters: var averageQuery = myApp     .GetStreamable<IQStreamable<SourcePayload>, TimeSpan, double>("AverageQuery"); var result = averageQuery(stream, TimeSpan.FromSeconds(5)); Convenient, isn’t it? Keep in mind that, even though the function “AverageQuery” is deployed to the server, its logic will still be instantiated into each process when the process is created. The advantage here is being able to deploy that function, so another client who wants to use it doesn’t need to ask the author for the code or assembly, but just needs to know the name of deployed entity. A few words on the function signature of GetStreamable: the last type parameter (here: double) is the payload type of the result, not the actual result stream’s type itself. The returned object is a function from IQStreamable<SourcePayload> and TimeSpan to IQStreamable<double>. In the next article we will integrate this usage of IQStreamables with Subjects in StreamInsight, so stay tuned! Regards, The StreamInsight Team

    Read the article

  • Is this Hybrid of Interface / Composition kosher?

    - by paul
    I'm working on a project in which I'm considering using a hybrid of interfaces and composition as a single thing. What I mean by this is having a contain*ee* class be used as a front for functionality implemented in a contain*er* class, where the container exposes the containee as a public property. Example (pseudocode): class Visibility(lambda doShow, lambda doHide, lambda isVisible) public method Show() {...} public method Hide() {...} public property IsVisible public event Shown public event Hidden class SomeClassWithVisibility private member visibility = new Visibility(doShow, doHide, isVisible) public property Visibility with get() = visibility private method doShow() {...} private method doHide() {...} private method isVisible() {...} There are three reasons I'm considering this: The language in which I'm working (F#) has some annoyances w.r.t. implementing interfaces the way I need to (unless I'm missing something) and this will help avoid a lot of boilerplate code. The containee classes could really be considered properties of the container class(es); i.e. there seems to be a fairly strong has-a relationship. The containee classes will likely implement code which would have been pretty much the same when implemented in all the container classes, so why not do it once in one place? In the above example, this would include managing and emitting the Shown/Hidden events. Does anyone see any isseus with this Composiface/Intersition method, or know of a better way? EDIT 2012.07.26 - It seems a little background information is warranted: Where I work, we have a bunch of application front-ends that have limited access to system resources -- they need access to these resources to fully function. To remedy this we have a back-end application that can access the needed resources, with which the front-ends can communicate. (There is an API written for the front-ends for accessing back-end functionality as though it were part of the front-end.) The back-end program is out of date and its functionality is incomplete. It has made the transition from company to company a couple of times and we can't even compile it anymore. So I'm trying to rewrite it in my spare time. I'm trying to update things to make a nice(r) interface/API for the front-ends (while allowing for backwards compatibility with older front-ends), hopefully something full of OOPy goodness. The thing is, I don't want to write the front-end API after I've written pretty much the same code in F# for implementing the back-end; so, what I'm planning on doing is applying attributes to classes/methods/properties that I would like to have code for in the API then generate this code from the F# assembly using reflection. The method outlined in this question is a possible alternative I'm considering instead of implementing straight interfaces on the classes in F# because they're kind of a bear: In order to access something of an interface that has been implemented in a class, you have to explicitly cast an instance of that class to the interface type. This would make things painful when getting calls from the front-ends. If you don't want to have to do this, you have to call out all of the interface's methods/properties again in the class, outside of the interface implementation (which is separate from regular class members), and call the implementation's members. This is basically repeating the same code, which is what I'm trying to avoid!

    Read the article

  • CSS3 - "connecting" 2 classes animation [closed]

    - by Nave Tseva
    I have this CSS +HTML code: <!DOCTYPE HTML> <html> <head> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> <title>What</title> <style type="text/css"> #page { width: 900px; padding: 0px; margin: 0 auto; direction: rtl; position: relative; } #box1 { position: relative; width: 500px; border: 1px solid black; box-shadow: -3px 8px 34px #808080; border-radius: 20px; box-shadow: -8px 5px 5px #888888; right: 300px; top: 250px; height: 150px; -webkit-transition: all 1s; font-size: large; color: Black; padding: 10px; background: #D0D0D0; opacity: 0; } @-webkit-keyframes myFirst { 0% { right: 300px; top: 150px; background: #D0D0D0; opacity: 0; } 100% { background: #909090; ; right: 300px; top: 200px; opacity: 1; } } #littlebox1 { top: 200px; position: absolute; display: inline-block; } .littlebox1-sentence { font-size: large; padding-bottom: 15px; padding-top: 15px; padding-left: 25px; padding-right: 10px; background: #D0D0D0; border-radius: 10px; -webkit-transition: background .25s ease-in-out; } #littlebox1:hover ~ #box1 { -webkit-transition: all 0s; background: #909090;; right: 300px; top: 200px; -webkit-animation: myFirst 1s; -webkit-animation-fill-mode: initial; opacity: 1; } .littlebox1-sentence:hover { background: #909090; } .littlebox1-sentence:hover + .triangle { border-right: 50px solid #909090; } .triangle { position: relative; width: 0; height: 0; border-right: 50px solid #D0D0D0; border-top: 24px solid transparent; border-bottom: 24px solid transparent; right: 160px; -webkit-transition: border-right .25s ease-in-out; } .triangle:hover { border-right:50px solid #909090; } </style> <script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script> <script> $(function() { $('.littlebox1-sentence').hover(function() { $(this).css('background', '#909090'); $('.triangle').css('border-right', '50px solid #909090'); }); </script> <script> $(function() { $('.triangle').hover(function() { $(this).css('border-right', '50px solid #909090'); $('.littlebox1-sentence').css('background', '#909090'); }); </script> </head> <body dir="rtl"> <div id="page"> <div id="littlebox1" class="littlebox1-sentence">put your mouse here</div><div id="littlebox1" class="triangle"> </div> <div id="box1"> </div> </div> </body> </html> Live example you will find here: http://jsfiddle.net/FLe4g/12/ The problem here that something here wrong in the second jquery code. I want that every time that I put the mouse on the box, or on the triangke they both will change ther color together. when I put the mouse on the box it works fine, but when I put the mouse on the triangle it don't work. Any suggestions how to fix this code?

    Read the article

  • Searching for context in Silverlight applications

    - by PeterTweed
    A common behavior in business applications that have developed through the ages is for a user to be able to get information or execute commands in relation to some information/function displayed by right clicking the object in question and popping up a context menu that offers relevant options to choose. The Silverlight Toolkit April 2010 release introduced the context menu object.  This can be added to other UI objects and display options for the user to choose.  The menu items can be enabled or disabled as per your application logic and icons can be added to the menu items to add visual effect.  This post will walk you through how to use the context menu object from the Silverlight Toolkit. Steps: 1. Create a new Silverlight 4 application 2. Copy the following namespace definition to the user control object of the MainPage.xaml file: xmlns:my="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Input.Toolkit"   3. Copy the following XAML into the LayoutRoot grid in MainPage.xaml:          <Border CornerRadius="15" Background="Blue" Width="400" Height="100">             <TextBlock Foreground="White" FontSize="20" Text="Context Menu In This Border...." HorizontalAlignment="Center" VerticalAlignment="Center" >             </TextBlock>             <my:ContextMenuService.ContextMenu>                 <my:ContextMenu >                     <my:MenuItem                 Header="Copy"                 Click="CopyMenuItem_Click" Name="copyMenuItem">                         <my:MenuItem.Icon>                             <Image Source="copy-icon-small.png"/>                         </my:MenuItem.Icon>                     </my:MenuItem>                     <my:Separator/>                     <my:MenuItem Name="pasteMenuItem"                 Header="Paste"                 Click="PasteMenuItem_Click">                         <my:MenuItem.Icon>                             <Image Source="paste-icon-small.png"/>                         </my:MenuItem.Icon>                     </my:MenuItem>                 </my:ContextMenu>             </my:ContextMenuService.ContextMenu>         </Border>   The above code associates a context menu with two menu items and a separator between them to the border object.  The menu items has icons associated with them to add visual appeal.  The menu items have click event handlers that will be added in the MainPage.xaml.cs code behind in a later step. 4. Add two icon sized images to the ClientBin directory of the web project hosting the Silverlight application, named copy-icon-small.png and paste-icon-small.jpg respectively.  I used copy and paste icons as the names suggest. 5. Add the following code to the class in MainPage.xaml.cs file:         private void CopyMenuItem_Click(object sender, RoutedEventArgs e)         {             MessageBox.Show("Copy selected");         }           private void PasteMenuItem_Click(object sender, RoutedEventArgs e)         {             MessageBox.Show("Paste selected");         }   This code adds the event handlers for the menu items defined in step 3. 6. Run the application, right click on the border and select a menu option and see the appropriate message box displayed. Congratulations it’s that easy!   Take the Slalom Challenge at www.slalomchallenge.com!

    Read the article

  • Html.ValidationSummary and Multiple Forms

    - by MightyZot
    Originally posted on: http://geekswithblogs.net/MightyZot/archive/2013/11/11/html.validationsummary-and-multiple-forms.aspxThe Html.ValidationSummary helper writes a div with a list of general errors added to the model state while a request is being serviced. There is generally one form per view or partial view, I think, so often there is only one call to Html.ValidationSummary in the page resulting from the assembly of your views. And, consequently, there is no problem with the markup that Html.ValidationSummary spits out as a result. What if you want to put multiple forms in one view? Even if you create a view model that’s an aggregate of the view models for each form, the error validation summary is going to contain errors from both forms. Check out this screen shot, which shows a page with multiple forms. Notice how the error validation summary shows up twice. Grrr! Errors for the login form also show up in the registration form. Luckily, there is an easy way around this. Pull the errors out of the model state and separate them for each form. You’ll need to identify the appropriate form by setting the key when you make calls to ModelState.AddModelError. Assume in my example that errors for the login form are added to model state using the “LoginForm” key. And, likewise, assume that errors for the registration form are added to model state using the “RegistrationForm” key. An example of that might look like this… // If we got this far, something failed, redisplay form ModelState.AddModelError("LoginForm", "User name or password is not right..."); return View(model); Over in the code for your View, you can pull each form’s errors from the model state using lambda expressions that look like these… var LoginFormErrors = ViewData.ModelState.Where(ms => ms.Key == "LoginForm"); var RegistrationFormErrors = ViewData.ModelState.Where(ms => ms.Key == "RegistrationForm"); Now that you have two collections containing errors, you can display only the errors specific to each form. I’m doing that in my code by removing the calls to Html.ValidationSummary and replacing them with enumerators that look like this… if(LoginFormErrors.Count() > 0) { <div class="cdt-error-list">     <ul>     @foreach (var entry in LoginFormErrors)     {         foreach (var error in entry.Value.Errors)         {             <li>@error.ErrorMessage</li>         }     }     </ul> </div> } …and for the registration form, the code looks like this… @if(RegistrationFormErrors.Count() > 0) { <div class="cdt-error-list">     <ul>     @foreach (var entry in RegistrationFormErrors)     {         foreach (var error in entry.Value.Errors)         {             <li>@error.ErrorMessage</li>         }     }     </ul> </div> } The result is a nice clean separation of the list of errors that are specific to each form. And, this is important because each form is submitted separately in my case, so both forms don’t generate errors in the same context. As you’ll see in the screen shot below, errors added to the model state when the login form is submitted do not show up in the registration form’s validation summary.

    Read the article

  • Dependency injection: How to sell it

    - by Mel
    Let it be known that I am a big fan of dependency injection (DI) and automated testing. I could talk all day about it. Background Recently, our team just got this big project that is to built from scratch. It is a strategic application with complex business requirements. Of course, I wanted it to be nice and clean, which for me meant: maintainable and testable. So I wanted to use DI. Resistance The problem was in our team, DI is taboo. It has been brought up a few times, but the gods do not approve. But that did not discourage me. My Move This may sound weird but third-party libraries are usually not approved by our architect team (think: "thou shalt not speak of Unity, Ninject, NHibernate, Moq or NUnit, lest I cut your finger"). So instead of using an established DI container, I wrote an extremely simple container. It basically wired up all your dependencies on startup, injects any dependencies (constructor/property) and disposed any disposable objects at the end of the web request. It was extremely lightweight and just did what we needed. And then I asked them to review it. The Response Well, to make it short. I was met with heavy resistance. The main argument was, "We don't need to add this layer of complexity to an already complex project". Also, "It's not like we will be plugging in different implementations of components". And "We want to keep it simple, if possible just stuff everything into one assembly. DI is an uneeded complexity with no benefit". Finally, My Question How would you handle my situation? I am not good in presenting my ideas, and I would like to know how people would present their argument. Of course, I am assuming that like me, you prefer to use DI. If you don't agree, please do say why so I can see the other side of the coin. It would be really interesting to see the point of view of someone who disagrees. Update Thank you for everyone's answers. It really puts things into perspective. It's nice enough to have another set of eyes to give you feedback, fifteen is really awesome! This are really great answers and helped me see the issue from different sides, but I can only choose one answer, so I will just pick the top voted one. Thanks everyone for taking the time to answer. I have decided that it is probably not the best time to implement DI, and we are not ready for it. Instead, I will concentrate my efforts on making the design testable and attempt to present automated unit testing. I am aware that writing tests is additional overhead and if ever it is decided that the additional overhead is not worth it, personally I would still see it as a win situation since the design is still testable. And if ever testing or DI is a choice in future, the design can easily handle it.

    Read the article

  • Solaris 11.1 changes building of code past the point of __NORETURN

    - by alanc
    While Solaris 11.1 was under development, we started seeing some errors in the builds of the upstream X.Org git master sources, such as: "Display.c", line 65: Function has no return statement : x_io_error_handler "hostx.c", line 341: Function has no return statement : x_io_error_handler from functions that were defined to match a specific callback definition that declared them as returning an int if they did return, but these were calling exit() instead of returning so hadn't listed a return value. These had been generating warnings for years which we'd been ignoring, but X.Org has made enough progress in cleaning up code for compiler warnings and static analysis issues lately, that the community turned up the default error levels, including the gcc flag -Werror=return-type and the equivalent Solaris Studio cc flags -v -errwarn=E_FUNC_HAS_NO_RETURN_STMT, so now these became errors that stopped the build. Yet on Solaris, gcc built this code fine, while Studio errored out. Investigation showed this was due to the Solaris headers, which during Solaris 10 development added a number of annotations to the headers when gcc was being used for the amd64 kernel bringup before the Studio amd64 port was ready. Since Studio did not support the inline form of these annotations at the time, but instead used #pragma for them, the definitions were only present for gcc. To resolve this, I fixed both sides of the problem, so that it would work for building new X.Org sources on older Solaris releases or with older Studio compilers, as well as fixing the general problem before it broke more software building on Solaris. To the X.Org sources, I added the traditional Studio #pragma does_not_return to recognize that functions like exit() don't ever return, in patches such as this Xserver patch. Adding a dummy return statement was ruled out as that introduced unreachable code errors from compilers and analyzers that correctly realized you couldn't reach that code after a return statement. And on the Solaris 11.1 side, I updated the annotation definitions in <sys/ccompile.h> to enable for Studio 12.0 and later compilers the annotations already existing in a number of system headers for functions like exit() and abort(). If you look in that file you'll see the annotations we currently use, though the forms there haven't gone through review to become a Committed interface, so may change in the future. Actually getting this integrated into Solaris though took a bit more work than just editing one header file. Our ELF binary build comparison tool, wsdiff, actually showed a large number of differences in the resulting binaries due to the compiler using this information for branch prediction, code path analysis, and other possible optimizations, so after comparing enough of the disassembly output to be comfortable with the changes, we also made sure to get this in early enough in the release cycle so that it would get plenty of test exposure before the release. It also required updating quite a bit of code to avoid introducing new lint or compiler warnings or errors, and people building applications on top of Solaris 11.1 and later may need to make similar changes if they want to keep their build logs similarly clean. Previously, if you had a function that was declared with a non-void return type, lint and cc would warn if you didn't return a value, even if you called a function like exit() or panic() that ended execution. For instance: #include <stdlib.h> int callback(int status) { if (status == 0) return status; exit(status); } would previously require a never executed return 0; after the exit() to avoid lint warning "function falls off bottom without returning value". Now the compiler & lint will both issue "statement not reached" warnings for a return 0; after the final exit(), allowing (or in some cases, requiring) it to be removed. However, if there is no return statement anywhere in the function, lint will warn that you've declared a function returning a value that never does so, suggesting you can declare it as void. Unfortunately, if your function signature is required to match a certain form, such as in a callback, you not be able to do so, and will need to add a /* LINTED */ to the end of the function. If you need your code to build on both a newer and an older release, then you will either need to #ifdef these unreachable statements, or, to keep your sources common across releases, add to your sources the corresponding #pragma recognized by both current and older compiler versions, such as: #pragma does_not_return(exit) #pragma does_not_return(panic) Hopefully this little extra work is paid for by the compilers & code analyzers being able to better understand your code paths, giving you better optimizations and more accurate errors & warning messages.

    Read the article

  • Obfuscation is not a panacea

    - by simonc
    So, you want to obfuscate your .NET application. My question to you is: Why? What are your aims when your obfuscate your application? To protect your IP & algorithms? Prevent crackers from breaking your licensing? Your boss says you need to? To give you a warm fuzzy feeling inside? Obfuscating code correctly can be tricky, it can break your app if applied incorrectly, it can cause problems down the line. Let me be clear - there are some very good reasons why you would want to obfuscate your .NET application. However, you shouldn't be obfuscating for the sake of obfuscating. Security through Obfuscation? Once your application has been installed on a user’s computer, you no longer control it. If they do not want to pay for your application, then nothing can stop them from cracking it, even if the time cost to them is much greater than the cost of actually paying for it. Some people will not pay for software, even if it takes them a month to crack a $30 app. And once it is cracked, there is nothing stopping them from putting the result up on the internet. There should be nothing suprising about this; there is no software protection available for general-purpose computers that cannot be cracked by a sufficiently determined attacker. Only by completely controlling the entire stack – software, hardware, and the internet connection, can you have even a chance to be uncrackable. And even then, someone somewhere will still have a go, and probably succeed. Even high-end cryptoprocessors have known vulnerabilities that can be exploited by someone with a scanning electron microscope and lots of free time. So, then, why use obfuscation? Well, the primary reason is to protect your IP. What obfuscation is very good at is hiding the overall structure of your program, so that it’s very hard to figure out what exactly the code is doing at any one time, what context it is running in, and how it fits in with the rest of the application; all of which you need to do to understand how the application operates. This is completely different to cracking an application, where you simply have to find a single toggle that determines whether the application is licensed or not, and flip it without the rest of the application noticing. However, again, there are limitations. An obfuscated application still has to run in the same way, and do the same thing, as the original unobfuscated application. This means that some of the protections applied to the obfuscated assembly have to be undone at runtime, else it would not run on the CLR and do the same thing. And, again, since we don’t control the environment the application is run on, there is nothing stopping a user from undoing those protections manually, and reversing some of the obfuscation. It’s a perpetual arms race, and it always will be. We have plenty of ideas lined about new protections, and the new protections added in SA 6.6 (method parent obfuscation and a new control flow obfuscation level) are specifically designed to be harder to reverse and reconstruct the original structure. So then, by all means, obfuscate your application if you want to protect the algorithms and what the application does. That’s what SmartAssembly is designed to do. But make sure you are clear what a .NET obfuscator can and cannot protect you against, and don’t expect your obfuscated application to be uncrackable. Someone, somewhere, will crack your application if they want to and they don’t have anything better to do with their time. The best we can do is dissuade the casual crackers and make it much more difficult for the serious ones. Cross posted from Simple Talk.

    Read the article

  • Identity in .NET 4.5&ndash;Part 3: (Breaking) changes

    - by Your DisplayName here!
    I recently started porting a private build of Thinktecture.IdentityModel to .NET 4.5 and noticed a number of changes. The good news is that I can delete large parts of my library because many features are now in the box. Along the way I found some other nice additions. ClaimsIdentity now has methods to query the claims collection, e.g. HasClaim(), FindFirst(), FindAll(). ClaimsPrincipal has those methods as well. But they work across all contained identities. Nice! ClaimsPrincipal.Current retrieves the ClaimsPrincipal from Thread.CurrentPrincipal. Combined with the above changes, no casting necessary anymore. SecurityTokenHandler now has read and write methods that work directly with strings. This makes it much easier to deal with non-XML tokens like SWT or JWT. A new session security token handler that uses the ASP.NET machine key to protect the cookie. This makes it easier to get started in web farm scenarios. No need for a custom service host factory or the federation behavior anymore. WCF can be switched into “WIF mode” with the useIdentityConfiguration switch (odd name though). Tooling has become better and the new test STS makes it very easy to get started. On the other hand – and that was kind of expected – to bring claims into the core framework, there are also some breaking changes for WIF code. If you want to migrate (and I would recommend that), most changes to your code are mechanical. The following is a brain dump of the changes I encountered. Assembly Microsoft.IdentityModel is gone. The new functionality is now in mscorlib, System.IdentityModel(.Services) and System.ServiceModel. All the namespaces have changed as well. No IClaimsPrincipal and IClaimsIdentity anymore. Configuration section has been split into <system.identityModel /> and <system.identityModel.services />. WCF configuration story has changed as well. Claim.ClaimType is now Claim.Type. ClaimCollection is now IEnumerable<Claim>. IsSessionMode is now IsReferenceMode. Bootstrap token handling is different now. ClaimsPrincipalHttpModule is gone. This is not really needed anymore, apart from maybe claims transformation (see here). Various factory methods on ClaimsPrincipal are gone (e.g. ClaimsPrincipal.CreateFromIdentity()). SecurityTokenHandler.ValidateToken now returns a ReadOnlyCollection<ClaimsIdentity>. Some lower level helper classes are gone or internal now (e.g. KeyGenerator). The WCF WS-Trust bindings are gone. I think this is a pity. They were *really* useful when doing work with WSTrustChannelFactory. Since WIF is part of the Windows operating system and also supported in future versions of .NET, there is no urgent need to migrate to the 4.5 claims model. But obviously, going forward, at some point you want to make the move.

    Read the article

  • What do you need to know to be a world-class master software developer? [closed]

    - by glitch
    I wanted to bring up this question to you folks and see what you think, hopefully advise me on the matter: let's say you had 30 years of learning and practicing software development in front of you, how would you dedicate your time so that you'd get the biggest bang for your buck. What would you both learn and work on to be a world-class software developer that would make a large impact on the industry and leave behind a legacy? I think that most great developers end up being both broad generalists and specialists in one-two areas of interest. I'm thinking Bill Joy, John Carmack, Linus Torvalds, K&R and so on. I'm thinking that perhaps one approach would be to break things down by categories and establish a base minimum of "software development" greatness. I'm thinking: Operating Systems: completely internalize the core concepts of OS, perhaps gain a lot of familiarity with an OSS one such as Linux. Anything from memory management to device drivers has to be complete second nature. Programming Languages: this is one of those topics that imho has to be fully grokked even if it might take many years. I don't think there's quite anything like going through the process of developing your own compiler, understanding language design trade-offs and so on. Programming Language Pragmatics is one of my favorite books actually, I think you want to have that internalized back to back, and that's just the start. You could go significantly deeper, but I think it's time well spent, because it's such a crucial building block. As a subset of that, you want to really understand the different programming paradigms out there. Imperative, declarative, logic, functional and so on. Anything from assembly to LISP should be at the very least comfortable to write in. Contexts: I believe one should have experience working in different contexts to truly be able to appreciate the trade-offs that are being made every day. Embedded, web development, mobile development, UX development, distributed, cloud computing and so on. Hardware: I'm somewhat conflicted about this one. I think you want some understanding of computer architecture at a low level, but I feel like the concepts that will truly matter will be slightly higher level, such as CPU caching / memory hierarchy, ILP, and so on. Networking: we live in a completely network-dependent era. Having a good understanding of the OSI model, knowing how the Web works, how HTTP works and so on is pretty much a pre-requisite these days. Distributed systems: once again, everything's distributed these days, it's getting progressively harder to ignore this reality. Slightly related, perhaps add solid understanding of how browsers work to that, since the world seems to be moving so much to interfacing with everything through a browser. Tools: Have a really broad toolset that you're familiar with, one that continuously expands throughout the years. Communication: I think being a great writer, effective communicator and a phenomenal team player is pretty much a prerequisite for a lot of a software developer's greatness. It can't be overstated. Software engineering: understanding the process of building software, team dynamics, the requirements of the business-side, all the pitfalls. You want to deeply understand where what you're writing fits from the market perspective. The better you understand all of this, the more of your work will actually see the daylight. This is really just a starting list, I'm confident that there's a ton of other material that you need to master. As I mentioned, you most likely end up specializing in a bunch of these areas as you go along, but I was trying to come up with a baseline. Any thoughts, suggestions and words of wisdom from the grizzled veterans out there who would like to share their thoughts and experiences with this? I'd really love to know what you think!

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

< Previous Page | 178 179 180 181 182 183 184 185 186 187 188 189  | Next Page >