Search Results

Search found 11100 results on 444 pages for 'xt 20'.

Page 186/444 | < Previous Page | 182 183 184 185 186 187 188 189 190 191 192 193  | Next Page >

  • Segfault when iterating over a map<string, string> and drawing its contents using SDL_TTF

    - by Michael Stahre
    I'm not entirely sure this question belongs on gamedev.stackexchange, but I'm technically working on a game and working with SDL, so it might not be entirely offtopic. I've written a class called DebugText. The point of the class is to have a nice way of printing values of variables to the game screen. The idea is to call SetDebugText() with the variables in question every time they change or, as is currently the case, every time the game's Update() is called. The issue is that when iterating over the map that contains my variables and their latest updated values, I get segfaults. See the comments in DrawDebugText() below, it specifies where the error happens. I've tried splitting the calls to it-first and it-second into separate lines and found that the problem doesn't always happen when calling it-first. It alters between it-first and it-second. I can't find a pattern. It doesn't fail on every call to DrawDebugText() either. It might fail on the third time DrawDebugText() is called, or it might fail on the fourth. Class header: #ifndef CLIENT_DEBUGTEXT_H #define CLIENT_DEBUGTEXT_H #include <Map> #include <Math.h> #include <sstream> #include <SDL.h> #include <SDL_ttf.h> #include "vector2.h" using std::string; using std::stringstream; using std::map; using std::pair; using game::Vector2; namespace game { class DebugText { private: TTF_Font* debug_text_font; map<string, string>* debug_text_list; public: void SetDebugText(string var, bool value); void SetDebugText(string var, float value); void SetDebugText(string var, int value); void SetDebugText(string var, Vector2 value); void SetDebugText(string var, string value); int DrawDebugText(SDL_Surface*, SDL_Rect*); void InitDebugText(); void Clear(); }; } #endif Class source file: #include "debugtext.h" namespace game { // Copypasta function for handling the toString conversion template <class T> inline string to_string (const T& t) { stringstream ss (stringstream::in | stringstream::out); ss << t; return ss.str(); } // Initializes SDL_TTF and sets its font void DebugText::InitDebugText() { if(TTF_WasInit()) TTF_Quit(); TTF_Init(); debug_text_font = TTF_OpenFont("LiberationSans-Regular.ttf", 16); TTF_SetFontStyle(debug_text_font, TTF_STYLE_NORMAL); } // Iterates over the current debug_text_list and draws every element on the screen. // After drawing with SDL you need to get a rect specifying the area on the screen that was changed and tell SDL that this part of the screen needs to be updated. this is done in the game's Draw() function // This function sets rects_to_update to the new list of rects provided by all of the surfaces and returns the number of rects in the list. These two parameters are used in Draw() when calling on SDL_UpdateRects(), which takes an SDL_Rect* and a list length int DebugText::DrawDebugText(SDL_Surface* screen, SDL_Rect* rects_to_update) { if(debug_text_list == NULL) return 0; if(!TTF_WasInit()) InitDebugText(); rects_to_update = NULL; // Specifying the font color SDL_Color font_color = {0xff, 0x00, 0x00, 0x00}; // r, g, b, unused int row_count = 0; string line; // The iterator variable map<string, string>::iterator it; // Gets the iterator and iterates over it for(it = debug_text_list->begin(); it != debug_text_list->end(); it++) { // Takes the first value (the name of the variable) and the second value (the value of the parameter in string form) //---------THIS LINE GIVES ME SEGFAULTS----- line = it->first + ": " + it->second; //------------------------------------------ // Creates a surface with the text on it that in turn can be rendered to the screen itself later SDL_Surface* debug_surface = TTF_RenderText_Solid(debug_text_font, line.c_str(), font_color); if(debug_surface == NULL) { // A standard check for errors fprintf(stderr, "Error: %s", TTF_GetError()); return NULL; } else { // If SDL_TTF did its job right, then we now set a destination rect row_count++; SDL_Rect dstrect = {5, 5, 0, 0}; // x, y, w, h dstrect.x = 20; dstrect.y = 20*row_count; // Draws the surface with the text on it to the screen int res = SDL_BlitSurface(debug_surface,NULL,screen,&dstrect); if(res != 0) { //Just an error check fprintf(stderr, "Error: %s", SDL_GetError()); return NULL; } // Creates a new rect to specify the area that needs to be updated with SDL_Rect* new_rect_to_update = (SDL_Rect*) malloc(sizeof(SDL_Rect)); new_rect_to_update->h = debug_surface->h; new_rect_to_update->w = debug_surface->w; new_rect_to_update->x = dstrect.x; new_rect_to_update->y = dstrect.y; // Just freeing the surface since it isn't necessary anymore SDL_FreeSurface(debug_surface); // Creates a new list of rects with room for the new rect SDL_Rect* newtemp = (SDL_Rect*) malloc(row_count*sizeof(SDL_Rect)); // Copies the data from the old list of rects to the new one memcpy(newtemp, rects_to_update, (row_count-1)*sizeof(SDL_Rect)); // Adds the new rect to the new list newtemp[row_count-1] = *new_rect_to_update; // Frees the memory used by the old list free(rects_to_update); // And finally redirects the pointer to the old list to the new list rects_to_update = newtemp; newtemp = NULL; } } // When the entire map has been iterated over, return the number of lines that were drawn, ie. the number of rects in the returned rect list return row_count; } // The SetDebugText used by all the SetDebugText overloads // Takes two strings, inserts them into the map as a pair void DebugText::SetDebugText(string var, string value) { if (debug_text_list == NULL) { debug_text_list = new map<string, string>(); } debug_text_list->erase(var); debug_text_list->insert(pair<string, string>(var, value)); } // Writes the bool to a string and calls SetDebugText(string, string) void DebugText::SetDebugText(string var, bool value) { string result; if (value) result = "True"; else result = "False"; SetDebugText(var, result); } // Does the same thing, but uses to_string() to convert the float void DebugText::SetDebugText(string var, float value) { SetDebugText(var, to_string(value)); } // Same as above, but int void DebugText::SetDebugText(string var, int value) { SetDebugText(var, to_string(value)); } // Vector2 is a struct of my own making. It contains the two float vars x and y void DebugText::SetDebugText(string var, Vector2 value) { SetDebugText(var + ".x", to_string(value.x)); SetDebugText(var + ".y", to_string(value.y)); } // Empties the list. I don't actually use this in my code. Shame on me for writing something I don't use. void DebugText::Clear() { if(debug_text_list != NULL) debug_text_list->clear(); } }

    Read the article

  • Stuck removing ffmpeg from system due to package problems

    - by Michiel
    I'd be very grateful to get a bit of support on the following situation: Using Ubuntu 12.04, and I used the PPA of Jon Severinson for ffmpeg. I had a problem playing movies with mplayer, so I decided to remove the PPA and try to use libav only after I read this article about libav vs ffmpeg. I first removed the PPA from the list, then apt-get update, etc. But I couldn't remove ffmpeg due to dependency-errors and got stuck in what seemed some kind of loop. Then I found a suggestion here. I followed the steps, and ended up force-removing libavcodec-extra-53. Because, apparently that was "what got stuff moving again". At the moment I can't. Now Ubuntu is reporting a broken package (BrokenCount 0). Errors: De afhankelijkheden van de volgende pakketten konden niet geïnstalleerd worden: audacious-plugins: Depends: audacious-plugins-data (= 3.2.1-4ubuntu1) maar 3.2.1-4ubuntu1 is geïnstalleerd Depends: libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libavformat-extra-53 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libavutil-extra-51 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libcurl3-gnutls (= 7.16.2-1) maar 7.22.0-3ubuntu4 is geïnstalleerd Depends: libgcc1 (= 1:4.1.1) maar 1:4.6.3-1ubuntu5 is geïnstalleerd Depends: libpulse0 (= 1:0.99.1) maar 1:1.1-0ubuntu15.1 is geïnstalleerd Depends: libstdc++6 (= 4.6) maar 4.6.3-1ubuntu5 is geïnstalleerd Depends: libwavpack1 (= 4.40.0) maar 4.60.1-2 is geïnstalleerd Depends: libxcomposite1 (= 1:0.3-1) maar 1:0.4.3-2build1 is geïnstalleerd Depends: zlib1g (= 1:1.1.4) maar 1:1.2.3.4.dfsg-3ubuntu4 is geïnstalleerd libavfilter-extra-2: Depends: libavcodec-extra-53 (= 6:0.10.4.0ubuntu0jon2.2) maar het is niet geïnstalleerd Depends: libavcodec-extra-53 (< 6:0.10.4.0ubuntu0jon2.2-99) maar het is niet geïnstalleerd Depends: libavformat-extra-53 (= 6:0.10.4.0ubuntu0jon2.2) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libavutil-extra-51 (= 6:0.10.4.0ubuntu0jon2.2) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libswresample-extra-0 (= 6:0.10.4.0ubuntu0jon2.2) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libswscale-extra-2 (= 6:0.10.4.0ubuntu0jon2.2) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd libavformat-extra-53: Depends: libavcodec-extra-53 (= 6:0.10.4.0ubuntu0jon2.2) maar het is niet geïnstalleerd Depends: libavcodec-extra-53 (< 6:0.10.4.0ubuntu0jon2.2-99) maar het is niet geïnstalleerd Depends: libavutil-extra-51 (= 6:0.10.4.0ubuntu0jon2.2) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd libk3b6-extracodecs: Depends: libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libavformat-extra-53 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libavutil-extra-51 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libc6 (= 2.14) maar 2.15-0ubuntu10 is geïnstalleerd Depends: libkdecore5 (= 4:4.4.4) maar 4:4.8.4a-0ubuntu0.2 is geïnstalleerd Depends: libkio5 (= 4:4.4.4) maar 4:4.8.4a-0ubuntu0.2 is geïnstalleerd Depends: libqtcore4 (= 4:4.7.0~beta1) maar 4:4.8.1-0ubuntu4.2 is geïnstalleerd Depends: libstdc++6 (= 4.1.1) maar 4.6.3-1ubuntu5 is geïnstalleerd libquicktime2: Depends: libavcodec-extra-53 (= 4:0.8~beta2-2) maar het is niet geïnstalleerd Depends: libswscale-extra-2 (= 4:0.8~beta2-2) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd libxine1-ffmpeg: Depends: libavcodec-extra-53 (= 4:0.7.3-1) maar het is niet geïnstalleerd Depends: libavutil-extra-51 (= 4:0.7.3-1) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libc6 (= 2.4) maar 2.15-0ubuntu10 is geïnstalleerd Depends: libpostproc-extra-52 (= 4:0.7.3-1) maar het is niet geïnstalleerd Depends: libxine1-bin (= 1.1.20-2build1) maar 1.1.20-2build1 is geïnstalleerd mencoder: Depends: libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libavformat-extra-53 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libavutil-extra-51 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libpostproc-extra-52 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libswscale-extra-2 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd mplayer: Depends: libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libavformat-extra-53 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libavutil-extra-51 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libpostproc-extra-52 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libswscale-extra-2 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd vlc: Depends: vlc-nox (= 2.0.3-0ubuntu0.12.04.1) maar 2.0.3-0ubuntu0.12.04.1 is geïnstalleerd Depends: libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libavutil-extra-51 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libc6 (= 2.15) maar 2.15-0ubuntu10 is geïnstalleerd Depends: libfreetype6 (= 2.2.1) maar 2.4.8-1ubuntu2 is geïnstalleerd Depends: libgcc1 (= 1:4.1.1) maar 1:4.6.3-1ubuntu5 is geïnstalleerd Depends: libqtcore4 (= 4:4.8.0) maar 4:4.8.1-0ubuntu4.2 is geïnstalleerd Depends: libqtgui4 (= 4:4.7.0~beta1) maar 4:4.8.1-0ubuntu4.2 is geïnstalleerd Depends: libstdc++6 (= 4.6) maar 4.6.3-1ubuntu5 is geïnstalleerd Depends: zlib1g (= 1:1.2.3.3.dfsg) maar 1:1.2.3.4.dfsg-3ubuntu4 is geïnstalleerd vlc-nox: Depends: libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libavformat-extra-53 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libavutil-extra-51 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libc6 (= 2.15) maar 2.15-0ubuntu10 is geïnstalleerd Depends: libfontconfig1 (= 2.8.0) maar 2.8.0-3ubuntu9.1 is geïnstalleerd Depends: libfreetype6 (= 2.2.1) maar 2.4.8-1ubuntu2 is geïnstalleerd Depends: libgcc1 (= 1:4.1.1) maar 1:4.6.3-1ubuntu5 is geïnstalleerd Depends: libgnutls26 (= 2.12.6.1-0) maar 2.12.14-5ubuntu3.1 is geïnstalleerd Depends: libmpcdec6 (= 1:0.1~r435) maar 2:0.1~r459-1ubuntu1 is geïnstalleerd Depends: libncursesw5 (= 5.6+20070908) maar 5.9-4 is geïnstalleerd Depends: libpostproc-extra-52 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libsmbclient (= 3.0.24) maar 2:3.6.3-2ubuntu2.3 is geïnstalleerd Depends: libstdc++6 (= 4.6) maar 4.6.3-1ubuntu5 is geïnstalleerd Depends: libswscale-extra-2 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libudev0 (= 147) maar 175-0ubuntu9.1 is geïnstalleerd Depends: libxml2 (= 2.7.4) maar 2.7.8.dfsg-5.1ubuntu4.1 is geïnstalleerd Depends: zlib1g (= 1:1.2.0.2) maar 1:1.2.3.4.dfsg-3ubuntu4 is geïnstalleerd xbmc-bin: Depends: libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libavfilter-extra-2 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libavformat-extra-53 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libavutil-extra-51 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd Depends: libpostproc-extra-52 (= 4:0.8-1~) maar het is niet geïnstalleerd Depends: libswscale-extra-2 (= 4:0.8-1~) maar 6:0.10.4.0ubuntu0jon2.2 is geïnstalleerd And apt-get is reporting: root@LAPTOP:~# apt-get -f install Pakketlijsten worden ingelezen... Klaar Boom van vereisten wordt opgebouwd De status informatie wordt gelezen... Klaar Vereisten worden gecorrigeerd... mislukt. De volgende pakketten hebben niet-voldane vereisten: audacious-plugins : Vereisten: libavcodec53 (= 4:0.8-1~) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd libavfilter-extra-2 : Vereisten: libavcodec-extra-53 (= 6:0.10.4.0ubuntu0jon2.2) maar het is niet geïnstalleerd Vereisten: libavcodec-extra-53 (< 6:0.10.4.0ubuntu0jon2.2-99) maar het is niet geïnstalleerd libavformat-extra-53 : Vereisten: libavcodec-extra-53 (= 6:0.10.4.0ubuntu0jon2.2) maar het is niet geïnstalleerd Vereisten: libavcodec-extra-53 (< 6:0.10.4.0ubuntu0jon2.2-99) maar het is niet geïnstalleerd libk3b6-extracodecs : Vereisten: libavcodec53 (= 4:0.8-1~) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd libquicktime2 : Vereisten: libavcodec53 (= 4:0.8~beta2-2) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.8~beta2-2) maar het is niet geïnstalleerd libxine1-ffmpeg : Vereisten: libavcodec53 (= 4:0.7.3-1) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.7.3-1) maar het is niet geïnstalleerd mencoder : Vereisten: libavcodec53 (= 4:0.8-1~) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd mplayer : Vereisten: libavcodec53 (= 4:0.8-1~) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd vlc : Vereisten: libavcodec53 (= 4:0.8-1~) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd vlc-nox : Vereisten: libavcodec53 (= 4:0.8-1~) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd xbmc-bin : Vereisten: libavcodec53 (= 4:0.8-1~) maar het is niet geïnstalleerd of libavcodec-extra-53 (= 4:0.8-1~) maar het is niet geïnstalleerd E: Fout, pkgProblemResolver::Resolve maakte scheidingen aan, dit kan veroorzaakt worden door vastgehouden pakketten. E: Kan vereisten niet corrigeren How to proceed?? Thanks in advance, Michiel

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • wireless LAN soft blocked on Ubuntu 13.10

    - by iacopo
    I've troubles with bluetooth and with lan. When I digit: rfkill list all 0: hci0: Bluetooth Soft blocked: no Hard blocked: no 1: phy0: Wireless LAN Soft blocked: yes Hard blocked: no When I digit: lspci -v 00:00.0 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Root Complex Subsystem: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Root Complex Flags: bus master, 66MHz, medium devsel, latency 0 00:01.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Trinity [Radeon HD 7600G] (prog-if 00 [VGA controller]) Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Trinity [Radeon HD 7600G] Flags: bus master, fast devsel, latency 0, IRQ 48 Memory at c0000000 (32-bit, prefetchable) [size=256M] I/O ports at f000 [size=256] Memory at feb00000 (32-bit, non-prefetchable) [size=256K] Expansion ROM at [disabled] Capabilities: Kernel driver in use: radeon 00:01.1 Audio device: Advanced Micro Devices, Inc. [AMD/ATI] Trinity HDMI Audio Controller Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Trinity HDMI Audio Controller Flags: bus master, fast devsel, latency 0, IRQ 49 Memory at feb44000 (32-bit, non-prefetchable) [size=16K] Capabilities: Kernel driver in use: snd_hda_intel 00:10.0 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB XHCI Controller (rev 03) (prog-if 30 [XHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB XHCI Controller Flags: bus master, fast devsel, latency 0, IRQ 18 Memory at feb48000 (64-bit, non-prefetchable) [size=8K] Capabilities: Kernel driver in use: xhci_hcd 00:11.0 SATA controller: Advanced Micro Devices, Inc. [AMD] FCH SATA Controller [AHCI mode] (rev 40) (prog-if 01 [AHCI 1.0]) Subsystem: Advanced Micro Devices, Inc. [AMD] Device 7800 Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 45 I/O ports at f190 [size=8] I/O ports at f180 [size=4] I/O ports at f170 [size=8] I/O ports at f160 [size=4] I/O ports at f150 [size=16] Memory at feb50000 (32-bit, non-prefetchable) [size=2K] Capabilities: Kernel driver in use: ahci 00:12.0 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller (rev 11) (prog-if 10 [OHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 18 Memory at feb4f000 (32-bit, non-prefetchable) [size=4K] Kernel driver in use: ohci-pci 00:12.2 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB EHCI Controller (rev 11) (prog-if 20 [EHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB EHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 17 Memory at feb4e000 (32-bit, non-prefetchable) [size=256] Capabilities: Kernel driver in use: ehci-pci 00:13.0 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller (rev 11) (prog-if 10 [OHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 18 Memory at feb4d000 (32-bit, non-prefetchable) [size=4K] Kernel driver in use: ohci-pci 00:13.2 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB EHCI Controller (rev 11) (prog-if 20 [EHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB EHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 17 Memory at feb4c000 (32-bit, non-prefetchable) [size=256] Capabilities: Kernel driver in use: ehci-pci 00:14.0 SMBus: Advanced Micro Devices, Inc. [AMD] FCH SMBus Controller (rev 14) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH SMBus Controller Flags: 66MHz, medium devsel Kernel driver in use: piix4_smbus 00:14.1 IDE interface: Advanced Micro Devices, Inc. [AMD] FCH IDE Controller (prog-if 8a [Master SecP PriP]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH IDE Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 17 I/O ports at 01f0 [size=8] I/O ports at 03f4 [size=1] I/O ports at 0170 [size=8] I/O ports at 0374 [size=1] I/O ports at f100 [size=16] Kernel driver in use: pata_atiixp 00:14.2 Audio device: Advanced Micro Devices, Inc. [AMD] FCH Azalia Controller (rev 01) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH Azalia Controller Flags: bus master, slow devsel, latency 32, IRQ 16 Memory at feb40000 (64-bit, non-prefetchable) [size=16K] Capabilities: Kernel driver in use: snd_hda_intel 00:14.3 ISA bridge: Advanced Micro Devices, Inc. [AMD] FCH LPC Bridge (rev 11) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH LPC Bridge Flags: bus master, 66MHz, medium devsel, latency 0 00:14.4 PCI bridge: Advanced Micro Devices, Inc. [AMD] FCH PCI Bridge (rev 40) (prog-if 01 [Subtractive decode]) Flags: bus master, 66MHz, medium devsel, latency 64 Bus: primary=00, secondary=01, subordinate=01, sec-latency=64 00:14.5 USB controller: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller (rev 11) (prog-if 10 [OHCI]) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH USB OHCI Controller Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 18 Memory at feb4b000 (32-bit, non-prefetchable) [size=4K] Kernel driver in use: ohci-pci 00:14.7 SD Host controller: Advanced Micro Devices, Inc. [AMD] FCH SD Flash Controller (prog-if 01) Subsystem: Advanced Micro Devices, Inc. [AMD] FCH SD Flash Controller Flags: bus master, 66MHz, medium devsel, latency 39, IRQ 16 Memory at feb4a000 (64-bit, non-prefetchable) [size=256] Kernel driver in use: sdhci-pci 00:15.0 PCI bridge: Advanced Micro Devices, Inc. [AMD] Hudson PCI to PCI bridge (PCIE port 0) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=0 I/O behind bridge: 0000e000-0000efff Prefetchable memory behind bridge: 00000000d0000000-00000000d00fffff Capabilities: Kernel driver in use: pcieport 00:15.1 PCI bridge: Advanced Micro Devices, Inc. [AMD] Hudson PCI to PCI bridge (PCIE port 1) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=03, subordinate=03, sec-latency=0 Memory behind bridge: fe900000-feafffff Capabilities: Kernel driver in use: pcieport 00:18.0 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 0 Flags: fast devsel 00:18.1 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 1 Flags: fast devsel 00:18.2 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 2 Flags: fast devsel 00:18.3 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 3 Flags: fast devsel Capabilities: Kernel driver in use: k10temp 00:18.4 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 4 Flags: fast devsel 00:18.5 Host bridge: Advanced Micro Devices, Inc. [AMD] Family 15h (Models 10h-1fh) Processor Function 5 Flags: fast devsel 02:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller (rev 07) Subsystem: PC Partner Limited / Sapphire Technology Device 0123 Flags: bus master, fast devsel, latency 0, IRQ 46 I/O ports at e000 [size=256] Memory at d0004000 (64-bit, prefetchable) [size=4K] Memory at d0000000 (64-bit, prefetchable) [size=16K] Capabilities: Kernel driver in use: r8169 03:00.0 Network controller: Ralink corp. RT3290 Wireless 802.11n 1T/1R PCIe Subsystem: AzureWave Device 2b87 Flags: bus master, fast devsel, latency 0, IRQ 47 Memory at fea40000 (32-bit, non-prefetchable) [size=64K] Memory at fea30000 (32-bit, non-prefetchable) [size=64K] Capabilities: Kernel driver in use: rt2800pci 03:00.1 Bluetooth: Ralink corp. RT3290 Bluetooth Subsystem: AzureWave Device 2787 Flags: bus master, fast devsel, latency 0, IRQ 11 Memory at fea20000 (32-bit, non-prefetchable) [size=64K] Memory at fea10000 (32-bit, non-prefetchable) [size=64K] Memory at fe900000 (32-bit, non-prefetchable) [size=1M] Expansion ROM at fea00000 [disabled] [size=64K] Capabilities: Thank you for all the help

    Read the article

  • Silverlight MEF – Download On Demand

    - by PeterTweed
    Take the Slalom Challenge at www.slalomchallenge.com! A common challenge with building complex applications in Silverlight is the initial download size of the xap file.  MEF enables us to build composable applications that allows us to build complex composite applications.  Wouldn’t it be great if we had a mechanism to spilt out components into different Silverlight applications in separate xap files and download the separate xap file only if needed?   MEF gives us the ability to do this.  This post will cover the basics needed to build such a composite application split between different silerlight applications and download the referenced silverlight application only when needed. Steps: 1.     Create a Silverlight 4 application 2.     Add references to the following assemblies: System.ComponentModel.Composition.dll System.ComponentModel.Composition.Initialization.dll 3.     Add a new Silverlight 4 application called ExternalSilverlightApplication to the solution that was created in step 1.  Ensure the new application is hosted in the web application for the solution and choose to not create a test page for the new application. 4.     Delete the App.xaml and MainPage.xaml files – they aren’t needed. 5.     Add references to the following assemblies in the ExternalSilverlightApplication project: System.ComponentModel.Composition.dll System.ComponentModel.Composition.Initialization.dll 6.     Ensure the two references above have their Copy Local values set to false.  As we will have these two assmblies in the original Silverlight application, we will have no need to include them in the built ExternalSilverlightApplication build. 7.     Add a new user control called LeftControl to the ExternalSilverlightApplication project. 8.     Replace the LayoutRoot Grid with the following xaml:     <Grid x:Name="LayoutRoot" Background="Beige" Margin="40" >         <Button Content="Left Content" Margin="30"></Button>     </Grid> 9.     Add the following statement to the top of the LeftControl.xaml.cs file using System.ComponentModel.Composition; 10.   Add the following attribute to the LeftControl class     [Export(typeof(LeftControl))]   This attribute tells MEF that the type LeftControl will be exported – i.e. made available for other applications to import and compose into the application. 11.   Add a new user control called RightControl to the ExternalSilverlightApplication project. 12.   Replace the LayoutRoot Grid with the following xaml:     <Grid x:Name="LayoutRoot" Background="Green" Margin="40"  >         <TextBlock Margin="40" Foreground="White" Text="Right Control" FontSize="16" VerticalAlignment="Center" HorizontalAlignment="Center" ></TextBlock>     </Grid> 13.   Add the following statement to the top of the RightControl.xaml.cs file using System.ComponentModel.Composition; 14.   Add the following attribute to the RightControl class     [Export(typeof(RightControl))] 15.   In your original Silverlight project add a reference to the ExternalSilverlightApplication project. 16.   Change the reference to the ExternalSilverlightApplication project to have it’s Copy Local value = false.  This will ensure that the referenced ExternalSilverlightApplication Silverlight application is not included in the original Silverlight application package when it it built.  The ExternalSilverlightApplication Silverlight application therefore has to be downloaded on demand by the original Silverlight application for it’s controls to be used. 1.     In your original Silverlight project add the following xaml to the LayoutRoot Grid in MainPage.xaml:         <Grid.RowDefinitions>             <RowDefinition Height="65*" />             <RowDefinition Height="235*" />         </Grid.RowDefinitions>         <Button Name="LoaderButton" Content="Download External Controls" Click="Button_Click"></Button>         <StackPanel Grid.Row="1" Orientation="Horizontal" HorizontalAlignment="Center" >             <Border Name="LeftContent" Background="Red" BorderBrush="Gray" CornerRadius="20"></Border>             <Border Name="RightContent" Background="Red" BorderBrush="Gray" CornerRadius="20"></Border>         </StackPanel>       The borders will hold the controls that will be downlaoded, imported and composed via MEF when the button is clicked. 2.     Add the following statement to the top of the MainPage.xaml.cs file using System.ComponentModel.Composition; 3.     Add the following properties to the MainPage class:         [Import(typeof(LeftControl))]         public LeftControl LeftUserControl { get; set; }         [Import(typeof(RightControl))]         public RightControl RightUserControl { get; set; }   This defines properties accepting LeftControl and RightControl types.  The attrributes are used to tell MEF the discovered type that should be applied to the property when composition occurs. 17.   Add the following event handler for the button click to the MainPage.xaml.cs file:         private void Button_Click(object sender, RoutedEventArgs e)         {                   DeploymentCatalog deploymentCatalog =     new DeploymentCatalog("ExternalSilverlightApplication.xap");                   CompositionHost.Initialize(deploymentCatalog);                   deploymentCatalog.DownloadCompleted += (s, i) =>                 {                     if (i.Error == null)                     {                         CompositionInitializer.SatisfyImports(this);                           LeftContent.Child = LeftUserControl;                         RightContent.Child = RightUserControl;                         LoaderButton.IsEnabled = false;                     }                 };                   deploymentCatalog.DownloadAsync();         } This is where the magic happens!  The deploymentCatalog object is pointed to the ExternalSilverlightApplication.xap file.  It is then associated with the CompositionHost initialization.  As the download will be asynchronous, an eventhandler is created for the DownloadCompleted event.  The deploymentCatalog object is then told to start the asynchronous download. The event handler that executes when the download is completed uses the CompositionInitializer.SatisfyImports() function to tell MEF to satisfy the Imports for the current class.  It is at this point that the LeftUserControl and RightUserControl properties are initialized with composed objects from the downloaded ExternalSilverlightApplication.xap package. 18.   Run the application click the Download External Controls button and see the controls defined in the ExternalSilverlightApplication application loaded into the original Silverlight application. Congratulations!  You have implemented download on demand capabilities for composite applications using the MEF DeploymentCatalog class.  You are now able to segment your applications into separate xap file for deployment.

    Read the article

  • How to use Azure storage for uploading and displaying pictures.

    - by Magnus Karlsson
    Basic set up of Azure storage for local development and production. This is a somewhat completion of the following guide from http://www.windowsazure.com/en-us/develop/net/how-to-guides/blob-storage/ that also involves a practical example that I believe is commonly used, i.e. upload and present an image from a user.   First we set up for local storage and then we configure for them to work on a web role. Steps: 1. Configure connection string locally. 2. Configure model, controllers and razor views.   1. Setup connectionsstring 1.1 Right click your web role and choose “Properties”. 1.2 Click Settings. 1.3 Add setting. 1.4 Name your setting. This will be the name of the connectionstring. 1.5 Click the ellipsis to the right. (the ellipsis appear when you mark the area. 1.6 The following window appears- Select “Windows Azure storage emulator” and click ok.   Now we have a connection string to use. To be able to use it we need to make sure we have windows azure tools for storage. 2.1 Click Tools –> Library Package manager –> Manage Nuget packages for solution. 2.2 This is what it looks like after it has been added.   Now on to what the code should look like. 3.1 First we need a view which collects images to upload. Here Index.cshtml. 1: @model List<string> 2:  3: @{ 4: ViewBag.Title = "Index"; 5: } 6:  7: <h2>Index</h2> 8: <form action="@Url.Action("Upload")" method="post" enctype="multipart/form-data"> 9:  10: <label for="file">Filename:</label> 11: <input type="file" name="file" id="file1" /> 12: <br /> 13: <label for="file">Filename:</label> 14: <input type="file" name="file" id="file2" /> 15: <br /> 16: <label for="file">Filename:</label> 17: <input type="file" name="file" id="file3" /> 18: <br /> 19: <label for="file">Filename:</label> 20: <input type="file" name="file" id="file4" /> 21: <br /> 22: <input type="submit" value="Submit" /> 23: 24: </form> 25:  26: @foreach (var item in Model) { 27:  28: <img src="@item" alt="Alternate text"/> 29: } 3.2 We need a controller to receive the post. Notice the “containername” string I send to the blobhandler. I use this as a folder for the pictures for each user. If this is not a requirement you could just call it container or anything with small characters directly when creating the container. 1: public ActionResult Upload(IEnumerable<HttpPostedFileBase> file) 2: { 3: BlobHandler bh = new BlobHandler("containername"); 4: bh.Upload(file); 5: var blobUris=bh.GetBlobs(); 6: 7: return RedirectToAction("Index",blobUris); 8: } 3.3 The handler model. I’ll let the comments speak for themselves. 1: public class BlobHandler 2: { 3: // Retrieve storage account from connection string. 4: CloudStorageAccount storageAccount = CloudStorageAccount.Parse( 5: CloudConfigurationManager.GetSetting("StorageConnectionString")); 6: 7: private string imageDirecoryUrl; 8: 9: /// <summary> 10: /// Receives the users Id for where the pictures are and creates 11: /// a blob storage with that name if it does not exist. 12: /// </summary> 13: /// <param name="imageDirecoryUrl"></param> 14: public BlobHandler(string imageDirecoryUrl) 15: { 16: this.imageDirecoryUrl = imageDirecoryUrl; 17: // Create the blob client. 18: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 19: 20: // Retrieve a reference to a container. 21: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 22: 23: // Create the container if it doesn't already exist. 24: container.CreateIfNotExists(); 25: 26: //Make available to everyone 27: container.SetPermissions( 28: new BlobContainerPermissions 29: { 30: PublicAccess = BlobContainerPublicAccessType.Blob 31: }); 32: } 33: 34: public void Upload(IEnumerable<HttpPostedFileBase> file) 35: { 36: // Create the blob client. 37: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 38: 39: // Retrieve a reference to a container. 40: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 41: 42: if (file != null) 43: { 44: foreach (var f in file) 45: { 46: if (f != null) 47: { 48: CloudBlockBlob blockBlob = container.GetBlockBlobReference(f.FileName); 49: blockBlob.UploadFromStream(f.InputStream); 50: } 51: } 52: } 53: } 54: 55: public List<string> GetBlobs() 56: { 57: // Create the blob client. 58: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 59: 60: // Retrieve reference to a previously created container. 61: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 62: 63: List<string> blobs = new List<string>(); 64: 65: // Loop over blobs within the container and output the URI to each of them 66: foreach (var blobItem in container.ListBlobs()) 67: blobs.Add(blobItem.Uri.ToString()); 68: 69: return blobs; 70: } 71: } 3.4 So, when the files have been uploaded we will get them to present them to out user in the index page. Pretty straight forward. In this example we only present the image by sending the Uri’s to the view. A better way would be to save them up in a view model containing URI, metadata, alternate text, and other relevant information but for this example this is all we need.   4. Now press F5 in your solution to try it out. You can see the storage emulator UI here:     4.1 If you get any exceptions or errors I suggest to first check if the service Is running correctly. I had problem with this and they seemed related to the installation and a reboot fixed my problems.     5. Set up for Cloud storage. To do this we need to add configuration for cloud just as we did for local in step one. 5.1 We need our keys to do this. Go to the windows Azure menagement portal, select storage icon to the right and click “Manage keys”. (Image from a different blog post though).   5.2 Do as in step 1.but replace step 1.6 with: 1.6 Choose “Manually entered credentials”. Enter your account name. 1.7 Paste your Account Key from step 5.1. and click ok.   5.3. Save, publish and run! Please feel free to ask any questions using the comments form at the bottom of this page. I will get back to you to help you solve any questions. Our consultancy agency also provides services in the Nordic regions if you would like any further support.

    Read the article

  • Unable to enable wireless on a Vostro 2520

    - by Joe
    I have a Vostro 2520 and not sure how to enable wireless on my machine. The details are given below, would appreciate any pointers to resolving this issue. lsmod returns Module Size Used by ath9k 132390 0 ath9k_common 14053 1 ath9k ath9k_hw 411151 2 ath9k,ath9k_common ath 24067 3 ath9k,ath9k_common,ath9k_hw b43 365785 0 mac80211 506816 2 ath9k,b43 cfg80211 205544 4 ath9k,ath,b43,mac80211 bcma 26696 1 b43 ssb 52752 1 b43 ndiswrapper 282628 0 ums_realtek 18248 0 usb_storage 49198 1 ums_realtek uas 18180 0 snd_hda_codec_hdmi 32474 1 snd_hda_codec_cirrus 24002 1 joydev 17693 0 parport_pc 32866 0 ppdev 17113 0 rfcomm 47604 0 bnep 18281 2 bluetooth 180104 10 rfcomm,bnep psmouse 97362 0 dell_wmi 12681 0 sparse_keymap 13890 1 dell_wmi snd_hda_intel 33773 3 snd_hda_codec 127706 3 snd_hda_codec_hdmi,snd_hda_codec_cirrus,snd_hda_intel snd_hwdep 13668 1 snd_hda_codec snd_pcm 97188 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec snd_seq_midi 13324 0 snd_rawmidi 30748 1 snd_seq_midi snd_seq_midi_event 14899 1 snd_seq_midi snd_seq 61896 2 snd_seq_midi,snd_seq_midi_event snd_timer 29990 2 snd_pcm,snd_seq snd_seq_device 14540 3 snd_seq_midi,snd_rawmidi,snd_seq wmi 19256 1 dell_wmi snd 78855 16 snd_hda_codec_hdmi,snd_hda_codec_cirrus,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device mac_hid 13253 0 i915 473240 3 drm_kms_helper 46978 1 i915 uvcvideo 72627 0 drm 242038 4 i915,drm_kms_helper videodev 98259 1 uvcvideo soundcore 15091 1 snd dell_laptop 18119 0 dcdbas 14490 1 dell_laptop i2c_algo_bit 13423 1 i915 v4l2_compat_ioctl32 17128 1 videodev snd_page_alloc 18529 2 snd_hda_intel,snd_pcm video 19596 1 i915 serio_raw 13211 0 mei 41616 0 lp 17799 0 parport 46562 3 parport_pc,ppdev,lp r8169 62099 0 sudo lshw -class network *-network UNCLAIMED description: Network controller product: Broadcom Corporation vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:07:00.0 version: 01 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: latency=0 resources: memory:f7c00000-f7c07fff *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:09:00.0 logical name: eth0 version: 07 serial: 78:45:c4:a3:aa:65 size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl8168e-3_0.0.4 03/27/12 ip=192.168.1.5 latency=0 link=yes multicast=yes port=MII speed=100Mbit/s resources: irq:41 ioport:e000(size=256) memory:f0004000-f0004fff memory:f0000000-f0003fff rfkill list all 0: dell-wifi: Wireless LAN Soft blocked: yes Hard blocked: yes 1: dell-bluetooth: Bluetooth Soft blocked: yes Hard blocked: yes Output of lspci > 00:00.0 Host bridge: Intel Corporation Ivy Bridge DRAM Controller (rev > 09) 00:02.0 VGA compatible controller: Intel Corporation Ivy Bridge > Graphics Controller (rev 09) 00:16.0 Communication controller: Intel > Corporation Panther Point MEI Controller #1 (rev 04) 00:1a.0 USB > controller: Intel Corporation Panther Point USB Enhanced Host > Controller #2 (rev 04) 00:1b.0 Audio device: Intel Corporation Panther > Point High Definition Audio Controller (rev 04) 00:1c.0 PCI bridge: > Intel Corporation Panther Point PCI Express Root Port 1 (rev c4) > 00:1c.3 PCI bridge: Intel Corporation Panther Point PCI Express Root > Port 4 (rev c4) 00:1c.5 PCI bridge: Intel Corporation Panther Point > PCI Express Root Port 6 (rev c4) 00:1d.0 USB controller: Intel > Corporation Panther Point USB Enhanced Host Controller #1 (rev 04) > 00:1f.0 ISA bridge: Intel Corporation Panther Point LPC Controller > (rev 04) 00:1f.2 SATA controller: Intel Corporation Panther Point 6 > port SATA Controller [AHCI mode] (rev 04) 00:1f.3 SMBus: Intel > Corporation Panther Point SMBus Controller (rev 04) 07:00.0 Network > controller: Broadcom Corporation Device 4365 (rev 01) 09:00.0 Ethernet > controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express > Gigabit Ethernet controller (rev 07) Output of lspci -v 0:00.0 Host bridge: Intel Corporation Ivy Bridge DRAM Controller (rev 09) Subsystem: Dell Device 0558 Flags: bus master, fast devsel, latency 0 Capabilities: <access denied> Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Ivy Bridge Graphics Controller (rev 09) (prog-if 00 [VGA controller]) Subsystem: Dell Device 0558 Flags: bus master, fast devsel, latency 0, IRQ 43 Memory at f7800000 (64-bit, non-prefetchable) [size=4M] Memory at e0000000 (64-bit, prefetchable) [size=256M] I/O ports at f000 [size=64] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: i915 00:16.0 Communication controller: Intel Corporation Panther Point MEI Controller #1 (rev 04) Subsystem: Dell Device 0558 Flags: bus master, fast devsel, latency 0, IRQ 42 Memory at f7d0a000 (64-bit, non-prefetchable) [size=16] Capabilities: <access denied> Kernel driver in use: mei Kernel modules: mei 00:1a.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #2 (rev 04) (prog-if 20 [EHCI]) Subsystem: Dell Device 0558 Flags: bus master, medium devsel, latency 0, IRQ 16 Memory at f7d08000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1b.0 Audio device: Intel Corporation Panther Point High Definition Audio Controller (rev 04) Subsystem: Dell Device 0558 Flags: bus master, fast devsel, latency 0, IRQ 44 Memory at f7d00000 (64-bit, non-prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 1 (rev c4) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=04, subordinate=04, sec-latency=0 Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.3 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 4 (rev c4) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=07, subordinate=07, sec-latency=0 Memory behind bridge: f7c00000-f7cfffff Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.5 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 6 (rev c4) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=09, subordinate=09, sec-latency=0 I/O behind bridge: 0000e000-0000efff Prefetchable memory behind bridge: 00000000f0000000-00000000f00fffff Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #1 (rev 04) (prog-if 20 [EHCI]) Subsystem: Dell Device 0558 Flags: bus master, medium devsel, latency 0, IRQ 23 Memory at f7d07000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1f.0 ISA bridge: Intel Corporation Panther Point LPC Controller (rev 04) Subsystem: Dell Device 0558 Flags: bus master, medium devsel, latency 0 Capabilities: <access denied> Kernel modules: iTCO_wdt 00:1f.2 SATA controller: Intel Corporation Panther Point 6 port SATA Controller [AHCI mode] (rev 04) (prog-if 01 [AHCI 1.0]) Subsystem: Dell Device 0558 Flags: bus master, 66MHz, medium devsel, latency 0, IRQ 40 I/O ports at f0b0 [size=8] I/O ports at f0a0 [size=4] I/O ports at f090 [size=8] I/O ports at f080 [size=4] I/O ports at f060 [size=32] Memory at f7d06000 (32-bit, non-prefetchable) [size=2K] Capabilities: <access denied> Kernel driver in use: ahci 00:1f.3 SMBus: Intel Corporation Panther Point SMBus Controller (rev 04) Subsystem: Dell Device 0558 Flags: medium devsel, IRQ 11 Memory at f7d05000 (64-bit, non-prefetchable) [size=256] I/O ports at f040 [size=32] Kernel modules: i2c-i801 07:00.0 Network controller: Broadcom Corporation Device 4365 (rev 01) Subsystem: Dell Device 0016 Flags: bus master, fast devsel, latency 0, IRQ 10 Memory at f7c00000 (64-bit, non-prefetchable) [size=32K] Capabilities: <access denied> 09:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 07) Subsystem: Dell Device 0558 Flags: bus master, fast devsel, latency 0, IRQ 41 I/O ports at e000 [size=256] Memory at f0004000 (64-bit, prefetchable) [size=4K] Memory at f0000000 (64-bit, prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: r8169 Kernel modules: r8169

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Disk Drive not working

    - by user287681
    The CD/DVD drive on my sisters' (I'm helping her shift from Win. XP (now officially deprecated by Microsoft) to Ubuntu) system. Now, it may end up being a failed attempt, all together (Almost the whole last year (when she's been on XP) the disk drive hasn't (not even powering on) been working.), I just want to make sure I've explored every remote possibility. Because I figure, "Huh, now that I've got Ubuntu running, instead of XP, that (just) might make a difference.". I have tried using the sudo lshw command in the terminal, to (seemingly) no avil, but, who knows, you might be able to make something out of it. Here's the output: kyra@kyra-Satellite-P105:~$ sudo lshw [sudo] password for kyra: kyra-satellite-p105 description: Notebook product: Satellite P105 () vendor: TOSHIBA version: PSPA0U-0TN01M serial: 96084354W width: 64 bits capabilities: smbios-2.4 dmi-2.4 vsyscall32 configuration: administrator_password=disabled boot=oem-specific chassis=notebook frontpanel_password=unknown keyboard_password=unknown power-on_password=disabled uuid=00900559-F88E-D811-82E0-00163680E992 *-core description: Motherboard product: Satellite P105 vendor: TOSHIBA physical id: 0 version: Not Applicable serial: 1234567890 *-firmware description: BIOS vendor: TOSHIBA physical id: 0 version: V4.70 date: 01/19/20092 size: 92KiB capabilities: isa pci pcmcia pnp upgrade shadowing escd cdboot acpi usb biosbootspecification *-cpu description: CPU product: Intel(R) Core(TM)2 CPU T5500 @ 1.66GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: Intel(R) Core(TM)2 CPU T5 slot: U2E1 size: 1667MHz capacity: 1667MHz width: 64 bits clock: 166MHz capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx x86-64 constant_tsc arch_perfmon pebs bts rep_good nopl aperfmperf pni dtes64 monitor ds_cpl est tm2 ssse3 cx16 xtpr pdcm lahf_lm dtherm cpufreq *-cache:0 description: L1 cache physical id: 5 slot: L1 Cache size: 16KiB capacity: 16KiB capabilities: asynchronous internal write-back *-cache:1 description: L2 cache physical id: 6 slot: L2 Cache size: 2MiB capabilities: burst external write-back *-memory description: System Memory physical id: c slot: System board or motherboard size: 2GiB capacity: 3GiB *-bank:0 description: SODIMM DDR2 Synchronous physical id: 0 slot: M1 size: 1GiB width: 64 bits *-bank:1 description: SODIMM DDR2 Synchronous physical id: 1 slot: M2 size: 1GiB width: 64 bits *-pci description: Host bridge product: Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 03 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-display:0 description: VGA compatible controller product: Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 03 width: 32 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:16 memory:d0200000-d027ffff ioport:1800(size=8) memory:c0000000-cfffffff memory:d0300000-d033ffff *-display:1 UNCLAIMED description: Display controller product: Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller vendor: Intel Corporation physical id: 2.1 bus info: pci@0000:00:02.1 version: 03 width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: latency=0 resources: memory:d0280000-d02fffff *-multimedia description: Audio device product: NM10/ICH7 Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 02 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:44 memory:d0340000-d0343fff *-pci:0 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:3000(size=4096) memory:84000000-841fffff ioport:84200000(size=2097152) *-pci:1 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:4000(size=4096) memory:84400000-846fffff ioport:84700000(size=2097152) *-network description: Wireless interface product: PRO/Wireless 3945ABG [Golan] Network Connection vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 02 serial: 00:13:02:d6:d2:35 width: 32 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwl3945 driverversion=3.13.0-29-generic firmware=15.32.2.9 ip=10.110.20.157 latency=0 link=yes multicast=yes wireless=IEEE 802.11abg resources: irq:43 memory:84400000-84400fff *-pci:2 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 3 vendor: Intel Corporation physical id: 1c.2 bus info: pci@0000:00:1c.2 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:5000(size=4096) memory:84900000-84afffff ioport:84b00000(size=2097152) *-usb:0 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:23 ioport:1820(size=32) *-usb:1 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #2 vendor: Intel Corporation physical id: 1d.1 bus info: pci@0000:00:1d.1 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:19 ioport:1840(size=32) *-usb:2 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #3 vendor: Intel Corporation physical id: 1d.2 bus info: pci@0000:00:1d.2 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:18 ioport:1860(size=32) *-usb:3 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #4 vendor: Intel Corporation physical id: 1d.3 bus info: pci@0000:00:1d.3 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:16 ioport:1880(size=32) *-usb:4 description: USB controller product: NM10/ICH7 Family USB2 EHCI Controller vendor: Intel Corporation physical id: 1d.7 bus info: pci@0000:00:1d.7 version: 02 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:23 memory:d0544000-d05443ff *-pci:3 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: e2 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list resources: ioport:2000(size=4096) memory:d0000000-d00fffff ioport:80000000(size=67108864) *-pcmcia description: CardBus bridge product: PCIxx12 Cardbus Controller vendor: Texas Instruments physical id: 4 bus info: pci@0000:0a:04.0 version: 00 width: 32 bits clock: 33MHz capabilities: pcmcia bus_master cap_list configuration: driver=yenta_cardbus latency=176 maxlatency=5 mingnt=192 resources: irq:17 memory:d0004000-d0004fff ioport:2400(size=256) ioport:2800(size=256) memory:80000000-83ffffff memory:88000000-8bffffff *-firewire description: FireWire (IEEE 1394) product: PCIxx12 OHCI Compliant IEEE 1394 Host Controller vendor: Texas Instruments physical id: 4.1 bus info: pci@0000:0a:04.1 version: 00 width: 32 bits clock: 33MHz capabilities: pm ohci bus_master cap_list configuration: driver=firewire_ohci latency=64 maxlatency=4 mingnt=3 resources: irq:17 memory:d0007000-d00077ff memory:d0000000-d0003fff *-storage description: Mass storage controller product: 5-in-1 Multimedia Card Reader (SD/MMC/MS/MS PRO/xD) vendor: Texas Instruments physical id: 4.2 bus info: pci@0000:0a:04.2 version: 00 width: 32 bits clock: 33MHz capabilities: storage pm bus_master cap_list configuration: driver=tifm_7xx1 latency=64 maxlatency=4 mingnt=7 resources: irq:17 memory:d0005000-d0005fff *-generic description: SD Host controller product: PCIxx12 SDA Standard Compliant SD Host Controller vendor: Texas Instruments physical id: 4.3 bus info: pci@0000:0a:04.3 version: 00 width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: driver=sdhci-pci latency=64 maxlatency=4 mingnt=7 resources: irq:17 memory:d0007800-d00078ff *-network description: Ethernet interface product: PRO/100 VE Network Connection vendor: Intel Corporation physical id: 8 bus info: pci@0000:0a:08.0 logical name: eth0 version: 02 serial: 00:16:36:80:e9:92 size: 10Mbit/s capacity: 100Mbit/s width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e100 driverversion=3.5.24-k2-NAPI duplex=half latency=64 link=no maxlatency=56 mingnt=8 multicast=yes port=MII speed=10Mbit/s resources: irq:20 memory:d0006000-d0006fff ioport:2000(size=64) *-isa description: ISA bridge product: 82801GBM (ICH7-M) LPC Interface Bridge vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 02 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: driver=lpc_ich latency=0 resources: irq:0 *-ide description: IDE interface product: 82801GBM/GHM (ICH7-M Family) SATA Controller [IDE mode] vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 02 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:18b0(size=16) *-serial UNCLAIMED description: SMBus product: NM10/ICH7 Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 02 width: 32 bits clock: 33MHz configuration: latency=0 resources: ioport:18c0(size=32) *-scsi physical id: 1 logical name: scsi0 capabilities: emulated *-disk description: ATA Disk product: ST9250421AS vendor: Seagate physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: SD13 serial: 5TH0B2HB size: 232GiB (250GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sectorsize=512 signature=000d7fd5 *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: 13bb4bdd-8cc9-40e2-a490-dbe436c2a02d size: 230GiB capacity: 230GiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2014-06-01 17:37:01 filesystem=ext4 lastmountpoint=/ modified=2014-06-01 21:15:21 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,data=ordered mounted=2014-06-01 21:15:21 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 2037MiB capacity: 2037MiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 2037MiB capabilities: nofs *-remoteaccess UNCLAIMED vendor: Intel physical id: 1 capabilities: inbound kyra@kyra-Satellite-P105:~$

    Read the article

  • Tracing Silex from PHP to the OS with DTrace

    - by cj
    In this blog post I show the full stack tracing of Brendan Gregg's php_syscolors.d script in the DTrace Toolkit. The Toolkit contains a dozen very useful PHP DTrace scripts and many more scripts for other languages and the OS. For this example, I'll trace the PHP micro framework Silex, which was the topic of the second of two talks by Dustin Whittle at a recent SF PHP Meetup. His slides are at Silex: From Micro to Full Stack. Installing DTrace and PHP The php_syscolors.d script uses some static PHP probes and some kernel probes. For Oracle Linux I discussed installing DTrace and PHP in DTrace PHP Using Oracle Linux 'playground' Pre-Built Packages. On other platforms with DTrace support, follow your standard procedures to enable DTrace and load the correct providers. The sdt and systrace providers are required in addition to fasttrap. On Oracle Linux, I loaded the DTrace modules like: # modprobe fasttrap # modprobe sdt # modprobe systrace # chmod 666 /dev/dtrace/helper Installing the DTrace Toolkit I download DTraceToolkit-0.99.tar.gz and extracted it: $ tar -zxf DTraceToolkit-0.99.tar.gz The PHP scripts are in the Php directory and examples in the Examples directory. Installing Silex I downloaded the "fat" Silex .tgz file from the download page and extracted it: $ tar -zxf silex_fat.tgz I changed the demonstration silex/web/index.php so I could use the PHP development web server: <?php // web/index.php $filename = __DIR__.preg_replace('#(\?.*)$#', '', $_SERVER['REQUEST_URI']); if (php_sapi_name() === 'cli-server' && is_file($filename)) { return false; } require_once __DIR__.'/../vendor/autoload.php'; $app = new Silex\Application(); //$app['debug'] = true; $app->get('/hello', function() { return 'Hello!'; }); $app->run(); ?> Running DTrace The php_syscolors.d script uses the -Z option to dtrace, so it can be started before PHP, i.e. when there are zero of the requested probes available to be traced. I ran DTrace like: # cd DTraceToolkit-0.99/Php # ./php_syscolors.d Next, I started the PHP developer web server in a second terminal: $ cd silex $ php -S localhost:8080 -t web web/index.php At this point, the web server is idle, waiting for requests. DTrace is idle, waiting for the probes in php_syscolors.d to be fired, at which time the action associated with each probe will run. I then loaded the demonstration page in a browser: http://localhost:8080/hello When the request was fulfilled and the simple output of "Hello" was displayed, I ^C'd php and dtrace in their terminals to stop them. DTrace output over a thousand lines long had been generated. Here is one snippet from when run() was invoked: C PID/TID DELTA(us) FILE:LINE TYPE -- NAME ... 1 4765/4765 21 Application.php:487 func -> run 1 4765/4765 29 ClassLoader.php:182 func -> loadClass 1 4765/4765 17 ClassLoader.php:198 func -> findFile 1 4765/4765 31 ":- syscall -> access 1 4765/4765 26 ":- syscall <- access 1 4765/4765 16 ClassLoader.php:198 func <- findFile 1 4765/4765 25 ":- syscall -> newlstat 1 4765/4765 15 ":- syscall <- newlstat 1 4765/4765 13 ":- syscall -> newlstat 1 4765/4765 13 ":- syscall <- newlstat 1 4765/4765 22 ":- syscall -> newlstat 1 4765/4765 14 ":- syscall <- newlstat 1 4765/4765 15 ":- syscall -> newlstat 1 4765/4765 60 ":- syscall <- newlstat 1 4765/4765 13 ":- syscall -> newlstat 1 4765/4765 13 ":- syscall <- newlstat 1 4765/4765 20 ":- syscall -> open 1 4765/4765 16 ":- syscall <- open 1 4765/4765 26 ":- syscall -> newfstat 1 4765/4765 12 ":- syscall <- newfstat 1 4765/4765 17 ":- syscall -> newfstat 1 4765/4765 12 ":- syscall <- newfstat 1 4765/4765 12 ":- syscall -> newfstat 1 4765/4765 12 ":- syscall <- newfstat 1 4765/4765 20 ":- syscall -> mmap 1 4765/4765 14 ":- syscall <- mmap 1 4765/4765 3201 ":- syscall -> mmap 1 4765/4765 27 ":- syscall <- mmap 1 4765/4765 1233 ":- syscall -> munmap 1 4765/4765 53 ":- syscall <- munmap 1 4765/4765 15 ":- syscall -> close 1 4765/4765 13 ":- syscall <- close 1 4765/4765 34 Request.php:32 func -> main 1 4765/4765 22 Request.php:32 func <- main 1 4765/4765 31 ClassLoader.php:182 func <- loadClass 1 4765/4765 33 Request.php:249 func -> createFromGlobals 1 4765/4765 29 Request.php:198 func -> __construct 1 4765/4765 24 Request.php:218 func -> initialize 1 4765/4765 26 ClassLoader.php:182 func -> loadClass 1 4765/4765 89 ClassLoader.php:198 func -> findFile 1 4765/4765 43 ":- syscall -> access ... The output shows PHP functions being called and returning (and where they are located) and which system calls the PHP functions in turn invoked. The time each line took from the previous one is displayed in the third column. The first column is the CPU number. In this example, the process was always on CPU 1 so the output is naturally ordered without requiring post-processing, or the D script requiring to be modified to display a time stamp. On a terminal, the output of php_syscolors.d is color-coded according to whether each function is a PHP or system one, hence the file name. Summary With one tool, I was able to trace the interaction of a user application with the operating system. I was able to do this to an application running "live" in a web context. The DTrace Toolkit provides a very handy repository of DTrace information. Even though the PHP scripts were created in the time frame of the original PHP DTrace PECL extension, which only had PHP function entry and return probes, the scripts provide core examples for custom investigation and resolution scripts. You can easily adapt the ideas and and create scripts using the other PHP static probes, which are listed in the PHP Manual. Because DTrace is "always on", you can take advantage of it to resolve development questions or fix production situations.

    Read the article

  • MVC Portable Area Modules *Without* MasterPages

    - by Steve Michelotti
    Portable Areas from MvcContrib provide a great way to build modular and composite applications on top of MVC. In short, portable areas provide a way to distribute MVC binary components as simple .NET assemblies where the aspx/ascx files are actually compiled into the assembly as embedded resources. I’ve blogged about Portable Areas in the past including this post here which talks about embedding resources and you can read more of an intro to Portable Areas here. As great as Portable Areas are, the question that seems to come up the most is: what about MasterPages? MasterPages seems to be the one thing that doesn’t work elegantly with portable areas because you specify the MasterPage in the @Page directive and it won’t use the same mechanism of the view engine so you can’t just embed them as resources. This means that you end up referencing a MasterPage that exists in the host application but not in your portable area. If you name the ContentPlaceHolderId’s correctly, it will work – but it all seems a little fragile. Ultimately, what I want is to be able to build a portable area as a module which has no knowledge of the host application. I want to be able to invoke the module by a full route on the user’s browser and it gets invoked and “automatically appears” inside the application’s visual chrome just like a MasterPage. So how could we accomplish this with portable areas? With this question in mind, I looked around at what other people are doing to address similar problems. Specifically, I immediately looked at how the Orchard team is handling this and I found it very compelling. Basically Orchard has its own custom layout/theme framework (utilizing a custom view engine) that allows you to build your module without any regard to the host. You simply decorate your controller with the [Themed] attribute and it will render with the outer chrome around it: 1: [Themed] 2: public class HomeController : Controller Here is the slide from the Orchard talk at this year MIX conference which shows how it conceptually works:   It’s pretty cool stuff.  So I figure, it must not be too difficult to incorporate this into the portable areas view engine as an optional piece of functionality. In fact, I’ll even simplify it a little – rather than have 1) Document.aspx, 2) Layout.ascx, and 3) <view>.ascx (as shown in the picture above); I’ll just have the outer page be “Chrome.aspx” and then the specific view in question. The Chrome.aspx not only takes the place of the MasterPage, but now since we’re no longer constrained by the MasterPage infrastructure, we have the choice of the Chrome.aspx living in the host or inside the portable areas as another embedded resource! Disclaimer: credit where credit is due – much of the code from this post is me re-purposing the Orchard code to suit my needs. To avoid confusion with Orchard, I’m going to refer to my implementation (which will be based on theirs) as a Chrome rather than a Theme. The first step I’ll take is to create a ChromedAttribute which adds a flag to the current HttpContext to indicate that the controller designated Chromed like this: 1: [Chromed] 2: public class HomeController : Controller The attribute itself is an MVC ActionFilter attribute: 1: public class ChromedAttribute : ActionFilterAttribute 2: { 3: public override void OnActionExecuting(ActionExecutingContext filterContext) 4: { 5: var chromedAttribute = GetChromedAttribute(filterContext.ActionDescriptor); 6: if (chromedAttribute != null) 7: { 8: filterContext.HttpContext.Items[typeof(ChromedAttribute)] = null; 9: } 10: } 11:   12: public static bool IsApplied(RequestContext context) 13: { 14: return context.HttpContext.Items.Contains(typeof(ChromedAttribute)); 15: } 16:   17: private static ChromedAttribute GetChromedAttribute(ActionDescriptor descriptor) 18: { 19: return descriptor.GetCustomAttributes(typeof(ChromedAttribute), true) 20: .Concat(descriptor.ControllerDescriptor.GetCustomAttributes(typeof(ChromedAttribute), true)) 21: .OfType<ChromedAttribute>() 22: .FirstOrDefault(); 23: } 24: } With that in place, we only have to override the FindView() method of the custom view engine with these 6 lines of code: 1: public override ViewEngineResult FindView(ControllerContext controllerContext, string viewName, string masterName, bool useCache) 2: { 3: if (ChromedAttribute.IsApplied(controllerContext.RequestContext)) 4: { 5: var bodyView = ViewEngines.Engines.FindPartialView(controllerContext, viewName); 6: var documentView = ViewEngines.Engines.FindPartialView(controllerContext, "Chrome"); 7: var chromeView = new ChromeView(bodyView, documentView); 8: return new ViewEngineResult(chromeView, this); 9: } 10:   11: // Just execute normally without applying Chromed View Engine 12: return base.FindView(controllerContext, viewName, masterName, useCache); 13: } If the view engine finds the [Chromed] attribute, it will invoke it’s own process – otherwise, it’ll just defer to the normal web forms view engine (with masterpages). The ChromeView’s primary job is to independently set the BodyContent on the view context so that it can be rendered at the appropriate place: 1: public class ChromeView : IView 2: { 3: private ViewEngineResult bodyView; 4: private ViewEngineResult documentView; 5:   6: public ChromeView(ViewEngineResult bodyView, ViewEngineResult documentView) 7: { 8: this.bodyView = bodyView; 9: this.documentView = documentView; 10: } 11:   12: public void Render(ViewContext viewContext, System.IO.TextWriter writer) 13: { 14: ChromeViewContext chromeViewContext = ChromeViewContext.From(viewContext); 15:   16: // First render the Body view to the BodyContent 17: using (var bodyViewWriter = new StringWriter()) 18: { 19: var bodyViewContext = new ViewContext(viewContext, bodyView.View, viewContext.ViewData, viewContext.TempData, bodyViewWriter); 20: this.bodyView.View.Render(bodyViewContext, bodyViewWriter); 21: chromeViewContext.BodyContent = bodyViewWriter.ToString(); 22: } 23: // Now render the Document view 24: this.documentView.View.Render(viewContext, writer); 25: } 26: } The ChromeViewContext (code excluded here) mainly just has a string property for the “BodyContent” – but it also makes sure to put itself in the HttpContext so it’s available. Finally, we created a little extension method so the module’s view can be rendered in the appropriate place: 1: public static void RenderBody(this HtmlHelper htmlHelper) 2: { 3: ChromeViewContext chromeViewContext = ChromeViewContext.From(htmlHelper.ViewContext); 4: htmlHelper.ViewContext.Writer.Write(chromeViewContext.BodyContent); 5: } At this point, the other thing left is to decide how we want to implement the Chrome.aspx page. One approach is the copy/paste the HTML from the typical Site.Master and change the main content placeholder to use the HTML helper above – this way, there are no MasterPages anywhere. Alternatively, we could even have Chrome.aspx utilize the MasterPage if we wanted (e.g., in the case where some pages are Chromed and some pages want to use traditional MasterPage): 1: <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> 2: <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> 3: <% Html.RenderBody(); %> 4: </asp:Content> At this point, it’s all academic. I can create a controller like this: 1: [Chromed] 2: public class WidgetController : Controller 3: { 4: public ActionResult Index() 5: { 6: return View(); 7: } 8: } Then I’ll just create Index.ascx (a partial view) and put in the text “Inside my widget”. Now when I run the app, I can request the full route (notice the controller name of “widget” in the address bar below) and the HTML from my Index.ascx will just appear where it is supposed to.   This means no more warnings for missing MasterPages and no more need for your module to have knowledge of the host’s MasterPage placeholders. You have the option of using the Chrome.aspx in the host or providing your own while embedding it as an embedded resource itself. I’m curious to know what people think of this approach. The code above was done with my own local copy of MvcContrib so it’s not currently something you can download. At this point, these are just my initial thoughts – just incorporating some ideas for Orchard into non-Orchard apps to enable building modular/composite apps more easily. Additionally, on the flip side, I still believe that Portable Areas have potential as the module packaging story for Orchard itself.   What do you think?

    Read the article

  • how to do event checks for loops?

    - by yao jiang
    I am having some trouble getting the logic down for this. Currently, I have an app that animates the astar pathfinding algorithm. On start of the app, the ui will show the following: User can press "space" to randomly choose start/end coords, then the app will animate it. Or, user can choose the start/end by left-click/right-click. During the animation, the user can also left-click to generate blocks, or right-click to choose a new destiantion. Where I am stuck at is how to handle the events while the app is animating. Right now, I am checking events in the main loop, then when the app is animating, I do event checks again. While it works fine, I feel that I am probably doing it wrong. What is the proper way of setting up the main loop that will handle the events while the app is animating? In main loop, the app start animating once user choose start/end. In my draw function, I am putting another event checker in there. def clear(rows): for r in range(rows): for c in range(rows): if r%3 == 1 and c%3 == 1: color = brown; grid[r][c] = 1; buildCoor.append(r); buildCoor.append(c); else: color = white; grid[r][c] = 0; pick_image(screen, color, width*c, height*r); pygame.display.flip(); os.system('cls'); # draw out the grid def draw(start, end, grid, route_coord): # draw the end coords color = red; pick_image(screen, color, width*end[1],height*end[0]); pygame.display.flip(); # then draw the rest of the route for i in range(len(route_coord)): # pausing because we want animation time.sleep(speed); # get the x/y coords x,y = route_coord[i]; event_on = False; if grid[x][y] == 2: color = green; elif grid[x][y] == 3: color = blue; for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN: if event.button == 3: print "destination change detected, rerouting"; # get mouse position, px coords pos = pygame.mouse.get_pos(); # get grid coord c = pos[0] // width; r = pos[1] // height; grid[r][c] = 4; end = [r, c]; elif event.button == 1: print "user generated event"; pos = pygame.mouse.get_pos(); # get grid coord c = pos[0] // width; r = pos[1] // height; # mark it as a block for now grid[r][c] = 1; event_on = True; if check_events([x,y]) or event_on: # there is an event # mark it as a block for now grid[y][x] = 1; pick_image(screen, event_x, width*y, height*x); pygame.display.flip(); # then find a new route new_start = route_coord[i-1]; marked_grid, route_coord = find_route(new_start, end, grid); draw(new_start, end, grid, route_coord); return; # just end draw here so it wont throw the "index out of range" error elif grid[x][y] == 4: color = red; pick_image(screen, color, width*y, height*x); pygame.display.flip(); # clear route coord list, otherwise itll just add more unwanted coords route_coord_list[:] = []; clear(rows); # main loop while not done: # check the events for event in pygame.event.get(): # mouse events if event.type == pygame.MOUSEBUTTONDOWN: # get mouse position, px coords pos = pygame.mouse.get_pos(); # get grid coord c = pos[0] // width; r = pos[1] // height; # find which button pressed, highlight grid accordingly if event.button == 1: # left click, start coords if grid[r][c] == 2: grid[r][c] = 0; color = white; elif grid[r][c] == 0 or grid[r][c] == 4: grid[r][c] = 2; start = [r,c]; color = green; else: grid[r][c] = 1; color = brown; elif event.button == 3: # right click, end coords if grid[r][c] == 4: grid[r][c] = 0; color = white; elif grid[r][c] == 0 or grid[r][c] == 2: grid[r][c] = 4; end = [r,c]; color = red; else: grid[r][c] = 1; color = brown; pick_image(screen, color, width*c, height*r); # keyboard events elif event.type == pygame.KEYDOWN: clear(rows); # one way to quit program if event.key == pygame.K_ESCAPE: print "program will now exit."; done = True; # space key for random start/end elif event.key == pygame.K_SPACE: # first clear the ui clear(rows); # now choose random start/end coords buildLoc = zip(buildCoor,buildCoor[1:])[::2]; #print buildLoc; (start_x, start_y, end_x, end_y) = pick_point(); while (start_x, start_y) in buildLoc or (end_x, end_y) in buildLoc: (start_x, start_y, end_x, end_y) = pick_point(); clear(rows); print "chosen random start/end coords: ", (start_x, start_y, end_x, end_y); if (start_x, start_y) in buildLoc or (end_x, end_y) in buildLoc: print "error"; # draw the route marked_grid, route_coord = find_route([start_x,start_y],[end_x,end_y], grid); draw([start_x, start_y], [end_x, end_y], marked_grid, route_coord); # return key for user defined start/end elif event.key == pygame.K_RETURN: # first clear the ui clear(rows); # get the user defined start/end print "user defined start/end are: ", (start[0], start[1], end[0], end[1]); grid[start[0]][start[1]] = 1; grid[end[0]][end[1]] = 2; # draw the route marked_grid, route_coord = find_route(start, end, grid); draw(start, end, marked_grid, route_coord); # c to clear the screen elif event.key == pygame.K_c: print "clearing screen."; clear(rows); # go fullscreen elif event.key == pygame.K_f: if not full_sc: pygame.display.set_mode([1366, 768], pygame.FULLSCREEN); full_sc = True; rows = 15; clear(rows); else: pygame.display.set_mode(size); full_sc = False; # +/- key to change speed of animation elif event.key == pygame.K_LEFTBRACKET: if speed >= 0.1: print SPEED_UP; speed = speed_up(speed); print speed; else: print FASTEST; print speed; elif event.key == pygame.K_RIGHTBRACKET: if speed < 1.0: print SPEED_DOWN; speed = slow_down(speed); print speed; else: print SLOWEST print speed; # second method to quit program elif event.type == pygame.QUIT: print "program will now exit."; done = True; # limit to 20 fps clock.tick(20); # update the screen pygame.display.flip();

    Read the article

  • Microphone not capturing sound on 12.04 Lenovo G580

    - by Yam Marcovic
    In both Skype and the Sound Recorder application, I am not capturing any audio from my built-in microphone. I'm not sure why. Otherwise, sound output is working well. I have tried running gstreamer-properties and setting the Default Input plugin to PulseAUdio as well (to match the output), and it didn't help. I have tried running alsamixer -V all and I only get 2 input-related entries: Capture(L R) which is on 100 and not muted (can't be either), and Analog Mic Boost which is on 20db. Extra info: Camera (video) is working well on Skype and Kamerka. Can you please help me get my microphone to work? lspci: 00:00.0 Host bridge: Intel Corporation Ivy Bridge DRAM Controller (rev 09) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort+ >SERR- <PERR- INTx- Latency: 0 Capabilities: <access denied> Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Ivy Bridge Graphics Controller (rev 09) (prog-if 00 [VGA controller]) Subsystem: Lenovo Device 3977 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 42 Region 0: Memory at e0000000 (64-bit, non-prefetchable) [size=4M] Region 2: Memory at d0000000 (64-bit, prefetchable) [size=256M] Region 4: I/O ports at 3000 [size=64] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: i915 00:14.0 USB controller: Intel Corporation Panther Point USB xHCI Host Controller (rev 04) (prog-if 30 [XHCI]) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 41 Region 0: Memory at e0600000 (64-bit, non-prefetchable) [size=64K] Capabilities: <access denied> Kernel driver in use: xhci_hcd 00:16.0 Communication controller: Intel Corporation Panther Point MEI Controller #1 (rev 04) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 43 Region 0: Memory at e0614000 (64-bit, non-prefetchable) [size=16] Capabilities: <access denied> Kernel driver in use: mei Kernel modules: mei 00:1a.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #2 (rev 04) (prog-if 20 [EHCI]) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at e0619000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1b.0 Audio device: Intel Corporation Panther Point High Definition Audio Controller (rev 04) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 44 Region 0: Memory at e0610000 (64-bit, non-prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 1 (rev c4) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=01, subordinate=01, sec-latency=0 I/O behind bridge: 00002000-00002fff Memory behind bridge: e0500000-e05fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR- NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.1 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 2 (rev c4) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=02, subordinate=02, sec-latency=0 Memory behind bridge: e0400000-e04fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR- NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #1 (rev 04) (prog-if 20 [EHCI]) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 23 Region 0: Memory at e0618000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1f.0 ISA bridge: Intel Corporation Panther Point LPC Controller (rev 04) Subsystem: Lenovo Device 3977 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Capabilities: <access denied> Kernel modules: iTCO_wdt 00:1f.2 SATA controller: Intel Corporation Panther Point 6 port SATA Controller [AHCI mode] (rev 04) (prog-if 01 [AHCI 1.0]) Subsystem: Lenovo Device 3977 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin B routed to IRQ 40 Region 0: I/O ports at 3088 [size=8] Region 1: I/O ports at 3094 [size=4] Region 2: I/O ports at 3080 [size=8] Region 3: I/O ports at 3090 [size=4] Region 4: I/O ports at 3060 [size=32] Region 5: Memory at e0617000 (32-bit, non-prefetchable) [size=2K] Capabilities: <access denied> Kernel driver in use: ahci 00:1f.3 SMBus: Intel Corporation Panther Point SMBus Controller (rev 04) Subsystem: Lenovo Device 3977 Control: I/O+ Mem+ BusMaster- SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Interrupt: pin C routed to IRQ 10 Region 0: Memory at e0615000 (64-bit, non-prefetchable) [size=256] Region 4: I/O ports at 3040 [size=32] Kernel modules: i2c-i801 01:00.0 Ethernet controller: Atheros Communications Inc. AR8162 Fast Ethernet (rev 08) Subsystem: Lenovo Device 3979 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 11 Region 0: Memory at e0500000 (64-bit, non-prefetchable) [size=256K] Region 2: I/O ports at 2000 [size=128] Capabilities: <access denied> 02:00.0 Network controller: Atheros Communications Inc. AR9285 Wireless Network Adapter (PCI-Express) (rev 01) Subsystem: Lenovo Device 31a1 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 17 Region 0: Memory at e0400000 (64-bit, non-prefetchable) [size=64K] Capabilities: <access denied> Kernel driver in use: ath9k Kernel modules: ath9k aplay -l **** List of PLAYBACK Hardware Devices **** card 0: PCH [HDA Intel PCH], device 0: CONEXANT Analog [CONEXANT Analog] Subdevices: 1/1 Subdevice #0: subdevice #0 card 0: PCH [HDA Intel PCH], device 3: HDMI 0 [HDMI 0] Subdevices: 1/1 Subdevice #0: subdevice #0

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • PASS: The Budget Process

    - by Bill Graziano
    Every fiscal year PASS creates a detailed budget.  This helps us set priorities and communicate to our members what we’re going to do in the upcoming year.  You can review the current budget on the PASS Governance page.  That page currently requires you to login but I’m talking with HQ to see if there are any legal issues with opening that up. The Accounting Team The PASS accounting team is two people.  The Executive Vice-President of Finance (“EVP”) and the PASS Accounting Manager.  Sandy Cherry is the accounting manager and works at PASS HQ.  Sandy has been with PASS since we switched management companies in 2007.  Throughout this document when I talk about any actual work related to the budget that’s all Sandy :)  She’s the glue that gets us through this process.  Last year we went through 32 iterations of the budget before the Board approved so it’s a pretty busy time for her us – well, mostly her. Fiscal Year The PASS fiscal year runs from July 1st through June 30th the following year.  Right now we’re in fiscal year 2011.  Our 2010 Summit actually occurred in FY2011.  We switched to this schedule from a calendar year in 2006.  Our goal was to have the Summit occur early in our fiscal year.  That gives us the rest of the year to handle any significant financial impact from the Summit.  If registrations are down we can reduce spending.  If registrations are up we can decide how much to increase our reserves and how much to spend.  Keep in mind that the Summit is budgeted to generate 82% of our revenue this year.  How it performs has a significant impact on our financials.  The other benefit of this fiscal year is that it matches the Microsoft fiscal year.  We sign an annual sponsorship agreement with Microsoft and it’s very helpful that our fiscal years match. This year our budget process will probably start in earnest in March or April.  I’d like to be done in early June so we can publish before July 1st.  I was late publishing it this year and I’m trying not to repeat that. Our Budget Our actual budget is an Excel spreadsheet with 36 sheets.  We remove some of those when we publish it since they include salary information.  The budget is broken up into various portfolios or departments.  We have 20 portfolios.  They include chapters, marketing, virtual chapters, marketing, etc.  Ideally each portfolio is assigned to a Board member.  Each portfolio also typically has a staff person assigned to it.  Portfolios that aren’t assigned to a Board member are monitored by HQ and the ExecVP-Finance (me).  These are typically smaller portfolios such as deferred membership or Summit futures.  (More on those in a later post.)  All portfolios are reviewed by all Board members during the budget approval process, when interim financials are released internally and at year-end. The Process Our first step is to budget revenues.  The Board determines a target attendee number.  We have formulas based on historical performance that convert that to an overall attendee revenue number.  Other revenue projections (such as vendor sponsorships) come from different parts of the organization.  I hope to have another post with more details on how we project revenues. The next step is to budget expenses.  Board members fill out a sample spreadsheet with their budget for the year.  They can add line items and notes describing what the amounts are for.  Each Board portfolio typically has from 10 to 30 line items.  Any new initiatives they want to pursue needs to be budgeted.  The Summit operations budget is managed by HQ.  It includes the cost for food, electrical, internet, etc.  Most of these come from our estimate of attendees and our contract with the convention center.  During this process the Board can ask for more or less to be spent on various line items.  For example, if we weren’t happy with the Internet at the last Summit we can ask them to look into different options and/or increasing the budget.  HQ will also make adjustments to these numbers based on what they see at the events and the feedback we receive on the surveys. After we have all the initial estimates we start reviewing the entire budget.  It is sent out to the Board and we can see what each portfolio requested and what the overall profit and loss number is.  We usually start with too much in expenses and need to cut.  In years past the Board started haggling over these numbers as a group.  This past year they decided I should take a first cut and present them with a reasonable budget and a list of what I changed.  That worked well and I think we’ll continue to do that in the future. We go through a number of iterations on the budget.  If I remember correctly, we went through 32 iterations before we passed the budget.  At each iteration various revenue and expense numbers can change.  Keep in mind that the PASS budget has 200+ line items spread over 20 portfolios.  Many of these depend on other numbers.  For example, if we decide increase the projected attendees that cascades through our budget.  At each iteration we list what changed and the impact.  Ideally these discussions will take place at a face-to-face Board meeting.  Many of them also take place over the phone.  Board members explain any increase they are asking for while performing due diligence on other budget requests.  Eventually a budget emerges and is passed. Publishing After the budget is passed we create a version without the formulas and salaries for posting on the web site.  Sandy also creates some charts to help our members understand the budget.  The EVP writes a nice little letter describing some of the changes from last year’s budget.  You can see my letter and our budget on the PASS Governance page. And then, eight months later, we start all over again.

    Read the article

  • Scheduling thread tiles with C++ AMP

    - by Daniel Moth
    This post assumes you are totally comfortable with, what some of us call, the simple model of C++ AMP, i.e. you could write your own matrix multiplication. We are now ready to explore the tiled model, which builds on top of the non-tiled one. Tiling the extent We know that when we pass a grid (which is just an extent under the covers) to the parallel_for_each call, it determines the number of threads to schedule and their index values (including dimensionality). For the single-, two-, and three- dimensional cases you can go a step further and subdivide the threads into what we call tiles of threads (others may call them thread groups). So here is a single-dimensional example: extent<1> e(20); // 20 units in a single dimension with indices from 0-19 grid<1> g(e);      // same as extent tiled_grid<4> tg = g.tile<4>(); …on the 3rd line we subdivided the single-dimensional space into 5 single-dimensional tiles each having 4 elements, and we captured that result in a concurrency::tiled_grid (a new class in amp.h). Let's move on swiftly to another example, in pictures, this time 2-dimensional: So we start on the left with a grid of a 2-dimensional extent which has 8*6=48 threads. We then have two different examples of tiling. In the first case, in the middle, we subdivide the 48 threads into tiles where each has 4*3=12 threads, hence we have 2*2=4 tiles. In the second example, on the right, we subdivide the original input into tiles where each has 2*2=4 threads, hence we have 4*3=12 tiles. Notice how you can play with the tile size and achieve different number of tiles. The numbers you pick must be such that the original total number of threads (in our example 48), remains the same, and every tile must have the same size. Of course, you still have no clue why you would do that, but stick with me. First, we should see how we can use this tiled_grid, since the parallel_for_each function that we know expects a grid. Tiled parallel_for_each and tiled_index It turns out that we have additional overloads of parallel_for_each that accept a tiled_grid instead of a grid. However, those overloads, also expect that the lambda you pass in accepts a concurrency::tiled_index (new in amp.h), not an index<N>. So how is a tiled_index different to an index? A tiled_index object, can have only 1 or 2 or 3 dimensions (matching exactly the tiled_grid), and consists of 4 index objects that are accessible via properties: global, local, tile_origin, and tile. The global index is the same as the index we know and love: the global thread ID. The local index is the local thread ID within the tile. The tile_origin index returns the global index of the thread that is at position 0,0 of this tile, and the tile index is the position of the tile in relation to the overall grid. Confused? Here is an example accompanied by a picture that hopefully clarifies things: array_view<int, 2> data(8, 6, p_my_data); parallel_for_each(data.grid.tile<2,2>(), [=] (tiled_index<2,2> t_idx) restrict(direct3d) { /* todo */ }); Given the code above and the picture on the right, what are the values of each of the 4 index objects that the t_idx variables exposes, when the lambda is executed by T (highlighted in the picture on the right)? If you can't work it out yourselves, the solution follows: t_idx.global       = index<2> (6,3) t_idx.local          = index<2> (0,1) t_idx.tile_origin = index<2> (6,2) t_idx.tile             = index<2> (3,1) Don't move on until you are comfortable with this… the picture really helps, so use it. Tiled Matrix Multiplication Example – part 1 Let's paste here the C++ AMP matrix multiplication example, bolding the lines we are going to change (can you guess what the changes will be?) 01: void MatrixMultiplyTiled_Part1(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M, N, vC); 07: parallel_for_each(c.grid, 08: [=](index<2> idx) restrict(direct3d) { 09: 10: int row = idx[0]; int col = idx[1]; 11: float sum = 0.0f; 12: for(int i = 0; i < W; i++) 13: sum += a(row, i) * b(i, col); 14: c[idx] = sum; 15: }); 16: } To turn this into a tiled example, first we need to decide our tile size. Let's say we want each tile to be 16*16 (which assumes that we'll have at least 256 threads to process, and that c.grid.extent.size() is divisible by 256, and moreover that c.grid.extent[0] and c.grid.extent[1] are divisible by 16). So we insert at line 03 the tile size (which must be a compile time constant). 03: static const int TS = 16; ...then we need to tile the grid to have tiles where each one has 16*16 threads, so we change line 07 to be as follows 07: parallel_for_each(c.grid.tile<TS,TS>(), ...that means that our index now has to be a tiled_index with the same characteristics as the tiled_grid, so we change line 08 08: [=](tiled_index<TS, TS> t_idx) restrict(direct3d) { ...which means, without changing our core algorithm, we need to be using the global index that the tiled_index gives us access to, so we insert line 09 as follows 09: index<2> idx = t_idx.global; ...and now this code just works and it is tiled! Closing thoughts on part 1 The process we followed just shows the mechanical transformation that can take place from the simple model to the tiled model (think of this as step 1). In fact, when we wrote the matrix multiplication example originally, the compiler was doing this mechanical transformation under the covers for us (and it has additional smarts to deal with the cases where the total number of threads scheduled cannot be divisible by the tile size). The point is that the thread scheduling is always tiled, even when you use the non-tiled model. But with this mechanical transformation, we haven't gained anything… Hint: our goal with explicitly using the tiled model is to gain even more performance. In the next post, we'll evolve this further (beyond what the compiler can automatically do for us, in this first release), so you can see the full usage of the tiled model and its benefits… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • Agilist, Heal Thyself!

    - by Dylan Smith
    I’ve been meaning to blog about a great experience I had earlier in the year at Prairie Dev Con Calgary.  Myself and Steve Rogalsky did a session that we called “Agilist, Heal Thyself!”.  We used a format that was new to me, but that Steve had seen used at another conference.  What we did was start by asking the audience to give us a list of challenges they had had when adopting agile.  We wrote them all down, then had everybody vote on the most interesting ones.  Then we split into two groups, and each group was assigned one of the agile challenges.  We had 20 minutes to discuss the challenge, and suggest solutions or approaches to improve things.  At the end of the 20 minutes, each of the groups gave a brief summary of their discussion and learning's, then we mixed up the groups and repeated with another 2 challenges. The 2 groups I was part of had some really interesting discussions, and suggestions: Unfinished Stories at the end of Sprints The first agile challenge we tackled, was something that every single Scrum team I have worked with has struggled with.  What happens when you get to the end of a Sprint, and there are some stories that are only partially completed.  The team in question was getting very de-moralized as they felt that every Sprint was a failure as they never had a set of fully completed stories. How do you avoid this? and/or what do you do when it happens? There were 2 pieces of advice that were well received: 1. Try to bring stories to completion before starting new ones.  This is advice I give all my Scrum teams.  If you have a 3-week sprint, what happens all too often is you get to the end of week 2, and a lot of stories are almost done; but almost none are completely done.  This is a Bad Thing.  I encourage the teams I work with to only start a new story as a very last resort.  If you finish your task look at the stories in progress and see if there’s anything you can do to help before moving onto a new story.  In the daily standup, put a focus on seeing what stories got completed yesterday, if a few days go by with none getting completed, be sure this fact is visible to the team and do something about it.  Something I’ve been doing recently is introducing WIP (Work In Progress) limits while using Scrum.  My current team has 2-week sprints, and we usually have about a dozen or stories in a sprint.  We instituted a WIP limit of 4 stories.  If 4 stories have been started but not finished then nobody is allowed to start new stories.  This made it obvious very quickly that our QA tasks were our bottleneck (we have 4 devs, but only 1.5 testers).  The WIP limit forced the developers to start to pickup QA tasks before moving onto the next dev tasks, and we ended our sprints with many more stories completely finished than we did before introducing WIP limits. 2. Rather than using time-boxed sprints, why not just do away with them altogether and go to a continuous flow type approach like KanBan.  Limit WIP to keep things under control, but don’t have a fixed time box at the end of which all tasks are supposed to be done.  This eliminates the problem almost entirely.  At some points in the project (releases) you need to be able to burn down all the half finished stories to get a stable release build, but this probably occurs less often than every sprint, and there are alternative approaches to achieve it using branching strategies rather than forcing your team to try to get to Zero WIP every 2-weeks (e.g. when you are ready for a release, create a new branch for any new stories, but finish all existing stories in the current branch and release it). Trying to Introduce Agile into a team with previous Bad Agile Experiences One of the agile adoption challenges somebody described, was he was in a leadership role on a team he had recently joined – lets call him Dave.  This team was currently very waterfall in their ALM process, but they were about to start on a new green-field project.  Dave wanted to use this new project as an opportunity to do things the “right way”, using an Agile methodology like Scrum, adopting TDD, automated builds, proper branching strategies, etc.  The problem he was facing is everybody else on the team had previously gone through an “Agile Adoption” that was a horrible failure.  Dave blamed this failure on the consultant brought in previously to lead this agile transition, but regardless of the reason, the team had very negative feelings towards agile, and was very resistant to trying it out again.  Dave possibly had the authority to try to force the team to adopt Agile practices, but we all know that doesn’t work very well.  What was Dave to do? Ultimately, the best advice was to question *why* did Dave want to adopt all these various practices. Rather than trying to convince his team that these were the “right way” to run a dev project, and trying to do a Big Bang approach to introducing change.  He would be better served by identifying problems the team currently faces, have a discussion with the team to get everybody to agree that specific problems existed, then have an open discussion about ways to address those problems.  This way Dave could incrementally introduce agile practices, and he doesn’t even need to identify them as “agile” practices if he doesn’t want to.  For example, when we discussed with Dave, he said probably the teams biggest problem was long periods without feedback from users, then finding out too late that the software is not going to meet their needs.  Rather than Dave jumping right to introducing Scrum and all it entails, it would be easier to get buy-in from team if he framed it as a discussion of existing problems, and brainstorming possible solutions.  And possibly most importantly, don’t try to do massive changes all at once with a team that has not bought-into those changes.  Taking an incremental approach has a greater chance of success. I see something similar in my day job all the time too.  Clients who for one reason or another claim to not be fans of agile (or not ready for agile yet).  But then they go on to ask me to help them get shorter feedback cycles, quicker delivery cycles, iterative development processes, etc.  It’s kind of funny at times, sometimes you just need to phrase the suggestions in terms they are using and avoid the word “agile”. PS – I haven’t blogged all that much over the past couple of years, but in an attempt to motivate myself, a few of us have accepted a blogger challenge.  There’s 6 of us who have all put some money into a pool, and the agreement is that we each need to blog at least once every 2-weeks.  The first 2-week period that we miss we’re eliminated.  Last person standing gets the money.  So expect at least one blog post every couple of weeks for the near future (I hope!).  And check out the blogs of the other 5 people in this blogger challenge: Steve Rogalsky: http://winnipegagilist.blogspot.ca Aaron Kowall: http://www.geekswithblogs.net/caffeinatedgeek Tyler Doerkson: http://blog.tylerdoerksen.com David Alpert: http://www.spinthemoose.com Dave White: http://www.agileramblings.com (note: site not available yet.  should be shortly or he owes me some money!)

    Read the article

  • I Know What I Did This Summer: Put Down Trex Decking

    - by thatjeffsmith
    If you’re wondering why I would bore everyone with my pictures and frequent status updates/tweets from the past week – it’s so I could document the process of refurbishing my deck, or what some would call a porch. When we go to take a vacation, buy a car, do anything – we also read personal blogs to get the real story. So, if you’re curious about what it takes to tackle this sort of project, read on. Skills/Equipment/Manpower We Possessed I took the old decking out by myself. I’m about 230 lbs, more than 6′ tall, and I’m pretty healthy. This took about 8 hours over two afternoons. Three of us put the deck back together. My wife has two engineering degrees. Her father also has two engineering degrees. Lots of brainpower available here. Also, her dad ran the public works department for a country for more than 20 years – so lots and lots of practical experience on hand. We had a compound mitre saw, a skilsaw, 2-3 crowbars, a framing hammer, 3 cordless drills, a corded drill, lots of sawhorses, a power sander, an angle grinder, a 10×10 Coleman canopy tent, a Ford F-150 pickup truck, outdoor speakers and lots of iTunes playlists, plenty of water and cold beer. Why We Did This Our deck was relatively young – it was built in 2005. However, the pressure treated boards must not have been adequately maintained before we bought the house. I had powerwashed the deck every other year and had it stained a few times. The boards just rotted. We’re going to be in the house for a long time, and we wanted something that would look nice and require little maintenance. More bad deck boards The deck boards were in bad shape Things We Learned The two most important things: The hidden fasteners have to be put in JUST right. Wedge them into the grooved board, then bend down the bit that is screwed down. We didn’t do this on the first board and couldn’t get the second board to fit nearly close enough. Watching the official TREX YouTube video helped immensely, and we should have watched that first. When pre-drilling holes for the boards that need screwed down – DO NOT pre-drill through the underlying framing wood. ONLY pre-drill through the TREX itself. The screw won’t seat in the board properly. Instead of sitting down flush with the board, it will stop at the top of the board and just spin. I had to call the the place that sold me the screws to find this out. So about a third of our screws look like crap. If it doesn’t look or feel right – stop everything and pick up your computer or your phone. It’s not right, and it will be much easier to stop and find out why. We didn’t do this, and now I’m going to see every screw that’s not flush with the boards and get upset. Oh well. The Process How much time did it take? Well I spent about 8 hours taking the deck apart. And then the 3 of use spent 8 hours the first day, 10 hours the second day, 8 hours the third, and another 6 hours on the fourth day. That’s like 104 man-hours. We supposedly saved four or five thousand dollars in labor, but don’t do the math here or you might get a bit upset. The main thing is that we got what we wanted, and there won’t be any surprises later. Now for some pictures… This 6”+ pry bar made the destruction of the old deck much easier Most of the joists, once exposed, were OK. This joist wasn’t sitting on ANYTHING before. We think a lazy gas person cut the board to sneak a gas line in. Awesome… These monster lag bolts had to be accounted for when putting in the additional framing The border pattern Sheri wanted to put in required a lot more framing. These were the first boards to go down – we screwed them in as there was no way to attach clips I sat, kicked in the boards, and then drilled these clips in – but my wife was able to go MUCH faster by using her hands to lock the boards in and drill on her knees. I liked locking the board in with my feet when they needed to be ‘encouraged’ to go straight. The first board took FOREVER to go in, but then when we got rolling, we were able to put in a 20′ board in less than 10 minutes. This was end of construction day #2 – we got much further than we thought we would. Ah, the dreaded last 10% – what to do here? Remember those ‘floating’ stringers? Yeah, we fixed that up a bit, too. My wife used a website (and her brain) to calculate exactly how to cut the stringers to give us the rise/run we needed with the proper clearance and all that jazz. The stairs with stringers and toe kicks – this was worth the effort It started raining on us as I screwed down the steps – this we managed to get our shade tent up on the deck to protect us from the rain too The stairs, finished Finished, mostly Good corner shot The top of the stairs Stairs, looking down Celebratory beer In Summary There are a few things we’re not happy with. I think we can fix them up – but later. I have a few things left to finish, rewire the lighting, get the gas grille put back in, and rehang some screen doors. I was expecting this to be a lot worse than it was. If I didn’t have the help, I would have never done it myself. But I’m glad that I did have that help and did do that project. It’s not often you get to spend that kind of qualify time with family and building cool stuff.

    Read the article

  • Alcatel-Lucent: Enterprise 2.0: The Top 5 Things I would Do Over

    - by Kellsey Ruppel
    Happy Monday! Does anyone else feel as if the weekend went entirely too quickly? At least for those of us in the United States, we have the 4th of July Holiday next week to look forward to This week on the blog, we are going to focus on "WebCenter by Example" and highlight best practices from customers and partners. I recently came across this article and I think this is a great example of how we can learn from one another when it comes to social collaboration adoption. Do you agree with Jem? What things or best practices have you learned in your organizations?  By Jem Janik, Enterprise community manager, Alcatel-Lucent  Not so long ago, Engage, the Alcatel-Lucent employee social network and collaboration platform, celebrated its third birthday. With more than 25,000 members actively interacting each month, Engage has been a big enough success that it’s been the subject of external articles, and often those of us who helped launch it will go out and speak about what aspects contributed to that success. Hindsight is still 20/20 and what it takes to successfully launch an enterprise 2.0 community is fairly well-known now.  Today I want to tell you what I suspect you really want to know about.  As the enterprise community manager for Engage, after three years in, what are the top 5 things I wish we (and I mostly mean me) could do over? #5 Define your analytics solution from the start There is so much to do when you launch a community and initially growing it without complete chaos is quite a task.  It doesn’t take too long to get to a point where you want to focus your continued efforts in growing company collaboration.  Do people truly talk across regional boundaries or have we shifted siloed conversations to a new platform.  Is there one organization that doesn’t interact with another? If you are lucky you’ll have someone in your community team well versed in the world of databases and SQL queries, but it takes time to figure out what backend analytics data actually means. Professional support can be expensive and it may be hard to justify later as it typically has the community manager as the only main customer.  Figure out what you think you’ll want to know and how to get it early on. The sooner the better even if it doesn’t seem that critical at the time. #4 Lobbies guide you to the right places One piece of feedback that comes up more and more as we keep growing Engage is it’s hard to find stuff, or new people are not sure where to start. Something we’re doing now is defining some general topic areas of interest to be like “lobbies” into the platform and some common hashtags to go with them. I liken this to walking into a large medical or professional building for the first time.  There are hundreds of offices, and you look to a sign in the lobby to get guided to the right place for you.  We’re building that sign for members now, but again we missed the boat as the majority of the company has had their initial Engage experience. #3 Clean up, clean up, clean up Knowledge work and folksonomies are messy! The day we opened the doors to Engage I would have said we should keep everything ever created in Engage with an argument that it was a window into our collective knowledge so nothing should go.  Well, 6000+ groups and 200,000+ pieces of content later, I’ve changed my mind.  As previously mentioned, with too much “stuff” the system can be overwhelming to new members and it makes it harder to get what you’re looking for.   Do we need that help document about a tool we no longer have? NO!  Do we need that group that had 1 document and 2 discussions in the last two years? NO! Should we only have one group about a given topic instead of 4?  YES! Last fall, Engage defined a cleanup process for groups not used for a long time.  We also formed a volunteer cleaning army who are extra eyes on the hunt for “stuff” that should be updated, merged, or deleted.  It’s better late than never, but in line with what’s becoming a theme I wish these efforts had started earlier. #2 Communications & local community management One of the most important aspects of my job is to make sure people who should be talking to each other are actually doing it.  Connecting people to the other people they should know, the groups they should join, a piece of content that shouldn’t be missed.   I have worked both inside and outside of communications teams, and they are the best informed people in your company.  They know when something big is coming, how it impacts employees, how it fits with strategy, who else knows more, etc.  Having communications professionals who are power users can help scale up community management because they are already so well connected.  They also need to have the platform skills to pay attention without suffering email overload, how to grab someone’s attention, etc.  I wish I’d had figured this out much earlier.  If I had I would have groomed more communications colleagues into advocates and power members right at the start. #1 Grooming advocates vs. natural advocates I’ve just alluded to this above already. The very best advocates are those who naturally embrace your platform and automatically start to see new ways to work within it.  Those advocates seem to come out of the woodwork naturally since some of them are early adopters.  Not surprisingly, our best advocates today are those same people who were willing to come kick the tires when the community was completely empty.  Unfortunately, we didn’t get a global spread of those natural advocates.  I did ask around when we first launched for other people who might be good candidates, but didn’t push too hard as there were so many other things to get ready.  That was a mistake.  If I could get a redo I would have formally asked for people to be assigned where there were gaps and groomed them into an advocate.  Today as we find new advocates to fill the gaps, people are hesitant as the initial set has three years of practice are ahead of the curve power members; it definitely would have been easier earlier on. As fairly early adopters to corporate scale enterprise collaboration, there hasn’t been a roadmap to follow as we’ve grown Engage, which is part of the fun! It’s clear a lot of issues are more easily tackled the earlier you identify and begin to correct them, and I’ve identified the main five I wish I could redo.  In the spirit of collaboration, I hope someone else learns from my mistakes! View the original article by Jem here. 

    Read the article

  • OData &ndash; The easiest service I can create: now with updates

    - by Jon Dalberg
    The other day I created a simple NastyWord service exposed via OData. It was read-only and used an in-memory backing store for the words. Today I’ll modify it to use a file instead of a list and I’ll accept new nasty words by implementing IUpdatable directly. The first thing to do is enable the service to accept new entries. This is done at configuration time by adding the “WriteAppend” access rule: 1: public class NastyWords : DataService<NastyWordsDataSource> 2: { 3: // This method is called only once to initialize service-wide policies. 4: public static void InitializeService(DataServiceConfiguration config) 5: { 6: config.SetEntitySetAccessRule("*", EntitySetRights.AllRead | EntitySetRights.WriteAppend); 7: config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; 8: } 9: }   Next I placed a file, NastyWords.txt, in the “App_Data” folder and added a few *choice* words to start. This required one simple change to our NastyWordDataSource.cs file: 1: public NastyWordsDataSource() 2: { 3: UpdateFromSource(); 4: } 5:   6: private void UpdateFromSource() 7: { 8: var words = File.ReadAllLines(pathToFile); 9: NastyWords = (from w in words 10: select new NastyWord { Word = w }).AsQueryable(); 11: }   Nothing too shocking here, just reading each line from the NastyWords.txt file and exposing them. Next, I implemented IUpdatable which comes with a boat-load of methods. We don’t need all of them for now since we are only concerned with allowing new values. Here are the methods we must implement, all the others throw a NotImplementedException: 1: public object CreateResource(string containerName, string fullTypeName) 2: { 3: var nastyWord = new NastyWord(); 4: pendingUpdates.Add(nastyWord); 5: return nastyWord; 6: } 7:   8: public object ResolveResource(object resource) 9: { 10: return resource; 11: } 12:   13: public void SaveChanges() 14: { 15: var intersect = (from w in pendingUpdates 16: select w.Word).Intersect(from n in NastyWords 17: select n.Word); 18:   19: if (intersect.Count() > 0) 20: throw new DataServiceException(500, "duplicate entry"); 21:   22: var lines = from w in pendingUpdates 23: select w.Word; 24:   25: File.AppendAllLines(pathToFile, 26: lines, 27: Encoding.UTF8); 28:   29: pendingUpdates.Clear(); 30:   31: UpdateFromSource(); 32: } 33:   34: public void SetValue(object targetResource, string propertyName, object propertyValue) 35: { 36: targetResource.GetType().GetProperty(propertyName).SetValue(targetResource, propertyValue, null); 37: }   I use a simple list to contain the pending updates and only commit them when the “SaveChanges” method is called. Here’s the order these methods are called in our service during an insert: CreateResource – here we just instantiate a new NastyWord and stick a reference to it in our pending updates list. SetValue – this is where the “Word” property of the NastyWord instance is set. SaveChanges – get the list of pending updates, barfing on duplicates, write them to the file and clear our pending list. ResolveResource – the newly created resource will be returned directly here since we aren’t dealing with “handles” to objects but the actual objects themselves. Not too bad, eh? I didn’t find this documented anywhere but a little bit of digging in the OData spec and use of Fiddler made it pretty easy to figure out. Here is some client code which would add a new nasty word: 1: static void Main(string[] args) 2: { 3: var svc = new ServiceReference1.NastyWordsDataSource(new Uri("http://localhost.:60921/NastyWords.svc")); 4: svc.AddToNastyWords(new ServiceReference1.NastyWord() { Word = "shat" }); 5:   6: svc.SaveChanges(); 7: }   Here’s all of the code so far for to implement the service: 1: using System; 2: using System.Collections.Generic; 3: using System.Data.Services; 4: using System.Data.Services.Common; 5: using System.Linq; 6: using System.ServiceModel.Web; 7: using System.Web; 8: using System.IO; 9: using System.Text; 10:   11: namespace ONasty 12: { 13: [DataServiceKey("Word")] 14: public class NastyWord 15: { 16: public string Word { get; set; } 17: } 18:   19: public class NastyWordsDataSource : IUpdatable 20: { 21: private List<NastyWord> pendingUpdates = new List<NastyWord>(); 22: private string pathToFile = @"path to your\App_Data\NastyWords.txt"; 23:   24: public NastyWordsDataSource() 25: { 26: UpdateFromSource(); 27: } 28:   29: private void UpdateFromSource() 30: { 31: var words = File.ReadAllLines(pathToFile); 32: NastyWords = (from w in words 33: select new NastyWord { Word = w }).AsQueryable(); 34: } 35:   36: public IQueryable<NastyWord> NastyWords { get; private set; } 37:   38: public void AddReferenceToCollection(object targetResource, string propertyName, object resourceToBeAdded) 39: { 40: throw new NotImplementedException(); 41: } 42:   43: public void ClearChanges() 44: { 45: pendingUpdates.Clear(); 46: } 47:   48: public object CreateResource(string containerName, string fullTypeName) 49: { 50: var nastyWord = new NastyWord(); 51: pendingUpdates.Add(nastyWord); 52: return nastyWord; 53: } 54:   55: public void DeleteResource(object targetResource) 56: { 57: throw new NotImplementedException(); 58: } 59:   60: public object GetResource(IQueryable query, string fullTypeName) 61: { 62: throw new NotImplementedException(); 63: } 64:   65: public object GetValue(object targetResource, string propertyName) 66: { 67: throw new NotImplementedException(); 68: } 69:   70: public void RemoveReferenceFromCollection(object targetResource, string propertyName, object resourceToBeRemoved) 71: { 72: throw new NotImplementedException(); 73: } 74:   75: public object ResetResource(object resource) 76: { 77: throw new NotImplementedException(); 78: } 79:   80: public object ResolveResource(object resource) 81: { 82: return resource; 83: } 84:   85: public void SaveChanges() 86: { 87: var intersect = (from w in pendingUpdates 88: select w.Word).Intersect(from n in NastyWords 89: select n.Word); 90:   91: if (intersect.Count() > 0) 92: throw new DataServiceException(500, "duplicate entry"); 93:   94: var lines = from w in pendingUpdates 95: select w.Word; 96:   97: File.AppendAllLines(pathToFile, 98: lines, 99: Encoding.UTF8); 100:   101: pendingUpdates.Clear(); 102:   103: UpdateFromSource(); 104: } 105:   106: public void SetReference(object targetResource, string propertyName, object propertyValue) 107: { 108: throw new NotImplementedException(); 109: } 110:   111: public void SetValue(object targetResource, string propertyName, object propertyValue) 112: { 113: targetResource.GetType().GetProperty(propertyName).SetValue(targetResource, propertyValue, null); 114: } 115: } 116:   117: public class NastyWords : DataService<NastyWordsDataSource> 118: { 119: // This method is called only once to initialize service-wide policies. 120: public static void InitializeService(DataServiceConfiguration config) 121: { 122: config.SetEntitySetAccessRule("*", EntitySetRights.AllRead | EntitySetRights.WriteAppend); 123: config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; 124: } 125: } 126: } Next time we’ll allow removing nasty words. Enjoy!

    Read the article

  • Restoring databases to a set drive and directory

    - by okeofs
     Restoring databases to a set drive and directory Introduction Often people say that necessity is the mother of invention. In this case I was faced with the dilemma of having to restore several databases, with multiple ‘ndf’ files, and having to restore them with different physical file names, drives and directories on servers other than the servers from which they originated. As most of us would do, I went to Google to see if I could find some code to achieve this task and found some interesting snippets on Pinal Dave’s website. Naturally, I had to take it further than the code snippet, HOWEVER it was a great place to start. Creating a temp table to hold database file details First off, I created a temp table which would hold the details of the individual data files within the database. Although there are a plethora of fields (within the temp table below), I utilize LogicalName only within this example. The temporary table structure may be seen below:   create table #tmp ( LogicalName nvarchar(128)  ,PhysicalName nvarchar(260)  ,Type char(1)  ,FileGroupName nvarchar(128)  ,Size numeric(20,0)  ,MaxSize numeric(20,0), Fileid tinyint, CreateLSN numeric(25,0), DropLSN numeric(25, 0), UniqueID uniqueidentifier, ReadOnlyLSN numeric(25,0), ReadWriteLSN numeric(25,0), BackupSizeInBytes bigint, SourceBlocSize int, FileGroupId int, LogGroupGUID uniqueidentifier, DifferentialBaseLSN numeric(25,0), DifferentialBaseGUID uniqueidentifier, IsReadOnly bit, IsPresent bit,  TDEThumbPrint varchar(50) )    We now declare and populate a variable(@path), setting the variable to the path to our SOURCE database backup. declare @path varchar(50) set @path = 'P:\DATA\MYDATABASE.bak'   From this point, we insert the file details of our database into the temp table. Note that we do so by utilizing a restore statement HOWEVER doing so in ‘filelistonly’ mode.   insert #tmp EXEC ('restore filelistonly from disk = ''' + @path + '''')   At this point, I depart from what I gleaned from Pinal Dave.   I now instantiate a few more local variables. The use of each variable will be evident within the cursor (which follows):   Declare @RestoreString as Varchar(max) Declare @NRestoreString as NVarchar(max) Declare @LogicalName  as varchar(75) Declare @counter as int Declare @rows as int set @counter = 1 select @rows = COUNT(*) from #tmp  -- Count the number of records in the temp                                    -- table   Declaring and populating the cursor At this point I do realize that many people are cringing about the use of a cursor. Being an Oracle professional as well, I have learnt that there is a time and place for cursors. I would remind the reader that the data that will be read into the cursor is from a local temp table and as such, any locking of the records (within the temp table) is not really an issue.   DECLARE MY_CURSOR Cursor  FOR  Select LogicalName  From #tmp   Parsing the logical names from within the cursor. A small caveat that works in our favour,  is that the first logical name (of our database) is the logical name of the primary data file (.mdf). Other files, except for the very last logical name, belong to secondary data files. The last logical name is that of our database log file.   I now open my cursor and populate the variable @RestoreString Open My_Cursor  set @RestoreString =  'RESTORE DATABASE [MYDATABASE] FROM DISK = N''P:\DATA\ MYDATABASE.bak''' + ' with  '   We now fetch the first record from the temp table.   Fetch NEXT FROM MY_Cursor INTO @LogicalName   While there are STILL records left within the cursor, we dynamically build our restore string. Note that we are using concatenation to create ‘one big restore executable string’.   Note also that the target physical file name is hardwired, as is the target directory.   While (@@FETCH_STATUS <> -1) BEGIN IF (@@FETCH_STATUS <> -2) -- As long as there are no rows missing select @RestoreString = case  when @counter = 1 then -- This is the mdf file    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.mdf' + '''' + ', '   -- OK, if it passes through here we are dealing with an .ndf file -- Note that Counter must be greater than 1 and less than the number of rows.   when @counter > 1 and @counter < @rows then -- These are the ndf file(s)    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ndf' + '''' + ', '   -- OK, if it passes through here we are dealing with the log file When @LogicalName like '%log%' then    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ldf' +'''' end --Increment the counter   set @counter = @counter + 1 FETCH NEXT FROM MY_CURSOR INTO @LogicalName END   At this point we have populated the varchar(max) variable @RestoreString with a concatenation of all the necessary file names. What we now need to do is to run the sp_executesql stored procedure, to effect the restore.   First, we must place our ‘concatenated string’ into an nvarchar based variable. Obviously this will only work as long as the length of @RestoreString is less than varchar(max) / 2.   set @NRestoreString = @RestoreString EXEC sp_executesql @NRestoreString   Upon completion of this step, the database should be restored to the server. I now close and deallocate the cursor, and to be clean, I would also drop my temp table.   CLOSE MY_CURSOR DEALLOCATE MY_CURSOR GO   Conclusion Restoration of databases on different servers with different physical names and on different drives are a fact of life. Through the use of a few variables and a simple cursor, we may achieve an efficient and effective way to achieve this task.

    Read the article

  • Struct Method for Loops Problem

    - by Annalyne
    I have tried numerous times how to make a do-while loop using the float constructor for my code but it seems it does not work properly as I wanted. For summary, I am making a TBRPG in C++ and I encountered few problems. But before that, let me post my code. #include <iostream> #include <string> #include <ctime> #include <cstdlib> using namespace std; int char_level = 1; //the starting level of the character. string town; //town string town_name; //the name of the town the character is in. string charname; //holds the character's name upon the start of the game int gems = 0; //holds the value of the games the character has. const int MAX_ITEMS = 15; //max items the character can carry string inventory [MAX_ITEMS]; //the inventory of the character in game int itemnum = 0; //number of items that the character has. bool GameOver = false; //boolean intended for the game over scr. string monsterTroop [] = {"Slime", "Zombie", "Imp", "Sahaguin, Hounds, Vampire"}; //monster name float monsterTroopHealth [] = {5.0f, 10.0f, 15.0f, 20.0f, 25.0f}; // the health of the monsters int monLifeBox; //life carrier of the game's enemy troops int enemNumber; //enemy number //inventory[itemnum++] = "Sword"; class RPG_Game_Enemy { public: void enemyAppear () { srand(time(0)); enemNumber = 1+(rand()%3); if (enemNumber == 1) cout << monsterTroop[1]; //monster troop 1 else if (enemNumber == 2) cout << monsterTroop[2]; //monster troop 2 else if (enemNumber == 3) cout << monsterTroop[3]; //monster troop 3 else if (enemNumber == 4) cout << monsterTroop[4]; //monster troop 4 } void enemDefeat () { cout << "The foe has been defeated. You are victorious." << endl; } void enemyDies() { //if the enemy dies: //collapse declaration cout << "The foe vanished and you are victorious!" << endl; } }; class RPG_Scene_Battle { public: RPG_Scene_Battle(float ini_health) : health (ini_health){}; float getHealth() { return health; } void setHealth(float rpg_val){ health = rpg_val;}; private: float health; }; //---------------------------------------------------------------// // Conduct Damage for the Scene Battle's Damage //---------------------------------------------------------------// float conductDamage(RPG_Scene_Battle rpg_tr, float damage) { rpg_tr.setHealth(rpg_tr.getHealth() - damage); return rpg_tr.getHealth(); }; // ------------------------------------------------------------- // void RPG_Scene_DisplayItem () { cout << "Items: \n"; for (int i=0; i < itemnum; ++i) cout << inventory[i] <<endl; }; In this code I have so far, the problem I have is the battle scene. For example, the player battles a Ghost with 10 HP, when I use a do while loop to subtract the HP of the character and the enemy, it only deducts once in the do while. Some people said I should use a struct, but I have no idea how to make it. Is there a way someone can display a code how to implement it on my game? Edit: I made the do-while by far like this: do RPG_Scene_Battle (player, 20.0f); RPG_Scene_Battle (enemy, 10.0f); cout << "Battle starts!" <<endl; cout << "You used a blade skill and deducted 2 hit points to the enemy!" conductDamage (enemy, 2.0f); while (enemy!=0) also, I made something like this: #include <iostream> using namespace std; int gems = 0; class Entity { public: Entity(float startingHealth) : health(startingHealth){}; // initialize health float getHealth(){return health;} void setHealth(float value){ health = value;}; private: float health; }; float subtractHealthFrom(Entity& ent, float damage) { ent.setHealth(ent.getHealth() - damage); return ent.getHealth(); }; int main () { Entity character(10.0f); Entity enemy(10.0f); cout << "Hero Life: "; cout << subtractHealthFrom(character, 2.0f) <<endl; cout << "Monster Life: "; cout << subtractHealthFrom(enemy, 2.0f) <<endl; cout << "Hero Life: "; cout << subtractHealthFrom(character, 2.0f) <<endl; cout << "Monster Life: "; cout << subtractHealthFrom(enemy, 2.0f) <<endl; }; Struct method, they say, should solve this problem. How can I continously deduct hp from the enemy? Whenever I deduct something, it would return to its original value -_-

    Read the article

  • Azure Task Scheduling Options

    - by charlie.mott
    Currently, the Azure PaaS does not offer a distributed\resilient task scheduling service.  If you do want to host a task scheduling product\solution off-premise (and ideally use Azure), what are your options? PaaS Option 1: Worker Roles Use a worker role to schedule and execute actions at specific time periods.  There are a few frameworks available to assist with this: http://azuretoolkit.codeplex.com https://github.com/Lokad/lokad-cloud/wiki/TaskScheduler http://blog.smarx.com/posts/building-a-task-scheduler-in-windows-azure - This addresses a slightly different set of requirements. It’s a more dynamic approach for queuing up tasks, but not repeatable tasks (e.g. daily). I found the Azure Toolkit option the most simple to implement.  Step 1 : Create a domain entity implementing IJob for each job to schedule.  In this sample, I asynchronously call a WCF service method. 1: namespace Acme.WorkerRole.Jobs 2: { 3: using AzureToolkit; 4: using ScheduledTasksService; 5: 6: public class UploadEmployeesJob : IJob 7: { 8: public void Run() 9: { 10: // Call Tasks Service 11: var client = new ScheduledTasksServiceClient("BasicHttpBinding_IScheduledTasksService"); 12: client.UploadEmployees(); 13: client.Close(); 14: } 15: } 16: } Step 2 : In the worker role run method, add the jobs to the toolkit engine. 1: namespace Acme.WorkerRole 2: { 3: using AzureToolkit.Engine; 4: using Jobs; 5:   6: public class WorkerRole : WorkerRoleEntryPoint 7: { 8: public override void Run() 9: { 10: var engine = new CloudEngine(); 11:   12: // Add Scheduled Jobs (using CronJob syntax - see http://www.adminschoice.com/crontab-quick-reference). 13:   14: // 1. Upload Employee job - 8.00 PM every weekday (Mon-Fri) 15: engine.WithJobScheduler().ScheduleJob<UploadEmployeesJob>(c => { c.CronSchedule = "0 20 * * 1-5"; }); 16: // 2. Purge Data job - 10 AM every Saturday 17: engine.WithJobScheduler().ScheduleJob<PurgeDataJob>(c => { c.CronSchedule = "0 10 * * 6"; }); 18: // 3. Process Exceptions job - Every 5 minutes 19: engine.WithJobScheduler().ScheduleJob<ProcessExceptionsJob>(c => { c.CronSchedule = "*/5 * * * *"; }); 20:   21: engine.Run(); 22: base.Run(); 23: } 24: } 25: } Pros Cons Azure Toolkit option is simple to implement. For the AzureToolkit option, you are limited to a single worker role.  Otherwise, the jobs will be executed multiple times, once for each worker role instance.   Paying for a continuously running worker role, even if it just processes a single job once a week.  If you only have a few scheduled tasks to run calling asynchronous services hosted in different web roles, an extra small worker role likely to be sufficient.  However, for an extra small worker role this still costs $14.40/month (03/09/2012). Option 2: Use Scheduled Task on Azure Web Role calling a console app Setup a Windows Scheduled Task on the Azure Web Role. This calls a console application that calls the WCF service methods that run the task actions. This design is described here: http://www.ronaldwidha.net/2011/02/23/cron-job-on-azure-using-scheduled-task-on-a-web-role-to-replace-azure-worker-role-for-background-job/ http://www.voiceoftech.com/swhitley/index.php/2011/07/windows-azure-task-scheduler/ http://devlicio.us/blogs/vinull/archive/2011/10/23/moving-to-azure-worker-roles-for-nothing-and-tasks-for-free.aspx Pros Cons Fairly easy to implement. Supportability - I RDC’ed onto the Azure server and stopped the scheduled task. I then rebooted the machine and the task was re-started. I also tried deleting the task and rebooting, the same thing occurred. The only way to permanently guarantee that a task is disabled is to do a fresh deployment. I think this is a major supportability concern.   Saleability - multiple instances would trigger multiple tasks. You can only have one instance for the scheduled task web role. The guidance implements setup of the scheduled task as part of a web role instance. But if you have more than one instance in a web role, the task will be triggered multiple times for each scheduled action (once per machine). Workaround: If we wanted to use scheduled tasks for another client with a saleable WCF service, then we could include the console & tasks scripts in a separate web role (e.g. a empty WCF service with no real purpose to it). SaaS Option 3: Azure Marketplace I thought that someone might be offering this type of service via the Azure marketplace. At the point of writing this blog post, I did not find anyone doing so. https://datamarket.azure.com/ Pros Cons   Nobody currently offers this on the Azure Marketplace. Option 4: Online Job Scheduling Service Provider There are plenty of online providers that offer this type of service on a pay-as-you-go approach.  Some of these are free for small usage.   Many of these providers are listed here: http://en.wikipedia.org/wiki/Webcron Pros Cons No bespoke development for scheduler. Reliance on third party. IaaS Option 5: Setup Scheduling Software on Azure IaaS VM’s One of job scheduling software offerings could be installed and configured on Azure VM’s.  A list of software options is listed here: http://en.wikipedia.org/wiki/List_of_job_scheduler_software Pros Cons Enterprise distributed\resilient task scheduling service VM Setup and maintenance   Software Licence Costs Option 6: VM Gallery A the time of writing this blog post, I did not spot a VM in the gallery that included pre-installation of any of the above software options. Pros Cons   No current VM template. Summary For my current project that had a small handful of tasks to schedule with a limited project budget I chose option 1 (a worker role using the Azure Toolkit to schedule tasks).  If I was building an enterprise scale solution for the future, options 4 and 5 are currently worthy of consideration. Hopefully, Microsoft will include tasks scheduling in the future as part of their PaaS offerings.

    Read the article

  • Box2D blocky map. Body, Fixtures a huge map and performance

    - by Solom
    Right now I'm still in the planning phase of a my very first game. I'm creating a "Minecraft"-like game in 2D that features blocks that can be destroyed as well as players moving around the map. For creating the map I chose a 2D-Array of Integers that represent the Block ID. For testing purposes I created a huge map (16348 * 256) and in my prototype that didn't use Box2D everything worked like a charm. I only rendered those blocks that where within the bounds of my camera and got 60 fps straight. The problem started when I decided to use an existing physics-solution rather than implementing my own one. What I had was basically simple hitboxes around the blocks and then I had to manually check if the player collided with any of those in his neighborhood. For more advanced physics as well as the collision detection I want to switch over to Box2D. The problem I have right now is ... how to go about the bodies? I mean, the blocks are of a static bodytype. They don't move on their own, they just are there to be collided with. But as far as I can see it, every block needs his own body with a rectangular fixture attached to it, so as to be destroyable. But for a huge map such as mine, this turns out to be a real performance bottle-neck. (In fact even a rather small map [compared to the other] of 1024*256 is unplayable.) I mean I create thousands of thousands of blocks. Even if I just render those that are in my immediate neighborhood there are hundreds of them and (at least with the debugRenderer) I drop to 1 fps really quickly (on my own "monster machine"). I thought about strategies like creating just one body, attaching multiple fixtures and only if a fixture got hit, separate it from the body, create a new one and destroy it, but this didn't turn out quite as successful as hoped. (In fact the core just dumps. Ah hello C! I really missed you :X) Here is the code: public class Box2DGameScreen implements Screen { private World world; private Box2DDebugRenderer debugRenderer; private OrthographicCamera camera; private final float TIMESTEP = 1 / 60f; // 1/60 of a second -> 1 frame per second private final int VELOCITYITERATIONS = 8; private final int POSITIONITERATIONS = 3; private Map map; private BodyDef blockBodyDef; private FixtureDef blockFixtureDef; private BodyDef groundDef; private Body ground; private PolygonShape rectangleShape; @Override public void show() { world = new World(new Vector2(0, -9.81f), true); debugRenderer = new Box2DDebugRenderer(); camera = new OrthographicCamera(); // Pixel:Meter = 16:1 // Body definition BodyDef ballDef = new BodyDef(); ballDef.type = BodyDef.BodyType.DynamicBody; ballDef.position.set(0, 1); // Fixture definition FixtureDef ballFixtureDef = new FixtureDef(); ballFixtureDef.shape = new CircleShape(); ballFixtureDef.shape.setRadius(.5f); // 0,5 meter ballFixtureDef.restitution = 0.75f; // between 0 (not jumping up at all) and 1 (jumping up the same amount as it fell down) ballFixtureDef.density = 2.5f; // kg / m² ballFixtureDef.friction = 0.25f; // between 0 (sliding like ice) and 1 (not sliding) // world.createBody(ballDef).createFixture(ballFixtureDef); groundDef = new BodyDef(); groundDef.type = BodyDef.BodyType.StaticBody; groundDef.position.set(0, 0); ground = world.createBody(groundDef); this.map = new Map(20, 20); rectangleShape = new PolygonShape(); // rectangleShape.setAsBox(1, 1); blockFixtureDef = new FixtureDef(); // blockFixtureDef.shape = rectangleShape; blockFixtureDef.restitution = 0.1f; blockFixtureDef.density = 10f; blockFixtureDef.friction = 0.9f; } @Override public void render(float delta) { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); debugRenderer.render(world, camera.combined); drawMap(); world.step(TIMESTEP, VELOCITYITERATIONS, POSITIONITERATIONS); } private void drawMap() { for(int a = 0; a < map.getHeight(); a++) { /* if(camera.position.y - (camera.viewportHeight/2) > a) continue; if(camera.position.y - (camera.viewportHeight/2) < a) break; */ for(int b = 0; b < map.getWidth(); b++) { /* if(camera.position.x - (camera.viewportWidth/2) > b) continue; if(camera.position.x - (camera.viewportWidth/2) < b) break; */ /* blockBodyDef = new BodyDef(); blockBodyDef.type = BodyDef.BodyType.StaticBody; blockBodyDef.position.set(b, a); world.createBody(blockBodyDef).createFixture(blockFixtureDef); */ PolygonShape rectangleShape = new PolygonShape(); rectangleShape.setAsBox(1, 1, new Vector2(b, a), 0); blockFixtureDef.shape = rectangleShape; ground.createFixture(blockFixtureDef); rectangleShape.dispose(); } } } @Override public void resize(int width, int height) { camera.viewportWidth = width / 16; camera.viewportHeight = height / 16; camera.update(); } @Override public void hide() { dispose(); } @Override public void pause() { } @Override public void resume() { } @Override public void dispose() { world.dispose(); debugRenderer.dispose(); } } As you can see I'm facing multiple problems here. I'm not quite sure how to check for the bounds but also if the map is bigger than 24*24 like 1024*256 Java just crashes -.-. And with 24*24 I get like 9 fps. So I'm doing something really terrible here, it seems and I assume that there most be a (much more performant) way, even with Box2D's awesome physics. Any other ideas? Thanks in advance!

    Read the article

< Previous Page | 182 183 184 185 186 187 188 189 190 191 192 193  | Next Page >