Search Results

Search found 13403 results on 537 pages for 'epm performance tuning'.

Page 187/537 | < Previous Page | 183 184 185 186 187 188 189 190 191 192 193 194  | Next Page >

  • Cloud Adoption Challenges

    - by Herve Roggero
    Originally posted on: http://geekswithblogs.net/hroggero/archive/2013/11/07/cloud-adoption-challenges.aspxWhile cloud computing makes sense for most organizations and countless projects, I have seen customers significantly struggle with cloud adoption challenges. This blog post is not an attempt to provide a generic assessment of cloud adoption; rather it is an account of personal experiences in the field, some of which may or may not apply to your organization. Cloud First, Burst? In the rush to cloud adoption some companies have made the decision to redesign their core system with a cloud first approach. However a cloud first approach means that the system may not work anymore on-premises after it has been redesigned, specifically if the system depends on Platform as a Service (PaaS) components (such as Azure Tables). While PaaS makes sense when your company is in a position to adopt the cloud exclusively, it can be difficult to leverage with systems that need to work in different clouds or on-premises. As a result, some companies are starting to rethink their cloud strategy by designing for on-premises first, and modify only the necessary components to burst when needed in the cloud. This generally means that the components need to work equally well in any environment, which requires leveraging Infrastructure as a Service (IaaS) or additional investments for PaaS applications, or both.  What’s the Problem? Although most companies can benefit from cloud computing, not all of them can clearly identify a business reason for doing so other than in very generic terms. I heard many companies claim “it’s cheaper”, or “it allows us to scale”, without any specific metric or clear strategy behind the adoption decision. Other companies have a very clear strategy behind cloud adoption and can precisely articulate business benefits, such as “we have a 500% increase in traffic twice a year, so we need to burst in the cloud to avoid doubling our network and server capacity”. Understanding the problem being solved through by adopting cloud computing can significantly help organizations determine the optimum path and timeline to adoption. Performance or Scalability? I stopped counting the number of times I heard “the cloud doesn’t scale; our database runs faster on a laptop”.  While performance and scalability are related concepts, they are nonetheless different in nature. Performance is a measure of response time under a given load (meaning with a specific number of users), while scalability is the performance curve over various loads. For example one system could see great performance with 100 users, but timeout with 1,000 users, in which case the system wouldn’t scale. However another system could have average performance with 100 users, but display the exact same performance with 1,000,000 users, in which case the system would scale. Understanding that cloud computing does not usually provide high performance, but instead provides the tools necessary to build a scalable system (usually using PaaS services such as queuing and data federation), is fundamental to proper cloud adoption. Uptime? Last but not least, you may want to read the Service Level Agreement of your cloud provider in detail if you haven’t done so. If you are expecting 99.99% uptime annually you may be in for a surprise. Depending on the component being used, there may be no associated SLA at all! Other components may be restarted at any time, or services may experience failover conditions weekly ( or more) based on current overall conditions of the cloud service provider, most of which are outside of your control. As a result, for PaaS cloud environments (and to a certain extent some IaaS systems), applications need to assume failure and gracefully retry to be successful in the cloud in order to provide service continuity to end users. About Herve Roggero Herve Roggero, Windows Azure MVP, is the founder of Blue Syntax Consulting (http://www.bluesyntax.net). Herve's experience includes software development, architecture, database administration and senior management with both global corporations and startup companies. Herve holds multiple certifications, including an MCDBA, MCSE, MCSD. He also holds a Master's degree in Business Administration from Indiana University. Herve is the co-author of "PRO SQL Azure" and “PRO SQL Server 2012 Practices” from Apress, a PluralSight author, and runs the Azure Florida Association.

    Read the article

  • What container type provides better (average) performance than std::map?

    - by Truncheon
    In the following example a std::map structure is filled with 26 values from A - Z (for key) and 0 - 26 for value. The time taken (on my system) to lookup the last entry (10000000 times) is roughly 250 ms for the vector, and 125 ms for the map. (I compiled using release mode, with O3 option turned on for g++ 4.4) But if for some odd reason I wanted better performance than the std::map, what data structures and functions would I need to consider using? I apologize if the answer seems obvious to you, but I haven't had much experience in the performance critical aspects of C++ programming. UPDATE: This example is rather trivial and hides the true complexity of what I'm trying to achieve. My real world project is a simple scripting language that uses a parser, data tree, and interpreter (instead of a VM stack system). I need to use some kind of data structure (perhaps map) to store the variables names created by script programmers. These are likely to be pretty randomly named, so I need a lookup method that can quickly find a particular key within a (probably) fairly large list of names. #include <ctime> #include <map> #include <vector> #include <iostream> struct mystruct { char key; int value; mystruct(char k = 0, int v = 0) : key(k), value(v) { } }; int find(const std::vector<mystruct>& ref, char key) { for (std::vector<mystruct>::const_iterator i = ref.begin(); i != ref.end(); ++i) if (i->key == key) return i->value; return -1; } int main() { std::map<char, int> mymap; std::vector<mystruct> myvec; for (int i = 'a'; i < 'a' + 26; ++i) { mymap[i] = i - 'a'; myvec.push_back(mystruct(i, i - 'a')); } int pre = clock(); for (int i = 0; i < 10000000; ++i) { find(myvec, 'z'); } std::cout << "linear scan: milli " << clock() - pre << "\n"; pre = clock(); for (int i = 0; i < 10000000; ++i) { mymap['z']; } std::cout << "map scan: milli " << clock() - pre << "\n"; return 0; }

    Read the article

  • Oracle Announces New Oracle Exastack Program for ISV Partners

    - by pfolgado
    Oracle Exastack Program Enables ISV Partners to Leverage a Scalable, Integrated Infrastructure to Deliver Their Applications Tuned and Optimized for High-Performance News Facts Enabling Independent Software Vendors (ISVs) and other members of Oracle Partner Network (OPN) to rapidly build and deliver faster, more reliable applications to end customers, Oracle today introduced Oracle Exastack Ready, available now, and Oracle Exastack Optimized, available in fall 2011 through OPN. The Oracle Exastack Program focuses on helping ISVs run their solutions on Oracle Exadata Database Machine and Oracle Exalogic Elastic Cloud -- integrated systems in which the software and hardware are engineered to work together. These products provide partners with a lower cost and high performance infrastructure for database and application workloads across on-premise and cloud based environments. Leveraging the new Oracle Exastack Program in which applications can qualify as Oracle Exastack Ready or Oracle Exastack Optimized, partners can use available OPN resources to optimize their applications to run faster and more reliably -- providing increased performance to their end users. By deploying their applications on Oracle Exadata Database Machine and Oracle Exalogic Elastic Cloud, ISVs can reduce the cost, time and support complexities typically associated with building and maintaining a disparate application infrastructure -- enabling them to focus more on their core competencies, accelerating innovation and delivering superior value to customers. After qualifying their applications as Oracle Exastack Ready, partners can note to customers that their applications run on and support Oracle Exadata Database Machine and Oracle Exalogic Elastic Cloud component products including Oracle Solaris, Oracle Linux, Oracle Database and Oracle WebLogic Server. Customers can be confident when choosing a partner's Oracle Exastack Optimized application, knowing it has been tuned by the OPN member on Oracle Exadata Database Machine or Oracle Exalogic Elastic Cloud with a goal of delivering optimum speed, scalability and reliability. Partners participating in the Oracle Exastack Program can also leverage their Oracle Exastack Ready and Oracle Exastack Optimized applications to advance to Platinum or Diamond level in OPN. Oracle Exastack Programs Provide ISVs a Reliable, High-Performance Application Infrastructure With the Oracle Exastack Program ISVs have several options to qualify and tune their applications with Oracle Exastack, including: Oracle Exastack Ready: Oracle Exastack Ready provides qualifying partners with specific branding and promotional benefits based on their adoption of Oracle products. If a partner application supports the latest major release of one of these products, the partner may use the corresponding logo with their product marketing materials: Oracle Solaris Ready, Oracle Linux Ready, Oracle Database Ready, and Oracle WebLogic Ready. Oracle Exastack Ready is available to OPN members at the Gold level or above. Additionally, OPN members participating in the program can leverage their Oracle Exastack Ready applications toward advancement to the Platinum or Diamond levels in the OPN Specialized program and toward achieving Oracle Exastack Optimized status. Oracle Exastack Optimized: When available, for OPN members at the Gold level or above, Oracle Exastack Optimized will provide direct access to Oracle technical resources and dedicated Oracle Exastack lab environments so OPN members can test and tune their applications to deliver optimal performance and scalability on Oracle Exadata Database Machine or Oracle Exalogic Elastic Cloud. Oracle Exastack Optimized will provide OPN members with specific branding and promotional benefits including the use of the Oracle Exastack Optimized logo. OPN members participating in the program will also be able to leverage their Oracle Exastack Optimized applications toward advancement to Platinum or Diamond level in the OPN Specialized program. Oracle Exastack Labs and ISV Enablement: Dedicated Oracle Exastack lab environments and related technical enablement resources (including Guided Learning Paths and Boot Camps) will be available through OPN for OPN members to further their knowledge of Oracle Exastack offerings, and qualify their applications for Oracle Exastack Optimized or Oracle Exastack Ready. Oracle Exastack labs will be available to qualifying OPN members at the Gold level or above. Partners are eligible to participate in the Oracle Exastack Ready program immediately, which will help them meet the requirements to attain Oracle Exastack Optimized status in the future. Guidelines for Oracle Exastack Optimized, as well as Oracle Exastack Labs will be available in fall 2011. Supporting Quotes "In order to effectively differentiate their software applications in the marketplace, ISVs need to rapidly deliver new capabilities and performance improvements," said Judson Althoff, Oracle senior vice president of Worldwide Alliances and Channels and Embedded Sales. "With Oracle Exastack, ISVs have the ability to optimize and deploy their applications with a complete, integrated and cloud-ready infrastructure that will help them accelerate innovation, unlock new features and functionality, and deliver superior value to customers." "We view performance as absolutely critical and a key differentiator," said Tom Stock, SVP of Product Management, GoldenSource. "As a leading provider of enterprise data management solutions for securities and investment management firms, with Oracle Exadata Database Machine, we see an opportunity to notably improve data processing performance -- providing high quality 'golden copy' data in a reduced timeframe. Achieving Oracle Exastack Optimized status will be a stamp of approval that our solution will provide the performance and scalability that our customers demand." "As a leading provider of Revenue Intelligence solutions for telecommunications, media and entertainment service providers, our customers continually demand more readily accessible, enriched and pre-analyzed information to minimize their financial risks and maximize their margins," said Alon Aginsky, President and CEO of cVidya Networks. "Oracle Exastack enables our solutions to deliver the power, infrastructure, and innovation required to transform our customers' business operations and stay ahead of the game." Supporting Resources Oracle PartnerNetwork (OPN) Oracle Exastack Oracle Exastack Datasheet Judson Althoff blog Connect with the Oracle Partner community at OPN on Facebook, OPN on LinkedIn, OPN on YouTube, or OPN on Twitter

    Read the article

  • Do Not Optimize Without Measuring

    - by Alois Kraus
    Recently I had to do some performance work which included reading a lot of code. It is fascinating with what ideas people come up to solve a problem. Especially when there is no problem. When you look at other peoples code you will not be able to tell if it is well performing or not by reading it. You need to execute it with some sort of tracing or even better under a profiler. The first rule of the performance club is not to think and then to optimize but to measure, think and then optimize. The second rule is to do this do this in a loop to prevent slipping in bad things for too long into your code base. If you skip for some reason the measure step and optimize directly it is like changing the wave function in quantum mechanics. This has no observable effect in our world since it does represent only a probability distribution of all possible values. In quantum mechanics you need to let the wave function collapse to a single value. A collapsed wave function has therefore not many but one distinct value. This is what we physicists call a measurement. If you optimize your application without measuring it you are just changing the probability distribution of your potential performance values. Which performance your application actually has is still unknown. You only know that it will be within a specific range with a certain probability. As usual there are unlikely values within your distribution like a startup time of 20 minutes which should only happen once in 100 000 years. 100 000 years are a very short time when the first customer tries your heavily distributed networking application to run over a slow WIFI network… What is the point of this? Every programmer/architect has a mental performance model in his head. A model has always a set of explicit preconditions and a lot more implicit assumptions baked into it. When the model is good it will help you to think of good designs but it can also be the source of problems. In real world systems not all assumptions of your performance model (implicit or explicit) hold true any longer. The only way to connect your performance model and the real world is to measure it. In the WIFI example the model did assume a low latency high bandwidth LAN connection. If this assumption becomes wrong the system did have a drastic change in startup time. Lets look at a example. Lets assume we want to cache some expensive UI resource like fonts objects. For this undertaking we do create a Cache class with the UI themes we want to support. Since Fonts are expensive objects we do create it on demand the first time the theme is requested. A simple example of a Theme cache might look like this: using System; using System.Collections.Generic; using System.Drawing; struct Theme { public Color Color; public Font Font; } static class ThemeCache { static Dictionary<string, Theme> _Cache = new Dictionary<string, Theme> { {"Default", new Theme { Color = Color.AliceBlue }}, {"Theme12", new Theme { Color = Color.Aqua }}, }; public static Theme Get(string theme) { Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } return cached; } } class Program { static void Main(string[] args) { Theme item = ThemeCache.Get("Theme12"); item = ThemeCache.Get("Theme12"); } } This cache does create font objects only once since on first retrieve of the Theme object the font is added to the Theme object. When we let the application run it should print “Creating new font” only once. Right? Wrong! The vigilant readers have spotted the issue already. The creator of this cache class wanted to get maximum performance. So he decided that the Theme object should be a value type (struct) to not put too much pressure on the garbage collector. The code Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } does work with a copy of the value stored in the dictionary. This means we do mutate a copy of the Theme object and return it to our caller. But the original Theme object in the dictionary will have always null for the Font field! The solution is to change the declaration of struct Theme to class Theme or to update the theme object in the dictionary. Our cache as it is currently is actually a non caching cache. The funny thing was that I found out with a profiler by looking at which objects where finalized. I found way too many font objects to be finalized. After a bit debugging I found the allocation source for Font objects was this cache. Since this cache was there for years it means that the cache was never needed since I found no perf issue due to the creation of font objects. the cache was never profiled if it did bring any performance gain. to make the cache beneficial it needs to be accessed much more often. That was the story of the non caching cache. Next time I will write something something about measuring.

    Read the article

  • Entity Framework vs. nHibernate for Performance, Learning Curve overall features

    - by hadi
    I know this has been asked several times and I have read all the posts as well but they all are very old. And considering there have been advancements in versions and releases, I am hoping there might be fresh views. We are building a new application on ASP.NET MVC and need to finalize on an ORM tool. We have never used ORM before and have pretty much boiled down to two - nHibernate & Entity Framework. I really need some advice from someone who has used both these tools and can recommend based on experience. There are three points that I am focusing on to finalize - Performance Learning Curve Overall Capability Your advice will be highly appreciated. Best Regards,

    Read the article

  • What is the performance hit of enabling sessions on Google App Engine?

    - by Spines
    What is the performance hit of enabling sessions on the Google App Engine? I just turned on <sessions-enabled>true</sessions-enabled> in my Google App Engine app and now my requests are consistently using 100 more ms of CPU time than before I enabled it. It also makes the user wait an additional 100ms for the server to respond on each request. This seems to be quite a significant cost, I'm not even calling getSession or using it in any way yet and it still adds this extra latency. Is there something I can do to speed this up?

    Read the article

  • zlib memory usage / performance. With 500kb of data.

    - by unixman83
    Is zLib Worth it? Are there other better suited compressors? I am using an embedded system. Frequently, I have only 3MB of RAM or less available to my application. So I am considering using zlib to compress my buffers. I am concerned about overhead however. The buffer's average size will be 30kb. This probably won't get compressed by zlib. Anyone know of a good compressor for extremely limited memory environments? However, I will experience occasional maximum buffer sizes of 700kb, with 500kb much more common. Is zlib worth it in this case? Or is the overhead too much to justify? My sole considerations for compression are RAM overhead of algorithm and performance at least as good as zlib.

    Read the article

  • transform:translateX vs transition on left property. Which has better performance? CSS

    - by JackMahoney
    I'm making a slide out menu with HTML and CSS3 - especially transitions. I would like to know what is best practice / best performance to slide a relatively positioned div horizontally. When i click a button it adds a class to my div. Which class is better? (Note I can add all the browser prefixes later and this site only targets modern browsers). //option 1 .animate{ -webkit-transition:all ease 0.3s; -webkit-transform:translateZ(200px); } //option 2 .animate{ -webkit-transition:all ease 0.3s; left:200px; } Thanks

    Read the article

  • Maximum number of files one ext3 directory while still getting acceptable performance?

    - by knorv
    I have an application writing to an ext3 directory which over time has grown to roughly three million files. Needless to say, reading the file listing of this directory is unbearably slow. I don't blame ext3. The proper solution would have been to let the directory write to sub-directories such as ./a/b/c/abc.ext rather than just ./abc.ext. I'm changing to such a sub-directory structure and my question is simply: roughly how many files should I expect to store in one ext3 directory while still getting acceptable performance? Or in other words; assuming that I need to store three million files in the structure, how many levels deep should the ./a/b/c/abc.ext structure be? Obviously this is a question that cannot be answered exactly, but I'm looking for a ball park estimate.

    Read the article

  • How to solve the performance decay of a VB.NET 1.1 application?

    - by marco.ragogna
    I have single-thread windows form application written with VB.NET and targeting Framework 1.1. The software communicates with external boards through a serial interface, and it mainly consist of a state machine that run some tests, driven in a loop done with a Timer and an Interval of 50ms. The feedback on the user interface is done through some custom events raised during the tests. The problem that is driving me crazy is that the performance slightly decrease over time, and in particular after 1200/1300 test operations. The memory occupied does not increase over time, it is only the CPU that seems interested by this problem. The strange thing is that, targeting framework 2.0 and using the same identical code, I do not have this problem. I know that is difficult without looking at the code, but do you have suggestions how can I approach the problem?

    Read the article

  • Chaning coding style due to Android GC performance, how far is too far?

    - by Benju
    I keep hearing that Android applications should try to limit the number of objects created in order to reduce the workload on the garbage collector. It makes sense that you may not want to created massive numbers of objects to track on a limited memory footprint, for example on a traditional server application created 100,000 objects within a few seconds would not be unheard of. The problem is how far should I take this? I've seen tons of examples of Android applications relying on static state in order supposedly "speed things up". Does increasing the number of instances that need to be garbage collected from dozens to hundreds really make that big of a difference? I can imagine changing my coding style to now created hundreds of thousands of objects like you might have on a full-blown Java-EE server but relying on a bunch of static state to (supposedly) reduce the number of objects to be garbage collected seems odd. How much is it really necessary to change your coding style in order to create performance Android apps?

    Read the article

  • java System.nanoTime is really slow. Is it possible to implement a high performance java profiler?

    - by willpowerforever
    I did a test and found the overhead of a function call to System.nanoTime() is at least 500 ns on my machine. Seemed that it is very hard to have a high performance java profiler. For enterprise software, suppose a function takes about 350 seconds and has 12,500,000,000 times of method calls. Therefore, the number of calls to System.nanoTime() is: 12,500,000,000 * 2 = 25,000,000,000 (one for start timestamp, one for end timestamp) And the overhead of System.nanoTime in total is: 500 ns * 25,000,000,000 = 500 * 25000 s = 12500000s. Note: all data from real case. Any better way to acquire the timestamp?

    Read the article

  • Does the number of busy worker threads in the CLR ThreadPool affect performance of I/O threads?

    - by andrej351
    We have a Windows Service which hosts a number of WCF services and, in an unrelated part of the app, makes extensive use of the TPL Task class to asynchronously do relatively short bits of work. It is my understanding that WCF uses managed I/O threads from the ThreadPool to execute requests. I noticed that after deploying a feature which significantly raised the applications use of Tasks, and as such the use of ThreadPool worker threads as well, performance of a couple of web services has become very slow. We're talking minutes instead of less than a second. The number of Tasks actually trying to run at any one time can range between 20 and 1000, which makes me think that any new (last in) work needing some CPU time could be forced to wait for quite some time. Does the (in my case extremely large) number of busy ThreadPool worker threads affect the ThreadPool's managed I/O threads? Or could these two be connected in any way? Thanks!

    Read the article

  • Does the order of case in Switch statement can vary the performance?

    - by Bipul
    Let say I have a switch statement as below Switch(alphabet){ case "f": //do something break; case "c": //do something break; case "a": //do something break; case "e": //do something break; } Now suppose I know that the frequency of having Alphabet e is highest followed by a, c and f respectively. So, I just restructured the case statement order and made them as follows. Switch(alphabet){ case "e": //do something break; case "a": //do something break; case "c": //do something break; case "f": //do something break; } Will the second Switch statement better perform(means faster) than the first switch statement? If yes and if in my program I need to call this switch statement say many times, will that be a substantial improvement? Or if not in any how can I use my frequency knowledge to improve the performance? Thanks

    Read the article

  • Maximum number of files in one ext3 directory while still getting acceptable performance?

    - by knorv
    I have an application writing to an ext3 directory which over time has grown to roughly three million files. Needless to say, reading the file listing of this directory is unbearably slow. I don't blame ext3. The proper solution would have been to let the application code write to sub-directories such as ./a/b/c/abc.ext rather than using only ./abc.ext. I'm changing to such a sub-directory structure and my question is simply: roughly how many files should I expect to store in one ext3 directory while still getting acceptable performance? What's your experience? Or in other words; assuming that I need to store three million files in the structure, how many levels deep should the ./a/b/c/abc.ext structure be? Obviously this is a question that cannot be answered exactly, but I'm looking for a ball park estimate.

    Read the article

  • Why does SQLAlchemy with psycopg2 use_native_unicode have poor performance?

    - by Bob Dover
    I'm having a difficult time figuring out why a simple SELECT query is taking such a long time with sqlalchemy using raw SQL (I'm getting 14600 rows/sec, but when running the same query through psycopg2 without sqlalchemy, I'm getting 38421 rows/sec). After some poking around, I realized that toggling sqlalchemy's use_native_unicode parameter in the create_engine call actually makes a huge difference. This query takes 0.5secs to retrieve 7300 rows: from sqlalchemy import create_engine engine = create_engine("postgresql+psycopg2://localhost...", use_native_unicode=True) r = engine.execute("SELECT * FROM logtable") fetched_results = r.fetchall() This query takes 0.19secs to retrieve the same 7300 rows: engine = create_engine("postgresql+psycopg2://localhost...", use_native_unicode=False) r = engine.execute("SELECT * FROM logtable") fetched_results = r.fetchall() The only difference between the 2 queries is use_native_unicode. But sqlalchemy's own docs state that it is better to keep use_native_unicode=True (http://docs.sqlalchemy.org/en/latest/dialects/postgresql.html). Does anyone know why use_native_unicode is making such a big performance difference? And what are the ramifications of turning off use_native_unicode?

    Read the article

  • How to query range of data in DB2 with highest performance?

    - by Fuangwith S.
    Usually, I need to retrieve data from a table in some range; for example, a separate page for each search result. In MySQL I use LIMIT keyword but in DB2 I don't know. Now I use this query for retrieve range of data. SELECT * FROM( SELECT SMALLINT(RANK() OVER(ORDER BY NAME DESC)) AS RUNNING_NO , DATA_KEY_VALUE , SHOW_PRIORITY FROM EMPLOYEE WHERE NAME LIKE 'DEL%' ORDER BY NAME DESC FETCH FIRST 20 ROWS ONLY ) AS TMP ORDER BY TMP.RUNNING_NO ASC FETCH FIRST 10 ROWS ONLY but I know it's bad style. So, how to query for highest performance?

    Read the article

  • Does the order of conditions in a WHERE clause affect MySQL performance?

    - by Greg
    Say that I have a long, expensive query, packed with conditions, searching a large number of rows. I also have one particular condition, like a company id, that will limit the number of rows that need to be searched considerably, narrowing it down to dozens from hundreds of thousands. Does make any difference to MySQL performance whether I do this: SELECT * FROM clients WHERE (firstname LIKE :foo OR lastname LIKE :foo OR phone LIKE :foo) AND (firstname LIKE :bar OR lastname LIKE :bar OR phone LIKE :bar) AND company = :ugh or this: SELECT * FROM clients WHERE company = :ugh AND (firstname LIKE :foo OR lastname LIKE :foo OR phone LIKE :foo) AND (firstname LIKE :bar OR lastname LIKE :bar OR phone LIKE :bar)

    Read the article

  • Aside from performance concerns, is Java still chosen over Groovy/JRuby etc.?

    - by yar
    [This is an empirical question about the state-of-the-art: I am NOT asking if Java is cooler or less cool than the dynamic languages that work in the JVM.] Aside from cases where performance is a main decision factor, do companies/developers still willingly chose Java over Groovy, JRuby or JPython? Personal Note: The reason I am asking is that, while I do some subset of my professional work in Ruby (not JRuby, for now), in my personal projects I use Java. While I have written non-trivial apps in Groovy, I prefer Java, but I wonder if I should just get over it and do everything in Groovy. I like Java because I feel that static typing saves me time and aids refactoring. (No, I am not familiar with Scala.) However, I feel that this very empirical, on-topic programming question may inform my decision.

    Read the article

  • Which approach to create the data access layer has the highest performance?

    - by pooyakhamooshi
    I have to create a very high performance application. Currently, I am using Entity Framework for my data access layer. My application has to insert some communication data almost every second. I found that Entity Framework is slow; it has about 2 seconds delay to finish the SaveChanges() method. I was thinking I have the following options: 1. Create the data access layer myself using ADO.NET; using stored procedures or ad-hoc queries 2. Use Enterprise Library Data access Layer 3. Use NHibernate 4. Use Repository Factory: http://pooyakhamooshi.blogspot.com/search?q=repository What do you think? which one is quicker for inserting data? Which one is quicker to set up?

    Read the article

  • is NATURAL JOIN any better than SELECT FROM WHERE in terms of performance ?

    - by ashy_32bit
    Today I got into a debate with my project manager about Cartesian products. He says a 'natural join' is somehow much better than using 'select from where' because the later cause the db engine to internally perform a Cartesian product but the former uses another approach that prevents this. As far as I know, the natural join syntax is not any different in anyway than 'select from where' in terms of performance or meaning, I mean you can use either based on your taste. SELECT * FROM table1,table2 WHERE table1.id=table2.id SELECT * FROM table1 NATURAL JOIN table2 please elaborate about the first query causing a Cartesian product but the second one being somehow more smart

    Read the article

  • Does certain tags we write in PHP affects the performance of the live server???

    - by Sachindra
    I have written some tags in PHP as <a href="<?php bloginfo('url'); ?>/?cat=<?php $cate_id ?>"><?php echo $resid->post_content ?></a> or even this one echo "<li><a href = '?cat=$cate_id'>".$resid->post_content."</a></li>";?> Does this in any case affect the performance on the live server. I am no getting the image to appear on the live server after upload but on my local system(on my side) , things are fine..

    Read the article

  • SQL Server and Hyper-V Dynamic Memory Part 3

    - by SQLOS Team
    In parts 1 and 2 of this series we looked at the basics of Hyper-V Dynamic Memory and SQL Server memory management. In this part Serdar looks at configuration guidelines for SQL Server memory management. Part 3: Configuration Guidelines for Hyper-V Dynamic Memory and SQL Server Now that we understand SQL Server Memory Management and Hyper-V Dynamic Memory basics, let’s take a look at general configuration guidelines in order to utilize benefits of Hyper-V Dynamic Memory in your SQL Server VMs. Requirements Host Operating System Requirements Hyper-V Dynamic Memory feature is introduced with Windows Server 2008 R2 SP1. Therefore in order to use Dynamic Memory for your virtual machines, you need to have Windows Server 2008 R2 SP1 or Microsoft Hyper-V Server 2008 R2 SP1 in your Hyper-V host. Guest Operating System Requirements In addition to this Dynamic Memory is only supported in Standard, Web, Enterprise and Datacenter editions of windows running inside VMs. Make sure that your VM is running one of these editions. For additional requirements on each operating system see “Dynamic Memory Configuration Guidelines” here. SQL Server Requirements All versions of SQL Server support Hyper-V Dynamic Memory. However, only certain editions of SQL Server are aware of dynamically changing system memory. To have a truly dynamic environment for your SQL Server VMs make sure that you are running one of the SQL Server editions listed below: ·         SQL Server 2005 Enterprise ·         SQL Server 2008 Enterprise / Datacenter Editions ·         SQL Server 2008 R2 Enterprise / Datacenter Editions Configuration guidelines for other versions of SQL Server are covered below in the FAQ section. Guidelines for configuring Dynamic Memory Parameters Here is how to configure Dynamic Memory for your SQL VMs in a nutshell: Hyper-V Dynamic Memory Parameter Recommendation Startup RAM 1 GB + SQL Min Server Memory Maximum RAM > SQL Max Server Memory Memory Buffer % 5 Memory Weight Based on performance needs   Startup RAM In order to ensure that your SQL Server VMs can start correctly, ensure that Startup RAM is higher than configured SQL Min Server Memory for your VMs. Otherwise SQL Server service will need to do paging in order to start since it will not be able to see enough memory during startup. Also note that Startup Memory will always be reserved for your VMs. This will guarantee a certain level of performance for your SQL Servers, however setting this too high will limit the consolidation benefits you’ll get out of your virtualization environment. Maximum RAM This one is obvious. If you’ve configured SQL Max Server Memory for your SQL Server, make sure that Dynamic Memory Maximum RAM configuration is higher than this value. Otherwise your SQL Server will not grow to memory values higher than the value configured for Dynamic Memory. Memory Buffer % Memory buffer configuration is used to provision file cache to virtual machines in order to improve performance. Due to the fact that SQL Server is managing its own buffer pool, Memory Buffer setting should be configured to the lowest value possible, 5%. Configuring a higher memory buffer will prevent low resource notifications from Windows Memory Manager and it will prevent reclaiming memory from SQL Server VMs. Memory Weight Memory weight configuration defines the importance of memory to a VM. Configure higher values for the VMs that have higher performance requirements. VMs with higher memory weight will have more memory under high memory pressure conditions on your host. Questions and Answers Q1 – Which SQL Server memory model is best for Dynamic Memory? The best SQL Server model for Dynamic Memory is “Locked Page Memory Model”. This memory model ensures that SQL Server memory is never paged out and it’s also adaptive to dynamically changing memory in the system. This will be extremely useful when Dynamic Memory is attempting to remove memory from SQL Server VMs ensuring no SQL Server memory is paged out. You can find instructions on configuring “Locked Page Memory Model” for your SQL Servers here. Q2 – What about other SQL Server Editions, how should I configure Dynamic Memory for them? Other editions of SQL Server do not adapt to dynamically changing environments. They will determine how much memory they should allocate during startup and don’t change this value afterwards. Therefore make sure that you configure a higher startup memory for your VM because that will be all the memory that SQL Server utilize Tune Maximum Memory and Memory Buffer based on the other workloads running on the system. If there are no other workloads consider using Static Memory for these editions. Q3 – What if I have multiple SQL Server instances in a VM? Having multiple SQL Server instances in a VM is not a general recommendation for predictable performance, manageability and isolation. In order to achieve a predictable behavior make sure that you configure SQL Min Server Memory and SQL Max Server Memory for each instance in the VM. And make sure that: ·         Dynamic Memory Startup Memory is greater than the sum of SQL Min Server Memory values for the instances in the VM ·         Dynamic Memory Maximum Memory is greater than the sum of SQL Max Server Memory values for the instances in the VM Q4 – I’m using Large Page Memory Model for my SQL Server. Can I still use Dynamic Memory? The short answer is no. SQL Server does not dynamically change its memory size when configured with Large Page Memory Model. In virtualized environments Hyper-V provides large page support by default. Most of the time, Large Page Memory Model doesn’t bring any benefits to a SQL Server if it’s running in virtualized environments. Q5 – How do I monitor SQL performance when I’m trying Dynamic Memory on my VMs? Use the performance counters below to monitor memory performance for SQL Server: Process - Working Set: This counter is available in the VM via process performance counters. It represents the actual amount of physical memory being used by SQL Server process in the VM. SQL Server – Buffer Cache Hit Ratio: This counter is available in the VM via SQL Server counters. This represents the paging being done by SQL Server. A rate of 90% or higher is desirable. Conclusion These blog posts are a quick start to a story that will be developing more in the near future. We’re still continuing our testing and investigations to provide more detailed configuration guidelines with example performance numbers with a white paper in the upcoming months. Now it’s time to give SQL Server and Hyper-V Dynamic Memory a try. Use this guidelines to kick-start your environment. See what you think about it and let us know of your experiences. - Serdar Sutay Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • Taking the training wheels off: Accelerating the Business with Oracle IAM by Brian Mozinski (Accenture)

    - by Greg Jensen
    Today, technical requirements for IAM are evolving rapidly, and the bar is continuously raised for high performance IAM solutions as organizations look to roll out high volume use cases on the back of legacy systems.  Existing solutions were often designed and architected to support offline transactions and manual processes, and the business owners today demand globally scalable infrastructure to support the growth their business cases are expected to deliver. To help IAM practitioners address these challenges and make their organizations and themselves more successful, this series we will outline the: • Taking the training wheels off: Accelerating the Business with Oracle IAM The explosive growth in expectations for IAM infrastructure, and the business cases they support to gain investment in new security programs. • "Necessity is the mother of invention": Technical solutions developed in the field Well proven tricks of the trade, used by IAM guru’s to maximize your solution while addressing the requirements of global organizations. • The Art & Science of Performance Tuning of Oracle IAM 11gR2 Real world examples of performance tuning with Oracle IAM • No Where to go but up: Extending the benefits of accelerated IAM Anything is possible, compelling new solutions organizations are unlocking with accelerated Oracle IAM Let’s get started … by talking about the changing dynamics driving these discussions. Big Companies are getting bigger everyday, and increasingly organizations operate across state lines, multiple times zones, and in many countries or continents at the same time.  No longer is midnight to 6am a safe time to take down the system for upgrades, to run recon’s and import or update user accounts and attributes.  Further IT organizations are operating as shared services with SLA’s similar to telephone carrier levels expected by their “clients”.  Workers are moved in and out of roles on a weekly, daily, or even hourly rate and IAM is expected to support those rapid changes.  End users registering for services during business hours in Singapore are expected their access to be green-lighted in custom apps hosted in Portugal within the hour.  Many of the expectations of asynchronous systems and batched updates are not adequate and the number and types of users is growing. When organizations acted more like independent teams at functional or geographic levels it was manageable to have processes that relied on a handful of people who knew how to make things work …. Knew how to get you access to the key systems to get your job done.  Today everyone is expected to do more with less, the finance administrator previously supporting their local Atlanta sales office might now be asked to help close the books for the Johannesburg team, and access certification process once completed monthly by Joan on the 3rd floor is now done by a shared pool of resources in Sao Paulo.   Fragmented processes that rely on institutional knowledge to get access to systems and get work done quickly break down in these scenarios.  Highly robust processes that have automated workflows for connected or disconnected systems give organizations the dynamic flexibility to share work across these lines and cut costs or increase productivity. As the IT industry computing paradigms continue to change with the passing of time, and as mature or proven approaches become clear, it is normal for organizations to adjust accordingly. Businesses must manage identity in an increasingly hybrid world in which legacy on-premises IAM infrastructures are extended or replaced to support more and more interconnected and interdependent services to a wider range of users. The old legacy IAM implementation models we had relied on to manage identities no longer apply. End users expect to self-request access to services from their tablet, get supervisor approval over mobile devices and email, and launch the application even if is hosted on the cloud, or run by a partner, vendor, or service provider. While user expectations are higher, they are also simpler … logging into custom desktop apps to request approvals, or going through email or paper based processes for certification is unacceptable.  Users expect security to operate within the paradigm of the application … i.e. feel like the application they are using. Citizen and customer facing applications have evolved from every where, with custom applications, 3rd party tools, and merging in from acquired entities or 3rd party OEM’s resold to expand your portfolio of services.  These all have their own user stores, authentication models, user lifecycles, session management, etc.  Often the designers/developers are no longer accessible and the documentation is limited.  Bringing together underlying directories to scale for growth, and improve user experience is critical for revenue … but also for operations. Job functions are more dynamic.... take the Olympics for example.  Endless organizations from corporations broadcasting, endorsing, or marketing through the event … to non-profit athletic foundations and public/government entities for athletes and public safety, all operate simultaneously on the world stage.  Each organization needs to spin up short-term teams, often dealing with proprietary information from hot ads to racing strategies or security plans.  IAM is expected to enable team’s to spin up, enable new applications, protect privacy, and secure critical infrastructure.  Then it needs to be disabled just as quickly as users go back to their previous responsibilities. On a more technical level … Optimized system directory; tuning guidelines and parameters are needed by businesses today. Business’s need to be making the right choices (virtual directories) and considerations via choosing the correct architectural patterns (virtual, direct, replicated, and tuning), challenge is that business need to assess and chose the correct architectural patters (centralized, virtualized, and distributed) Today's Business organizations have very complex heterogeneous enterprises that contain diverse and multifaceted information. With today's ever changing global landscape, the strategic end goal in challenging times for business is business agility. The business of identity management requires enterprise's to be more agile and more responsive than ever before. The continued proliferation of networking devices (PC, tablet, PDA's, notebooks, etc.) has caused the number of devices and users to be granted access to these devices to grow exponentially. Business needs to deploy an IAM system that can account for the demands for authentication and authorizations to these devices. Increased innovation is forcing business and organizations to centralize their identity management services. Access management needs to handle traditional web based access as well as handle new innovations around mobile, as well as address insufficient governance processes which can lead to rouge identity accounts, which can then become a source of vulnerabilities within a business’s identity platform. Risk based decisions are providing challenges to business, for an adaptive risk model to make proper access decisions via standard Web single sign on for internal and external customers,. Organizations have to move beyond simple login and passwords to address trusted relationship questions such as: Is this a trusted customer, client, or citizen? Is this a trusted employee, vendor, or partner? Is this a trusted device? Without a solid technological foundation, organizational performance, collaboration, constituent services, or any other organizational processes will languish. A Single server location presents not only network concerns for distributed user base, but identity challenges. The network risks are centered on latency of the long trip that the traffic has to take. Other risks are a performance around availability and if the single identity server is lost, all access is lost. As you can see, there are many reasons why performance tuning IAM will have a substantial impact on the success of your organization.  In our next installment in the series we roll up our sleeves and get into detailed tuning techniques used everyday by thought leaders in the field implementing Oracle Identity & Access Management Solutions.

    Read the article

< Previous Page | 183 184 185 186 187 188 189 190 191 192 193 194  | Next Page >