Search Results

Search found 21317 results on 853 pages for 'key mapping'.

Page 187/853 | < Previous Page | 183 184 185 186 187 188 189 190 191 192 193 194  | Next Page >

  • What's the best way to read a UDT from a database with Java?

    - by Lukas Eder
    I thought I knew everything about UDTs and JDBC until someone on SO pointed out some details of the Javadoc of java.sql.SQLInput and java.sql.SQLData JavaDoc to me. The essence of that hint was (from SQLInput): An input stream that contains a stream of values representing an instance of an SQL structured type or an SQL distinct type. This interface, used only for custom mapping, is used by the driver behind the scenes, and a programmer never directly invokes SQLInput methods. This is quite the opposite of what I am used to do (which is also used and stable in productive systems, when used with the Oracle JDBC driver): Implement SQLData and provide this implementation in a custom mapping to ResultSet.getObject(int index, Map mapping) The JDBC driver will then call-back on my custom type using the SQLData.readSQL(SQLInput stream, String typeName) method. I implement this method and read each field from the SQLInput stream. In the end, getObject() will return a correctly initialised instance of my SQLData implementation holding all data from the UDT. To me, this seems like the perfect way to implement such a custom mapping. Good reasons for going this way: I can use the standard API, instead of using vendor-specific classes such as oracle.sql.STRUCT, etc. I can generate source code from my UDTs, with appropriate getters/setters and other properties My questions: What do you think about my approach, implementing SQLData? Is it viable, even if the Javadoc states otherwise? What other ways of reading UDT's in Java do you know of? E.g. what does Spring do? what does Hibernate do? What does JPA do? What do you do? Addendum: UDT support and integration with stored procedures is one of the major features of jOOQ. jOOQ aims at hiding the more complex "JDBC facts" from client code, without hiding the underlying database architecture. If you have similar questions like the above, jOOQ might provide an answer to you.

    Read the article

  • NHibernate Oracle stored procedure problem

    - by Mr. Flint
    ------Using VS2008, ASP.Net with C#, Oracle, NHibernate---- I have tested my stored procedure. It's working but not with NHibernate. Here are the codes: Procedure : create or replace procedure ThanaDelete (id number) as begin delete from thana_tbl where thana_code = id; end Mapping File: <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="DataTransfer" namespace="DataTransfer"> <class name="DataTransfer.Models.Thana, DataTransfer" table="THANA_TBL"> <id name="THANA_CODE" column="THANA_CODE" type="Int32" unsaved-value="0"> <generator class="native"> <param name="sequence"> SEQ_TEST </param> </generator> </id> <property name="THANA_NAME" column="THANA_NAME" type="string" not-null="false"/> <property name="DISTRICT_CODE" column="DISTRICT_CODE" type="Int32" not-null="false"/> <property name="USER_ID" column="USER_ID" type="string" not-null="false"/> <property name="TRANSACTION_DATE" column="TRANSACTION_DATE" type="Date" not-null="false"/> <property name="TRANSACTION_TIME" column="TRANSACTION_TIME" type="string" not-null="false"/> <sql-delete>exec THANADELETE ? </sql-delete> </class> </hibernate-mapping> error: Message: could not delete: [DataTransfer.Models.Thana#10][SQL: exec THANADELETE ?] Source: NHibernate Inner Exception System.Data.OracleClient.OracleException Message: ORA-00900: invalid SQL statement

    Read the article

  • IF Statement in VBA

    - by Edmond
    Private Sub sendemail(esubj) Sheets("Actual").Select myfridate = Cells(1, 3).Value myfridate = DateAdd("d", -2, myfdate) myfridate = Format(myfridate, "mm-dd-yy") Sheets("Actual").Select mysatdate = Cells(1, 3).Value mysatdate = DateAdd("d", -1, myfdate) mysatdate = Format(mysatdate, "mm-dd-yy") If Weekday(Now()) = vbMonday Then Set omail = CreateItem(olMailItem) ROW_BEGIN = 1 ROW_END = 72 Sheet1.Activate Range("I7").Select fileSat = "\\FINANCE\Daily Report\" fileSat = fileSat & Left(Range("I7"), 3) & Right(Year(Date), 2) fileSat = fileSat & "\Key Report - " & mysatdate & ".xls" Sheet1.Activate Range("I7").Select fileSun = "\\FINANCE\Daily Report\" fileSun = fileSun & Left(Range("I7"), 3) & Right(Year(Date), 2) fileSun = fileSun & "\Key Report - " & mysundate & ".xls" Sheet1.Activate Range("I7").Select fileFri = "\\FINANCE\Daily Report\" fileFri = fileFri & Left(Range("I7"), 3) & Right(Year(Date), 2) fileFri = fileFri & "\Key Report - " & myfridate & ".xls" With omail .Subject = "M Daily Report" .BodyFormat = olFormatHTML .HTMLBody = "<a href ='" & fileFri & "'>Key Report - " & myfridate & "</a><br><a href ='" & fileSat & "'>Key Indicator Daily Report - " & mysatdate & "</a><br><a href ='" & fileSun & "'>Key Indicator Daily Report - " & mysundate & "</a>" .To = "Me" .Display End With Set omail1 = CreateItem(olMailItem) With omail1 .Subject = "R Daily Report" .BodyFormat = olFormatHTML .To = "You" .Attachments.Add fileFri .Attachments.Add fileSat .Attachments.Add fileSun .Display End With Set omail2 = CreateItem(olMailItem) With omail2 .Subject = "Mc Daily Report" .BodyFormat = olFormatHTML .To = "them" .Attachments.Add fileFri .Attachments.Add fileSat .Attachments.Add fileSun .Display End With Else ROW_BEGIN = 1 ROW_END = 72 Sheet1.Activate Range("I7").Select fileSun = "\\FINANCE\Key Indicator\" fileSun = fileSun & Left(Range("I7"), 3) & Right(Year(Date), 2) fileSun = fileSun & "\Key Report - " & mysundate & ".xls" Set omail = CreateItem(olMailItem) With omail .Subject = "M Daily Report" .BodyFormat = olFormatHTML .HTMLBody = "<a href ='" & fileSun & "'>Key Report - " & mysundate & "</a>" .To = "Me" .Display End With Set omail1 = CreateItem(olMailItem) With omail1 .Subject = "R Daily Report" .BodyFormat = olFormatHTML .To = "You" .Attachments.Add fileSun .Display End With Set omail2 = CreateItem(olMailItem) With omail2 .Subject = "Mc Daily Report" .BodyFormat = olFormatHTML .To = "them" .Attachments.Add fileSun .Display End With End If 'ActiveWorkbook.Close Set omail = Nothing End Sub I have code in vba, where if the weekday is monday, excel will generate 3 emails with 3 attachements/links. But if it is not Monday, excel will generate 3 emails with only 1 attachment/link. My issue is that In my excel spreadsheet there is a tab called Actual and it is populated with a date. If this date within my excel spreadsheet is changed on a monday, to any other day of the week, my vba code will still treat the program as if it is Monday. I need an IF statement that will allow the 3 emails with the 3 attachements/links to generate given the date typed in on the Actual tab within my spreadsheet. I hope this isnt confusing.

    Read the article

  • How to use Nhibernate Validator + NHib component + ddl

    - by mynkow
    I just configured my NHibValidator. My NHibernate creates the DB schema. When I set MaxLenght="20" to some property of a class then in the database the length appears in the database column. I am doing this in the NHibValidator xml file. But the problem is that I have components and cannot figure out how to achieve this behaviour. The component is configured correctly in the Customer.hbm.xml file. EDIT: Well, I found that Hibernate Validator users had the same problem two years ago. http://opensource.atlassian.com/projects/hibernate/browse/HV-25 Is this an issue for NHibernate Validator or it is fixed. If it is working tell me how please. ----------------------------------------------------- public class Customer { public virtual string Name{get;set;} public virtual Contact Contacts{ get; } } ----------------------------------------------------- public class Contact { public virtual string Address{get;set;} } ----------------------------------------------------- <?xml version="1.0" encoding="utf-8" ?> <nhv-mapping xmlns="urn:nhibernate-validator-1.0" namespace="MyNamespace" assembly="MyAssembly"> <class name="Customer"> <property name="Name"> <length max="20"/> </property> <property name="Contacts"> <notNull/> <valid/> </property> </class> </nhv-mapping> ----------------------------------------------------- <?xml version="1.0" encoding="utf-8" ?> <nhv-mapping xmlns="urn:nhibernate-validator-1.0" namespace="MyNamespace" assembly="MyAssembly"> <class name="Contact"> <property name="Address"> <length max="50"/> <valid/> </property> </class> </nhv-mapping> -----------------------------------------------------

    Read the article

  • How to check for mip-map availability in OpenGL?

    - by Xavier Ho
    Recently I bumped into a problem where my OpenGL program would not render textures correctly on a 2-year-old Lenovo laptop with an nVidia Quadro 140 card. It runs OpenGL 2.1.2, and GLSL 1.20, but when I turned on mip-mapping, the whole screen is black, with no warnings or errors. This is my texture filter code: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE); After 40 minutes of fiddling around, I found out mip-mapping was the problem. Turning it off fixed it: // glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE); I get a lot of aliasing, but at least the program is visible and runs fine. Finally, two questions: What's the best or standard way to check if mip-mapping is available on a machine, aside from checking OpenGL versions? If mip-mapping is not available, what's the best work-around to avoid aliasing?

    Read the article

  • Exception when retrieving record using Nhibernate

    - by Muhammad Akhtar
    I am new to NHibernate and have just started right now. I have very simple table contain Id(Int primary key and auto incremented), Name(varchar(100)), Description(varchar(100)) Here is my XML <class name="DevelopmentStep" table="DevelopmentSteps" lazy="true"> <id name="Id" type="Int32" column="Id"> </id> <property name="Name" column="Name" type="String" length="100" not-null="false"/> <property name="Description" column="Description" type="String" length="100" not-null="false"/> here is how I want to get all the record public List<DevelopmentStep> getDevelopmentSteps() { List<DevelopmentStep> developmentStep; developmentStep = Repository.FindAll<DevelopmentStep>(new OrderBy("Name", Order.Asc)); return developmentStep; } But I am getting exception The element 'id' in namespace 'urn:nhibernate-mapping-2.2' has incomplete content. List of possible elements expected: 'urn:nhibernate-mapping-2.2:meta urn:nhibernate-mapping- 2.2:column urn:nhibernate-mapping-2.2:generator'. Please Advise me --- Thanks

    Read the article

  • Reconciling a new BindingList into a master BindingList using LINQ

    - by Neo
    I have a seemingly simple problem whereby I wish to reconcile two lists so that an 'old' master list is updated by a 'new' list containing updated elements. Elements are denoted by a key property. These are my requirements: All elements in either list that have the same key results in an assignment of that element from the 'new' list over the original element in the 'old' list only if any properties have changed. Any elements in the 'new' list that have keys not in the 'old' list will be added to the 'old' list. Any elements in the 'old' list that have keys not in the 'new' list will be removed from the 'old' list. I found an equivalent problem here - http://stackoverflow.com/questions/161432/ - but it hasn't really been answered properly. So, I came up with an algorithm to iterate through the old and new lists and perform the reconciliation as per the above. Before anyone asks why I'm not just replacing the old list object with the new list object in its entirety, it's for presentation purposes - this is a BindingList bound to a grid on a GUI and I need to prevent refresh artifacts such as blinking, scrollbars moving, etc. So the list object must remain the same, only its updated elements changed. Another thing to note is that the objects in the 'new' list, even if the key is the same and all the properties are the same, are completely different instances to the equivalent objects in the 'old' list, so copying references is not an option. Below is what I've come up with so far - it's a generic extension method for a BindingList. I've put comments in to demonstrate what I'm trying to do. public static class BindingListExtension { public static void Reconcile<T>(this BindingList<T> left, BindingList<T> right, string key) { PropertyInfo piKey = typeof(T).GetProperty(key); // Go through each item in the new list in order to find all updated and new elements foreach (T newObj in right) { // First, find an object in the new list that shares its key with an object in the old list T oldObj = left.First(call => piKey.GetValue(call, null).Equals(piKey.GetValue(newObj, null))); if (oldObj != null) { // An object in each list was found with the same key, so now check to see if any properties have changed and // if any have, then assign the object from the new list over the top of the equivalent element in the old list foreach (PropertyInfo pi in typeof(T).GetProperties()) { if (!pi.GetValue(oldObj, null).Equals(pi.GetValue(newObj, null))) { left[left.IndexOf(oldObj)] = newObj; break; } } } else { // The object in the new list is brand new (has a new key), so add it to the old list left.Add(newObj); } } // Now, go through each item in the old list to find all elements with keys no longer in the new list foreach (T oldObj in left) { // Look for an element in the new list with a key matching an element in the old list if (right.First(call => piKey.GetValue(call, null).Equals(piKey.GetValue(oldObj, null))) == null) { // A matching element cannot be found in the new list, so remove the item from the old list left.Remove(oldObj); } } } } It can be called like this: _oldBindingList.Reconcile(newBindingList, "MyKey") However, I'm looking for perhaps a method of doing the same using LINQ type methods such as GroupJoin<, Join<, Select<, SelectMany<, Intersect<, etc. So far, the problem I've had is that each of these LINQ type methods result in brand new intermediary lists (as a return value) and really, I only want to modify the existing list for all the above reasons. If anyone can help with this, would be most appreciated. If not, no worries, the above method (as it were) will suffice for now. Thanks, Jason

    Read the article

  • ActionScript MovieClip moves to the left, but not the right

    - by Defcon
    I have a stage with a movie clip with the instance name of "mc". Currently I have a code that is suppose to move the player left and right, and when the left or right key is released, the "mc" slides a little bit. The problem I'm having is that making the "mc" move to the left works, but the exact some code used for the right doesn't. All of this code is present on the Main Stage - Frame One //Variables var mcSpeed:Number = 0;//MC's Current Speed var mcJumping:Boolean = false;//if mc is Jumping var mcFalling:Boolean = false;//if mc is Falling var mcMoving:Boolean = false;//if mc is Moving var mcSliding:Boolean = false;//if mc is sliding var mcSlide:Number = 0;//Stored for use when creating slide var mcMaxSlide:Number = 1.6;//Max Distance the object will slide. //Player Move Function p1Move = new Object(); p1Move = function (dir:String, maxSpeed:Number) { if (dir == "left" && _root.mcSpeed<maxSpeed) { _root.mcSpeed += .2; _root.mc._x -= _root.mcSpeed; } else if (dir == "right" && _root.mcSpeed<maxSpeed) { _root.mcSpeed += .2; _root.mc._x += _root.mcSpeed; } else if (dir == "left" && speed>=maxSpeed) { _root.mc._x -= _root.mcSpeed; } else if (dir == "right" && _root.mcSpeed>=maxSpeed) { _root.mc._x += _root.mcSpeed; } } //onEnterFrame for MC mc.onEnterFrame = function():Void { if (Key.isDown(Key.LEFT)) { if (_root.mcMoving == false && _root.mcSliding == false) { _root.mcMoving = true; } else if (_root.mcMoving == true && _root.mcSliding == false) { _root.p1Move("left",5); } } else if (!Key.isDown(Key.LEFT)) { if (_root.mcMoving == true && _root.mcSliding == false) { _root.mcSliding = true; } else if (_root.mcMoving == true && _root.mcSliding == true && _root.mcSlide<_root.mcMaxSlide) { _root.mcSlide += .2; this._x -= .2; } else if (_root.mcMoving == true && _root.mcSliding == true && _root.mcSlide>=_root.mcMaxSlide) { _root.mcMoving = false; _root.mcSliding = false; _root.mcSlide = 0; _root.mcSpeed = 0; } } else if (Key.isDown(Key.RIGHT)) { if (_root.mcMoving == false && _root.mcSliding == false) { _root.mcMoving = true; } else if (_root.mcMoving == true && _root.mcSliding == false) { _root.p1Move("right",5); } } else if (!Key.isDown(Key.RIGHT)) { if (_root.mcMoving == true && _root.mcSliding == false) { _root.mcSliding = true; } else if (_root.mcMoving == true && _root.mcSliding == true && _root.mcSlide<_root.mcMaxSpeed) { _root.mcSlide += .2; this._x += .2; } else if (_root.mcMoving == true && _root.mcSliding == true && _root.mcSlide>=_root.mcMax) { _root.mcMoving = false; _root.mcSliding = false; _root.mcSlide = 0; _root.mcSpeed = 0; } } }; I just don't get why when you press the left arrow its works completely fine, but when you press the right arrow it doesn't respond. It is literally the same code.

    Read the article

  • Want to Receive dynamic length data from a message queue in IPC?

    - by user1089679
    Here I have to send and receive dynamic data using a SysV message queue. so in structure filed i have dynamic memory allocation char * because its size may be varies. so how can i receive this type of message at receiver side. Please let me know how can i send dynamic length of data with message queue. I am getting problem in this i posted my code below. send.c /*filename : send.c *To compile : gcc send.c -o send */ #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <string.h> #include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h> struct my_msgbuf { long mtype; char *mtext; }; int main(void) { struct my_msgbuf buf; int msqid; key_t key; static int count = 0; char temp[5]; int run = 1; if ((key = ftok("send.c", 'B')) == -1) { perror("ftok"); exit(1); } printf("send.c Key is = %d\n",key); if ((msqid = msgget(key, 0644 | IPC_CREAT)) == -1) { perror("msgget"); exit(1); } printf("Enter lines of text, ^D to quit:\n"); buf.mtype = 1; /* we don't really care in this case */ int ret = -1; while(run) { count++; buf.mtext = malloc(50); strcpy(buf.mtext,"Hi hello test message here"); snprintf(temp, sizeof (temp), "%d",count); strcat(buf.mtext,temp); int len = strlen(buf.mtext); /* ditch newline at end, if it exists */ if (buf.mtext[len-1] == '\n') buf.mtext[len-1] = '\0'; if (msgsnd(msqid, &buf, len+1, IPC_NOWAIT) == -1) /* +1 for '\0' */ perror("msgsnd"); if(count == 100) run = 0; usleep(1000000); } if (msgctl(msqid, IPC_RMID, NULL) == -1) { perror("msgctl"); exit(1); } return 0; } receive.c /* filename : receive.c * To compile : gcc receive.c -o receive */ #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h> struct my_msgbuf { long mtype; char *mtext; }; int main(void) { struct my_msgbuf buf; int msqid; key_t key; if ((key = ftok("send.c", 'B')) == -1) { /* same key as send.c */ perror("ftok"); exit(1); } if ((msqid = msgget(key, 0644)) == -1) { /* connect to the queue */ perror("msgget"); exit(1); } printf("test: ready to receive messages, captain.\n"); for(;;) { /* receive never quits! */ buf.mtext = malloc(50); if (msgrcv(msqid, &buf, 50, 0, 0) == -1) { perror("msgrcv"); exit(1); } printf("test: \"%s\"\n", buf.mtext); } return 0; }

    Read the article

  • Images not shown when publishing MVC application to virtual directory inside default web-site

    - by Michael Sagalovich
    Hi! I am developing an application using ASP.NET MVC 1 and VS2008. When I deploy it to the default web-site in my IIS6 on WinXP, all images are shown correctly, path to any given image is localhost/Content/ImagesUI/[image].[ext] When I deploy it to the virtual directory, created inside the same site, any image request returns IIS standard 404 error page, while the path is localhost/[DirectoryName]/Content/ImagesUI/[image].[ext] - that seems to be correct, true? I am mapping .* to c:\windows\microsoft.net\framework\v2.0.50727\aspnet_isapi.dll in both site and directory configurations. When this mapping is removed, images are shown correctly. However, all other URLs do not work, of course. When I am trying to open an image in browser using the URL to it, aspnet_wp.exe process is not even started (I restarted IIS to test it) - I merely get 404 or the image, depending on the presence of * mapping. Thus, I suppose it has nothing to do neither with routes registered for MVC, nor with ASP. The solution that I found is to make Content folder a virtual directory and remove * mapping from its configuration. While that's OK to some extent, I want a better solution, which will explain and eliminate the cause of the problem, not just workaround it. Thanks for your help!

    Read the article

  • HIbernate 3.5.1 - can I just drop in EHCache 2.0.1?

    - by caerphilly
    I'm using Hibernate 3.5.1, which comes with EHCache 1.5 bundled. If I want to use the latest EHCache release (2.0.1), is it just a matter of removing the ehcache-1.5.jar from my project, and replacing with ehcache-core-2.0.1.jar? Any issues to be aware of? Also - is a cache "region" in the Hibernate mapping file that same as a cache "name" in the ehcache configuration xml? What I want to do is define 2 named cache regions - one for read-only reference entities that won't change (lookup lists etc), and one for all other entities. So in ehcache I want to define two elements; <cache name="readonly"> ... </cache> <cache name="mutable"> ... </cache> And then in my Hibernate mapping files, I will specify the cache to be used for each entity: <hibernate-mapping> <class name="lookuplist"> <cache region="readonly" usage="read-only"/> <property> ... </property> </class> </hibernate-mapping> Will that work? Some of the documentation seems to imply that a separate region/cache gets created for each mapped class... Thanks.

    Read the article

  • error in assigning a const character to an unsigned char array in C++

    - by mekasperasky
    #include <iostream> #include <fstream> #include <cstring> using namespace std; typedef unsigned long int WORD; /* Should be 32-bit = 4 bytes */ #define w 32 /* word size in bits */ #define r 12 /* number of rounds */ #define b 16 /* number of bytes in key */ #define c 4 /* number words in key */ /* c = max(1,ceil(8*b/w)) */ #define t 26 /* size of table S = 2*(r+1) words */ WORD S [t],L[c]; /* expanded key table */ WORD P = 0xb7e15163, Q = 0x9e3779b9; /* magic constants */ /* Rotation operators. x must be unsigned, to get logical right shift*/ #define ROTL(x,y) (((x)<<(y&(w-1))) | ((x)>>(w-(y&(w-1))))) #define ROTR(x,y) (((x)>>(y&(w-1))) | ((x)<<(w-(y&(w-1))))) void RC5_DECRYPT(WORD *ct, WORD *pt) /* 2 WORD input ct/output pt */ { WORD i, B=ct[1], A=ct[0]; for (i=r; i>0; i--) { B = ROTR(B-S [2*i+1],A)^A; A = ROTR(A-S [2*i],B)^B; } pt [1] = B-S [1] ;pt [0] = A-S [0]; } void RC5_SETUP(unsigned char *K) /* secret input key K 0...b-1] */ { WORD i, j, k, u=w/8, A, B, L [c]; /* Initialize L, then S, then mix key into S */ for (i=b-1,L[c-1]=0; i!=-1; i--) L[i/u] = (L[i/u]<<8)+K[ i]; for (S [0]=P,i=1; i<t; i++) S [i] = S [i-1]+Q; for (A=B=i=j=k=0; k<3*t; k++,i=(i+1)%t,j=(j+1)%c) /* 3*t > 3*c */ { A = S[i] = ROTL(S [i]+(A+B),3); B = L[j] = ROTL(L[j]+(A+B),(A+B)); } } void printword(WORD A) { WORD k; for (k=0 ;k<w; k+=8) printf("%02.2lX",(A>>k)&0xFF); } int main() { WORD i, j, k, pt [2], pt2 [2], ct [2] = {0,0}; unsigned char key[b]; ofstream out("cpt.txt"); ifstream in("key.txt"); if(!in) { cout << "Cannot open file.\n"; return 1; } if(!out) { cout << "Cannot open file.\n"; return 1; } key="111111000001111"; RC5_SETUP(key); ct[0]=2185970173; ct[1]=3384368406; for (i=1;i<2;i++) { RC5_DECRYPT(ct,pt2); printf("\n plaintext "); printword(pt [0]); printword(pt[1]); } return 0; } When I compile this code, I get two warnings and also an error saying that I can't assign a char value to my character array. Why is that?

    Read the article

  • How to make MySQL utilize available system resources, or find "the real problem"?

    - by anonymous coward
    This is a MySQL 5.0.26 server, running on SuSE Enterprise 10. This may be a Serverfault question. The web user interface that uses these particular queries (below) is showing sometimes 30+, even up to 120+ seconds at the worst, to generate the pages involved. On development, when the queries are run alone, they take up to 20 seconds on the first run (with no query cache enabled) but anywhere from 2 to 7 seconds after that - I assume because the tables and indexes involved have been placed into ram. From what I can tell, the longest load times are caused by Read/Update Locking. These are MyISAM tables. So it looks like a long update comes in, followed by a couple 7 second queries, and they're just adding up. And I'm fine with that explanation. What I'm not fine with is that MySQL doesn't appear to be utilizing the hardware it's on, and while the bottleneck seems to be the database, I can't understand why. I would say "throw more hardware at it", but we did and it doesn't appear to have changed the situation. Viewing a 'top' during the slowest times never shows much cpu or memory utilization by mysqld, as if the server is having no trouble at all - but then, why are the queries taking so long? How can I make MySQL use the crap out of this hardware, or find out what I'm doing wrong? Extra Details: On the "Memory Health" tab in the MySQL Administrator (for Windows), the Key Buffer is less than 1/8th used - so all the indexes should be in RAM. I can provide a screen shot of any graphs that might help. So desperate to fix this issue. Suffice it to say, there is legacy code "generating" these queries, and they're pretty much stuck the way they are. I have tried every combination of Indexes on the tables involved, but any suggestions are welcome. Here's the current Create Table statement from development (the 'experimental' key I have added, seems to help a little, for the example query only): CREATE TABLE `registration_task` ( `id` varchar(36) NOT NULL default '', `date_entered` datetime NOT NULL default '0000-00-00 00:00:00', `date_modified` datetime NOT NULL default '0000-00-00 00:00:00', `assigned_user_id` varchar(36) default NULL, `modified_user_id` varchar(36) default NULL, `created_by` varchar(36) default NULL, `name` varchar(80) NOT NULL default '', `status` varchar(255) default NULL, `date_due` date default NULL, `time_due` time default NULL, `date_start` date default NULL, `time_start` time default NULL, `parent_id` varchar(36) NOT NULL default '', `priority` varchar(255) NOT NULL default '9', `description` text, `order_number` int(11) default '1', `task_number` int(11) default NULL, `depends_on_id` varchar(36) default NULL, `milestone_flag` varchar(255) default NULL, `estimated_effort` int(11) default NULL, `actual_effort` int(11) default NULL, `utilization` int(11) default '100', `percent_complete` int(11) default '0', `deleted` tinyint(1) NOT NULL default '0', `wf_task_id` varchar(36) default '0', `reg_field` varchar(8) default '', `date_offset` int(11) default '0', `date_source` varchar(10) default '', `date_completed` date default '0000-00-00', `completed_id` varchar(36) default NULL, `original_name` varchar(80) default NULL, PRIMARY KEY (`id`), KEY `idx_reg_task_p` (`deleted`,`parent_id`), KEY `By_Assignee` (`assigned_user_id`,`deleted`), KEY `status_assignee` (`status`,`deleted`), KEY `experimental` (`deleted`,`status`,`assigned_user_id`,`parent_id`,`date_due`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 And one of the ridiculous queries in question: SELECT users.user_name assigned_user_name, registration.FIELD001 parent_name, registration_task.status status, registration_task.date_modified date_modified, registration_task.date_due date_due, registration.FIELD240 assigned_wf, if(LENGTH(registration_task.description)>0,1,0) has_description, registration_task.* FROM registration_task LEFT JOIN users ON registration_task.assigned_user_id=users.id LEFT JOIN registration ON registration_task.parent_id=registration.id where (registration_task.status != 'Completed' AND registration.FIELD001 LIKE '%' AND registration_task.name LIKE '%' AND registration.FIELD060 LIKE 'GN001472%') AND registration_task.deleted=0 ORDER BY date_due asc LIMIT 0,20; my.cnf - '[mysqld]' section. [mysqld] port = 3306 socket = /var/lib/mysql/mysql.sock skip-locking key_buffer = 384M max_allowed_packet = 100M table_cache = 2048 sort_buffer_size = 2M net_buffer_length = 100M read_buffer_size = 2M read_rnd_buffer_size = 160M myisam_sort_buffer_size = 128M query_cache_size = 16M query_cache_limit = 1M EXPLAIN above query, without additional index: +----+-------------+-------------------+--------+--------------------------------+----------------+---------+------------------------------------------------+---------+-----------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------------+--------+--------------------------------+----------------+---------+------------------------------------------------+---------+-----------------------------+ | 1 | SIMPLE | registration_task | ref | idx_reg_task_p,status_assignee | idx_reg_task_p | 1 | const | 1067354 | Using where; Using filesort | | 1 | SIMPLE | registration | eq_ref | PRIMARY,gbl | PRIMARY | 8 | sugarcrm401.registration_task.parent_id | 1 | Using where | | 1 | SIMPLE | users | ref | PRIMARY | PRIMARY | 38 | sugarcrm401.registration_task.assigned_user_id | 1 | | +----+-------------+-------------------+--------+--------------------------------+----------------+---------+------------------------------------------------+---------+-----------------------------+ EXPLAIN above query, with 'experimental' index: +----+-------------+-------------------+--------+-----------------------------------------------------------+------------------+---------+------------------------------------------------+--------+-----------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------------+--------+-----------------------------------------------------------+------------------+---------+------------------------------------------------+--------+-----------------------------+ | 1 | SIMPLE | registration_task | range | idx_reg_task_p,status_assignee,NewIndex1,tcg_experimental | tcg_experimental | 259 | NULL | 103345 | Using where; Using filesort | | 1 | SIMPLE | registration | eq_ref | PRIMARY,gbl | PRIMARY | 8 | sugarcrm401.registration_task.parent_id | 1 | Using where | | 1 | SIMPLE | users | ref | PRIMARY | PRIMARY | 38 | sugarcrm401.registration_task.assigned_user_id | 1 | | +----+-------------+-------------------+--------+-----------------------------------------------------------+------------------+---------+------------------------------------------------+--------+-----------------------------+

    Read the article

  • Hibernate CreateSQL Query Problem

    - by Shaded
    Hello All I'm trying to use hibernates built in createsql function but it seems that it doesn't like the following query. List =hibernateSession.createSQLQuery("SELECT number, location FROM table WHERE other_number IN (SELECT f.number FROM table2 AS f JOIN table3 AS g on f.number = g.number WHERE g.other_number = " + var + ") ORDER BY number").addEntity(Table.class).list(); I have a feeling it's from the nested select statement, but I'm not sure. The inner select is used elsewhere in the code and it returns results fine. This is my mapping for the first table: <hibernate-mapping> <class name="org.efs.openreports.objects.Table" table="table"> <id name="id" column="other_number" type="java.lang.Integer"> <generator class="native"/> </id> <property name="number" column="number" not-null="true" unique="true"/> <property name="location" column="location" not-null="true" unique="true"/> </class> </hibernate-mapping> And the .java public class Table implements Serializable { private Integer id;//panel_facility private Integer number; private String location; public Table() { } public void setId(Integer id) { this.id = id; } public Integer getId() { return id; } public void setNumber(Integer number) { this.number = number; } public Integer number() { return number; } public String location() { return location; } public void setLocation(String location) { this.location = location; } } Any suggestions? Edit (Added mapping)

    Read the article

  • error in assigning a const character to a usigned char array in C++

    - by mekasperasky
    #include <iostream> #include <fstream> #include <cstring> using namespace std; typedef unsigned long int WORD; /* Should be 32-bit = 4 bytes */ #define w 32 /* word size in bits */ #define r 12 /* number of rounds */ #define b 16 /* number of bytes in key */ #define c 4 /* number words in key */ /* c = max(1,ceil(8*b/w)) */ #define t 26 /* size of table S = 2*(r+1) words */ WORD S [t],L[c]; /* expanded key table */ WORD P = 0xb7e15163, Q = 0x9e3779b9; /* magic constants */ /* Rotation operators. x must be unsigned, to get logical right shift*/ #define ROTL(x,y) (((x)<<(y&(w-1))) | ((x)>>(w-(y&(w-1))))) #define ROTR(x,y) (((x)>>(y&(w-1))) | ((x)<<(w-(y&(w-1))))) void RC5_DECRYPT(WORD *ct, WORD *pt) /* 2 WORD input ct/output pt */ { WORD i, B=ct[1], A=ct[0]; for (i=r; i>0; i--) { B = ROTR(B-S [2*i+1],A)^A; A = ROTR(A-S [2*i],B)^B; } pt [1] = B-S [1] ;pt [0] = A-S [0]; } void RC5_SETUP(unsigned char *K) /* secret input key K 0...b-1] */ { WORD i, j, k, u=w/8, A, B, L [c]; /* Initialize L, then S, then mix key into S */ for (i=b-1,L[c-1]=0; i!=-1; i--) L[i/u] = (L[i/u]<<8)+K[ i]; for (S [0]=P,i=1; i<t; i++) S [i] = S [i-1]+Q; for (A=B=i=j=k=0; k<3*t; k++,i=(i+1)%t,j=(j+1)%c) /* 3*t > 3*c */ { A = S[i] = ROTL(S [i]+(A+B),3); B = L[j] = ROTL(L[j]+(A+B),(A+B)); } } void printword(WORD A) { WORD k; for (k=0 ;k<w; k+=8) printf("%02.2lX",(A>>k)&0xFF); } int main() { WORD i, j, k, pt [2], pt2 [2], ct [2] = {0,0}; unsigned char key[b]; ofstream out("cpt.txt"); ifstream in("key.txt"); if(!in) { cout << "Cannot open file.\n"; return 1; } if(!out) { cout << "Cannot open file.\n"; return 1; } key="111111000001111"; RC5_SETUP(key); ct[0]=2185970173; ct[1]=3384368406; for (i=1;i<2;i++) { RC5_DECRYPT(ct,pt2); printf("\n plaintext "); printword(pt [0]); printword(pt[1]); } return 0; } when i run this code i get two warnings and also an error saying that i cant assign a char value to my character array . Why is that ?

    Read the article

  • CSS file in a Spring WAR returns a 404

    - by Rachel G.
    I have a J2EE application that I am building with Spring and Maven. It has the usual project structure. Here is a bit of the hierarchy. MyApplication src main webapp WEB-INF layout header.jsp styles main.css I want to include that CSS file in my JSP. I have the following tag in place. <c:url var="styleSheetUrl" value="/styles/main.css" /> <link rel="stylesheet" href="${styleSheetUrl}"> When I deploy the application, the CSS page isn't being located. When I view the page source, the href is /MyApplication/styles/main.css. Looking inside the WAR, there is a /styles/main.css. However, I get a 404 when I try to access the CSS file directly in the browser. I discovered that the reason for the issue was the Dispatcher Servlet mapping. The mapping looks as follows. <servlet-mapping> <servlet-name>Spring MVC Dispatcher Servlet</servlet-name> <url-pattern>/</url-pattern> </servlet-mapping> I imagine the Dispatcher Servlet doesn't know how to handle the CSS request. What is the best way to handle this issue? I would rather not have to change all of my request mappings.

    Read the article

  • How to synchronize two (or n) replication processes for SQL Server databases?

    - by Yauheni Sivukha
    There are two master databases and two read-only copies updated by standard transactional replication. It is needed to map some entity from both read-only databases, lets say that A databases contains orders and B databases contains lines. The problem is that replication to one database can lag behind replication of second database, and at the moment of mapping R-databases will have inconsistent data. For example. We stored 2 orders with lines at 19:00 and 19:03. Mapping process started at 19:05, but to the moment of mapping A database replication processed all changes up to 19:03, but B database replication processed only changes up to 19:00. After mapping we will have order entity with order as of 19:03 and lines as of 19:00. The troubles are guaranteed:) In my particular case both databases have temporal model, so it is possible to fetch data for every time slice, but the problem is to identify time of latest replication. Question: How to synchronize replication processes for several databases to avoid situation described above? Or, in other words, how to compare last time of replication in each database? UPD: The only way I see to synchronize is to continuously write timestamps into service tables in each database and to check these timestamps on replicated servers. Is that acceptable solution?

    Read the article

  • Is Berkeley DB a NoSQL solution?

    - by Gregory Burd
    Berkeley DB is a library. To use it to store data you must link the library into your application. You can use most programming languages to access the API, the calls across these APIs generally mimic the Berkeley DB C-API which makes perfect sense because Berkeley DB is written in C. The inspiration for Berkeley DB was the DBM library, a part of the earliest versions of UNIX written by AT&T's Ken Thompson in 1979. DBM was a simple key/value hashtable-based storage library. In the early 1990s as BSD UNIX was transitioning from version 4.3 to 4.4 and retrofitting commercial code owned by AT&T with unencumbered code, it was the future founders of Sleepycat Software who wrote libdb (aka Berkeley DB) as the replacement for DBM. The problem it addressed was fast, reliable local key/value storage. At that time databases almost always lived on a single node, even the most sophisticated databases only had simple fail-over two node solutions. If you had a lot of data to store you would choose between the few commercial RDBMS solutions or to write your own custom solution. Berkeley DB took the headache out of the custom approach. These basic market forces inspired other DBM implementations. There was the "New DBM" (ndbm) and the "GNU DBM" (GDBM) and a few others, but the theme was the same. Even today TokyoCabinet calls itself "a modern implementation of DBM" mimicking, and improving on, something first created over thirty years ago. In the mid-1990s, DBM was the name for what you needed if you were looking for fast, reliable local storage. Fast forward to today. What's changed? Systems are connected over fast, very reliable networks. Disks are cheep, fast, and capable of storing huge amounts of data. CPUs continued to follow Moore's Law, processing power that filled a room in 1990 now fits in your pocket. PCs, servers, and other computers proliferated both in business and the personal markets. In addition to the new hardware entire markets, social systems, and new modes of interpersonal communication moved onto the web and started evolving rapidly. These changes cause a massive explosion of data and a need to analyze and understand that data. Taken together this resulted in an entirely different landscape for database storage, new solutions were needed. A number of novel solutions stepped up and eventually a category called NoSQL emerged. The new market forces inspired the CAP theorem and the heated debate of BASE vs. ACID. But in essence this was simply the market looking at what to trade off to meet these new demands. These new database systems shared many qualities in common. There were designed to address massive amounts of data, millions of requests per second, and scale out across multiple systems. The first large-scale and successful solution was Dynamo, Amazon's distributed key/value database. Dynamo essentially took the next logical step and added a twist. Dynamo was to be the database of record, it would be distributed, data would be partitioned across many nodes, and it would tolerate failure by avoiding single points of failure. Amazon did this because they recognized that the majority of the dynamic content they provided to customers visiting their web store front didn't require the services of an RDBMS. The queries were simple, key/value look-ups or simple range queries with only a few queries that required more complex joins. They set about to use relational technology only in places where it was the best solution for the task, places like accounting and order fulfillment, but not in the myriad of other situations. The success of Dynamo, and it's design, inspired the next generation of Non-SQL, distributed database solutions including Cassandra, Riak and Voldemort. The problem their designers set out to solve was, "reliability at massive scale" so the first focal point was distributed database algorithms. Underneath Dynamo there is a local transactional database; either Berkeley DB, Berkeley DB Java Edition, MySQL or an in-memory key/value data structure. Dynamo was an evolution of local key/value storage onto networks. Cassandra, Riak, and Voldemort all faced similar design decisions and one, Voldemort, choose Berkeley DB Java Edition for it's node-local storage. Riak at first was entirely in-memory, but has recently added write-once, append-only log-based on-disk storage similar type of storage as Berkeley DB except that it is based on a hash table which must reside entirely in-memory rather than a btree which can live in-memory or on disk. Berkeley DB evolved too, we added high availability (HA) and a replication manager that makes it easy to setup replica groups. Berkeley DB's replication doesn't partitioned the data, every node keeps an entire copy of the database. For consistency, there is a single node where writes are committed first - a master - then those changes are delivered to the replica nodes as log records. Applications can choose to wait until all nodes are consistent, or fire and forget allowing Berkeley DB to eventually become consistent. Berkeley DB's HA scales-out quite well for read-intensive applications and also effectively eliminates the central point of failure by allowing replica nodes to be elected (using a PAXOS algorithm) to mastership if the master should fail. This implementation covers a wide variety of use cases. MemcacheDB is a server that implements the Memcache network protocol but uses Berkeley DB for storage and HA to replicate the cache state across all the nodes in the cache group. Google Accounts, the user authentication layer for all Google properties, was until recently running Berkeley DB HA. That scaled to a globally distributed system. That said, most NoSQL solutions try to partition (shard) data across nodes in the replication group and some allow writes as well as reads at any node, Berkeley DB HA does not. So, is Berkeley DB a "NoSQL" solution? Not really, but it certainly is a component of many of the existing NoSQL solutions out there. Forgetting all the noise about how NoSQL solutions are complex distributed databases when you boil them down to a single node you still have to store the data to some form of stable local storage. DBMs solved that problem a long time ago. NoSQL has more to do with the layers on top of the DBM; the distributed, sometimes-consistent, partitioned, scale-out storage that manage key/value or document sets and generally have some form of simple HTTP/REST-style network API. Does Berkeley DB do that? Not really. Is Berkeley DB a "NoSQL" solution today? Nope, but it's the most robust solution on which to build such a system. Re-inventing the node-local data storage isn't easy. A lot of people are starting to come to appreciate the sophisticated features found in Berkeley DB, even mimic them in some cases. Could Berkeley DB grow into a NoSQL solution? Absolutely. Our key/value API could be extended over the net using any of a number of existing network protocols such as memcache or HTTP/REST. We could adapt our node-local data partitioning out over replicated nodes. We even have a nice query language and cost-based query optimizer in our BDB XML product that we could reuse were we to build out a document-based NoSQL-style product. XML and JSON are not so different that we couldn't adapt one to work with the other interchangeably. Without too much effort we could add what's missing, we could jump into this No SQL market withing a single product development cycle. Why isn't Berkeley DB already a NoSQL solution? Why aren't we working on it? Why indeed...

    Read the article

  • SQL SERVER – Introduction to SQL Server 2014 In-Memory OLTP

    - by Pinal Dave
    In SQL Server 2014 Microsoft has introduced a new database engine component called In-Memory OLTP aka project “Hekaton” which is fully integrated into the SQL Server Database Engine. It is optimized for OLTP workloads accessing memory resident data. In-memory OLTP helps us create memory optimized tables which in turn offer significant performance improvement for our typical OLTP workload. The main objective of memory optimized table is to ensure that highly transactional tables could live in memory and remain in memory forever without even losing out a single record. The most significant part is that it still supports majority of our Transact-SQL statement. Transact-SQL stored procedures can be compiled to machine code for further performance improvements on memory-optimized tables. This engine is designed to ensure higher concurrency and minimal blocking. In-Memory OLTP alleviates the issue of locking, using a new type of multi-version optimistic concurrency control. It also substantially reduces waiting for log writes by generating far less log data and needing fewer log writes. Points to remember Memory-optimized tables refer to tables using the new data structures and key words added as part of In-Memory OLTP. Disk-based tables refer to your normal tables which we used to create in SQL Server since its inception. These tables use a fixed size 8 KB pages that need to be read from and written to disk as a unit. Natively compiled stored procedures refer to an object Type which is new and is supported by in-memory OLTP engine which convert it into machine code, which can further improve the data access performance for memory –optimized tables. Natively compiled stored procedures can only reference memory-optimized tables, they can’t be used to reference any disk –based table. Interpreted Transact-SQL stored procedures, which is what SQL Server has always used. Cross-container transactions refer to transactions that reference both memory-optimized tables and disk-based tables. Interop refers to interpreted Transact-SQL that references memory-optimized tables. Using In-Memory OLTP In-Memory OLTP engine has been available as part of SQL Server 2014 since June 2013 CTPs. Installation of In-Memory OLTP is part of the SQL Server setup application. The In-Memory OLTP components can only be installed with a 64-bit edition of SQL Server 2014 hence they are not available with 32-bit editions. Creating Databases Any database that will store memory-optimized tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is specifically designed to store the checkpoint files needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating the filegroup is almost the same as for creating a regular filestream filegroup, it must also specify the option CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a database that can support memory-optimized tables: CREATE DATABASE InMemoryDB ON PRIMARY(NAME = [InMemoryDB_data], FILENAME = 'D:\data\InMemoryDB_data.mdf', size=500MB), FILEGROUP [SampleDB_mod_fg] CONTAINS MEMORY_OPTIMIZED_DATA (NAME = [InMemoryDB_mod_dir], FILENAME = 'S:\data\InMemoryDB_mod_dir'), (NAME = [InMemoryDB_mod_dir], FILENAME = 'R:\data\InMemoryDB_mod_dir') LOG ON (name = [SampleDB_log], Filename='L:\log\InMemoryDB_log.ldf', size=500MB) COLLATE Latin1_General_100_BIN2; Above example code creates files on three different drives (D:  S: and R:) for the data files and in memory storage so if you would like to run this code kindly change the drive and folder locations as per your convenience. Also notice that binary collation was specified as Windows (non-SQL). BIN2 collation is the only collation support at this point for any indexes on memory optimized tables. It is also possible to add a MEMORY_OPTIMIZED_DATA file group to an existing database, use the below command to achieve the same. ALTER DATABASE AdventureWorks2012 ADD FILEGROUP hekaton_mod CONTAINS MEMORY_OPTIMIZED_DATA; GO ALTER DATABASE AdventureWorks2012 ADD FILE (NAME='hekaton_mod', FILENAME='S:\data\hekaton_mod') TO FILEGROUP hekaton_mod; GO Creating Tables There is no major syntactical difference between creating a disk based table or a memory –optimized table but yes there are a few restrictions and a few new essential extensions. Essentially any memory-optimized table should use the MEMORY_OPTIMIZED = ON clause as shown in the Create Table query example. DURABILITY clause (SCHEMA_AND_DATA or SCHEMA_ONLY) Memory-optimized table should always be defined with a DURABILITY value which can be either SCHEMA_AND_DATA or  SCHEMA_ONLY the former being the default. A memory-optimized table defined with DURABILITY=SCHEMA_ONLY will not persist the data to disk which means the data durability is compromised whereas DURABILITY= SCHEMA_AND_DATA ensures that data is also persisted along with the schema. Indexing Memory Optimized Table A memory-optimized table must always have an index for all tables created with DURABILITY= SCHEMA_AND_DATA and this can be achieved by declaring a PRIMARY KEY Constraint at the time of creating a table. The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count must also be specified. CREATE TABLE Mem_Table ( [Name] VARCHAR(32) NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000), [City] VARCHAR(32) NULL, [State_Province] VARCHAR(32) NULL, [LastModified] DATETIME NOT NULL, ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); Now as you can see in the above query example we have used the clause MEMORY_OPTIMIZED = ON to make sure that it is considered as a memory optimized table and not just a normal table and also used the DURABILITY Clause= SCHEMA_AND_DATA which means it will persist data along with metadata and also you can notice this table has a PRIMARY KEY mentioned upfront which is also a mandatory clause for memory-optimized tables. We will talk more about HASH Indexes and BUCKET_COUNT in later articles on this topic which will be focusing more on Row and Index storage on Memory-Optimized tables. So stay tuned for that as well. Now as we covered the basics of Memory Optimized tables and understood the key things to remember while using memory optimized tables, let’s explore more using examples to understand the Performance gains using memory-optimized tables. I will be using the database which i created earlier in this article i.e. InMemoryDB in the below Demo Exercise. USE InMemoryDB GO -- Creating a disk based table CREATE TABLE dbo.Disktable ( Id INT IDENTITY, Name CHAR(40) ) GO CREATE NONCLUSTERED INDEX IX_ID ON dbo.Disktable (Id) GO -- Creating a memory optimized table with similar structure and DURABILITY = SCHEMA_AND_DATA CREATE TABLE dbo.Memorytable_durable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO -- Creating an another memory optimized table with similar structure but DURABILITY = SCHEMA_Only CREATE TABLE dbo.Memorytable_nondurable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_only) GO -- Now insert 100000 records in dbo.Disktable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Disktable(Name) VALUES('sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Do the same inserts for Memory table dbo.Memorytable_durable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_durable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Now finally do the same inserts for Memory table dbo.Memorytable_nondurable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_nondurable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END The above 3 Inserts took 1.20 minutes, 54 secs, and 2 secs respectively to insert 100000 records on my machine with 8 Gb RAM. This proves the point that memory-optimized tables can definitely help businesses achieve better performance for their highly transactional business table and memory- optimized tables with Durability SCHEMA_ONLY is even faster as it does not bother persisting its data to disk which makes it supremely fast. Koenig Solutions is one of the few organizations which offer IT training on SQL Server 2014 and all its updates. Now, I leave the decision on using memory_Optimized tables on you, I hope you like this article and it helped you understand  the fundamentals of IN-Memory OLTP . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Koenig

    Read the article

  • Windows 8.1 Will Start Encrypting Hard Drives By Default: Everything You Need to Know

    - by Chris Hoffman
    Windows 8.1 will automatically encrypt the storage on modern Windows PCs. This will help protect your files in case someone steals your laptop and tries to get at them, but it has important ramifications for data recovery. Previously, “BitLocker” was available on Professional and Enterprise editions of Windows, while “Device Encryption” was available on Windows RT and Windows Phone. Device encryption is included with all editions of Windows 8.1 — and it’s on by default. When Your Hard Drive Will Be Encrypted Windows 8.1 includes “Pervasive Device Encryption.” This works a bit differently from the standard BitLocker feature that has been included in Professional, Enterprise, and Ultimate editions of Windows for the past few versions. Before Windows 8.1 automatically enables Device Encryption, the following must be true: The Windows device “must support connected standby and meet the Windows Hardware Certification Kit (HCK) requirements for TPM and SecureBoot on ConnectedStandby systems.”  (Source) Older Windows PCs won’t support this feature, while new Windows 8.1 devices you pick up will have this feature enabled by default. When Windows 8.1 installs cleanly and the computer is prepared, device encryption is “initialized” on the system drive and other internal drives. Windows uses a clear key at this point, which is removed later when the recovery key is successfully backed up. The PC’s user must log in with a Microsoft account with administrator privileges or join the PC to a domain. If a Microsoft account is used, a recovery key will be backed up to Microsoft’s servers and encryption will be enabled. If a domain account is used, a recovery key will be backed up to Active Directory Domain Services and encryption will be enabled. If you have an older Windows computer that you’ve upgraded to Windows 8.1, it may not support Device Encryption. If you log in with a local user account, Device Encryption won’t be enabled. If you upgrade your Windows 8 device to Windows 8.1, you’ll need to enable device encryption, as it’s off by default when upgrading. Recovering An Encrypted Hard Drive Device encryption means that a thief can’t just pick up your laptop, insert a Linux live CD or Windows installer disc, and boot the alternate operating system to view your files without knowing your Windows password. It means that no one can just pull the hard drive from your device, connect the hard drive to another computer, and view the files. We’ve previously explained that your Windows password doesn’t actually secure your files. With Windows 8.1, average Windows users will finally be protected with encryption by default. However, there’s a problem — if you forget your password and are unable to log in, you’d also be unable to recover your files. This is likely why encryption is only enabled when a user logs in with a Microsoft account (or connects to a domain). Microsoft holds a recovery key, so you can gain access to your files by going through a recovery process. As long as you’re able to authenticate using your Microsoft account credentials — for example, by receiving an SMS message on the cell phone number connected to your Microsoft account — you’ll be able to recover your encrypted data. With Windows 8.1, it’s more important than ever to configure your Microsoft account’s security settings and recovery methods so you’ll be able to recover your files if you ever get locked out of your Microsoft account. Microsoft does hold the recovery key and would be capable of providing it to law enforcement if it was requested, which is certainly a legitimate concern in the age of PRISM. However, this encryption still provides protection from thieves picking up your hard drive and digging through your personal or business files. If you’re worried about a government or a determined thief who’s capable of gaining access to your Microsoft account, you’ll want to encrypt your hard drive with software that doesn’t upload a copy of your recovery key to the Internet, such as TrueCrypt. How to Disable Device Encryption There should be no real reason to disable device encryption. If nothing else, it’s a useful feature that will hopefully protect sensitive data in the real world where people — and even businesses — don’t enable encryption on their own. As encryption is only enabled on devices with the appropriate hardware and will be enabled by default, Microsoft has hopefully ensured that users won’t see noticeable slow-downs in performance. Encryption adds some overhead, but the overhead can hopefully be handled by dedicated hardware. If you’d like to enable a different encryption solution or just disable encryption entirely, you can control this yourself. To do so, open the PC settings app — swipe in from the right edge of the screen or press Windows Key + C, click the Settings icon, and select Change PC settings. Navigate to PC and devices -> PC info. At the bottom of the PC info pane, you’ll see a Device Encryption section. Select Turn Off if you want to disable device encryption, or select Turn On if you want to enable it — users upgrading from Windows 8 will have to enable it manually in this way. Note that Device Encryption can’t be disabled on Windows RT devices, such as Microsoft’s Surface RT and Surface 2. If you don’t see the Device Encryption section in this window, you’re likely using an older device that doesn’t meet the requirements and thus doesn’t support Device Encryption. For example, our Windows 8.1 virtual machine doesn’t offer Device Encryption configuration options. This is the new normal for Windows PCs, tablets, and devices in general. Where files on typical PCs were once ripe for easy access by thieves, Windows PCs are now encrypted by default and recovery keys are sent to Microsoft’s servers for safe keeping. This last part may be a bit creepy, but it’s easy to imagine average users forgetting their passwords — they’d be very upset if they lost all their files because they had to reset their passwords. It’s also an improvement over Windows PCs being completely unprotected by default.     

    Read the article

  • Windows XP Ubuntu Installer (version 11.10) error dialog - Permission Denied

    - by MacGyver
    When installing Ubuntu 11.10 on Windows XP (2nd option in installer), the install failed with popup. How can I fix this? Here is the contents of file "C:\Documents and Settings\Keith\Local Settings\Temp\wubi-11.10-rev241.log". I only pasted the last few lines because of the question size limit. \Temp\pyl1.tmp\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp is a valid Kubuntu CD 03-25 22:29 DEBUG Distro: does not contain C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp is a valid Kubuntu CD 03-25 22:29 DEBUG Distro: does not contain C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp is a valid Xubuntu CD 03-25 22:29 DEBUG Distro: does not contain C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp is a valid Xubuntu CD 03-25 22:29 DEBUG Distro: does not contain C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp is a valid Mythbuntu CD 03-25 22:29 DEBUG Distro: does not contain C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp is a valid Mythbuntu CD 03-25 22:29 DEBUG Distro: does not contain C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether D:\ is a valid Ubuntu CD 03-25 22:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether D:\ is a valid Ubuntu CD 03-25 22:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether D:\ is a valid Kubuntu CD 03-25 22:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether D:\ is a valid Kubuntu CD 03-25 22:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether D:\ is a valid Xubuntu CD 03-25 22:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether D:\ is a valid Xubuntu CD 03-25 22:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether D:\ is a valid Mythbuntu CD 03-25 22:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether D:\ is a valid Mythbuntu CD 03-25 22:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether E:\ is a valid Ubuntu CD 03-25 22:29 DEBUG Distro: does not contain E:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether E:\ is a valid Ubuntu CD 03-25 22:29 DEBUG Distro: does not contain E:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether E:\ is a valid Kubuntu CD 03-25 22:29 DEBUG Distro: does not contain E:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether E:\ is a valid Kubuntu CD 03-25 22:29 DEBUG Distro: does not contain E:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether E:\ is a valid Xubuntu CD 03-25 22:29 DEBUG Distro: does not contain E:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether E:\ is a valid Xubuntu CD 03-25 22:29 DEBUG Distro: does not contain E:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether E:\ is a valid Mythbuntu CD 03-25 22:29 DEBUG Distro: does not contain E:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether E:\ is a valid Mythbuntu CD 03-25 22:29 DEBUG Distro: does not contain E:\casper\filesystem.squashfs 03-25 22:29 DEBUG Distro: checking whether Y:\ is a valid Ubuntu CD 03-25 22:29 INFO Distro: Found a valid CD for Ubuntu: Y:\ 03-25 22:29 INFO root: Running the installer... 03-25 22:29 INFO WinuiPage: appname=wubi, localedir=C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\translations, languages=['en_US', 'en'] 03-25 22:29 INFO WinuiPage: appname=wubi, localedir=C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\translations, languages=['en_US', 'en'] 03-25 22:29 DEBUG WinuiInstallationPage: target_drive=C:, installation_size=18000MB, distro_name=Ubuntu, language=en_US, locale=en_US.UTF-8, username=keith 03-25 22:29 INFO root: Received settings 03-25 22:29 INFO WinuiPage: appname=wubi, localedir=C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\translations, languages=['en_US', 'en'] 03-25 22:29 DEBUG TaskList: # Running tasklist... 03-25 22:29 DEBUG TaskList: ## Running select_target_dir... 03-25 22:29 INFO WindowsBackend: Installing into C:\ubuntu 03-25 22:29 DEBUG TaskList: ## Finished select_target_dir 03-25 22:29 DEBUG TaskList: ## Running create_dir_structure... 03-25 22:29 DEBUG CommonBackend: Creating dir C:\ubuntu 03-25 22:29 DEBUG CommonBackend: Creating dir C:\ubuntu\disks 03-25 22:29 DEBUG CommonBackend: Creating dir C:\ubuntu\install 03-25 22:29 DEBUG CommonBackend: Creating dir C:\ubuntu\install\boot 03-25 22:29 DEBUG CommonBackend: Creating dir C:\ubuntu\disks\boot 03-25 22:29 DEBUG CommonBackend: Creating dir C:\ubuntu\disks\boot\grub 03-25 22:29 DEBUG CommonBackend: Creating dir C:\ubuntu\install\boot\grub 03-25 22:29 DEBUG TaskList: ## Finished create_dir_structure 03-25 22:29 DEBUG TaskList: ## Running uncompress_target_dir... 03-25 22:29 DEBUG TaskList: ## Finished uncompress_target_dir 03-25 22:29 DEBUG TaskList: ## Running create_uninstaller... 03-25 22:29 DEBUG WindowsBackend: Copying uninstaller Y:\wubi.exe -> C:\ubuntu\uninstall-wubi.exe 03-25 22:29 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi UninstallString C:\ubuntu\uninstall-wubi.exe 03-25 22:29 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi InstallationDir C:\ubuntu 03-25 22:29 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayName Ubuntu 03-25 22:29 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayIcon C:\ubuntu\Ubuntu.ico 03-25 22:29 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayVersion 11.10-rev241 03-25 22:29 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi Publisher Ubuntu 03-25 22:29 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi URLInfoAbout http://www.ubuntu.com 03-25 22:29 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi HelpLink http://www.ubuntu.com/support 03-25 22:29 DEBUG TaskList: ## Finished create_uninstaller 03-25 22:29 DEBUG TaskList: ## Running copy_installation_files... 03-25 22:29 DEBUG WindowsBackend: Copying C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\data\custom-installation -> C:\ubuntu\install\custom-installation 03-25 22:29 DEBUG WindowsBackend: Copying C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\winboot -> C:\ubuntu\winboot 03-25 22:29 DEBUG WindowsBackend: Copying C:\DOCUME~1\Keith\LOCALS~1\Temp\pyl1.tmp\data\images\Ubuntu.ico -> C:\ubuntu\Ubuntu.ico 03-25 22:29 DEBUG TaskList: ## Finished copy_installation_files 03-25 22:29 DEBUG TaskList: ## Running get_iso... 03-25 22:29 DEBUG TaskList: New task copy_file 03-25 22:29 DEBUG TaskList: ### Running copy_file... 03-25 22:32 ERROR TaskList: [Errno 13] Permission denied Traceback (most recent call last): File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\utils.py", line 202, in copy_file IOError: [Errno 13] Permission denied 03-25 22:32 DEBUG TaskList: # Cancelling tasklist 03-25 22:32 DEBUG TaskList: New task check_iso 03-25 22:32 ERROR root: [Errno 13] Permission denied Traceback (most recent call last): File "\lib\wubi\application.py", line 58, in run File "\lib\wubi\application.py", line 130, in select_task File "\lib\wubi\application.py", line 205, in run_cd_menu File "\lib\wubi\application.py", line 120, in select_task File "\lib\wubi\application.py", line 158, in run_installer File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\utils.py", line 202, in copy_file IOError: [Errno 13] Permission denied 03-25 22:32 ERROR TaskList: 'WindowsBackend' object has no attribute 'iso_path' Traceback (most recent call last): File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\backend.py", line 579, in get_iso File "\lib\wubi\backends\common\backend.py", line 565, in use_iso AttributeError: 'WindowsBackend' object has no attribute 'iso_path' 03-25 22:32 DEBUG TaskList: # Cancelling tasklist 03-25 22:32 DEBUG TaskList: # Finished tasklist

    Read the article

  • SortedDictionary and SortedList

    - by Simon Cooper
    Apart from Dictionary<TKey, TValue>, there's two other dictionaries in the BCL - SortedDictionary<TKey, TValue> and SortedList<TKey, TValue>. On the face of it, these two classes do the same thing - provide an IDictionary<TKey, TValue> interface where the iterator returns the items sorted by the key. So what's the difference between them, and when should you use one rather than the other? (as in my previous post, I'll assume you have some basic algorithm & datastructure knowledge) SortedDictionary We'll first cover SortedDictionary. This is implemented as a special sort of binary tree called a red-black tree. Essentially, it's a binary tree that uses various constraints on how the nodes of the tree can be arranged to ensure the tree is always roughly balanced (for more gory algorithmical details, see the wikipedia link above). What I'm concerned about in this post is how the .NET SortedDictionary is actually implemented. In .NET 4, behind the scenes, the actual implementation of the tree is delegated to a SortedSet<KeyValuePair<TKey, TValue>>. One example tree might look like this: Each node in the above tree is stored as a separate SortedSet<T>.Node object (remember, in a SortedDictionary, T is instantiated to KeyValuePair<TKey, TValue>): class Node { public bool IsRed; public T Item; public SortedSet<T>.Node Left; public SortedSet<T>.Node Right; } The SortedSet only stores a reference to the root node; all the data in the tree is accessed by traversing the Left and Right node references until you reach the node you're looking for. Each individual node can be physically stored anywhere in memory; what's important is the relationship between the nodes. This is also why there is no constructor to SortedDictionary or SortedSet that takes an integer representing the capacity; there are no internal arrays that need to be created and resized. This may seen trivial, but it's an important distinction between SortedDictionary and SortedList that I'll cover later on. And that's pretty much it; it's a standard red-black tree. Plenty of webpages and datastructure books cover the algorithms behind the tree itself far better than I could. What's interesting is the comparions between SortedDictionary and SortedList, which I'll cover at the end. As a side point, SortedDictionary has existed in the BCL ever since .NET 2. That means that, all through .NET 2, 3, and 3.5, there has been a bona-fide sorted set class in the BCL (called TreeSet). However, it was internal, so it couldn't be used outside System.dll. Only in .NET 4 was this class exposed as SortedSet. SortedList Whereas SortedDictionary didn't use any backing arrays, SortedList does. It is implemented just as the name suggests; two arrays, one containing the keys, and one the values (I've just used random letters for the values): The items in the keys array are always guarenteed to be stored in sorted order, and the value corresponding to each key is stored in the same index as the key in the values array. In this example, the value for key item 5 is 'z', and for key item 8 is 'm'. Whenever an item is inserted or removed from the SortedList, a binary search is run on the keys array to find the correct index, then all the items in the arrays are shifted to accomodate the new or removed item. For example, if the key 3 was removed, a binary search would be run to find the array index the item was at, then everything above that index would be moved down by one: and then if the key/value pair {7, 'f'} was added, a binary search would be run on the keys to find the index to insert the new item, and everything above that index would be moved up to accomodate the new item: If another item was then added, both arrays would be resized (to a length of 10) before the new item was added to the arrays. As you can see, any insertions or removals in the middle of the list require a proportion of the array contents to be moved; an O(n) operation. However, if the insertion or removal is at the end of the array (ie the largest key), then it's only O(log n); the cost of the binary search to determine it does actually need to be added to the end (excluding the occasional O(n) cost of resizing the arrays to fit more items). As a side effect of using backing arrays, SortedList offers IList Keys and Values views that simply use the backing keys or values arrays, as well as various methods utilising the array index of stored items, which SortedDictionary does not (and cannot) offer. The Comparison So, when should you use one and not the other? Well, here's the important differences: Memory usage SortedDictionary and SortedList have got very different memory profiles. SortedDictionary... has a memory overhead of one object instance, a bool, and two references per item. On 64-bit systems, this adds up to ~40 bytes, not including the stored item and the reference to it from the Node object. stores the items in separate objects that can be spread all over the heap. This helps to keep memory fragmentation low, as the individual node objects can be allocated wherever there's a spare 60 bytes. In contrast, SortedList... has no additional overhead per item (only the reference to it in the array entries), however the backing arrays can be significantly larger than you need; every time the arrays are resized they double in size. That means that if you add 513 items to a SortedList, the backing arrays will each have a length of 1024. To conteract this, the TrimExcess method resizes the arrays back down to the actual size needed, or you can simply assign list.Capacity = list.Count. stores its items in a continuous block in memory. If the list stores thousands of items, this can cause significant problems with Large Object Heap memory fragmentation as the array resizes, which SortedDictionary doesn't have. Performance Operations on a SortedDictionary always have O(log n) performance, regardless of where in the collection you're adding or removing items. In contrast, SortedList has O(n) performance when you're altering the middle of the collection. If you're adding or removing from the end (ie the largest item), then performance is O(log n), same as SortedDictionary (in practice, it will likely be slightly faster, due to the array items all being in the same area in memory, also called locality of reference). So, when should you use one and not the other? As always with these sort of things, there are no hard-and-fast rules. But generally, if you: need to access items using their index within the collection are populating the dictionary all at once from sorted data aren't adding or removing keys once it's populated then use a SortedList. But if you: don't know how many items are going to be in the dictionary are populating the dictionary from random, unsorted data are adding & removing items randomly then use a SortedDictionary. The default (again, there's no definite rules on these sort of things!) should be to use SortedDictionary, unless there's a good reason to use SortedList, due to the bad performance of SortedList when altering the middle of the collection.

    Read the article

  • Using Sitecore RenderingContext Parameters as MVC controller action arguments

    - by Kyle Burns
    I have been working with the Technical Preview of Sitecore 6.6 on a project and have been for the most part happy with the way that Sitecore (which truly is an MVC implementation unto itself) has been expanded to support ASP.NET MVC. That said, getting up to speed with the combined platform has not been entirely without stumbles and today I want to share one area where Sitecore could have really made things shine from the "it just works" perspective. A couple days ago I was asked by a colleague about the usage of the "Parameters" field that is defined on Sitecore's Controller Rendering data template. Based on the standard way that Sitecore handles a field named Parameters, I was able to deduce that the field expected key/value pairs separated by the "&" character, but beyond that I wasn't sure and didn't see anything from a documentation perspective to guide me, so it was time to dig and find out where the data in the field was made available. My first thought was that it would be really nice if Sitecore handled the parameters in this field consistently with the way that ASP.NET MVC handles the various parameter collections on the HttpRequest object and automatically maps them to parameters of the action method executing. Being the hopeful sort, I configured a name/value pair on one of my renderings, added a parameter with matching name to the controller action and fired up the bugger to see... that the parameter was not populated. Having established that the field's value was not going to be presented to me the way that I had hoped it would, the next assumption that I would work on was that Sitecore would handle this field similar to how they handle other similar data and would plug it into some ambient object that I could reference from within the controller method. After a considerable amount of guessing, testing, and cracking code open with Redgate's Reflector (a must-have companion to Sitecore documentation), I found that the most direct way to access the parameter was through the ambient RenderingContext object using code similar to: string myArgument = string.Empty; var rc = Sitecore.Mvc.Presentation.RenderingContext.CurrentOrNull; if (rc != null) {     var parms = rc.Rendering.Parameters;     myArgument = parms["myArgument"]; } At this point, we know how this field is used out of the box from Sitecore and can provide information from Sitecore's Content Editor that will be available when the controller action is executing, but it feels a little dirty. In order to properly test the action method I would have to do a lot of setup work and possible use an isolation framework such as Pex and Moles to get at a value that my action method is dependent upon. Notice I said that my method is dependent upon the value but in order to meet that dependency I've accepted another dependency upon Sitecore's RenderingContext.  I'm a big believer in, when possible, ensuring that any piece of code explicitly advertises dependencies using the method signature, so I found myself still wanting this to work the same as if the parameters were in the request route, querystring, or form by being able to add a myArgument parameter to the action method and have this parameter populated by the framework. Lucky for us, the ASP.NET MVC framework is extremely flexible and provides some easy to grok and use extensibility points. ASP.NET MVC is able to provide information from the request as input parameters to controller actions because it uses objects which implement an interface called IValueProvider and have been registered to service the application. The most basic statement of responsibility for an IValueProvider implementation is "I know about some data which is indexed by key. If you hand me the key for a piece of data that I know about I give you that data". When preparing to invoke a controller action, the framework queries registered IValueProvider implementations with the name of each method argument to see if the ValueProvider can supply a value for the parameter. (the rest of this post will assume you're working along and make a lot more sense if you do) Let's pull Sitecore out of the equation for a second to simplify things and create an extremely simple IValueProvider implementation. For this example, I first create a new ASP.NET MVC3 project in Visual Studio, selecting "Internet Application" and otherwise taking defaults (I'm assuming that anyone reading this far in the post either already knows how to do this or will need to take a quick run through one of the many available basic MVC tutorials such as the MVC Music Store). Once the new project is created, go to the Index action of HomeController.  This action sets a Message property on the ViewBag to "Welcome to ASP.NET MVC!" and invokes the View, which has been coded to display the Message. For our example, we will remove the hard coded message from this controller (although we'll leave it just as hard coded somewhere else - this is sample code). For the first step in our exercise, add a string parameter to the Index action method called welcomeMessage and use the value of this argument to set the ViewBag.Message property. The updated Index action should look like: public ActionResult Index(string welcomeMessage) {     ViewBag.Message = welcomeMessage;     return View(); } This represents the entirety of the change that you will make to either the controller or view.  If you run the application now, the home page will display and no message will be presented to the user because no value was supplied to the Action method. Let's now write a ValueProvider to ensure this parameter gets populated. We'll start by creating a new class called StaticValueProvider. When the class is created, we'll update the using statements to ensure that they include the following: using System.Collections.Specialized; using System.Globalization; using System.Web.Mvc; With the appropriate using statements in place, we'll update the StaticValueProvider class to implement the IValueProvider interface. The System.Web.Mvc library already contains a pretty flexible dictionary-like implementation called NameValueCollectionValueProvider, so we'll just wrap that and let it do most of the real work for us. The completed class looks like: public class StaticValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider;     public StaticValueProvider(ControllerContext controllerContext)     {         var parameters = new NameValueCollection();         parameters.Add("welcomeMessage", "Hello from the value provider!");         _wrappedProvider = new NameValueCollectionValueProvider(parameters, CultureInfo.InvariantCulture);     }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } Notice that the only entry in the collection matches the name of the argument to our HomeController's Index action.  This is the important "secret sauce" that will make things work. We've got our new value provider now, but that's not quite enough to be finished. Mvc obtains IValueProvider instances using factories that are registered when the application starts up. These factories extend the abstract ValueProviderFactory class by initializing and returning the appropriate implementation of IValueProvider from the GetValueProvider method. While I wouldn't do so in production code, for the sake of this example, I'm going to add the following class definition within the StaticValueProvider.cs source file: public class StaticValueProviderFactory : ValueProviderFactory {     public override IValueProvider GetValueProvider(ControllerContext controllerContext)     {         return new StaticValueProvider(controllerContext);     } } Now that we have a factory, we can register it by adding the following line to the end of the Application_Start method in Global.asax.cs: ValueProviderFactories.Factories.Add(new StaticValueProviderFactory()); If you've done everything right to this point, you should be able to run the application and be presented with the home page reading "Hello from the value provider!". Now that you have the basics of the IValueProvider down, you have everything you need to enhance your Sitecore MVC implementation by adding an IValueProvider that exposes values from the ambient RenderingContext's Parameters property. I'll provide the code for the IValueProvider implementation (which should look VERY familiar) and you can use the work we've already done as a reference to create and register the factory: public class RenderingContextValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider = null;     public RenderingContextValueProvider(ControllerContext controllerContext)     {         var collection = new NameValueCollection();         var rc = RenderingContext.CurrentOrNull;         if (rc != null && rc.Rendering != null)         {             foreach(var parameter in rc.Rendering.Parameters)             {                 collection.Add(parameter.Key, parameter.Value);             }         }         _wrappedProvider = new NameValueCollectionValueProvider(collection, CultureInfo.InvariantCulture);         }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } In this post I've discussed the MVC IValueProvider used to map data to controller action method arguments and how this can be integrated into your Sitecore 6.6 MVC solution.

    Read the article

  • Open GL stars are not rendering

    - by Darestium
    I doing Nehe's Open GL Lesson 9. I'm using SFML for windowing, the strange thing is no stars are rendering. #include <SFML/System.hpp> #include <SFML/Window.hpp> #include <SFML/Graphics.hpp> #include <iostream> void processEvents(sf::Window *app); void processInput(sf::Window *app); void renderGlScene(sf::Window *app); void init(); int loadResources(); const int NUM_OF_STARS = 50; float triRot = 0.0f; float quadRot = 0.0f; bool twinkle = false; bool tKey = false; float zoom = 15.0f; float tilt = 90.0f; float spin = 0.0f; unsigned int loop; unsigned int texture_handle[1]; typedef struct { int r, g, b; float distance; float angle; } stars; stars star[NUM_OF_STARS]; int main() { sf::Window app(sf::VideoMode(800, 600, 32), "Nehe Lesson 9"); app.UseVerticalSync(false); init(); if (loadResources() == -1) { return EXIT_FAILURE; } while (app.IsOpened()) { processEvents(&app); processInput(&app); renderGlScene(&app); app.Display(); } return EXIT_SUCCESS; } int loadResources() { sf::Image img_data; // Load Texture if (!img_data.LoadFromFile("data/images/star.bmp")) { std::cout << "Could not load data/images/star.bmp"; return -1; } // Generate 1 texture glGenTextures(1, &texture_handle[0]); // Linear filtering glBindTexture(GL_TEXTURE_2D, texture_handle[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, img_data.GetWidth(), img_data.GetHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img_data.GetPixelsPtr()); return 0; } void processInput(sf::Window *app) { const sf::Input& input = app->GetInput(); if (input.IsKeyDown(sf::Key::T) && !tKey) { tKey = true; twinkle = !twinkle; } if (!input.IsKeyDown(sf::Key::T)) { tKey = false; } if (input.IsKeyDown(sf::Key::Up)) { tilt -= 0.05f; } if (input.IsKeyDown(sf::Key::Down)) { tilt += 0.05f; } if (input.IsKeyDown(sf::Key::PageUp)) { zoom -= 0.02f; } if (input.IsKeyDown(sf::Key::Up)) { zoom += 0.02f; } } void init() { glClearDepth(1.f); glClearColor(0.f, 0.f, 0.f, 0.f); // Enable texturing glEnable(GL_TEXTURE_2D); //glDepthMask(GL_TRUE); // Setup a perpective projection glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.f, 1.f, 1.f, 500.f); glShadeModel(GL_SMOOTH); glBlendFunc(GL_SRC_ALPHA, GL_ONE); glEnable(GL_BLEND); for (loop = 0; loop < NUM_OF_STARS; loop++) { star[loop].distance = (float)loop / NUM_OF_STARS * 5.0f; // Calculate distance from the centre // Give stars random rgb value star[loop].r = rand() % 256; star[loop].g = rand() % 256; star[loop].b = rand() % 256; } } void processEvents(sf::Window *app) { sf::Event event; while (app->GetEvent(event)) { if (event.Type == sf::Event::Closed) { app->Close(); } if (event.Type == sf::Event::KeyPressed && event.Key.Code == sf::Key::Escape) { app->Close(); } } } void renderGlScene(sf::Window *app) { app->SetActive(); // Clear color depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // Select texture glBindTexture(GL_TEXTURE_2D, texture_handle[0]); for (loop = 0; loop < NUM_OF_STARS; loop++) { glLoadIdentity(); // Reset The View Before We Draw Each Star glTranslatef(0.0f, 0.0f, zoom); // Zoom Into The Screen (Using The Value In 'zoom') glRotatef(tilt, 1.0f, 0.0f, 0.0f); // Tilt The View (Using The Value In 'tilt') glRotatef(star[loop].angle, 0.0f, 1.0f, 0.0f); // Rotate To The Current Stars Angle glTranslatef(star[loop].distance, 0.0f, 0.0f); // Move Forward On The X Plane glRotatef(-star[loop].angle,0.0f,1.0f,0.0f); // Cancel The Current Stars Angle glRotatef(-tilt,1.0f,0.0f,0.0f); // Cancel The Screen Tilt if (twinkle) { glColor4ub(star[(NUM_OF_STARS - loop) - 1].r, star[(NUM_OF_STARS - loop)-1].g, star[(NUM_OF_STARS - loop) - 1].b, 255); glBegin(GL_QUADS); // Begin Drawing The Textured Quad glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f); glEnd(); // Done Drawing The Textured Quad } glRotatef(spin,0.0f,0.0f,1.0f); // Rotate The Star On The Z Axis // Assign A Color Using Bytes glColor4ub(star[loop].r, star[loop].g, star[loop].b, 255); glBegin(GL_QUADS); // Begin Drawing The Textured Quad glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f,-1.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f,-1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f); glEnd(); // Done Drawing The Textured Quad spin += 0.01f; // Used To Spin The Stars star[loop].angle += (float)loop / NUM_OF_STARS; // Changes The Angle Of A Star star[loop].distance -= 0.01f; // Changes The Distance Of A Star if (star[loop].distance < 0.0f) { star[loop].distance += 5.0f; // Move The Star 5 Units From The Center star[loop].r = rand() % 256; // Give It A New Red Value star[loop].g = rand() % 256; // Give It A New Green Value star[loop].b = rand() % 256; // Give It A New Blue Value } } } I've looked over the code atleast 10 times now and I can't figure out the problem. Any help would be much appreciated.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

< Previous Page | 183 184 185 186 187 188 189 190 191 192 193 194  | Next Page >