Search Results

Search found 30117 results on 1205 pages for 'thread specific storage'.

Page 187/1205 | < Previous Page | 183 184 185 186 187 188 189 190 191 192 193 194  | Next Page >

  • eSTEP Newsletter November 2012

    - by mseika
    Dear Partners,We would like to inform you that the November '12 issue of our Newsletter is now available.The issue contains information to the following topics: News from CorpOracle Celebrates 25 Years of SPARC Innovation; IDC White Papers Finds Growing Customer Comfort with Oracle Solaris Operating System; Oracle Buys Instantis; Pillar Axiom OpenWorld Highlights; Announcement Oracle Solaris 11.1 Availability (data sheet, new features, FAQ's, corporate pages, internal blog, download links, Oracle shop); Announcing StorageTek VSM 6; Announcement Oracle Solaris Cluster 4.1 Availability (new features, FAQ's, cluster corp page, download site, shop for media); Announcement: Oracle Database Appliance 2.4 patch update becomes available Technical SectionOracle White papers on SPARC SuperCluster; Understanding Parallel Execution; With LTFS, Tape is Gaining Storage Ground with additional link to How to Create Oracle Solaris 11 Zones with Oracle Enterprise Manager Ops Center; Provisioning Capabilities of Oracle Enterprise Ops Center Manager 12c; Maximizing your SPARC T4 Oracle Solaris Application Performance with the following articles: SPARC T4 Servers Set World Record on Siebel CRM 8.1.1.4 Benchmark, SPARC T4-Based Highly Scalable Solutions Posts New World Record on SPECjEnterprise2010 Benchmark, SPARC T4 Server Delivers Outstanding Performance on Oracle Business Intelligence Enterprise Edition 11g; Oracle SUN ZFS Storage Appliance Reference Architecture for VMware vSphere4; Why 4K? - George Wilson's ZFS Day Talk; Pillar Axiom 600 with connected subjects: Oracle Introduces Pillar Axiom Release 5 Storage System Software, Driving down the high cost of Storage, This Provisioning with Pilar Axiom 600, Pillar Axiom 600- System overview and architecture; Migrate to Oracle;s SPARC Systems; Top 5 Reasons to Migrate to Oracle's SPARC Systems Learning & EventsRecently delivered Techcasts: Learning Paths; Oracle Database 11g: Database Administration (New) - Learning Path; Webcast: Drill Down on Disaster Recovery; What are Oracle Users Doing to Improve Availability and Disaster Recovery; SAP NetWeaver and Oracle Exadata Database Machine ReferencesARTstor Selects Oracle’s Sun ZFS Storage 7420 Appliances To Support Rapidly Growing Digital Image Library, Scottish Widows Cuts Sales Administration 20%, Reduces Time to Prepare Reports by 75%, and Achieves Return on Investment in First Year, Oracle's CRM Cloud Service Powers Innovation: Applications on Demand; Technology on Demand, How toHow to Migrate Your Data to Oracle Solaris 11 Using Shadow Migration; Using svcbundle to Create SMF Manifests and Profiles in Oracle Solaris 11; How to prepare a Sun ZFS Storage Appliance to Serve as a Storage Devise with Oracle Enterprise Manager Ops Center 12c; Command Summary: Basic Operations with the Image Packaging System In Oracle Solaris 11; How to Update to Oracle Solaris 11.1 Using the Image Packaging System, How to Migrate Oracle Database from Oracle Solaris 8 to Oracle Solaris 11; Setting Up, Configuring, and Using an Oracle WebLogic Server Cluster; Ease the Chaos with Automated Patching: Oracle Enterprise Manager Cloud Control 12c; Book excerpt: Oracle Exalogic Elastic Cloud HandbookYou find the Newsletter on our portal under eSTEP News ---> Latest Newsletter. You will need to provide your email address and the pin below to get access. Link to the portal is shown below.URL: http://launch.oracle.com/PIN: eSTEP_2011Previous published Newsletters can be found under the Archived Newsletters section and more useful information under the Events, Download and Links tab. Feel free to explore and any feedback is appreciated to help us improve the service and information we deliver.Thanks and best regards,Partner HW Enablement EMEA

    Read the article

  • Oracle NoSQL Database: Cleaner Performance

    - by Charles Lamb
    In an earlier post I noted that Berkeley DB Java Edition cleaner performance had improved significantly in release 5.x. From an Oracle NoSQL Database point of view, this is important because Berkeley DB Java Edition is the core storage engine for Oracle NoSQL Database. Many contemporary NoSQL Databases utilize log based (i.e. append-only) storage systems and it is well-understood that these architectures also require a "cleaning" or "compaction" mechanism (effectively a garbage collector) to free up unused space. 10 years ago when we set out to write a new Berkeley DB storage architecture for the BDB Java Edition ("JE") we knew that the corresponding compaction mechanism would take years to perfect. "Cleaning", or GC, is a hard problem to solve and it has taken all of those years of experience, bug fixes, tuning exercises, user deployment, and user feedback to bring it to the mature point it is at today. Reports like Vinoth Chandar's where he observes a 20x improvement validate the maturity of JE's cleaner. Cleaner performance has a direct impact on predictability and throughput in Oracle NoSQL Database. A cleaner that is too aggressive will consume too many resources and negatively affect system throughput. A cleaner that is not aggressive enough will allow the disk storage to become inefficient over time. It has to Work well out of the box, and Needs to be configurable so that customers can tune it for their specific workloads and requirements. The JE Cleaner has been field tested in production for many years managing instances with hundreds of GBs to TBs of data. The maturity of the cleaner and the entire underlying JE storage system is one of the key advantages that Oracle NoSQL Database brings to the table -- we haven't had to reinvent the wheel.

    Read the article

  • New Marketing Assets Available

    - by Cinzia Mascanzoni
    NEW translated demand generation materials available for the following Oracle Marketing Kits, designed to help partners generate sales around Oracle's solutions: Improve Database Capacity Management with Oracle Storage and Hybrid Columnar Compression Accelerating Database Test & Development with Sun ZFS Storage Appliance Upgrade SAN Storage to Oracle Pillar Axiom SPARC Refresh with Oracle Solaris Operating System SPARC Server Refresh: The Next Level of Datacenter Performance with Oracle’s New SPARC Servers Oracle Server Virtualization Oracle Desktop Virtualization

    Read the article

  • Can I avoid a threaded UDP socket in Python dropping data?

    - by 666craig
    First off, I'm new to Python and learning on the job, so be gentle! I'm trying to write a threaded Python app for Windows that reads data from a UDP socket (thread-1), writes it to file (thread-2), and displays the live data (thread-3) to a widget (gtk.Image using a gtk.gdk.pixbuf). I'm using queues for communicating data between threads. My problem is that if I start only threads 1 and 3 (so skip the file writing for now), it seems that I lose some data after the first few samples. After this drop it looks fine. Even by letting thread 1 complete before running thread 3, this apparent drop is still there. Apologies for the length of code snippet (I've removed the thread that writes to file), but I felt removing code would just prompt questions. Hope someone can shed some light :-) import socket import threading import Queue import numpy import gtk gtk.gdk.threads_init() import gtk.glade import pygtk class readFromUDPSocket(threading.Thread): def __init__(self, socketUDP, readDataQueue, packetSize, numScans): threading.Thread.__init__(self) self.socketUDP = socketUDP self.readDataQueue = readDataQueue self.packetSize = packetSize self.numScans = numScans def run(self): for scan in range(1, self.numScans + 1): buffer = self.socketUDP.recv(self.packetSize) self.readDataQueue.put(buffer) self.socketUDP.close() print 'myServer finished!' class displayWithGTK(threading.Thread): def __init__(self, displayDataQueue, image, viewArea): threading.Thread.__init__(self) self.displayDataQueue = displayDataQueue self.image = image self.viewWidth = viewArea[0] self.viewHeight = viewArea[1] self.displayData = numpy.zeros((self.viewHeight, self.viewWidth, 3), dtype=numpy.uint16) def run(self): scan = 0 try: while True: if not scan % self.viewWidth: scan = 0 buffer = self.displayDataQueue.get(timeout=0.1) self.displayData[:, scan, 0] = numpy.fromstring(buffer, dtype=numpy.uint16) self.displayData[:, scan, 1] = numpy.fromstring(buffer, dtype=numpy.uint16) self.displayData[:, scan, 2] = numpy.fromstring(buffer, dtype=numpy.uint16) gtk.gdk.threads_enter() self.myPixbuf = gtk.gdk.pixbuf_new_from_data(self.displayData.tostring(), gtk.gdk.COLORSPACE_RGB, False, 8, self.viewWidth, self.viewHeight, self.viewWidth * 3) self.image.set_from_pixbuf(self.myPixbuf) self.image.show() gtk.gdk.threads_leave() scan += 1 except Queue.Empty: print 'myDisplay finished!' pass def quitGUI(obj): print 'Currently active threads: %s' % threading.enumerate() gtk.main_quit() if __name__ == '__main__': # Create socket (IPv4 protocol, datagram (UDP)) and bind to address socketUDP = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) host = '192.168.1.5' port = 1024 socketUDP.bind((host, port)) # Data parameters samplesPerScan = 256 packetsPerSecond = 1200 packetSize = 512 duration = 1 # For now, set a fixed duration to log data numScans = int(packetsPerSecond * duration) # Create array to store data data = numpy.zeros((samplesPerScan, numScans), dtype=numpy.uint16) # Create queue for displaying from readDataQueue = Queue.Queue(numScans) # Build GUI from Glade XML file builder = gtk.Builder() builder.add_from_file('GroundVue.glade') window = builder.get_object('mainwindow') window.connect('destroy', quitGUI) view = builder.get_object('viewport') image = gtk.Image() view.add(image) viewArea = (1200, samplesPerScan) # Instantiate & start threads myServer = readFromUDPSocket(socketUDP, readDataQueue, packetSize, numScans) myDisplay = displayWithGTK(readDataQueue, image, viewArea) myServer.start() myDisplay.start() gtk.gdk.threads_enter() gtk.main() gtk.gdk.threads_leave() print 'gtk.main finished!'

    Read the article

  • "Launching Performance "

    Storage bandwidth has limited the performance of growing data warehouses. Read how Oracle Exadata overcomes storage bandwidth limitations and delivers extreme computing power to the HP Oracle Database Machine and the HP Oracle Exadata Storage Server.

    Read the article

  • Shrinking a Linux OEL 6 virtual Box image (vdi) hosted on Windows 7

    - by AndyBaker
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Recently for a customer demonstration there was a requirement to build a virtual box image with Oracle Enterprise Manager Cloud Control 12c. This meant installing OEL Linux 6 as well as creating an 11gr2 database and Oracle Enterprise Manager Cloud Control 12c on a single virtual box. Storage was sized at 300Gb using dynamically allocated storage for the virtual box and about 10Gb was used for Linux and the initial build. After copying over all the binaries and performing all the installations the virtual box became in the region of 80Gb used size on the host operating system, however internally it only really needed around 20Gb. This meant 60Gb had been used when copying over all the binaries and although now free was not returned to the host operating system due to the growth of the virtual box storage '.vdi' file.  Once the ‘vdi’ storage had grown it is not shrunk automatically afterwards. Space is always tight on the laptop so it was desirable to shrink the virtual box back to a minimal size and here is the process that was followed. Install 'zerofree' Linux package into the OEL6 virtual box The RPM was downloaded and installed from a site similar to below; http://rpm.pbone.net/index.php3/stat/4/idpl/12548724/com/zerofree-1.0.1-5.el5.i386.rpm.html A simple internet search for ’zerofree Linux rpm’ was easy to perform and find the required rpm. Execute 'zerofree' package on the desired Linux file system To execute this package the desired file system needs to be mounted read only. The following steps outline this process. As root: # umount /u01 As root:# mount –o ro –t ext4 /u01 NOTE: The –o is options and the –t is the file system type found in the /etc/fstab. Next run zerofree against the required storage, this is located by a simple ‘df –h’ command to see the device associated with the mount. As root:# zerofree –v /dev/sda11   NOTE: This takes a while to run but the ‘-v’ option gives feedback on the process. What does Zerofree do? Zerofree’s purpose is to go through the file system and zero out any unused sectors on the volume so that the later stages can shrink the virtual box storage obtaining the free space back. When zerofree has completed the virtual box can be shutdown as the last stage is performed on the physical host where the virtual box vdi files are located. Compact the virtual box ‘.vdi’ files The final stage is to get virtual box to shrink back the storage that has been correctly flagged as free space after executing zerofree. On the physical host in this case a windows 7 laptop a DOS window was opened. At the prompt the first step is to put the virtual box binaries onto the PATH. C:\ >echo %PATH%   The above shows the current value of the PATH environment variable. C:\ >set PATH=%PATH%;c:\program files\Oracle\Virtual Box;   The above adds onto the existing path the virtual box binary location. C:\>cd c:\Users\xxxx\OEL6.1   The above changes directory to where the VDI files are located for the required virtual box machine. C:\Users\xxxxx\OEL6.1>VBoxManage.exe modifyhd zzzzzz.vdi compact  NOTE: The zzzzzz.vdi is the name of the required vdi file to shrink. Finally the above command is executed to perform the compact operation on the ‘.vdi’ file(s). This also takes a long time to complete but shrinks the VDI file back to a minimum size. In the case of the demonstration virtual box OEM12c this reduced the virtual box to 20Gb from 80Gb which was a great outcome to achieve.

    Read the article

  • Windows 2012 Cluster on P6300 SCSI-3 Persistent Reservation issues

    - by Bruno J. Melo
    Scenario: 1 HP 6300 with latest XCS version 1 Command View 10.1 + with hosts defined as Windows 2008 2 BL460c Gen8 Servers with SPP 2012.10 and Windows Server 2012 Datacenter Edition with all the updates + MPIO feature enabled DSM v4.03.00 Cluster Analyser Tool triggers this error: Test Disk 0 does not support SCSI-3 Persistent Reservations commands needed to support clustered Storage Pools. Some storage devices require specific firmware versions or settings to function properly with failover clusters. Please contact your storage administrator or storage vendor to check the configuration of the storage to allow it to function properly with failover clusters. Any ideas? Thanks for your help!

    Read the article

  • Adding an existing Control Domain to a Server Pool

    - by Owen Allen
    I got a question about LDoms: "Is it possible to move a Control Domain built through Ops Center with pre-existing LDoms into a server pool? If so, do I need to delete and recreate anything?" Yes, you can do this. You have to stop the LDom guests, and then you can add the CDom to a Server Pool. If the guests are using shared storage, you should be able to bring them up in the Server Pool. If the guests are not on shared storage, you can use the Migrate Storage option to bring their storage in.

    Read the article

  • Creating a NAS Box with an Existing System

    <B>Linux Magazine:</B> "Standalone Network Attached Storage (NAS) servers provide file level storage to heterogeneous clients, enabling shared storage. This article presents the basics of NAS units (NFS servers) and how you can create one from an existing system"

    Read the article

  • Pillar Axiom OpenWorld Highlights

    - by uwes
    During the Storage General Session at Oracle OpenWorld Conference 2012 in San Francisco, the following Axiom-related announcements were made: Oracle Platinum Services for Axiom 600: Extending Oracle's Platinum Services to Axiom 600 as a standalone product –  the same level of service and support you get with Exadata – 24/7 fault monitoring, dedicated response and escalation management to meet enterprise-grade SLA’s, patch planning and management. Oracle Enterprise Manager Axiom Plug-in: Allowing DBA's to manage, maintain, monitor and provision the Axiom 600 storage system from Oracle EM. Oracle Virtual Machine Axiom Plug-in: Allowing Oracle VM and System Administrators to manage, maintain, monitor and provision the Axiom 600 storage system from Oracle VM using Storage Connect. Oracle Axiom Data Protection Manager 3.1: Leveraging Axiom's Copy Services, System Administrators can automatically create Application Consistent Clones of critical Windows and Oracle DataBase environments for quick recovery. For More Information Go To: Oracle.com Pillar Axiom Page Oracle Technology Network SAN Page

    Read the article

  • How can I make the storage of C++ lambda objects more efficient?

    - by Peter Ruderman
    I've been thinking about storing C++ lambda's lately. The standard advice you see on the Internet is to store the lambda in a std::function object. However, none of this advice ever considers the storage implications. It occurred to me that there must be some seriously black voodoo going on behind the scenes to make this work. Consider the following class that stores an integer value: class Simple { public: Simple( int value ) { puts( "Constructing simple!" ); this->value = value; } Simple( const Simple& rhs ) { puts( "Copying simple!" ); this->value = rhs.value; } Simple( Simple&& rhs ) { puts( "Moving simple!" ); this->value = rhs.value; } ~Simple() { puts( "Destroying simple!" ); } int Get() const { return this->value; } private: int value; }; Now, consider this simple program: int main() { Simple test( 5 ); std::function<int ()> f = [test] () { return test.Get(); }; printf( "%d\n", f() ); } This is the output I would hope to see from this program: Constructing simple! Copying simple! Moving simple! Destroying simple! 5 Destroying simple! Destroying simple! First, we create the value test. We create a local copy on the stack for the temporary lambda object. We then move the temporary lambda object into memory allocated by std::function. We destroy the temporary lambda. We print our output. We destroy the std::function. And finally, we destroy the test object. Needless to say, this is not what I see. When I compile this on Visual C++ 2010 (release or debug mode), I get this output: Constructing simple! Copying simple! Copying simple! Copying simple! Copying simple! Destroying simple! Destroying simple! Destroying simple! 5 Destroying simple! Destroying simple! Holy crap that's inefficient! Not only did the compiler fail to use my move constructor, but it generated and destroyed two apparently superfluous copies of the lambda during the assignment. So, here finally are the questions: (1) Is all this copying really necessary? (2) Is there some way to coerce the compiler into generating better code? Thanks for reading!

    Read the article

  • how to differentiate between two threads

    - by mithun1538
    Hello everyone, I have the following code in my program: Thread getUsersist, getChatUsers; getUsersList = new Thread(this, "getOnlineUsers"); getUsersList.start(); getChatUsers = new Thread(this, "getChatUsers"); getChatUsers.start(); In run(), I wish to know which thread is using run(). If its "getOnlineUsers" i will do something, If it is "getChatUsers" I will do something else. So how do I know which thread is using run()?

    Read the article

  • Java Download Concurrent Data

    - by xger86x
    Hi, i'm developing an app which download map tiles around different places in a city. To do this, i have one thread for each place in which i select the tiles and create a thread to download each. Well, the question is how to avoid creating a thread for a tile that already exists in the thread pool. Should not just check if the file exists, since it is possible that the thread for that tile already exists (other place already need that tile) but the file has not been created- Any idea? Thanks

    Read the article

  • How to know when a specific process is stuck?

    - by Carlos Blanco
    Is there a way to know when a specific process is "stuck" in Java? I'm running an external application from my java program. Sometimes, this app hangs. I would like to know when this app stops working so I can kill it from my code. I'm thinking of some type of monitoring from a different thread in my code. Any toughts?

    Read the article

  • Is it possible to create a Mac OS specific CSS to fix font difference ?

    - by Gabriel
    I'm working on a project with a designer and he insisted on using some specific font for titles and various elements in the page. So we're using a font kit to embed with @font-face. It's working perfectly on PC (Firefox, IE 7 and 8, Chrome, Safari) but on Mac OS (Safari and Firefox) the fonts are not vertically aligned the same way. After looking on the Web, I didn't find any solution for this except "there always been differences between browsers and platforms, live with it". I know that fonts are never rendered exactly the same across platforms, but this time it's not something like the font looks more bold or something like that. The font looks as if it's baseline is completely different between Windows and Mac OS X. On Mac OS, the font, at a size of 16px is 3px higher than on PC. So I'm looking for a backup solution : is there a way to create a CSS specifically for Mac OS users? I do not want to target only Safari because Safari PC is ok, and Firefox Mac is not ok. Or if you have a solution to fix the baseline difference that does not require a specific CSS file, I'd be happy to hear it. Thanks!

    Read the article

  • Basic Android game loop having issues

    - by WillDaBeast509
    I've set up a very basic game loop that should draw a circle, run 100 times, then draw another. I also have a text field that should display how many times the loop has ran. However, the screen seems to not update. It displays a different value for the tick count (different each time the app is ran) and simply stays there. After exiting the app, I get an error saying "Unfortunately, MyApp has stopped." Here is the relevant code: DrawView public class DrawView extends SurfaceView implements SurfaceHolder.Callback { Paint p = new Paint(); MainThread thread; private int y=0; public DrawView(Context c) { super(c); thread = new MainThread(this, getHolder()); thread.running = true; getHolder().addCallback(this); setFocusable(true); } public void draw(Canvas c) { if(c==null) return; //super.onDraw(c); c.drawColor(Color.WHITE); p.setColor(Color.RED); p.setTextSize(32); p.setTypeface(Typeface.SANS_SERIF); c.drawCircle(getWidth()/2-100,getHeight()/2, 50, p); c.drawText("y = " + y, 50, 50, p); if(y>=100) { Log.i("DRAW", "drawing circle"); c.drawCircle(getWidth()/2+100,getHeight()/2, 50, p); } else y++; Log.i("INFO", "y = " + y); } @Override public boolean onTouchEvent(MotionEvent event) { return true; } public void onDraw(Canvas c){} public void surfaceCreated(SurfaceHolder p1) { thread.start(); } public void surfaceChanged(SurfaceHolder p1, int p2, int p3, int p4) { // TODO: Implement this method } public void surfaceDestroyed(SurfaceHolder p1) { thread.running = false; boolean retry = true; while (retry) { try { thread.join(); retry = false; } catch (InterruptedException e) { Log.i("EX", "cathing exception"); } } } } MainThread public class MainThread extends Thread { private DrawView page; private SurfaceHolder holder; public boolean running; public MainThread(DrawView p, SurfaceHolder h) { super(); page = p; holder = h; } @Override public void run() { while(running) { Canvas c = holder.lockCanvas(); page.draw(c); holder.unlockCanvasAndPost(c); } } } Here is an example log outupt: http://pastebin.com/tM9dUPuk It counts the number of ticks correctly and should draw the second circle, but the screen looks like its not updating. After closing the app, the log continues to run and keep outputting "y = 100 drawing circle" until it crashes and shows the error report. What is going on and how can I fix these two problems?

    Read the article

  • Can I avoid a threaded UDP socket in Pyton dropping data?

    - by 666craig
    First off, I'm new to Python and learning on the job, so be gentle! I'm trying to write a threaded Python app for Windows that reads data from a UDP socket (thread-1), writes it to file (thread-2), and displays the live data (thread-3) to a widget (gtk.Image using a gtk.gdk.pixbuf). I'm using queues for communicating data between threads. My problem is that if I start only threads 1 and 3 (so skip the file writing for now), it seems that I lose some data after the first few samples. After this drop it looks fine. Even by letting thread 1 complete before running thread 3, this apparent drop is still there. Apologies for the length of code snippet (I've removed the thread that writes to file), but I felt removing code would just prompt questions. Hope someone can shed some light :-) import socket import threading import Queue import numpy import gtk gtk.gdk.threads_init() import gtk.glade import pygtk class readFromUDPSocket(threading.Thread): def __init__(self, socketUDP, readDataQueue, packetSize, numScans): threading.Thread.__init__(self) self.socketUDP = socketUDP self.readDataQueue = readDataQueue self.packetSize = packetSize self.numScans = numScans def run(self): for scan in range(1, self.numScans + 1): buffer = self.socketUDP.recv(self.packetSize) self.readDataQueue.put(buffer) self.socketUDP.close() print 'myServer finished!' class displayWithGTK(threading.Thread): def __init__(self, displayDataQueue, image, viewArea): threading.Thread.__init__(self) self.displayDataQueue = displayDataQueue self.image = image self.viewWidth = viewArea[0] self.viewHeight = viewArea[1] self.displayData = numpy.zeros((self.viewHeight, self.viewWidth, 3), dtype=numpy.uint16) def run(self): scan = 0 try: while True: if not scan % self.viewWidth: scan = 0 buffer = self.displayDataQueue.get(timeout=0.1) self.displayData[:, scan, 0] = numpy.fromstring(buffer, dtype=numpy.uint16) self.displayData[:, scan, 1] = numpy.fromstring(buffer, dtype=numpy.uint16) self.displayData[:, scan, 2] = numpy.fromstring(buffer, dtype=numpy.uint16) gtk.gdk.threads_enter() self.myPixbuf = gtk.gdk.pixbuf_new_from_data(self.displayData.tostring(), gtk.gdk.COLORSPACE_RGB, False, 8, self.viewWidth, self.viewHeight, self.viewWidth * 3) self.image.set_from_pixbuf(self.myPixbuf) self.image.show() gtk.gdk.threads_leave() scan += 1 except Queue.Empty: print 'myDisplay finished!' pass def quitGUI(obj): print 'Currently active threads: %s' % threading.enumerate() gtk.main_quit() if __name__ == '__main__': # Create socket (IPv4 protocol, datagram (UDP)) and bind to address socketUDP = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) host = '192.168.1.5' port = 1024 socketUDP.bind((host, port)) # Data parameters samplesPerScan = 256 packetsPerSecond = 1200 packetSize = 512 duration = 1 # For now, set a fixed duration to log data numScans = int(packetsPerSecond * duration) # Create array to store data data = numpy.zeros((samplesPerScan, numScans), dtype=numpy.uint16) # Create queue for displaying from readDataQueue = Queue.Queue(numScans) # Build GUI from Glade XML file builder = gtk.Builder() builder.add_from_file('GroundVue.glade') window = builder.get_object('mainwindow') window.connect('destroy', quitGUI) view = builder.get_object('viewport') image = gtk.Image() view.add(image) viewArea = (1200, samplesPerScan) # Instantiate & start threads myServer = readFromUDPSocket(socketUDP, readDataQueue, packetSize, numScans) myDisplay = displayWithGTK(readDataQueue, image, viewArea) myServer.start() myDisplay.start() gtk.gdk.threads_enter() gtk.main() gtk.gdk.threads_leave() print 'gtk.main finished!'

    Read the article

  • Come See Us Next Week at VMworld 2014

    - by Larry Wake
    If you're at VMworld 2014 next week in San Francisco, come drop by booth 205.  We'll have folks from both the Oracle Solaris and Oracle ZFS Storage teams, so you can learn a lot more about what's new in Oracle Solaris 11.2, plus what the storage team has been up to, as they unleash their "it's perfect for virtualization" architecture, with a series of new VMware API integrations, that crushes both the other big-name storage vendors and the all-flash start-ups.

    Read the article

  • No specific goal for building web applications but could be in the next few months! so, which web server side language is better for me? [closed]

    - by Goma
    I didn't put a specific goal for building websites and web applications yet, but I will may know where I am going exactly in the next few months. Generally I am looking for good web development language that I don't need to change at least in the next 5 years. I want it to serve me in dfferent categories, for building small websites, medium websites and it could help me in finding a good job or working as a freelancer. Any suggestions?

    Read the article

  • Elusive race condition in Java

    - by nasufara
    I am creating a graphing calculator. In an attempt to squeeze some more performance out of it, I added some multithreaded to the line calculator. Essentially what my current implementation does is construct a thread-safe Queue of X values, then start however many threads it needs, each one calculating a point on the line using the queue to get its values, and then ordering the points using a HashMap when the calculations are done. This implementation works great, and that's not where my race condition is (merely some background info). In examining the performance results from this, I found that the HashMap is a performance bottleneck, since I do that synchronously on one thread. So I figured that ordering each point as its calculated would work best. I tried a PriorityQueue, but that was slower than the HashMap. I ended up creating an algorithm that essentially works like this: I construct a list of X values to calculate, like in my current algorithm. I then copy that list of values into another class, unimaginatively and temporarily named BlockingList, which is responsible for ordering the points as they are calculated. BlockingList contains a put() method, which takes in two BigDecimals as parameters, the first the X value, the second the calculated Y value. put() will only accept a value if the X value is the next one on the list to be accepted in the list of X values, and will block until another thread gives it the next excepted value. For example, since that can be confusing, say I have two threads, Thread-1 and Thread-2. Thread-2 gets the X value 10.0 from the values queue, and Thread-1 gets 9.0. However, Thread-1 completes its calculations first, and calls put() before Thread-2 does. Because BlockingList is expecting to get 10.0 first, and not 9.0, it will block on Thread-1 until Thread-2 finishes and calls put(). Once Thread-2 gives BlockingList 10.0, it notify()s all waiting threads, and expects 9.0 next. This continues until BlockingList gets all of its expected values. (I apologise if that was hard to follow, if you need more clarification, just ask.) As expected by the question title, there is a race condition in here. If I run it without any System.out.printlns, it will sometimes lock because of conflicting wait() and notifyAll()s, but if I put a println in, it will run great. A small implementation of this is included below, and exhibits the same behavior: import java.math.BigDecimal; import java.util.concurrent.ConcurrentLinkedQueue; public class Example { public static void main(String[] args) throws InterruptedException { // Various scaling values, determined based on the graph size // in the real implementation BigDecimal xMax = new BigDecimal(10); BigDecimal xStep = new BigDecimal(0.05); // Construct the values list, from -10 to 10 final ConcurrentLinkedQueue<BigDecimal> values = new ConcurrentLinkedQueue<BigDecimal>(); for (BigDecimal i = new BigDecimal(-10); i.compareTo(xMax) <= 0; i = i.add(xStep)) { values.add(i); } // Contains the calculated values final BlockingList list = new BlockingList(values); for (int i = 0; i < 4; i++) { new Thread() { public void run() { BigDecimal x; // Keep looping until there are no more values while ((x = values.poll()) != null) { PointPair pair = new PointPair(); pair.realX = x; try { list.put(pair); } catch (Exception ex) { ex.printStackTrace(); } } } }.start(); } } private static class PointPair { public BigDecimal realX; } private static class BlockingList { private final ConcurrentLinkedQueue<BigDecimal> _values; private final ConcurrentLinkedQueue<PointPair> _list = new ConcurrentLinkedQueue<PointPair>(); public BlockingList(ConcurrentLinkedQueue<BigDecimal> expectedValues) throws InterruptedException { // Copy the values into a new queue BigDecimal[] arr = expectedValues.toArray(new BigDecimal[0]); _values = new ConcurrentLinkedQueue<BigDecimal>(); for (BigDecimal dec : arr) { _values.add(dec); } } public void put(PointPair item) throws InterruptedException { while (item.realX.compareTo(_values.peek()) != 0) { synchronized (this) { // Block until someone enters the next desired value wait(); } } _list.add(item); _values.poll(); synchronized (this) { notifyAll(); } } } } My question is can anybody help me find the threading error? Thanks!

    Read the article

  • Yet another C# Deadlock Debugging Question

    - by Roo
    Hi All, I have a multi-threaded application build in C# using VS2010 Professional. It's quite a large application and we've experienced the classing GUI cross-threading and deadlock issues before, but in the past month we've noticed the appears to lock up when left idle for around 20-30 minutes. The application is irresponsive and although it will repaint itself when other windows are dragged in front of the application and over it, the GUI still appears to be locked... interstingly (unlike if the GUI thread is being used for a considerable amount of time) the Close, Maximise and minimise buttons are also irresponsive and when clicked the little (Not Responding...) text is not displayed in the title of the application i.e. Windows still seems to think it's running fine. If I break/pause the application using the debugger, and view the threads that are running. There are 3 threads of our managed code that are running, and a few other worker threads whom the source code cannot be displayed for. The 3 threads that run are: The main/GUI thread A thread that loops indefinitely A thread that loops indefinitely If I step into threads 2 and 3, they appear to be looping correctly. They do not share locks (even with the main GUI thread) and they are not using the GUI thread at all. When stepping into the main/GUI thread however, it's broken on Application.Run... This problem screams deadlock to me, but what I don't understand is if it's deadlock, why can't I see the line of code the main/GUI thread is hanging on? Any help will be greatly appreciated! Let me know if you need more information... Cheers, Roo -----------------------------------------------------SOLUTION-------------------------------------------------- Okay, so the problem is now solved. Thanks to everyone for their suggestions! Much appreciated! I've marked the answer that solved my initial problem of determining where on the main/UI thread the application hangs (I handn't turned off the "Enable Just My Code" option). The overall issue I was experiencing was indeed Deadlock, however. After obtaining the call-stack and popping the top half of it into Google I came across this which explains exactly what I was experiencing... http://timl.net/ This references a lovely guide to debugging the issue... http://www.aaronlerch.com/blog/2008/12/15/debugging-ui/ This identified a control I was constructing off the GUI thread. I did know this, however, and was marshalling calls correctly, but what I didn't realise was that behind the scenes this Control was subscribing to an event or set of events that are triggered when e.g. a Windows session is unlocked or the screensaver exits. These calls are always made on the main/UI thread and were blocking when it saw the call was made on the incorrect thread. Kim explains in more detail here... http://krgreenlee.blogspot.com/2007/09/onuserpreferencechanged-hang.html In the end I found an alternative solution which did not require this Control off the main/UI thread. That appears to have solved the problem and the application no longer hangs. I hope this helps anyone who's confronted by a similar problem. Thanks again to everyone on here who helped! (and indirectly, the delightful bloggers I've referenced above!) Roo -----------------------------------------------------SOLUTION II-------------------------------------------------- Aren't threading issues delightful...you think you've solved it, and a month down the line it pops back up again. I still believe the solution above resolved an issue that would cause simillar behaviour, but we encountered the problem again. As we spent a while debugging this, I thought I'd update this question with our (hopefully) final solution: The problem appears to have been a bug in the Infragistics components in the WinForms 2010.1 release (no hot fixes). We had been running from around the time the freeze issue appeared (but had also added a bunch of other stuff too). After upgrading to WinForms 2010.3, we've yet to reproduce the issue (deja vu). See my question here for a bit more information: 'http://stackoverflow.com/questions/4077822/net-4-0-and-the-dreaded-onuserpreferencechanged-hang'. Hans has given a nice summary of the general issue. I hope this adds a little to the suggestions/information surrounding the nutorious OnUserPreferenceChanged Hang (or whatever you'd like to call it). Cheers, Roo

    Read the article

  • Why does File.Exists return false?

    - by Jonas Stawski
    I'm querying all images on the Android device as such: string[] columns = { MediaStore.Images.Media.InterfaceConsts.Data, MediaStore.Images.Media.InterfaceConsts.Id }; string orderBy = MediaStore.Images.Media.InterfaceConsts.Id; var imagecursor = ManagedQuery(MediaStore.Images.Media.ExternalContentUri, columns, null, null, orderBy); for (int i = 0; i < this.Count; i++) { imagecursor.MoveToPosition(i); Paths[i]= imagecursor.GetString(dataColumnIndex); Console.WriteLine(Paths[i]); Console.WriteLine(System.IO.File.Exists(Paths[i])); } The problem is that the output shows that some files don't exist. Here's a sample output: /storage/sdcard0/Download/On-Yom-Kippur-Jews-choose-different-shoes-VSETQJ6-x-large.jpg False /storage/sdcard0/Download/397277_10151250943161341_876027377_n.jpg False /storage/sdcard0/Download/Roxy_Cottontail_&_Melo-X_Present..._Some_Bunny_Love's_You.jpg False /storage/sdcard0/Download/album-The-Rolling-Stones-Some-Girls.jpg True /storage/sdcard0/Download/some-people-ust-dont-appreciate-fashion[1].jpg True /storage/sdcard0/Download/express.gif True ... /storage/sdcard0/Download/some-joys-are-expressed-better-in-silence.JPG False How is this possible? I downloaded these images myself from the internet! They should exist in disk.

    Read the article

  • Handling file upload in a non-blocking manner

    - by Kaliyug Antagonist
    The background thread is here Just to make objective clear - the user will upload a large file and must be redirected immediately to another page for proceeding different operations. But the file being large, will take time to be read from the controller's InputStream. So I unwillingly decided to fork a new Thread to handle this I/O. The code is as follows : The controller servlet /** * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse * response) */ protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { // TODO Auto-generated method stub System.out.println("In Controller.doPost(...)"); TempModel tempModel = new TempModel(); tempModel.uploadSegYFile(request, response); System.out.println("Forwarding to Accepted.jsp"); /*try { Thread.sleep(1000 * 60); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); }*/ request.getRequestDispatcher("/jsp/Accepted.jsp").forward(request, response); } The model class package com.model; import java.io.IOException; import java.util.concurrent.ExecutionException; import java.util.concurrent.Future; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import com.utils.ProcessUtils; public class TempModel { public void uploadSegYFile(HttpServletRequest request, HttpServletResponse response) { // TODO Auto-generated method stub System.out.println("In TempModel.uploadSegYFile(...)"); /* * Trigger the upload/processing code in a thread, return immediately * and notify when the thread completes */ try { FileUploaderRunnable fileUploadRunnable = new FileUploaderRunnable( request.getInputStream()); /* * Future<FileUploaderRunnable> future = ProcessUtils.submitTask( * fileUploadRunnable, fileUploadRunnable); * * FileUploaderRunnable processed = future.get(); * * System.out.println("Is file uploaded : " + * processed.isFileUploaded()); */ Thread uploadThread = new Thread(fileUploadRunnable); uploadThread.start(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } /* * catch (InterruptedException e) { // TODO Auto-generated catch block * e.printStackTrace(); } catch (ExecutionException e) { // TODO * Auto-generated catch block e.printStackTrace(); } */ System.out.println("Returning from TempModel.uploadSegYFile(...)"); } } The Runnable package com.model; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.nio.ByteBuffer; import java.nio.channels.Channels; import java.nio.channels.ReadableByteChannel; public class FileUploaderRunnable implements Runnable { private boolean isFileUploaded = false; private InputStream inputStream = null; public FileUploaderRunnable(InputStream inputStream) { // TODO Auto-generated constructor stub this.inputStream = inputStream; } public void run() { // TODO Auto-generated method stub /* Read from InputStream. If success, set isFileUploaded = true */ System.out.println("Starting upload in a thread"); File outputFile = new File("D:/06c01_output.seg");/* * This will be changed * later */ FileOutputStream fos; ReadableByteChannel readable = Channels.newChannel(inputStream); ByteBuffer buffer = ByteBuffer.allocate(1000000); try { fos = new FileOutputStream(outputFile); while (readable.read(buffer) != -1) { fos.write(buffer.array()); buffer.clear(); } fos.flush(); fos.close(); readable.close(); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println("File upload thread completed"); } public boolean isFileUploaded() { return isFileUploaded; } } My queries/doubts : Spawning threads manually from the Servlet makes sense to me logically but scares me coding wise - the container isn't aware of these threads after all(I think so!) The current code is giving an Exception which is quite obvious - the stream is inaccessible as the doPost(...) method returns before the run() method completes : In Controller.doPost(...) In TempModel.uploadSegYFile(...) Returning from TempModel.uploadSegYFile(...) Forwarding to Accepted.jsp Starting upload in a thread Exception in thread "Thread-4" java.lang.NullPointerException at org.apache.coyote.http11.InternalInputBuffer.fill(InternalInputBuffer.java:512) at org.apache.coyote.http11.InternalInputBuffer.fill(InternalInputBuffer.java:497) at org.apache.coyote.http11.InternalInputBuffer$InputStreamInputBuffer.doRead(InternalInputBuffer.java:559) at org.apache.coyote.http11.AbstractInputBuffer.doRead(AbstractInputBuffer.java:324) at org.apache.coyote.Request.doRead(Request.java:422) at org.apache.catalina.connector.InputBuffer.realReadBytes(InputBuffer.java:287) at org.apache.tomcat.util.buf.ByteChunk.substract(ByteChunk.java:407) at org.apache.catalina.connector.InputBuffer.read(InputBuffer.java:310) at org.apache.catalina.connector.CoyoteInputStream.read(CoyoteInputStream.java:202) at java.nio.channels.Channels$ReadableByteChannelImpl.read(Unknown Source) at com.model.FileUploaderRunnable.run(FileUploaderRunnable.java:39) at java.lang.Thread.run(Unknown Source) Keeping in mind the point 1., does the use of Executor framework help me in anyway ? package com.utils; import java.util.concurrent.Future; import java.util.concurrent.ScheduledThreadPoolExecutor; public final class ProcessUtils { /* Ensure that no more than 2 uploads,processing req. are allowed */ private static final ScheduledThreadPoolExecutor threadPoolExec = new ScheduledThreadPoolExecutor( 2); public static <T> Future<T> submitTask(Runnable task, T result) { return threadPoolExec.submit(task, result); } } So how should I ensure that the user doesn't block and the stream remains accessible so that the (uploaded)file can be read from it?

    Read the article

  • How do I search the MediaStore for a specific directory instead of entire external storage?

    - by Nick Lopez
    In my app I have an option that allows users to browse for audio files on their phone to add to the app. I am having trouble however with creating a faster way of processing the query code. Currently it searches the entire external storage and causes the phone to prompt a force close/wait warning. I would like to take the code I have posted below and make it more efficient by either searching in a specific folder on the phone or by streamlining the process to make the file search quicker. I am not sure how to do this however. Thanks! public class BrowseActivity extends DashboardActivity implements OnClickListener, OnItemClickListener { private List<Sound> soundsInDevice = new ArrayList<Sound>(); private List<Sound> checkedList; private ListView browsedList; private BrowserSoundAdapter adapter; private long categoryId; private Category category; private String currentCategoryName; private String description; // private Category newCategory ; private Button doneButton; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); requestWindowFeature(Window.FEATURE_NO_TITLE); setContentView(R.layout.activity_browse); checkedList = new ArrayList<Sound>(); browsedList = (ListView) findViewById(android.R.id.list); doneButton = (Button) findViewById(R.id.doneButton); soundsInDevice = getMediaSounds(); if (soundsInDevice.size() > 0) { adapter = new BrowserSoundAdapter(this, R.id.browseSoundName, soundsInDevice); } else { Toast.makeText(getApplicationContext(), getString(R.string.no_sounds_available), Toast.LENGTH_SHORT) .show(); } browsedList.setAdapter(adapter); browsedList.setOnItemClickListener(this); doneButton.setOnClickListener(this); } private List<Sound> getMediaSounds() { List<Sound> mediaSoundList = new ArrayList<Sound>(); ContentResolver cr = getContentResolver(); String[] projection = {MediaStore.Audio.Media._ID, MediaStore.Audio.Media.DISPLAY_NAME, MediaStore.Audio.Media.TITLE, MediaStore.Audio.Media.DATA, MediaStore.Audio.Media.DURATION}; final Uri uri = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI; Log.v("MediaStore.Audio.Media.EXTERNAL_CONTENT_URI", "" + uri); final Cursor cursor = cr.query(uri, projection, null, null, null); int n = cursor.getCount(); Log.v("count", "" + n); if (cursor.moveToFirst()) { do { String soundName = cursor .getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.DISPLAY_NAME)); Log.v("soundName", "" + soundName); String title = cursor .getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.TITLE)); Log.v("title", "" + title); String path = cursor.getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.DATA)); Log.v("path", "" + path); Sound browsedSound = new Sound(title, path, false, false, false, false, 0); Log.v("browsedSound", "" + browsedSound); mediaSoundList.add(browsedSound); Log.v("mediaSoundList", "" + mediaSoundList.toString()); } while (cursor.moveToNext()); } return mediaSoundList; } public class BrowserSoundAdapter extends ArrayAdapter<Sound> { public BrowserSoundAdapter(Context context, int textViewResourceId, List<Sound> objects) { super(context, textViewResourceId, objects); } @Override public View getView(final int position, View convertView, ViewGroup parent) { ViewHolder viewHolder; View view = convertView; LayoutInflater inflater = getLayoutInflater(); if (view == null) { view = inflater.inflate(R.layout.list_item_browse, null); viewHolder = new ViewHolder(); viewHolder.soundNameTextView = (TextView) view .findViewById(R.id.browseSoundName); viewHolder.pathTextView = (TextView) view .findViewById(R.id.browseSoundPath); viewHolder.checkToAddSound = (CheckBox) view .findViewById(R.id.browse_checkbox); view.setTag(viewHolder); } else { viewHolder = (ViewHolder) view.getTag(); } final Sound sound = soundsInDevice.get(position); if (sound.isCheckedState()) { viewHolder.checkToAddSound.setChecked(true); } else { viewHolder.checkToAddSound.setChecked(false); } viewHolder.soundNameTextView.setText(sound.getName()); viewHolder.pathTextView.setText(sound.getUri()); viewHolder.checkToAddSound .setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { CheckBox cb = (CheckBox) v .findViewById(R.id.browse_checkbox); boolean checked = cb.isChecked(); boolean newValue = checked; updateView(position, newValue); doneButtonStatus(checkedList.size()); } }); return view; } } // Adapter view holder class private class ViewHolder { private TextView soundNameTextView; private TextView pathTextView; private CheckBox checkToAddSound; } // done button On Click @Override public void onClick(View view) { boolean status = getIntent().getBooleanExtra("FromAddCat", false); Log.v("for add category","enters in if"); if(status){ Log.v("for add category","enters in if1"); currentCategoryName = getIntent().getStringExtra("categoryName"); description = getIntent().getStringExtra("description"); boolean existCategory = SQLiteHelper.getCategoryStatus(currentCategoryName); if (!existCategory) { category = new Category(currentCategoryName, description, false); category.insert(); category.update(); Log.v("for add category","enters in if2"); } }else{ categoryId = getIntent().getLongExtra("categoryId",-1); category = SQLiteHelper.getCategory(categoryId); } for (Sound checkedsound : checkedList) { checkedsound.setCheckedState(false); checkedsound.insert(); category.getSounds().add(checkedsound); final Intent intent = new Intent(this, CategoriesActivity.class); finish(); startActivity(intent); } } @Override public void onItemClick(AdapterView<?> arg0, View view, int position, long arg3) { boolean checked = true; boolean newValue = false; CheckBox cb = (CheckBox) view.findViewById(R.id.browse_checkbox); if (cb.isChecked()) { cb.setChecked(!checked); newValue = !checked; } else { cb.setChecked(checked); newValue = checked; } updateView(position, newValue); doneButtonStatus(checkedList.size()); } private void doneButtonStatus(int size) { if (size > 0) { doneButton.setEnabled(true); doneButton.setBackgroundResource(R.drawable.done_button_drawable); } else { doneButton.setEnabled(false); doneButton.setBackgroundResource(R.drawable.done_btn_disabled); } } private void updateView(int index, boolean newValue) { System.out.println(newValue); Sound sound = soundsInDevice.get(index); if (newValue == true) { checkedList.add(sound); sound.setCheckedState(newValue); } else { checkedList.remove(sound); sound.setCheckedState(newValue); } } }

    Read the article

  • Talend Enterprise Data Integration overperforms on Oracle SPARC T4

    - by Amir Javanshir
    The SPARC T microprocessor, released in 2005 by Sun Microsystems, and now continued at Oracle, has a good track record in parallel execution and multi-threaded performance. However it was less suited for pure single-threaded workloads. The new SPARC T4 processor is now filling that gap by offering a 5x better single-thread performance over previous generations. Following our long-term relationship with Talend, a fast growing ISV positioned by Gartner in the “Visionaries” quadrant of the “Magic Quadrant for Data Integration Tools”, we decided to test some of their integration components with the T4 chip, more precisely on a T4-1 system, in order to verify first hand if this new processor stands up to its promises. Several tests were performed, mainly focused on: Single-thread performance of the new SPARC T4 processor compared to an older SPARC T2+ processor Overall throughput of the SPARC T4-1 server using multiple threads The tests consisted in reading large amounts of data --ten's of gigabytes--, processing and writing them back to a file or an Oracle 11gR2 database table. They are CPU, memory and IO bound tests. Given the main focus of this project --CPU performance--, bottlenecks were removed as much as possible on the memory and IO sub-systems. When possible, the data to process was put into the ZFS filesystem cache, for instance. Also, two external storage devices were directly attached to the servers under test, each one divided in two ZFS pools for read and write operations. Multi-thread: Testing throughput on the Oracle T4-1 The tests were performed with different number of simultaneous threads (1, 2, 4, 8, 12, 16, 32, 48 and 64) and using different storage devices: Flash, Fibre Channel storage, two stripped internal disks and one single internal disk. All storage devices used ZFS as filesystem and volume management. Each thread read a dedicated 1GB-large file containing 12.5M lines with the following structure: customerID;FirstName;LastName;StreetAddress;City;State;Zip;Cust_Status;Since_DT;Status_DT 1;Ronald;Reagan;South Highway;Santa Fe;Montana;98756;A;04-06-2006;09-08-2008 2;Theodore;Roosevelt;Timberlane Drive;Columbus;Louisiana;75677;A;10-05-2009;27-05-2008 3;Andrew;Madison;S Rustle St;Santa Fe;Arkansas;75677;A;29-04-2005;09-02-2008 4;Dwight;Adams;South Roosevelt Drive;Baton Rouge;Vermont;75677;A;15-02-2004;26-01-2007 […] The following graphs present the results of our tests: Unsurprisingly up to 16 threads, all files fit in the ZFS cache a.k.a L2ARC : once the cache is hot there is no performance difference depending on the underlying storage. From 16 threads upwards however, it is clear that IO becomes a bottleneck, having a good IO subsystem is thus key. Single-disk performance collapses whereas the Sun F5100 and ST6180 arrays allow the T4-1 to scale quite seamlessly. From 32 to 64 threads, the performance is almost constant with just a slow decline. For the database load tests, only the best IO configuration --using external storage devices-- were used, hosting the Oracle table spaces and redo log files. Using the Sun Storage F5100 array allows the T4-1 server to scale up to 48 parallel JVM processes before saturating the CPU. The final result is a staggering 646K lines per second insertion in an Oracle table using 48 parallel threads. Single-thread: Testing the single thread performance Seven different tests were performed on both servers. Given the fact that only one thread, thus one file was read, no IO bottleneck was involved, all data being served from the ZFS cache. Read File ? Filter ? Write File: Read file, filter data, write the filtered data in a new file. The filter is set on the “Status” column: only lines with status set to “A” are selected. This limits each output file to about 500 MB. Read File ? Load Database Table: Read file, insert into a single Oracle table. Average: Read file, compute the average of a numeric column, write the result in a new file. Division & Square Root: Read file, perform a division and square root on a numeric column, write the result data in a new file. Oracle DB Dump: Dump the content of an Oracle table (12.5M rows) into a CSV file. Transform: Read file, transform, write the result data in a new file. The transformations applied are: set the address column to upper case and add an extra column at the end, which is the concatenation of two columns. Sort: Read file, sort a numeric and alpha numeric column, write the result data in a new file. The following table and graph present the final results of the tests: Throughput unit is thousand lines per second processed (K lines/second). Improvement is the % of improvement between the T5140 and T4-1. Test T4-1 (Time s.) T5140 (Time s.) Improvement T4-1 (Throughput) T5140 (Throughput) Read/Filter/Write 125 806 645% 100 16 Read/Load Database 195 1111 570% 64 11 Average 96 557 580% 130 22 Division & Square Root 161 1054 655% 78 12 Oracle DB Dump 164 945 576% 76 13 Transform 159 1124 707% 79 11 Sort 251 1336 532% 50 9 The improvement of single-thread performance is quite dramatic: depending on the tests, the T4 is between 5.4 to 7 times faster than the T2+. It seems clear that the SPARC T4 processor has gone a long way filling the gap in single-thread performance, without sacrifying the multi-threaded capability as it still shows a very impressive scaling on heavy-duty multi-threaded jobs. Finally, as always at Oracle ISV Engineering, we are happy to help our ISV partners test their own applications on our platforms, so don't hesitate to contact us and let's see what the SPARC T4-based systems can do for your application! "As describe in this benchmark, Talend Enterprise Data Integration has overperformed on T4. I was generally happy to see that the T4 gave scaling opportunities for many scenarios like complex aggregations. Row by row insertion in Oracle DB is faster with more than 650,000 rows per seconds without using any bulk Oracle capabilities !" Cedric Carbone, Talend CTO.

    Read the article

< Previous Page | 183 184 185 186 187 188 189 190 191 192 193 194  | Next Page >