Search Results

Search found 50847 results on 2034 pages for 'order accutane no without pres'.

Page 188/2034 | < Previous Page | 184 185 186 187 188 189 190 191 192 193 194 195  | Next Page >

  • Bootable backup of a Mac without an HFS+ disk?

    - by marienbad
    How can I make a bootable backup of my Mac's internal hard drive to be restored using Disk Utility, without formatting my external destination drive as HFS+ (it's FAT32, of course)? Time Machine and SuperDuper both require that the volume where the backup is saved be HFS+ formatted. This looks helpful: http://developer.apple.com/macosx/backuponmacosx.html But it doesn't explain how to use FAT32 disk.

    Read the article

  • Can IOS be upgraded on a Cisco Catalyst 6509 switch without downtime?

    - by Massimo
    There's this Cisco Catalyst 6509 switch with 2 (two) supervisor modules; one of them is active, the other is (almost always) in standby. We need to upgrade IOS; current version is 12.2.something (I can check exactly which one, if this does matter). Can this be done without service interruption? Something like "upgrade the standby supervisor, activate it, upgrade the other one"?

    Read the article

  • How to run a restricted set of programs with Administrator privileges without giving up Admin acces (Win7 Pro)

    - by frLich
    I have a shared system, running Windows7 X64, restricted to a 'standard user' with no password. Not everyone who has access to the system has the administrator password. This works rather well, except for some applications - specially the unlock-applications for encrypted hard drives/USB flash drives. The specific ones either require Administrator access (eg. Seagate Blackarmor) or simply fail without it -- since these programs are sending raw commands to a device, this is to be expected. I would like to be able to add the hashes of these particular programs to a whitelist, and have them run as administrator without needing any prompts. Since these are by definition on removable media, I can't simply use a filename or even a path. One of the users who shares the system can be considered 'crafty', so anything which temporarily grants administrator rights to an user account is certain to cause problems. What i'd like to be able to do: 1) Create an admin account that can only run programs from a whitelist (or, failing that, from a directory) I can't find a good way to do this: As far as I can tell, SRP applies equally to ALL users? Even if I put a "Deny" token on all directories on the system, such that new directories would inherit it, it could still potentially run things from the mounted USB devices. I also don't know whether it's possible to create a new directory that DOESN'T inherit from the parent, that would lake the deny token, and provide admin access. 2) Find a lightweight service that will run these programs in its local context Windows7 seems to block cross-privilege level communication by default, and I haven't found such for windows 7. One example seems to be "sudo" (http://pages.cpsc.ucalgary.ca/~nfriess/sudo/) but because it uses a WLNOTIFY hook, it won't work under Vista nor Windows7 Non-Solutions: - RunAs: Requires administrator password! (but everyone calls it "sudo" anyway) - RunAs /savecred: Nice idea, but appears to be completely insecure. - RUNASSPC - Same concept as RunAs, uses "encrypted" files with credentials, but checks in user-space. - Scheduled Tasks - "Fixed" permissions make this difficult, and doesn't support interactive processes even if it did. - SuRun: From Google: "Surun uses its own Windows service that adds the user to the group of administrators during program start and removes him automatically from that group again"

    Read the article

  • Is it possible to add asterisk serveralias to virtualhost without modifying httpd.conf manually?

    - by Favourite Chigozie Onwuemene
    Is it possible to add wildcard serveralias (example: *.somesite.com) in an apache server without modifying httpd.conf manually? I use a DNS different from my hosting server and i have added asterisk A record to my DNS to point all request like (test.somesite.com,test2.somesite.com) to my hosting servers IP, but i don't see anyway of adding asterisk serveraliases to apache httpd.conf file in my cpanel. Pls is there a solution?

    Read the article

  • Windows 7 batch files: How to write string to text file without carriage return AND trailing space?

    - by oscilatingcretin
    I am trying to have my batch file write a string of text to a text file. At first, the command I was using was writing an extra carriage return to the end of the string, but I found this command that prevented that: echo|set /p=hello>hello.txt However, now it's putting a trailing space at the end. I need only the string I specify to be written without any extra characters. Is this possible?

    Read the article

  • Is it possible to modify/rebuild an rpm without the srpm?

    - by warren
    I have an rpm for which I need to change the preinstal scriptlet for testing. However, I do not have the SRPM from which is was built. Is it possible to change the scriptlet and/or rebuild the rpm without having the SRPM? If so, how? I've tried using Midnight Commander (mc) to open the rpm as a directory structure and edit the contents, but even with 444 permissions, it won't let me save any changes.

    Read the article

  • How can I uninstall Fedora on a dual boot system without a Windows CD?

    - by David B
    I'm running a dual boot system with Windows XP and Fedora 13. I would like to uninstall Fedora 13 and remain with Windows XP only. This fedora document says I need to boot from a Windows XP installation CS to fix the MBR. Is there a way to do that without using the CD (I'm working in a company where I got my computer up and running with XP. Getting the CD will require me contact the system admins which might take some time).

    Read the article

  • Is there a way to backup AD and DNS in Windows 2008 without backing up the whole Volume?

    - by EtherDragon
    I would like to know if there is a (cost free) way to backup Windows Server 2008 Active Directory and DNS settings without using Windows Server Backup. The problem stems from not having a seperate volume available to store the resulting backup from Windows Server Backup. I examined the command line options with wbadmin and it also expects the destination to be a dedicated volume for the backup. ~ED

    Read the article

  • How do I escape spaces in command line in Windows without using quotation marks?

    - by David
    For example what is the alternative to this command without quotation marks: CD "c:\Documents and Settings" The full reason I don't want to use quotation marks is that this command DOES work: SVN add mypathname\*.* but this command DOES NOT work : SVN add "mypathname\*.*" The problem being when I change mypathname for a path with spaces in it I need to quote the whole thing. For example: SVN add "c:\Documents and Settings\username\svn\*.*" But when I try this I get the following error message: svn: warning: 'c:\Documents and Settings\username\svn\*.*' not found

    Read the article

  • How to run a restricted set of programs with Administrator privileges without giving up Admin acces (Win7 Pro)

    - by frLich
    I have a shared system, running Windows7 X64, restricted to a 'standard user' with no password. Not everyone who has access to the system has the administrator password. This works rather well, except for some applications - specially the unlock-applications for encrypted hard drives/USB flash drives. The specific ones either require Administrator access (eg. Seagate Blackarmor) or simply fail without it -- since these programs are sending raw commands to a device, this is to be expected. I would like to be able to add the hashes of these particular programs to a whitelist, and have them run as administrator without needing any prompts. Since these are by definition on removable media, I can't simply use a filename or even a path. One of the users who shares the system can be considered 'crafty', so anything which temporarily grants administrator rights to an user account is certain to cause problems. What i'd like to be able to do: 1) Create an admin account that can only run programs from a whitelist (or, failing that, from a directory) I can't find a good way to do this: As far as I can tell, SRP applies equally to ALL users? Even if I put a "Deny" token on all directories on the system, such that new directories would inherit it, it could still potentially run things from the mounted USB devices. I also don't know whether it's possible to create a new directory that DOESN'T inherit from the parent, that would lake the deny token, and provide admin access. 2) Find a lightweight service that will run these programs in its local context Windows7 seems to block cross-privilege level communication by default, and I haven't found such for windows 7. One example seems to be "sudo" (http://pages.cpsc.ucalgary.ca/~nfriess/sudo/) but because it uses a WLNOTIFY hook, it won't work under Vista nor Windows7 Non-Solutions: - RunAs: Requires administrator password! (but everyone calls it "sudo" anyway) - RunAs /savecred: Nice idea, but appears to be completely insecure. - RUNASSPC - Same concept as RunAs, uses "encrypted" files with credentials, but checks in user-space. - Scheduled Tasks - "Fixed" permissions make this difficult, and doesn't support interactive processes even if it did. - SuRun: From Google: "Surun uses its own Windows service that adds the user to the group of administrators during program start and removes him automatically from that group again"

    Read the article

  • Is there a way to backup AP and DNS in Windows 2008 without backing up the whole Volume?

    - by EtherDragon
    I would like to know if there is a (cost free) way to backup Windows Server 2008 Active Directory and DNS settings without using Windows Server Backup. The problem stems from not having a seperate volume available to store the resulting backup from Windows Server Backup. I examined the command line options with wbadmin and it also expects the destination to be a dedicated volume for the backup. ~ED

    Read the article

  • Can I determine a machine's outward facing IP with PHP without relying on external services?

    - by editor
    I'm working with an API that requires the machine's external IP. As far as I know, the PHP environment I'm using can only get our internal IP. The option on the table is using an external service such as whatismyip.com to tell us: wget -q -O - http://whatismyip.com/automation/n09230945.asp My concern is what happens if that fails. Is there a bulletproof way of determining a machine's IP without relying on external services?

    Read the article

  • Need url's to be non secure when moving away from a secured link (without hardcoded url's in html)?

    - by Tony_Henrich
    I have an asp.net site. It has an order form which is accessible at https://secure.example.com/order.aspx. The links on the site do not include the domain name. So for example the home page is 'default.aspx'. The issue is that if I click on a link like the home page from the secure page, the url becomes https://secure.example.com/default.aspx instead of http://www.example.com/default.aspx. What's a good way to handle this? The scheme should automatically work using any domain name based on where it's launched from. So if the site is launched from 'localhost', moving away from the secured page, the url's should be http://localhost/... The navigation links are in a master page.

    Read the article

  • How can I install Java on Windows 7 without messing up the system?

    - by robert_d
    I've installed java 1.6.0_31 32bit on Windows 7 64bit system, but this installation messed up my system, e.g. when I start Google Chrome I get error Your preferences can not be read Visual Studio 2010 after launching shows error that The Application Data folder for Visual Studio could not be created The shortcut to the Downloads folder in Windows Explorer no longer works. Is there a way to install Java without messing up Windows 7? Or maybe this mess can be cleaned up after installation of Java, but how?

    Read the article

  • Excel 2007: plot data points not on an axis/ force linear x-incrementation without altering integrity of non-linear data

    - by Ennapode
    In Excel, how does one go about plotting points that don't have an x component that is an x-axis label? For example, in my graph, the x-components are derived from the cosine function and aren't linear, but Excel is displaying them as if .0016 to .0062 to .0135 is an equal incrementation. How would I change this so that the x-axis has an even incrementation without altering the integrity of the points themselves? In other words, how do I plot a point with an x component independent from the x-axis label?

    Read the article

  • is there a way to tail a log from remote server without using any user credentials?

    - by suhprano
    I run a script tailing a log in a remote server, like so: ssh userx@someip tail -f /data/current.log|python2.7 monitorlog.py There are dependencies and service requirements that disallows me to run the script off the remote server. (DB, ACLs, and path to another service is uses) Is there a way I can tail and monitor a log without using the ssh userx@someip? I thought about generating RSA keys but I think you still need a user to ssh.

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Python regex to parse text file, get the items in list and count the list

    - by Nemo
    I have a text file which contains some data. I m particularly interested in finding the count of the number of items in v_dims v_dims pattern in my text file looks like this : v_dims={ "Sales", "Product Family", "Sales Organization", "Region", "Sales Area", "Sales office", "Sales Division", "Sales Person", "Sales Channel", "Sales Order Type", "Sales Number", "Sales Person", "Sales Quantity", "Sales Amount" } So I m thinking of getting all the elements in v_dims and dumping them out in a Python list. Then compute the len(mylist) to get the count of the items. The challenge is in getting all the elements of v_dims from my text file and putting them in an empty list. I m particularly interested in items in v_dims in my text file. The text file has data in the form of v_dims pattern i showed in my original post. Some data has nested patterns of v_dims. Thanks. Here's what I have tried and failed. Any help is appreciated. TIA. import re fname = "C:\Users\XXXX\Test.mrk" with open(fname, "r") as fo: content_as_string = fo.read() match = re.findall(r'v_dims={\"(.+?)\"}',content_as_string) Though I have a big text file, Here's a snippet of what's the structure of my text file version "1"; // Computer generated object language file object 'MRKR' "Main" { Data_Type=2, HeaderBlock={ Version_String="6.3 (25)" }, Printer_Info={ Orientation=0, Page_Width=8.50000000, Page_Height=11.00000000, Page_Header="", Page_Footer="", Margin_type=0, Top_Margin=0.50000000, Left_Margin=0.50000000, Bottom_Margin=0.50000000, Right_Margin=0.50000000 }, Marker_Options={ Close_All="TRUE", Hide_Console="FALSE", Console_Left="FALSE", Console_Width=217, Main_Style="Maximized", MDI_Rect={ 0, 0, 892, 1063 } }, Dives={ { Dive="A", Windows={ { View_Index=0, Window_Info={ Window_Rect={ 0, -288, 400, 1008 }, Window_Style="Maximized Front", Window_Name="Theater [Previous Qtr Diveplan-Dive A]" }, Dependent_bool="FALSE", Colset={ Dive_Type="Normal", Dimension_Name="Theater", Action_List={ Actions={ { Action_Type="Select", select_type=5 }, { Action_Type="Select", select_type=0, Key_Names={ "Theater" }, Key_Indexes={ { "AMERICAS" } } }, { Action_Type="Focus", Focus_Rows="True" }, { Action_Type="Dimensions", v_dims={ "Theater", "Product Family", "Division", "Region", "Install at Country Name", "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "PS Flag", "Avalanche Flag", "Product Item Family" }, Xtab_Bool="False", Xtab_Flip="False" }, { Action_Type="Select", select_type=5 }, { Action_Type="Select", select_type=0, Key_Names={ "Theater", "Product Family", "Division", "Region", "Install at Country Name", "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "PS Flag", "Avalanche Flag" }, Key_Indexes={ { "AMERICAS", "ATMOS", "Latin America CS Division", "37000 CS Region", "Mexico", "", "", "", "", "DIRECT", "EMC", "N", "0" } } } } }, Num_Palette_cols=0, Num_Palette_rows=0 }, Format={ Window_Type="Tabular", Tabular={ Num_row_labels=8 } } } } } }, Widget_Set={ Widget_Layout="Vertical", Go_Button=1, Picklist_Width=0, Sort_Subset_Dimensions="TRUE", Order={ } }, Views={ { Data_Type=1, dbname="Previous Qtr Diveplan", diveline_dbname="Current Qtr Diveplan", logical_name="Current Qtr Diveplan", cols={ { name="Total TSS installs", column_type="Calc[Total TSS installs]", output_type="Number", format_string="." }, { name="TSS Valid Connectivity Records", column_type="Calc[TSS Valid Connectivity Records]", output_type="Number", format_string="." }, { name="% TSS Connectivity Record", column_type="Calc[% TSS Connectivity Record]", output_type="Number" }, { name="TSS Not Applicable", column_type="Calc[TSS Not Applicable]", output_type="Number", format_string="." }, { name="TSS Customer Refusals", column_type="Calc[TSS Customer Refusals]", output_type="Number", format_string="." }, { name="% TSS Refusals", column_type="Calc[% TSS Refusals]", output_type="Number" }, { name="TSS Eligible for Physical Connectivity", column_type="Calc[TSS Eligible for Physical Connectivity]", output_type="Number", format_string="." }, { name="TSS Boxes with Physical Connectivty", column_type="Calc[TSS Boxes with Physical Connectivty]", output_type="Number", format_string="." }, { name="% TSS Physical Connectivity", column_type="Calc[% TSS Physical Connectivity]", output_type="Number" } }, dim_cols={ { name="Model", column_type="Dimension[Model]", output_type="None" }, { name="Model", column_type="Dimension[Model]", output_type="None" }, { name="Connect In Type", column_type="Dimension[Connect In Type]", output_type="None" }, { name="Connect Home Type", column_type="Dimension[Connect Home Type]", output_type="None" }, { name="SymmConnect Enabled", column_type="Dimension[SymmConnect Enabled]", output_type="None" }, { name="Theater", column_type="Dimension[Theater]", output_type="None" }, { name="Division", column_type="Dimension[Division]", output_type="None" }, { name="Region", column_type="Dimension[Region]", output_type="None" }, { name="Sales Order Number", column_type="Dimension[Sales Order Number]", output_type="None" }, { name="Product Item Family", column_type="Dimension[Product Item Family]", output_type="None" }, { name="Item Serial Number", column_type="Dimension[Item Serial Number]", output_type="None" }, { name="Sales Order Deal Number", column_type="Dimension[Sales Order Deal Number]", output_type="None" }, { name="Item Install Date", column_type="Dimension[Item Install Date]", output_type="None" }, { name="SYR Last Dial Home Date", column_type="Dimension[SYR Last Dial Home Date]", output_type="None" }, { name="Maintained By Group", column_type="Dimension[Maintained By Group]", output_type="None" }, { name="PS Flag", column_type="Dimension[PS Flag]", output_type="None" }, { name="Connect Home Refusal Reason", column_type="Dimension[Connect Home Refusal Reason]", output_type="None", col_width=177 }, { name="Cust Name", column_type="Dimension[Cust Name]", output_type="None" }, { name="Sales Order Channel Type", column_type="Dimension[Sales Order Channel Type]", output_type="None" }, { name="Sales Order Type", column_type="Dimension[Sales Order Type]", output_type="None" }, { name="Part Model Key", column_type="Dimension[Part Model Key]", output_type="None" }, { name="Ship Date", column_type="Dimension[Ship Date]", output_type="None" }, { name="Model Number", column_type="Dimension[Model Number]", output_type="None" }, { name="Item Description", column_type="Dimension[Item Description]", output_type="None" }, { name="Customer Classification", column_type="Dimension[Customer Classification]", output_type="None" }, { name="CS Customer Name", column_type="Dimension[CS Customer Name]", output_type="None" }, { name="Install At Customer Number", column_type="Dimension[Install At Customer Number]", output_type="None" }, { name="Install at Country Name", column_type="Dimension[Install at Country Name]", output_type="None" }, { name="TLA Serial Number", column_type="Dimension[TLA Serial Number]", output_type="None" }, { name="Product Version", column_type="Dimension[Product Version]", output_type="None" }, { name="Avalanche Flag", column_type="Dimension[Avalanche Flag]", output_type="None" }, { name="Product Family", column_type="Dimension[Product Family]", output_type="None" }, { name="Project Number", column_type="Dimension[Project Number]", output_type="None" }, { name="PROJECT_STATUS", column_type="Dimension[PROJECT_STATUS]", output_type="None" } }, Available_Columns={ "Total TSS installs", "TSS Valid Connectivity Records", "% TSS Connectivity Record", "TSS Not Applicable", "TSS Customer Refusals", "% TSS Refusals", "TSS Eligible for Physical Connectivity", "TSS Boxes with Physical Connectivty", "% TSS Physical Connectivity", "Total Installs", "All Boxes with Valid Connectivty Record", "% All Connectivity Record", "Overall Refusals", "Overall Refusals %", "All Eligible for Physical Connectivty", "Boxes with Physical Connectivity", "% All with Physical Conectivity" }, Remaining_columns={ { name="Total Installs", column_type="Calc[Total Installs]", output_type="Number", format_string="." }, { name="All Boxes with Valid Connectivty Record", column_type="Calc[All Boxes with Valid Connectivty Record]", output_type="Number", format_string="." }, { name="% All Connectivity Record", column_type="Calc[% All Connectivity Record]", output_type="Number" }, { name="Overall Refusals", column_type="Calc[Overall Refusals]", output_type="Number", format_string="." }, { name="Overall Refusals %", column_type="Calc[Overall Refusals %]", output_type="Number" }, { name="All Eligible for Physical Connectivty", column_type="Calc[All Eligible for Physical Connectivty]", output_type="Number" }, { name="Boxes with Physical Connectivity", column_type="Calc[Boxes with Physical Connectivity]", output_type="Number" }, { name="% All with Physical Conectivity", column_type="Calc[% All with Physical Conectivity]", output_type="Number" } }, calcs={ { name="Total TSS installs", definition="Total[Total TSS installs]", ts_flag="Not TS Calc" }, { name="TSS Valid Connectivity Records", definition="Total[PS Boxes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="% TSS Connectivity Record", definition="Total[PS Boxes w/ valid connectivity record (1=yes)] /Total[Total TSS installs]", ts_flag="Not TS Calc" }, { name="TSS Not Applicable", definition="Total[Bozes w/ valid connectivity record (1=yes)]-Total[Boxes Eligible (1=yes)]-Total[TSS Refusals]", ts_flag="Not TS Calc" }, { name="TSS Customer Refusals", definition="Total[TSS Refusals]", ts_flag="Not TS Calc" }, { name="% TSS Refusals", definition="Total[TSS Refusals]/Total[PS Boxes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="TSS Eligible for Physical Connectivity", definition="Total[TSS Eligible]-Total[Exception]", ts_flag="Not TS Calc" }, { name="TSS Boxes with Physical Connectivty", definition="Total[PS Physical Connectivity] - Total[PS Physical Connectivity, SymmConnect Enabled=\"Capable not enabled\"]", ts_flag="Not TS Calc" }, { name="% TSS Physical Connectivity", definition="Total[Boxes w/ phys conn]/Total[Boxes Eligible (1=yes)]", ts_flag="Not TS Calc" }, { name="Total Installs", definition="Total[Total Installs]", ts_flag="Not TS Calc" }, { name="All Boxes with Valid Connectivty Record", definition="Total[Bozes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="% All Connectivity Record", definition="Total[Bozes w/ valid connectivity record (1=yes)]/Total[Total Installs]", ts_flag="Not TS Calc" }, { name="Overall Refusals", definition="Total[Overall Refusals]", ts_flag="Not TS Calc" }, { name="Overall Refusals %", definition="Total[Overall Refusals]/Total[Bozes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="All Eligible for Physical Connectivty", definition="Total[Boxes Eligible (1=yes)]-Total[Exception]", ts_flag="Not TS Calc" }, { name="Boxes with Physical Connectivity", definition="Total[Boxes w/ phys conn]-Total[Boxes w/ phys conn,SymmConnect Enabled=\"Capable not enabled\"]", ts_flag="Not TS Calc" }, { name="% All with Physical Conectivity", definition="Total[Boxes w/ phys conn]/Total[Boxes Eligible (1=yes)]", ts_flag="Not TS Calc" } }, merge_type="consolidate", merge_dbs={ { dbname="connectivityallproducts.mdl", diveline_dbname="/DI_PSREPORTING/connectivityallproducts.mdl" } }, skip_constant_columns="FALSE", categories={ { name="Geography", dimensions={ "Theater", "Division", "Region", "Install at Country Name" } }, { name="Mappings and Flags", dimensions={ "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "Customer Installable", "PS Flag", "Top Level Flag", "Avalanche Flag" } }, { name="Product Information", dimensions={ "Product Family", "Product Item Family", "Product Version", "Item Description" } }, { name="Sales Order Info", dimensions={ "Sales Order Deal Number", "Sales Order Number", "Sales Order Type" } }, { name="Dates", dimensions={ "Item Install Date", "Ship Date", "SYR Last Dial Home Date" } }, { name="Details", dimensions={ "Item Serial Number", "TLA Serial Number", "Part Model Key", "Model Number" } }, { name="Customer Infor", dimensions={ "CS Customer Name", "Install At Customer Number", "Customer Classification", "Cust Name" } }, { name="Other Dimensions", dimensions={ "Model" } } }, Maintain_Category_Order="FALSE", popup_info="false" } } };

    Read the article

  • How to Remove a VM From Hyper-V Without Deleting the Configuration File?

    - by Steven Murawski
    I'm in the process of moving a number of virtual machines that are homed on shared storage (a file share, though shared cluster disk would work as well) to a new VM host with access to the same shared storage. The new host is a different build version (moving from Windows Server 2012 Beta to Windows Server 2012 RC - though this same process could be used with migrations of Windows Server 2008/2008 R2 to Windows Server 2012 as well), so I cannot migrate the machine with inbox tooling. I need to remove the VM from management of the source Hyper-V host in order to import the VM to the new Hyper-V host. I want to retain the configuration file, so I can import the VM as it stands and not need to reconfigure it. The VHD files are rather large and they are staying on the same file share, so I'd rather not duplicate them during the move process.

    Read the article

  • How to update Preview.app from the command line without losing focus on Mac OS X?

    - by snies
    I want to update Preview.app in the background from the command line without losing focus of my current window. I know that I can use the following to open/update the view of a file, but then I lose focus to the Preview.app. open -a Preview foo.pdf I guess there might be some clever AppleScript commands to do so but so far I didn't find the right one. Alternatively I would be interested into transfering the focus back to my current application directly after the update. I need this in order to update Preview.app's view of a PDF file through a vi autocmd after I update the PDF file according to changes in a TeX file I am editing. Here is an example of what I want to achieve but using Ubuntu and evince.

    Read the article

  • How can i update Preview.app from the command line without loosing focus on OSX ?

    - by snies
    Hello, i want to update Preview.app in the background from the command line without loosing focus of my current window. I know that i can use the following to open/update the view of a file, but than i loose focus to the Preview.app. open -a Preview foo.pdf I guess there might be some clever Apple Script commands to do so but so far i didn't find the right one. Alternatively i would be interested into transfering the focus back to my current app directly after the update. I need this in order to update Preview.app's view of a pdf through a vi autocmd after i update the pdf according to changes in a tex file i am editing. Here is an example of what i want to achive but using Ubuntu and evince.

    Read the article

< Previous Page | 184 185 186 187 188 189 190 191 192 193 194 195  | Next Page >