Search Results

Search found 38961 results on 1559 pages for 'boost function'.

Page 19/1559 | < Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >

  • Direct boost serialization to char array

    - by scooterman
    Hi all, Boost serialization doc's assert that the way to serialize/deserialize items is using a binary/text archive with a stream on the underlying structure. This works fine if I wan't to use the serialized data as an std::string, but my intention is to convert it directly to a char* buffer. How can I achieve this without creating a temporary string?

    Read the article

  • C++ boost thread reusing threads

    - by aaa
    hi. I am trying to accomplish something like this: thread t; // create/initialize thread t.launch(); // launch thread. t.wait(); // wait t.launch(); // relaunch the same thread How to go about implementing something like this using boost threads? in essence, I need persistent relaunch-able thread. Thanks

    Read the article

  • C++ boost wave, scoped macro

    - by aaa
    hello. Is it possible to have scoped macros using custom defined macros through boost wave? I know it should a possible with C++0x however I am working with regular C++. If it is possible, can you provide link or reference how to accomplish this? Thanks

    Read the article

  • any stl/boost functors to call operator()

    - by Voivoid
    template <typename T> struct Foo { void operator()(T& t) { t(); } }; Is there any standart or boost functor with the similar implementation? I need it to iterate over container of functors: std::for_each(beginIter, endIter, Foo<Bar>()); Or maybe there are other way to do it?

    Read the article

  • Mixing C and C++, raw pointers and (boost) shared pointers

    - by oompahloompah
    I am working in C++ with some legacy C code. I have a data structure that (during initialisation), makes a copy of the structure pointed to a ptr passed to its initialisation pointer. Here is a simplification of what I am trying to do - hopefully, no important detail has been lost in the "simplification": /* C code */ typedef struct MyData { double * elems; unsigned int len; }; int NEW_mydata(MyData* data, unsigned int len) { // no error checking data->elems = (double *)calloc(len, sizeof(double)); return 0; } typedef struct Foo { MyData data data_; }; void InitFoo(Foo * foo, const MyData * the_data) { //alloc mem etc ... then assign the STRUCTURE foo.data_ = *thedata ; } C++ code ------------- typedef boost::shared_ptr<MyData> MyDataPtr; typedef std::map<std::string, MyDataPtr> Datamap; class FooWrapper { public: FooWrapper(const std::string& key) { MyDataPtr mdp = dmap[key]; InitFoo(&m_foo, const_cast<MyData*>((*mdp.get()))); } ~FooWrapper(); double get_element(unsigned int index ) const { return m_foo.elems[index]; } private: // non copyable, non-assignable FooWrapper(const FooWrapper&); FooWrapper& operator= (const FooWrapper&); Foo m_foo; }; int main(int argc, char *argv[]) { MyData data1, data2; Datamap dmap; NEW_mydata(&data1, 10); data1->elems[0] = static_cast<double>(22/7); NEW_mydata(&data2, 42); data2->elems[0] = static_cast<double>(13/21); boost::shared_ptr d1(&data1), d2(&data2); dmap["data1"] = d1; dmap["data2"] = d2; FooWrapper fw("data1"); //expect 22/7, get something else (random number?) double ret fw.get_element(0); } Essentially, what I want to know is this: Is there any reason why the data retrieved from the map is different from the one stored in the map?

    Read the article

  • Boost::asio::endpoint::size() and resize()

    - by p00ya
    hi. I was reading the boost endpoint documentation and saw size() and resize() member funcs. the documentation says: Gets the underlying size of the endpoint in the native type. what does this size represent and where can it be used/resized ? thanks.

    Read the article

  • Custom InputIterator for Boost graph (BGL)

    - by Shadow
    Hi, I have a graph with custom properties to the vertices and edges. I now want to create a copy of this graph, but I don't want the vertices to be as complex as in the original. By this I mean that it would suffice that the vertices have the same indices (vertex_index_t) as they do in the original graph. Instead of doing the copying by hand I wanted to use the copy-functionality of boost::adjacency_list (s. http://www.boost.org/doc/libs/1_37_0/libs/graph/doc/adjacency_list.html): template <class EdgeIterator> adjacency_list(EdgeIterator first, EdgeIterator last, vertices_size_type n, edges_size_type m = 0, const GraphProperty& p = GraphProperty()) The description there says: The EdgeIterator must be a model of InputIterator. The value type of the EdgeIterator must be a std::pair, where the type in the pair is an integer type. The integers will correspond to vertices, and they must all fall in the range of [0, n). Unfortunately I have to admit that I don't quite get it how to define an EdgeIterator that is a model of InputIterator. Here's what I've succeded so far: template< class EdgeIterator, class Edge > class MyEdgeIterator// : public input_iterator< std::pair<int, int> > { public: MyEdgeIterator() {}; MyEdgeIterator(EdgeIterator& rhs) : actual_edge_it_(rhs) {}; MyEdgeIterator(const MyEdgeIterator& to_copy) {}; bool operator==(const MyEdgeIterator& to_compare) { return actual_edge_it_ == to_compare.actual_edge_it_; } bool operator!=(const MyEdgeIterator& to_compare) { return !(*this == to_compare); } Edge operator*() const { return *actual_edge_it_; } const MyEdgeIterator* operator->() const; MyEdgeIterator& operator ++() { ++actual_edge_it_; return *this; } MyEdgeIterator operator ++(int) { MyEdgeIterator<EdgeIterator, Edge> tmp = *this; ++*this; return tmp; } private: EdgeIterator& actual_edge_it_; } However, this doesn't work as it is supposed to and I ran out of clues. So, how do I define the appropriate InputIterator?

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • boost ublas: rotate 2d vector

    - by AndreasT
    Erm. I hope I am seriously overlooking something. I want to rotate a 2d vector (kartesian) v by a certain angle phi. I can't find a function that generates the appropriate matrix or just performs that function. I know how to do this by hand. I am looking for a ublas utility "something" that does this for me.

    Read the article

  • How to pass user-defined structs using boost mpi

    - by lava
    I am trying to send a user-defined structure named ABC using boost::mpi::send () call. The given struct contains a vector "data" whose size is determined at runtime. Objects of struct ABC are sent by master to slaves. But the slaves need to know the size of vector "data" so that the sufficient buffer is available on the slave to receive this data. I can work around it by sending the size first and initialize sufficient buffer on the slave before receiving the objects of struct ABC. But that defeats the whole purpose of using STL containers. Does anyone know of a better way to do handle this ? Any suggestions are greatly appreciated. Here is a sample code that describes the intent of my program. This code fails at runtime due to above mentioned reason. struct ABC { double cur_stock_price; double strike_price; double risk_free_rate; double option_price; std::vector <char> data; }; namespace boost { namespace serialization { template<class Archive> void serialize (Archive &ar, struct ABC &abc, unsigned int version) { ar & abc.cur_stock_price; ar & abc.strike_price; ar & abc.risk_free_rate; ar & abc.option_price; ar & bopr.data; } } } BOOST_IS_MPI_DATATYPE (ABC); int main(int argc, char* argv[]) { mpi::environment env (argc, argv); mpi::communicator world; if (world.rank () == 0) { ABC abc_obj; abc.cur_stock_price = 1.0; abc.strike_price = 5.0; abc.risk_free_rate = 2.5; abc.option_price = 3.0; abc_obj.data.push_back ('a'); abc_obj.data.push_back ('b'); world.send ( 1, ANY_TAG, abc_obj;); std::cout << "Rank 0 OK!" << std::endl; } else if (world.rank () == 1) { ABC abc_obj; // Fails here because abc_obj is not big enough world.recv (0,ANY_TAG, abc_obj;); std::cout << "Rank 1 OK!" << std::endl; for (int i = 0; i < abc_obj;.data.size(); i++) std::cout << i << "=" << abc_obj.data[i] << std::endl; } MPI_Finalize(); return 0; }

    Read the article

  • How to implement tokenizer.rbegin() and rend() for boost::tokenizer ?

    - by Chan
    Hello everyone, I'm playing around with boost::tokenizer however I realize that it does not support rbegin() and rend(). I would like to ask how can I add these two functions to the existing class? This is from the boost site: #include <iostream> #include <string> #include <boost/tokenizer.hpp> using namespace std; using namespace boost; int main() { string str( "12/12/1986" ); typedef boost::tokenizer<boost::char_separator<char>> tokenizer; boost::char_separator<char> sep( "/" ); tokenizer tokens( str, sep ); cout << *tokens.begin() << endl; // cout << *tokens.rbegin() << endl; How could I implement this? return 0; }

    Read the article

  • boost spirit semantic action parameters

    - by lurscher
    Hi, in this article about boost spirit semantic actions it is mentioned that There are actually 2 more arguments being passed: the parser context and a reference to a boolean ‘hit’ parameter. The parser context is meaningful only if the semantic action is attached somewhere to the right hand side of a rule. We will see more information about this shortly. The boolean value can be set to false inside the semantic action invalidates the match in retrospective, making the parser fail. All fine, but i've been trying to find an example passing a function object as semantic action that uses the other parameters (parser context and hit boolean) but i haven't found any. I would love to see an example using regular functions or function objects, as i barely can grok the phoenix voodoo

    Read the article

  • Pass by reference in Boost::Python

    - by Fabzter
    Hi everybody. Consider something like: struct Parameter { int a; Parameter(){a = 0} void setA(int newA){a = newA;} }; struct MyClass { void changeParameter(Parameter &p){ p.setA(-1);} }; Well, let's fast forward, and imagine I already wrapped those classes, exposing everything to python, and imagine also I instantiate an object of Parameter in the C++ code, which I pass to the python script, and that python script uses a MyClass object to modify the instance of Parameter I created at the beginning in the C++ code. After that code executes, in C++ Parameter instance is unchanged!!! This means it was passed by value (or something alike :S), not by reference. But I thought I declared it to be passed by reference... I can't seem to find Boost::Python documentation about passing by reference (although there seems to be enough doc about returning by reference...). Can anyone give some hint or pointer please?

    Read the article

  • Boost bind function

    - by Gokul
    Hi, I have a abstract base class A and a set of 10 derived classes. The infix operator is overloaded in all of the derived classes class A{ void printNode( std::ostream& os ) { this->printNode_p(); } void printNode_p( std::ostream& os ) { os << (*this); } }; There is a container which stores the base class pointers. I want to use boost::bind function to call the overloaded infix operator in each of its derived class. I have written like this std::vector<A*> m_args .... std::ostream os; for_each( m_args.begin(), m_args.end(), bind(&A::printNode, _1, os) ); What is the problem with this code? Thanks, Gokul.

    Read the article

  • Boost.Program_Options not working with short options

    - by inajamaica
    I have the following options_description: po::options_description config("Configuration File or Command Line"); config.add_options() ("run-time,t", po::value(&runTime_)-default_value(1440.0), "set max simulation duration") ("starting-iteration,i", po::value(&startingIteration_)-default_value(1), "set starting simulation iteration") ("repetitions,r", po::value(&repetitions_)-default_value(100), "set number of iterations") ... ; As you can see the three shown have a long,short names employed. The long versions all work. However, none of the short ones do, and each time I try a -t 12345.0 or a -i 12345, etc., I get the following from Program_Options: std::logic_error: in option 'starting-iteration': invalid option value I'm using Boost 1.42 on Win32. Any thoughts on what might be going on here? Thanks!

    Read the article

  • Using STL/Boost to initialize a hard-coded set<vector<int> >

    - by Hooked
    Like this question already asked, I'd like to initialize a container using STL where the elements are hard-coded in the cleanest manner possible. In this case, the elements are a doubly nested container: set<vector<int> > A; And I'd like (for example) to put the following values in: A = [[0,0,1],[0,1,0],[1,0,0],[0,0,0]]; C++0x fine, using g++ 4.4.1. STL is preferable as I don't use Boost for any other parts of the code (though I wouldn't mind an example with it!).

    Read the article

  • pushing back an boost::ptr_vector<...>::iterator in another boost::ptr_vector?

    - by Ethan Nash
    Hi all, I have the following code (just typed it in here, might have typos or stuff): typedef boost::ptr_vector<SomeClass> tvec; tvec v; // ... fill v ... tvec vsnap; for(tvec::iterator it = v.begin(); it != v.end(); ++it) { if((*v).anyCondition) vsnap.push_back( it ); // (*it) or &(*it) doesn't work } My problem is now that i cant push_back an iterator in any way, I just don't get the pointer out of the iterator. Is there an easy way i didnt see, or are boosts ptr_vector the false choice for this case? Thanks in advance.

    Read the article

  • Boost python module building

    - by Ockonal
    Hello, I'm using boost.python and I need in building some module for it. I have an some_module.cpp file in project. How can I build it correctly to the shared library for using it with python in future? When I learned it, I had only 1 file and I built it with command: gcc -shared -Wl,-soname,hello.so -o hello.so test.cpp -I /usr/include/python2.6/ -lboost_python And I don't know how to configure it in whole project. I'm using Eclipse and Code::Blocks IDEs.

    Read the article

  • Boost graph libraries: setting edge weight values

    - by AndyUK
    I am investigating the use of the boost graph libraries in order to apply them to various network problems I have in mind. In the examples I have been looking at the graph edge values ("weights") are always initialized as integers, such as in these Bellman-Ford and Kruskal algorithms eg: int weights[] = { 1, 1, 2, 7, 3, 1, 1, 1 }; My problem is if I try and change the weights to double, I get a heap of warning messages about conversions etc, which so far I have not been able to figure out how to overcome. Does anyone see a way around this?

    Read the article

  • Passing Boost uBLAS matrices to OpenGL shader

    - by AJM
    I'm writing an OpenGL program where I compute my own matrices and pass them to shaders. I want to use Boost's uBLAS library for the matrices, but I have little idea how to get a uBLAS matrix into OpenGL's shader uniform functions. matrix<GLfloat, column_major> projection(4, 4); // Fill matrix ... GLuint projectionU = glGetUniformLocation(shaderProgram, "projection"); glUniformMatrix4fv(projectionU, 1, 0, (GLfloat *)... Um ...); Trying to cast the matrix to a GLfloat pointer causes an invalid cast error on compile.

    Read the article

  • Using boost::asio::async_read with stdin?

    - by yeus
    hi poeple.. short question: I have a realtime-simulation which is running as a backround process and is connected with pipes to the calling pogramm. I want to send commands to that process using stdin to get certain information from it via stdout. Now because it is a real-time process, it has to be a non blocking input. Is boost::asio::async_read in conjunction with iostream::cin a good idea for this task? how would I use that function if it is feasible? Any more suggestions?

    Read the article

  • Sample the deltas between values using boost::accumulators

    - by Checkers
    I have a data set with N integers (say, 13, 16, 17, 20) where each next sample is incremented by some value (3, 1, 3 in this case) and I want to use boost::accumulators::accumulator_set to find various statistics of the second sequence. I want to be able to do something like this: accumulator_set< double, features< tag::mean > > acc; ... acc(13); acc(16); acc(17); acc(20); ...BUT sampling the differences instead of the actual values. How can I do that with accumulator_set without keeping track of the last value manually?

    Read the article

  • basic boost date_time input format question

    - by Chris H
    I've got a pointer to a string, (char *) as input. The date/time looks like this: Sat, 10 Apr 2010 19:30:00 I'm only interested in the date, not the time. I created an "input_facet" with the format I want: boost::date_time::date_input_facet inFmt("%a %d %b %Y"); but I'm not sure what to do with it. Ultimately I'd like to create a date object from the string. I'm pretty sure I'm on the right track with that input facet and format, but I have no idea how to use it. Thanks.

    Read the article

< Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >