Search Results

Search found 796 results on 32 pages for 'hex'.

Page 19/32 | < Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >

  • "Distance" between colours in PHP

    - by Phil
    I'm looking for a function that can accurately represent the distance between two colours as a number or something. For example I am looking to have an array of HEX values or RGB arrays and I want to find the most similar colour in the array for a given colour eg. I pass a function a RGB value and the 'closest' colour in the array is returned

    Read the article

  • Audible Audio (.aa) file spec?

    - by Adam
    Does anyone know of a good resource on the Audible Audio (.aa) file spec? I'm trying to write a program that can use them, if no one knows of a resource, any tips on reverse engineering the spec my self? I opened it up in a Hex editor and poked around, looks like an MP3 but with a ton more header info.

    Read the article

  • How can I have my python file show its mercurial tag or revision as the module version?

    - by Chris R
    I'd like to add a --version command line option to my python application that will show the right version depending on the tagged status of the command: If the file comes from a version whose short hex ID was abcdef01 that was tagged TAG, --version should show this: MyApp Version TAG (abcdef01) If the file comes from the tip, --version should show this: MyApp (tip) If the file comes from an arbitrary, untagged revision abcdef02, --version should show this: MyApp (development, abcdef02) Is this possible? If so, how?

    Read the article

  • How is the result of openssl_sign() encoded?

    - by Bozho
    The docs about openssl_sign() say that the signature is returned in the passed string argument. My question is - how is it encoded? Base64, Hex-string, anything else? I don't have php installed and I have to use this PHP code I was given simply in order to verify whether my Java implementation is correct, so don't ask me "have you tried it" ;)

    Read the article

  • Setting up RADIUS + LDAP for WPA2 on Ubuntu

    - by Morten Siebuhr
    I'm setting up a wireless network for ~150 users. In short, I'm looking for a guide to set RADIUS server to authenticate WPA2 against a LDAP. On Ubuntu. I got a working LDAP, but as it is not in production use, it can very easily be adapted to whatever changes this project may require. I've been looking at FreeRADIUS, but any RADIUS server will do. We got a separate physical network just for WiFi, so not too many worries about security on that front. Our AP's are HP's low end enterprise stuff - they seem to support whatever you can think of. All Ubuntu Server, baby! And the bad news: I now somebody less knowledgeable than me will eventually take over administration, so the setup has to be as "trivial" as possible. So far, our setup is based only on software from the Ubuntu repositories, with exception of our LDAP administration web application and a few small special scripts. So no "fetch package X, untar, ./configure"-things if avoidable. UPDATE 2009-08-18: While I found several useful resources, there is one serious obstacle: Ignoring EAP-Type/tls because we do not have OpenSSL support. Ignoring EAP-Type/ttls because we do not have OpenSSL support. Ignoring EAP-Type/peap because we do not have OpenSSL support. Basically the Ubuntu version of FreeRADIUS does not support SSL (bug 183840), which makes all the secure EAP-types useless. Bummer. But some useful documentation for anybody interested: http://vuksan.com/linux/dot1x/802-1x-LDAP.html http://tldp.org/HOWTO/html_single/8021X-HOWTO/#confradius UPDATE 2009-08-19: I ended up compiling my own FreeRADIUS package yesterday evening - there's a really good recipe at http://www.linuxinsight.com/building-debian-freeradius-package-with-eap-tls-ttls-peap-support.html (See the comments to the post for updated instructions). I got a certificate from http://CACert.org (you should probably get a "real" cert if possible) Then I followed the instructions at http://vuksan.com/linux/dot1x/802-1x-LDAP.html. This links to http://tldp.org/HOWTO/html_single/8021X-HOWTO/, which is a very worthwhile read if you want to know how WiFi security works. UPDATE 2009-08-27: After following the above guide, I've managed to get FreeRADIUS to talk to LDAP: I've created a test user in LDAP, with the password mr2Yx36M - this gives an LDAP entry roughly of: uid: testuser sambaLMPassword: CF3D6F8A92967E0FE72C57EF50F76A05 sambaNTPassword: DA44187ECA97B7C14A22F29F52BEBD90 userPassword: {SSHA}Z0SwaKO5tuGxgxtceRDjiDGFy6bRL6ja When using radtest, I can connect fine: > radtest testuser "mr2Yx36N" sbhr.dk 0 radius-private-password Sending Access-Request of id 215 to 130.225.235.6 port 1812 User-Name = "msiebuhr" User-Password = "mr2Yx36N" NAS-IP-Address = 127.0.1.1 NAS-Port = 0 rad_recv: Access-Accept packet from host 130.225.235.6 port 1812, id=215, length=20 > But when I try through the AP, it doesn't fly - while it does confirm that it figures out the NT and LM passwords: ... rlm_ldap: sambaNTPassword -> NT-Password == 0x4441343431383745434139374237433134413232463239463532424542443930 rlm_ldap: sambaLMPassword -> LM-Password == 0x4346334436463841393239363745304645373243353745463530463736413035 [ldap] looking for reply items in directory... WARNING: No "known good" password was found in LDAP. Are you sure that the user is configured correctly? [ldap] user testuser authorized to use remote access rlm_ldap: ldap_release_conn: Release Id: 0 ++[ldap] returns ok ++[expiration] returns noop ++[logintime] returns noop [pap] Normalizing NT-Password from hex encoding [pap] Normalizing LM-Password from hex encoding ... It is clear that the NT and LM passwords differ from the above, yet the message [ldap] user testuser authorized to use remote access - and the user is later rejected...

    Read the article

  • dvd drive I/O error?

    - by bobby
    i get dis error evry time i burn a cd/dvd thru my dvd drive...!! Nero Burning ROM bobby 4C85-200E-4005-0004-0000-7660-0800-35X3-0000-407M-MX37-**** (*) Windows XP 6.1 IA32 WinAspi: - NT-SPTI used Nero Version: 7.11.3. Internal Version: 7, 11, 3, (Nero Express) Recorder: Version: UL01 - HA 1 TA 1 - 7.11.3.0 Adapter driver: HA 1 Drive buffer : 2048kB Bus Type : default CD-ROM: Version: 52PP - HA 1 TA 0 - 7.11.3.0 Adapter driver: HA 1 === Scsi-Device-Map === === CDRom-Device-Map === ATAPI-CD ROM-DRIVE-52MAX F: CdRom0 HL-DT-ST DVDRAM GSA-H12N G: CdRom1 ======================= AutoRun : 1 Excluded drive IDs: WriteBufferSize: 83886080 (0) Byte BUFE : 0 Physical memory : 958MB (981560kB) Free physical memory: 309MB (317024kB) Memory in use : 67 % Uncached PFiles: 0x0 Use Inquiry : 1 Global Bus Type: default (0) Check supported media : Disabled (0) 11.6.2010 CD Image 10:43:02 AM #1 Text 0 File SCSIPTICommands.cpp, Line 450 LockMCN - completed sucessfully for IOCTL_STORAGE_MCN_CONTROL 10:43:02 AM #2 Text 0 File Burncd.cpp, Line 3186 HL-DT-ST DVDRAM GSA-H12N Buffer underrun protection activated 10:43:02 AM #3 Text 0 File Burncd.cpp, Line 3500 Turn on Disc-At-Once, using CD-R/RW media 10:43:02 AM #4 Text 0 File DlgWaitCD.cpp, Line 307 Last possible write address on media: 359848 ( 79:59.73) Last address to be written: 318783 ( 70:52.33) 10:43:02 AM #5 Text 0 File DlgWaitCD.cpp, Line 319 Write in overburning mode: NO (enabled: CD) 10:43:02 AM #6 Text 0 File DlgWaitCD.cpp, Line 2988 Recorder: HL-DT-ST DVDRAM G SA-H12N; CDR co de: 00 97 27 18; O SJ entry from: Pla smon Data systems Ltd. ATIP Data: Special Info [hex] 1: D0 00 A0, 2: 61 1B 12 (LI 97:27.18), 3: 4F 3B 4A ( LO 79:59.74) Additional Info [hex] 1: 00 00 00 (invalid), 2: 00 00 00 (invalid), 3: 00 0 0 00 (invalid) 10:43:02 AM #7 Text 0 File DlgWaitCD.cpp, Line 493 Protocol of DlgWaitCD activities: TRM_DATA_MODE1, 2048, config 0, wanted index0 0 blocks, length 318784 blo cks [G: HL-DT-ST DVDRAM GSA-H12N] -------------------------------------------------------------- 10:43:02 AM #9 Text 0 File ThreadedTransferInterface.cpp, Line 986 Prepare [G: HL-DT-ST DVDRAM GSA-H12N] for write in CUE-sheet-DAO DAO infos: ========== MCN: "" TOCType: 0x00; Se ssion Clo sed, disc fixated Tracks 1 to 1: Idx 0 Idx 1 Next T rk 1: TRM_DATA_MODE1, 2048/0x00, FilePos 0 307200 6531768 32, ISRC "" DAO layout: =========== ___Start_|____Track_|_Idx_|_CtrlAdr_|_____Size_|______NWA_|_RecDep__________ -150 | lead-in | 0 | 0x41 | 0 | 0 | 0x00 -150 | 1 | 0 | 0x41 | 0 | 0 | 0x00 0 | 1 | 1 | 0x41 | 318784 | 318784 | 0x00 318784 | lead-out | 1 | 0x41 | 0 | 0 | 0x00 10:43:02 AM #10 Text 0 File SCSIPTICommands.cpp, Line 240 SPTILockVolume - completed successfully for FSCTL_LOCK_VOLUME 10:43:02 AM #11 Text 0 File Burncd.cpp, Line 4286 Caching options: cache CDRom or Network-Yes, small files-Yes ( ON 10:43:03 AM #19 Text 0 File MMC.cpp, Line 18034 CueData, Len=32 41 00 00 14 00 00 00 00 41 01 00 10 00 00 00 00 41 01 01 10 00 00 02 00 41 aa 01 14 00 46 34 22 10:43:03 AM #20 Text 0 File ThreadedTransfer.cpp, Line 268 Pipe memory size 83836800 10:43:16 AM #21 Text 0 File Cdrdrv.cpp, Line 1405 10:43:16.806 - G: HL-DT-ST DVDRAM GSA-H12N : Queue again later 10:43:42 AM #22 SPTI -1502 File SCSIPassThrough.cpp, Line 181 CdRom1: SCSIStatus(x02) WinError(0) NeroError(-1502) Sense Key: 0x04 (KEY_HARDWARE_ERROR) Nero Report 2 Nero Burning ROM Sense Code: 0x08 Sense Qual: 0x03 CDB Data: 0x2A 00 00 00 4D 00 00 00 20 00 00 00 Sense Area: 0x70 00 04 00 00 00 00 10 53 29 A1 80 08 03 Buffer x0c7d9a40: Len x10000 0xDC 87 EB 41 6E AC 61 5A 07 B2 DB 78 B5 D4 D9 24 0x8D BC 51 38 46 56 0F EE 16 15 5C 5B E3 B0 10 16 0x14 B1 C3 6E 30 2B C4 78 15 AB D5 92 09 B7 81 23 10:43:42 AM #23 CDR -1502 File Writer.cpp, Line 306 DMA-driver error, CRC error G: HL-DT-ST DVDRAM GSA-H12N 10:43:55 AM #24 Phase 38 File dlgbrnst.cpp, Line 1767 Burn process failed at 48x (7,200 KB/s) 10:43:55 AM #25 Text 0 File SCSIPTICommands.cpp, Line 287 SPTIDismountVolume - completed successfully for FSCTL_DISMOUNT_VOLUME 10:44:01 AM #26 Text 0 File Cdrdrv.cpp, Line 11412 DriveLocker: UnLockVolume completed 10:44:01 AM #27 Text 0 File SCSIPTICommands.cpp, Line 450 UnLockMCN - completed sucessfully for IOCTL_STORAGE_MCN_CONTROL Existing drivers: Registry Keys: HKLM\Software\Microsoft\Windows NT\CurrentVersion\WinLogon Nero Report 3

    Read the article

  • Strange enduser experience with Liferay, Glassfish and Apache on RedHat

    - by Pete Helgren
    Tried multiple forums to get to the bottom of this. I hope I can get some direction here: Here is the stack I am working with: Red Hat Enterprise Linux Server release 5.6 (Tikanga) Liferay 6.0.6 on Glassfish 3.0.1 MySQL 5.0.77 Apache 2.2.3 The Liferay portal provides a variety of portlets to end users. Static content (web pages), static resources (primarily pdf and mp3 files 1mb - 80mb in size), File upload and download capabilities (primarily 40-60mb mp3 files) and online streaming of those MP3 files. Here is the strange end user experiences: Under normal load: (20-30) users uploading, downloading or streaming files and 20-30 accessing static content (some of it downloads), we see the following: 1) Clicking a link triggers the download of a portion of an MP3 (the portion is a few seconds long). 2) Clicking on a link tiggers the download of the page content rather than rendering. 3) Clicking a link causes the page to dump binary data to the end user rather than the expected content. 4) Clicking a link returns the text of a javascript file rather than rendering the page. Each occurrence is totally random (or appears so). Sometimes it works, sometimes it doesn't. It seems to have no relation to browser or client OS. The strange events seem to occur much more frequently when using an SSL connection rather than regular http. Apache serves as a proxy server only (reverse). It basically passes all the requests through to Glassfish. There isn't any static content proxy served by Apache. We rebuilt the entire stack from scratch and redeployed the portlet wars and still have the same issues. Liferay is running as a single server (not clustered). We disabled mod_cache in Apache. The problems are more frequent as the server load grows. This morning the load is pretty light and we are seeing few problems but the use of the site will grow, particularly tonight around 9pm CST through Wednesday morning. You could try the site (http://preview.bsfinternational.org) during those times and I would expect that you might experience one of the weirdnesses as you randomly click links on the site (https is invoked only when signed in). Again, https seems to exacerbate the issue. This seems very much like a caching issue but I don't know where in the stack to start peeling the onion. Apache? Liferay? Glassfish? MySQL? Maybe even Redhat? We are stumped and most forums we have posted to (LifeRay and Glassfish) have returned very few suggestions. I just need an idea of where to start looking. I understand that we could have a portlet EDIT: Opening the files in a Hex editor that appear to be pages that download rather than render, we see that the first 4000 characters are "junk" and then the "HTTP/1.1 ...." 'normal' header is seen. So something is dumping a jumble of characters up to offset 4000 (when viewing it in a Hex editor). Perhaps a clue? Ideas?

    Read the article

  • The DOS DEBUG Environment

    - by MarkPearl
    Today I thought I would go back in time and have a look at the DEBUG command that has been available since the beginning of dawn in DOS, MS-DOS and Microsoft Windows. up to today I always knew it was there, but had no clue on how to use it so for those that are interested this might be a great geek party trick to pull out when you want the awe the younger generation and want to show them what “real” programming is about. But wait, you will have to do it relatively quickly as it seems like DEBUG was finally dumped from the Windows group in Windows 7. Not to worry, pull out that Windows XP box which will get you even more geek points and you can still poke DEBUG a bit. So, for those that are interested and want to find out a bit about the history of DEBUG read the wiki link here. That all put aside, lets get our hands dirty.. How to Start DEBUG in Windows Make sure your version of Windows supports DEBUG. Open up a console window Make a directory where you want to play with debug – in my instance I called it C221 Enter the directory and type Debug You will get a response with a – as illustrated in the image below…   The commands available in DEBUG There are several commands available in DEBUG. The most common ones are A (Assemble) R (Register) T (Trace) G (Go) D (Dump or Display) U (Unassemble) E (Enter) P (Proceed) N (Name) L (Load) W (Write) H (Hexadecimal) I (Input) O (Output) Q (Quit) I am not going to cover all these commands, but what I will do is go through a few of them briefly. A is for Assemble Command (to write code) The A command translates assembly language statements into machine code. It is quite useful for writing small assembly programs. Below I have written a very basic assembly program. The code typed out is as follows mov ax,0015 mov cx,0023 sub cx,ax mov [120],al mov cl,[120]A nop R is for Register (to jump to a point in memory) The r command turns out to be one of the most frequent commands you will use in DEBUG. It allows you to view the contents of registers and to change their values. It can be used with the following combinations… R – Displays the contents of all the registers R f – Displays the flags register R register_name – Displays the contents of a specific register All three methods are illustrated in the image above T is for Trace (To execute a program step by step) The t command allows us to execute the program step by step. Before we can trace the program we need to point back to the beginning of the program. We do this by typing in r ip, which moves us back to memory point 100. We then type trace which executes the first line of code (line 100) (As shown in the image below starting from the red arrow). You can see from the above image that the register AX now contains 0015 as per our instruction mov ax,0015 You can also see that the IP points to line 0103 which has the MOV CX,0023 command If we type t again it will now execute the second line of the program which moves 23 in the cx register. Again, we can see that the line of code was executed and that the CX register now holds the value of 23. What I would like to highlight now is the section underlined in red. These are the status flags. The ones we are going to look at now are 1st (NV), 4th (PL), 5th (NZ) & 8th (NC) NV means no overflow, the alternate would be OV PL means that the sign of the previous arithmetic operation was Plus, the alternate would be NG (Negative) NZ means that the results of the previous arithmetic operation operation was Not Zero, the alternate would be ZR NC means that No final Carry resulted from the previous arithmetic operation. CY means that there was a final Carry. We could now follow this process of entering the t command until the entire program is executed line by line. G is for Go (To execute a program up to a certain line number) So we have looked at executing a program line by line, which is fine if your program is minuscule BUT totally unpractical if we have any decent sized program. A quicker way to run some lines of code is to use the G command. The ‘g’ command executes a program up to a certain specified point. It can be used in connection with the the reset IP command. You would set your initial point and then run the G command with the line you want to end on. P is for Proceed (Similar to trace but slightly more streamlined) Another command similar to trace is the proceed command. All that the p command does is if it is called and it encounters a CALL, INT or LOOP command it terminates the program execution. In the example below I modified our example program to include an int 20 at the end of it as illustrated in the image below… Then when executing the code when I encountered the int 20 command I typed the P command and the program terminated normally (illustrated below). D is for Dump (or for those more polite Display) So, we have all these assembly lines of code, but if you have ever opened up an exe or com file in a text/hex editor, it looks nothing like assembly code. The D command is a way that we can see what our code looks like in memory (or in a hex editor). If we examined the image above, we can see that Debug is storing our assembly code with each instruction following immediately after the previous one. For instance in memory address 110 we have int and 111 we have 20. If we examine the dump of memory we can see at memory point 110 CD is stored and at memory point 111 20 is stored. U is for Unassemble (or Convert Machine code to Assembly Code) So up to now we have gone through a bunch of commands, but probably one of the most useful is the U command. Let’s say we don’t understand machine code so well and so instead we want to see it in its equivalent assembly code. We can type the U command followed by the start memory point, followed by the end memory point and it will show us the assembly code equivalent of the machine code. E is for a bunch of things… The E command can be used for a bunch of things… One example is to enter data or machine code instructions directly into memory. It can also be used to display the contents of memory locations. I am not going to worry to much about it in this post. N / L / W is for Name, Load & Write So we have written out assembly code in debug, and now we want to save it to disk, or write it as a com file or load it. This is where the N, L & W command come in handy. The n command is used to give a name to the executable program file and is pretty simple to use. The w command is a bit trickier. It saves to disk all the memory between point bx and point cx so you need to specify the bx memory address and the cx memory address for it to write your code. Let’s look at an example illustrated below. You do this by calling the r command followed by the either bx or cx. We can then go to the directory where we were working and will see the new file with the name we specified. The L command is relatively simple. You would first specify the name of the file you would like to load using the N command, and then call the L command. Q is for Quit The last command that I am going to write about in this post is the Q command. Simply put, calling the Q command exits DEBUG. Commands we did not Cover Out of the standard DEBUG commands we covered A, T, G, D, U, E, P, R, N, L & W. The ones we did not cover were H, I & O – I might make mention of these in a later post, but for the basics they are not really needed. Some Useful Resources Please note this post is based on the COS2213 handouts for UNISA A Guide to DEBUG - http://mirror.href.com/thestarman/asm/debug/debug.htm#NT

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • Cache Simulator in C

    - by DuffDuff
    Ok this is only my second question, and it's quite a doozy. It's for a school assignment, but no one (including the TAs) seems to be able to help me. It's kind of a tall order but I'm not sure where else to turn. Essentially the assignment was to make a cache simulator. This version is direct mapping and is actually only a small portion of the whole project, but if I can't even get this down I have no chance with other associativities. I'm posting my whole code because I don't want to make any assumptions about where the problem is. This is the test case: http://www.mediafire.com/?ty5dnihydnw And you run the following command: ./sims 512 direct 32 fifo wt pinatrace.out You're supposed to get: hits: 604037 misses 138349 writes: 239269 reads: 138349 But I get: Hits: 587148 Misses: 155222 Writes: 239261 Reads: 155222 If anyone could at least point me in the right direction it would be greatly appreciated. I've been stuck on this for about 12 hours. #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> struct myCache { int valid; char *tag; char *block; }; /* sim [-h] <cache size> <associativity> <block size> <replace alg> <write policy> <trace file> */ //God willing I come up with a better Hex to Bin convertion that maintains the beginning 0s... void hex2bin(char input[], char output[]) { int i; int a = 0; int b = 1; int c = 2; int d = 3; int x = 4; int size; size = strlen(input); for (i = 0; i < size; i++) { if (input[i] =='0') { output[i*x +a] = '0'; output[i*x +b] = '0'; output[i*x +c] = '0'; output[i*x +d] = '0'; } else if (input[i] =='1') { output[i*x +a] = '0'; output[i*x +b] = '0'; output[i*x +c] = '0'; output[i*x +d] = '1'; } else if (input[i] =='2') { output[i*x +a] = '0'; output[i*x +b] = '0'; output[i*x +c] = '1'; output[i*x +d] = '0'; } else if (input[i] =='3') { output[i*x +a] = '0'; output[i*x +b] = '0'; output[i*x +c] = '1'; output[i*x +d] = '1'; } else if (input[i] =='x') { output[i*x +a] = '0'; output[i*x +b] = '1'; output[i*x +c] = '0'; output[i*x +d] = '0'; } else if (input[i] =='5') { output[i*x +a] = '0'; output[i*x +b] = '1'; output[i*x +c] = '0'; output[i*x +d] = '1'; } else if (input[i] =='6') { output[i*x +a] = '0'; output[i*x +b] = '1'; output[i*x +c] = '1'; output[i*x +d] = '0'; } else if (input[i] =='7') { output[i*x +a] = '0'; output[i*x +b] = '1'; output[i*x +c] = '1'; output[i*x +d] = '1'; } else if (input[i] =='8') { output[i*x +a] = '1'; output[i*x +b] = '0'; output[i*x +c] = '0'; output[i*x +d] = '0'; } else if (input[i] =='9') { output[i*x +a] = '1'; output[i*x +b] = '0'; output[i*x +c] = '0'; output[i*x +d] = '1'; } else if (input[i] =='a') { output[i*x +a] = '1'; output[i*x +b] = '0'; output[i*x +c] = '1'; output[i*x +d] = '0'; } else if (input[i] =='b') { output[i*x +a] = '1'; output[i*x +b] = '0'; output[i*x +c] = '1'; output[i*x +d] = '1'; } else if (input[i] =='c') { output[i*x +a] = '1'; output[i*x +b] = '1'; output[i*x +c] = '0'; output[i*x +d] = '0'; } else if (input[i] =='d') { output[i*x +a] = '1'; output[i*x +b] = '1'; output[i*x +c] = '0'; output[i*x +d] = '1'; } else if (input[i] =='e') { output[i*x +a] = '1'; output[i*x +b] = '1'; output[i*x +c] = '1'; output[i*x +d] = '0'; } else if (input[i] =='f') { output[i*x +a] = '1'; output[i*x +b] = '1'; output[i*x +c] = '1'; output[i*x +d] = '1'; } } output[32] = '\0'; } int main(int argc, char* argv[]) { FILE *tracefile; char readwrite; int trash; int cachesize; int blocksize; int setnumber; int blockbytes; int setbits; int blockbits; int tagsize; int m; int count = 0; int count2 = 0; int count3 = 0; int i; int j; int xindex; int jindex; int kindex; int lindex; int setadd; int totalset; int writeMiss = 0; int writeHit = 0; int cacheMiss = 0; int cacheHit = 0; int read = 0; int write = 0; int size; int extra; char bbits[100]; char sbits[100]; char tbits[100]; char output[100]; char input[100]; char origtag[100]; if (argc != 7) { if (strcmp(argv[0], "-h")) { printf("./sim2 <cache size> <associativity> <block size> <replace alg> <write policy> <trace file>\n"); return 0; } else { fprintf(stderr, "Error: wrong number of parameters.\n"); return -1; } } tracefile = fopen(argv[6], "r"); if(tracefile == NULL) { fprintf(stderr, "Error: File is NULL.\n"); return -1; } //Determining size of sbits, bbits, and tag cachesize = atoi(argv[1]); blocksize = atoi(argv[3]); setnumber = (cachesize/blocksize); printf("setnumber: %d\n", setnumber); setbits = (round((log(setnumber))/(log(2)))); printf("sbits: %d\n", setbits); blockbits = log(blocksize)/log(2); printf("bbits: %d\n", blockbits); tagsize = 32 - (blockbits + setbits); printf("t: %d\n", tagsize); struct myCache newCache[setnumber]; //Allocating Space for Tag Bits, initiating tag and valid to 0s for(i=0;i<setnumber;i++) { newCache[i].tag = (char *)malloc(sizeof(char)*(tagsize+1)); for(j=0;j<tagsize;j++) { newCache[i].tag[j] = '0'; } newCache[i].valid = 0; } while(fgetc(tracefile)!='#') { setadd = 0; totalset = 0; //read in file fseek(tracefile,-1,SEEK_CUR); fscanf(tracefile, "%x: %c %s\n", &trash, &readwrite, origtag); //shift input Hex size = strlen(origtag); extra = (10 - size); for(i=0; i<extra; i++) input[i] = '0'; for(i=extra, j=0; i<(size-(2-extra)); j++, i++) input[i]=origtag[j+2]; input[8] = '\0'; // Convert Hex to Binary hex2bin(input, output); //Resolving the Address into tbits, sbits, bbits for (xindex=0, jindex=(32-blockbits); jindex<32; jindex++, xindex++) { bbits[xindex] = output[jindex]; } bbits[xindex]='\0'; for (xindex=0, kindex=(32-(blockbits+setbits)); kindex<32-(blockbits); kindex++, xindex++){ sbits[xindex] = output[kindex]; } sbits[xindex]='\0'; for (xindex=0, lindex=0; lindex<(32-(blockbits+setbits)); lindex++, xindex++){ tbits[xindex] = output[lindex]; } tbits[xindex]='\0'; //Convert set bits from char array into ints for(xindex = 0, kindex = (setbits -1); xindex < setbits; xindex ++, kindex--) { if (sbits[xindex] == '1') setadd = 1; if (sbits[xindex] == '0') setadd = 0; setadd = setadd * pow(2, kindex); totalset += setadd; } //Calculating Hits and Misses if (newCache[totalset].valid == 0) { newCache[totalset].valid = 1; strcpy(newCache[totalset].tag, tbits); } else if (newCache[totalset].valid == 1) { if(strcmp(newCache[totalset].tag, tbits) == 0) { if (readwrite == 'W') { cacheHit++; write++; } if (readwrite == 'R') cacheHit++; } else { if (readwrite == 'R') { cacheMiss++; read++; } if (readwrite == 'W') { cacheMiss++; read++; write++; } strcpy(newCache[totalset].tag, tbits); } } } printf("Hits: %d\n", cacheHit); printf("Misses: %d\n", cacheMiss); printf("Writes: %d\n", write); printf("Reads: %d\n", read); }

    Read the article

  • Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware

    - by The Geek
    You might be wondering why we have a screenshot of what appears to be AVG Anti-Virus, but is in fact a fake anti-virus malware that holds your computer hostage until you pay them. Here’s a really simple tip to defeating these types of malware, and a quick review of other options. Not sure what we’re talking about? Be sure to check out our previous articles on cleaning up fake antivirus infections. How To Remove Internet Security 2010 and other Rogue/Fake Antivirus Malware How To Remove Antivirus Live and Other Rogue/Fake Antivirus Malware How To Remove Advanced Virus Remover and Other Rogue/Fake Antivirus Malware How To Remove Security Tool and other Rogue/Fake Antivirus Malware So what’s the problem? Can’t you just run a anti-virus scan? Well… it’s not quite that simple. What actually happens is that these pieces of malware block you from running almost anything on your PC, and often prevent you from running apps from a Flash drive, with an error like this: Once you encounter this error, there’s a couple things you can do. The first one is almost stupidly simple, and works some of the time Latest Features How-To Geek ETC Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines RGB? CMYK? Alpha? What Are Image Channels and What Do They Mean? Project M Brings Classic Super Smash Bro Style Gameplay to the Wii Now Together and Complete – McBain: The Movie [Simpsons Video] Be Creative by Using Hex and RGB Codes for Crayola Crayon Colors on Your Next Web or Art Project [Geek Fun] Flash Updates; Finally Supports Full Screen Video on Multiple Monitors 22 Ways to Recycle an Altoids Mint Tin Make Your Desktop Go Native with the Tribal Arts Theme for Windows 7

    Read the article

  • Azure Grid Computing - Worker Roles as HPC Compute Nodes

    - by JoshReuben
    Overview ·        With HPC 2008 R2 SP1 You can add Azure worker roles as compute nodes in a local Windows HPC Server cluster. ·        The subscription for Windows Azure like any other Azure Service - charged for the time that the role instances are available, as well as for the compute and storage services that are used on the nodes. ·        Win-Win ? - Azure charges the computer hour cost (according to vm size) amortized over a month – so you save on purchasing compute node hardware. Microsoft wins because you need to purchase HPC to have a local head node for managing this compute cluster grid distributed in the cloud. ·        Blob storage is used to hold input & output files of each job. I can see how Parametric Sweep HPC jobs can be supported (where the same job is run multiple times on each node against different input units), but not MPI.NET (where different HPC Job instances function as coordinated agents and conduct master-slave inter-process communication), unless Azure is somehow tunneling MPI communication through inter-WorkerRole Azure Queues. ·        this is not the end of the story for Azure Grid Computing. If MS requires you to purchase a local HPC license (and administrate it), what's to stop a 3rd party from doing this and encapsulating exposing HPC WCF Broker Service to you for managing compute nodes? If MS doesn’t  provide head node as a service, someone else will! Process ·        requires creation of a worker node template that specifies a connection to an existing subscription for Windows Azure + an availability policy for the worker nodes. ·        After worker nodes are added to the cluster, you can start them, which provisions the Windows Azure role instances, and then bring them online to run HPC cluster jobs. ·        A Windows Azure worker role instance runs a HPC compatible Azure guest operating system which runs on the VMs that host your service. The guest operating system is updated monthly. You can choose to upgrade the guest OS for your service automatically each time an update is released - All role instances defined by your service will run on the guest operating system version that you specify. see Windows Azure Guest OS Releases and SDK Compatibility Matrix (http://go.microsoft.com/fwlink/?LinkId=190549). ·        use the hpcpack command to upload file packages and install files to run on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). Requirements ·        assuming you have an azure subscription account and the HPC head node installed and configured. ·        Install HPC Pack 2008 R2 SP 1 -  see Microsoft HPC Pack 2008 R2 Service Pack 1 Release Notes (http://go.microsoft.com/fwlink/?LinkID=202812). ·        Configure the head node to connect to the Internet - connectivity is provided by the connection of the head node to the enterprise network. You may need to configure a proxy client on the head node. Any cluster network topology (1-5) is supported). ·        Configure the firewall - allow outbound TCP traffic on the following ports: 80,       443, 5901, 5902, 7998, 7999 ·        Note: HPC Server  uses Admin Mode (Elevated Privileges) in Windows Azure to give the service administrator of the subscription the necessary privileges to initialize HPC cluster services on the worker nodes. ·        Obtain a Windows Azure subscription certificate - the Windows Azure subscription must be configured with a public subscription (API) certificate -a valid X.509 certificate with a key size of at least 2048 bits. Generate a self-sign certificate & upload a .cer file to the Windows Azure Portal Account page > Manage my API Certificates link. see Using the Windows Azure Service Management API (http://go.microsoft.com/fwlink/?LinkId=205526). ·        import the certificate with an associated private key on the HPC cluster head node - into the trusted root store of the local computer account. Obtain Windows Azure Connection Information for HPC Server ·        required for each worker node template ·        copy from azure portal - Get from: navigation pane > Hosted Services > Storage Accounts & CDN ·        Subscription ID - a 32-char hex string in the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. In Properties pane. ·        Subscription certificate thumbprint - a 40-char hex string (you need to remove spaces). In Management Certificates > Properties pane. ·        Service name - the value of <ServiceName> configured in the public URL of the service (http://<ServiceName>.cloudapp.net). In Hosted Services > Properties pane. ·        Blob Storage account name - the value of <StorageAccountName> configured in the public URL of the account (http://<StorageAccountName>.blob.core.windows.net). In Storage Accounts > Properties pane. Import the Azure Subscription Certificate on the HPC Head Node ·        enable the services for Windows HPC Server  to authenticate properly with the Windows Azure subscription. ·        use the Certificates MMC snap-in to import the certificate to the Trusted Root Certification Authorities store of the local computer account. The certificate must be in PFX format (.pfx or .p12 file) with a private key that is protected by a password. ·        see Certificates (http://go.microsoft.com/fwlink/?LinkId=163918). ·        To open the certificates snapin: Run > mmc. File > Add/Remove Snap-in > certificates > Computer account > Local Computer ·        To import the certificate via wizard - Certificates > Trusted Root Certification Authorities > Certificates > All Tasks > Import ·        After the certificate is imported, it appears in the details pane in the Certificates snap-in. You can open the certificate to check its status. Configure a Proxy Client on the HPC Head Node ·        the following Windows HPC Server services must be able to communicate over the Internet (through the firewall) with the services for Windows Azure: HPCManagement, HPCScheduler, HPCBrokerWorker. ·        Create a Windows Azure Worker Node Template ·        Edit HPC node templates in HPC Node Template Editor. ·        Specify: 1) Windows Azure subscription connection info (unique service name) for adding a set of worker nodes to the cluster + 2)worker node availability policy – rules for deploying / removing worker role instances in Windows Azure o   HPC Cluster Manager > Configuration > Navigation Pane > Node Templates > Actions pane > New à Create Node Template Wizard or Edit à Node Template Editor o   Choose Node Template Type page - Windows Azure worker node template o   Specify Template Name page – template name & description o   Provide Connection Information page – Azure Subscription ID (text) & Subscription certificate (browse) o   Provide Service Information page - Azure service name + blob storage account name (optionally click Retrieve Connection Information to get list of available from azure – possible LRT). o   Configure Azure Availability Policy page - how Windows Azure worker nodes start / stop (online / offline the worker role instance -  add / remove) – manual / automatic o   for automatic - In the Configure Windows Azure Worker Availability Policy dialog -select days and hours for worker nodes to start / stop. ·        To validate the Windows Azure connection information, on the template's Connection Information tab > Validate connection information. ·        You can upload a file package to the storage account that is specified in the template - eg upload application or service files that will run on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). Add Azure Worker Nodes to the HPC Cluster ·        Use the Add Node Wizard – specify: 1) the worker node template, 2) The number of worker nodes   (within the quota of role instances in the azure subscription), and 3)           The VM size of the worker nodes : ExtraSmall, Small, Medium, Large, or ExtraLarge.  ·        to add worker nodes of different sizes, must run the Add Node Wizard separately for each size. ·        All worker nodes that are added to the cluster by using a specific worker node template define a set of worker nodes that will be deployed and managed together in Windows Azure when you start the nodes. This includes worker nodes that you add later by using the worker node template and, if you choose, worker nodes of different sizes. You cannot start, stop, or delete individual worker nodes. ·        To add Windows Azure worker nodes o   In HPC Cluster Manager: Node Management > Actions pane > Add Node à Add Node Wizard o   Select Deployment Method page - Add Azure Worker nodes o   Specify New Nodes page - select a worker node template, specify the number and size of the worker nodes ·        After you add worker nodes to the cluster, they are in the Not-Deployed state, and they have a health state of Unapproved. Before you can use the worker nodes to run jobs, you must start them and then bring them online. ·        Worker nodes are numbered consecutively in a naming series that begins with the root name AzureCN – this is non-configurable. Deploying Windows Azure Worker Nodes ·        To deploy the role instances in Windows Azure - start the worker nodes added to the HPC cluster and bring the nodes online so that they are available to run cluster jobs. This can be configured in the HPC Azure Worker Node Template – Azure Availability Policy -  to be automatic or manual. ·        The Start, Stop, and Delete actions take place on the set of worker nodes that are configured by a specific worker node template. You cannot perform one of these actions on a single worker node in a set. You also cannot perform a single action on two sets of worker nodes (specified by two different worker node templates). ·        ·          Starting a set of worker nodes deploys a set of worker role instances in Windows Azure, which can take some time to complete, depending on the number of worker nodes and the performance of Windows Azure. ·        To start worker nodes manually and bring them online o   In HPC Node Management > Navigation Pane > Nodes > List / Heat Map view - select one or more worker nodes. o   Actions pane > Start – in the Start Azure Worker Nodes dialog, select a node template. o   the state of the worker nodes changes from Not Deployed to track the provisioning progress – worker node Details Pane > Provisioning Log tab. o   If there were errors during the provisioning of one or more worker nodes, the state of those nodes is set to Unknown and the node health is set to Unapproved. To determine the reason for the failure, review the provisioning logs for the nodes. o   After a worker node starts successfully, the node state changes to Offline. To bring the nodes online, select the nodes that are in the Offline state > Bring Online. ·        Troubleshooting o   check node template. o   use telnet to test connectivity: telnet <ServiceName>.cloudapp.net 7999 o   check node status - Deployment status information appears in the service account information in the Windows Azure Portal - HPC queries this -  see  node status information for any failed nodes in HPC Node Management. ·        When role instances are deployed, file packages that were previously uploaded to the storage account using the hpcpack command are automatically installed. You can also upload file packages to storage after the worker nodes are started, and then manually install them on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). ·        to remove a set of role instances in Windows Azure - stop the nodes by using HPC Cluster Manager (apply the Stop action). This deletes the role instances from the service and changes the state of the worker nodes in the HPC cluster to Not Deployed. ·        Each time that you start a set of worker nodes, two proxy role instances (size Small) are configured in Windows Azure to facilitate communication between HPC Cluster Manager and the worker nodes. The proxy role instances are not listed in HPC Cluster Manager after the worker nodes are added. However, the instances appear in the Windows Azure Portal. The proxy role instances incur charges in Windows Azure along with the worker node instances, and they count toward the quota of role instances in the subscription.

    Read the article

  • How to configure wireless in gentoo?

    - by Absolute0
    I have a single access point which i want to connect to on interface ra0, when I run /etc/init.d/ra0 restart I get the following output: gentoo ~ # /etc/init.d/net.ra0 restart * Starting ra0 * Configuring wireless network for ra0 Error for wireless request "Set Mode" (8B06) : SET failed on device ra0 ; Network is down. * ra0 does not support setting the mode to "managed" Error for wireless request "Set Encode" (8B2A) : SET failed on device ra0 ; Network is down. * ra0 does not support setting keys * or the parameter "mac_key_roswell" or "key_roswell" is incorrect Error for wireless request "Set Mode" (8B06) : SET failed on device ra0 ; Network is down. * ra0 does not support setting the mode to "managed" * WEP key is not set for "BAY_WiFi" - not connecting * Couldn't associate with any access points on ra0 * Failed to configure wireless for ra0 when I run iwlist ra0 scan I get "roswell" and "bay-wifi" I want to connect to only roswell. Here is my /etc/conf.d/net: modules= ( "iwconfig" ) key_roswell="ffff-ffff-ff" # no s: means a hex key preferred_aps=( "roswell" ) what am i doing wrong?

    Read the article

  • How to configure wireless in gentoo?

    - by Absolute0
    I have a single access point which i want to connect to on interface ra0, when I run /etc/init.d/ra0 restart I get the following output: gentoo ~ # /etc/init.d/net.ra0 restart * Starting ra0 * Configuring wireless network for ra0 Error for wireless request "Set Mode" (8B06) : SET failed on device ra0 ; Network is down. * ra0 does not support setting the mode to "managed" Error for wireless request "Set Encode" (8B2A) : SET failed on device ra0 ; Network is down. * ra0 does not support setting keys * or the parameter "mac_key_roswell" or "key_roswell" is incorrect Error for wireless request "Set Mode" (8B06) : SET failed on device ra0 ; Network is down. * ra0 does not support setting the mode to "managed" * WEP key is not set for "BAY_WiFi" - not connecting * Couldn't associate with any access points on ra0 * Failed to configure wireless for ra0 when I run iwlist ra0 scan I get "roswell" and "bay-wifi" I want to connect to only roswell. Here is my /etc/conf.d/net: modules= ( "iwconfig" ) key_roswell="ffff-ffff-ff" # no s: means a hex key preferred_aps=( "roswell" ) what am i doing wrong?

    Read the article

  • Windows 8.1 Enterprise Sysprep Error

    - by Anurag Shetti
    I am Trying to sysprep my WIndows 8.1 enterprise (MSDN) and i get the following errors I have upgraded the Windows 8 to windows 8.1 and the machine contains all the configuration for VS 2012 and rest Exact error Sysprep was not able to validate your windows installation Error msg line in log C:\Users\André>err 0x8007139f # as an HRESULT: Severity: FAILURE (1), FACILITY_WIN32 (0x7), Code 0x139f # for hex 0x139f / decimal 5023 ERROR_INVALID_STATE winerror.h # The group or resource is not in the correct state to # perform the requested operation. # 1 matches found for "0x8007139f" SYSPRP ActionPlatform::GetValue: Error from RegQueryValueEx on value SysprepMode under key HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\Sysprep; dwRet = 0x2 I have searched the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\Sysprep But i coud'nt find anything for SYSprep mode The value for sysprep was (Value not set)

    Read the article

  • Junos custom-attack signature pattern syntax

    - by James Hawkwind
    I am stuck at a point with the configuration of a custom-attack signature in Junos. According to the Junos Custom Attack Definition documentation page, I can set up a custom attack based upon a signature in the packet. In the documentation you can specify a "pattern" to match, but it fails to describe what the pattern syntax should be. Particularly, I want to match the HEX values of 8C 00 13 00 in the first four bytes of the TCP data payload. Does anyone know how to accomplish this correctly?

    Read the article

  • Desktop Fun: 21 Cool Ubuntu Wallpapers

    - by Vivek
    Ubuntu 10.04 was released last month, and comes with some breath taking design enhancements, and has some fabulous art work integrated into it. We’ve put together a collection of wallpapers to make it more customized. We thought of pulling out some of the best Ubuntu wallpapers in this post so that you have a good mix to choose from when you are slightly bored of the default Lucid Lynx (Ubuntu 10.04) wallpaper. The following is a collection of top 21 Ubuntu wallpapers. To download the wallpaper just click on the hyperlink above the image. Ubuntu Wallpapers EgFox Lucid Lynx Blue 2010 by ~Eg-Art EgFox Lucid Lynx K HD 2010 by ~Eg-Art Lucid Lynx 10 04 by ~Momez Ubokeh Wallpaper Pack by ~giantspeck lucid fog brown by ~darkburt EgFox Lucid Lynx HD 2010 by ~Eg-Art LTS 2010 by ~alkore31 Ubuntu Bokeh by ~ttk1opc Ubuntu Aurora by *monkeymagico Ubuntu by ~gorkisview Ubuntu Glow by ~BigAction Destroy Ubuntu by ~lukeroberts Ubuntu Triskell by ~deviantdark Ubuntu 2.0 by ~monsteer Ubuntu leaves by ~sizakor Ubuntu Bokeh by ~freyr Ubuntu Brown leather distress by *monkeymagico Ubuntu Black Metal Hex by *monkeymagico Ubuntu gusty 4 walls by ~yf19-sama Ubuntu Wallpaper by ~Ruzzy2006 ubuntu-Gloss by ~SWOriginal Enjoy the new wallpaper to suit your desktop. You also might want to make sure and check out our Desktop Fun section for more collections of cool wallpapers. Similar Articles Productive Geek Tips Windows 7 Welcome Screen Taking Forever? Here’s the Fix (Maybe)Allow Remote Control To Your Desktop On UbuntuCheck your Disk Usage on Ubuntu from the command lineDual Monitors: Use a Different Wallpaper on Each Desktop in Windows 7, Vista or XPDesktop Fun: Starship Theme Wallpapers TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Enhance Your Laptop’s Battery Life With These Tips Easily Search Food Recipes With Recipe Chimp Tech Fanboys Field Guide Check these Awesome Chrome Add-ons iFixit Offers Gadget Repair Manuals Online Vista style sidebar for Windows 7

    Read the article

  • How can i make changes to this file Encoding?

    - by SuperUserMan
    I have these 3 files 21/08/2014 07:15 PM 122 Tw2AWK.csv 21/08/2014 07:15 PM 125 Tw2Notepad.csv 21/08/2014 07:15 PM 119 Tw2REPL.csv C:\myfilesfile Tw2AWK.csv TwREPL.csv Tw2Notepad.csv Tw2AWK.csv; UTF-8 Unicode text, with CRLF line terminators Tw2REPL.csv; UTF-8 Unicode text Tw2Notepad.csv; UTF-8 Unicode (with BOM) text, with CRLF line terminators HEX of these files is as follows C:\myfilesxxd -p Tw2REPL.csv 0a222344656c686947616e675261706520776173206120736d616c6c2069 6e636964656e7420746f2023536d616c6c5261706973744a6169746c6579 20646e61696e6469612e636f6d2f696e6469612f7265706f72742d69e280 a6207069632e747769747465722e636f6d2f6762565070776637744f22 C:\myfilesxxd -p Tw2AWK.csv 0d0a222344656c686947616e675261706520776173206120736d616c6c20 696e636964656e7420746f2023536d616c6c5261706973744a6169746c65 7920646e61696e6469612e636f6d2f696e6469612f7265706f72742d69e2 80a6207069632e747769747465722e636f6d2f6762565070776637744f22 0d0a C:\myfilesxxd -p Tw2Notepad.csv efbbbf0d0a222344656c686947616e675261706520776173206120736d61 6c6c20696e636964656e7420746f2023536d616c6c5261706973744a6169 746c657920646e61696e6469612e636f6d2f696e6469612f7265706f7274 2d69e280a6207069632e747769747465722e636f6d2f6762565070776637 744f220d0a I want Tw2REPL.csv to look like Tw2Notepad.csv How can I do it? NOTE: I have do this all via command line (batch) . I can use any 3rd party standalone exe's though. I am on Windows XP Please help, its very important for me

    Read the article

  • Software restriction policies set in the registry don't update Local Group Policy

    - by Jon Rhoades
    The joys of a Samba domain... First off Domain Group policy can't be used until Samba 4 arrives. We need to setup Software Restriction Policies (SRPs) on most of the computers in our Samba domain and I would dearly like to automate this. (We are moving away from just disabling the Windows installer). The traditional way is to set SRPs using Local Group Policy (LGP) Computer Conf-Windows Settings-SRP but this involves visiting every machine as it can't be set using in NTConfig.pol. It is possible to attempt to create the SRPs directly in the registry: [HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\Safer\CodeIdentifiers\262144\Paths\{30628f61-eb47-4d87-823b-6683a09eda87}] "LastModified"=hex(b):40,a2,94,09,b5,5d,ca,01 "Description"="" "SaferFlags"=dword:00000000 "ItemData"="C:\\location\\subfolder" SaferFlags DWORD seems to be what turns it on or off, but although this seems to work it does not update the Local Group Policy - SRPs still show as "No SRPs Defined". Where does the LGP store this setting - is it even in the registry and more importantly - Is there a cleverer way of setting up SRPs?

    Read the article

  • Encode real-time dvb-s stream using mencoder

    - by karatchov
    My satellite receiver can stream the mpeg-2 video/audio output through lan. Using mencoder, I'm trying to build a script to encode and save the stream in real time with my Core2Duo 1.8 Ghz. Right now, I'm using a single pass, it produces good quality for a video rate of 800Kb/s, but takes more then 95% of CPU power, thus making a lot of frameskips is the computer is used while encoding. mencoder -o -vf lavcdeint -oac mp3lame -lameopts abr:q=2:aq=2 -ovc x264 -ffourcc avc1 -x264encopts crf=25:me=hex:subq=9:frameref=2:nocabac:threads=auto -mc 3 So, I'm considering using a 2-pass encoding to alleviate the processor and record 100% of the stream. But I have no idea how to start. For the info: Standard Stream: mpeg-2 720*576 25fps HD Stream: 1920*1080 50fps (this is not my goal to record it, but it will be super cool if I could)

    Read the article

  • Grep a strange acirc character

    - by John Hunt
    I have this character appearing in places in some files I have:  (if you can't see it or it looks like a question mark it's the Acirc character (capital A with a circumflex over it)) I simply want to grep replace this char with a space, however when I do this: grep --color -ri  myproject.php Putty gets very confused, as does grep. As I understand it there's probably a way to use an escaped hex code with grep.. does anyone know how? EDIT: The character is showing up on my web page as a weird <?>. The http headers for the page specify utf-8 as does the meta character set and I still see the strange character. In putty it appears as a space (putty also set to utf-8.) When I copy from vim and paste into grep it simply doesn't find it. Cheers, John

    Read the article

  • How to Change the Default Application for Android Tasks

    - by Jason Fitzpatrick
    When it comes time to switch from using one application to another on your Android device it isn’t immediately clear how to do so. Follow along as we walk you through swapping the default application for any Android task. Initially changing the default application in Android is a snap. After you install the new application (new web browser, new messaging tool, new whatever) Android prompts you to pick which application (the new or the old) you wish to use for that task the first time you attempt to open a web page, check your text message, or otherwise trigger the event. Easy! What about when it comes time to uninstall the app or just change back to your old app? There’s no helpful pop-up dialog box for that. Read on as we show you how to swap out any default application for any other with a minimum of fuss. Latest Features How-To Geek ETC How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines RGB? CMYK? Alpha? What Are Image Channels and What Do They Mean? How to Recover that Photo, Picture or File You Deleted Accidentally Now Together and Complete – McBain: The Movie [Simpsons Video] Be Creative by Using Hex and RGB Codes for Crayola Crayon Colors on Your Next Web or Art Project [Geek Fun] Flash Updates; Finally Supports Full Screen Video on Multiple Monitors 22 Ways to Recycle an Altoids Mint Tin Make Your Desktop Go Native with the Tribal Arts Theme for Windows 7 A History of Vintage Transformers: Decepticons Edition [Infographic]

    Read the article

  • error exporting data using mysql workbench

    - by Rajneesh Rana
    hi, i have been getting warning of version mismatch when i was trying to export data dump using mysql workbench. So, i copied mysqldump from mysql server folder and placed it in workbench folder. Now when i am trying to export data i am getting error Operation failed with exitcode -1073741819 here is a entry of log 16:31:25 Dumping wordpress (wp_posts) Running: "mysqldump.exe" --defaults-extra-file="c:\docume~1\rajneesh.r\locals~1\temp\1\tmpxau7tz" --no-create-info=FALSE --order-by-primary=FALSE --force=FALSE --no-data=FALSE --tz-utc=TRUE --flush-privileges=FALSE --compress=FALSE --replace=FALSE --host=localhost --insert-ignore=FALSE --extended-insert=TRUE --user=root --quote-names=TRUE --hex-blob=FALSE --complete-insert=FALSE --add-locks=TRUE --port=3306 --disable-keys=TRUE --delayed-insert=FALSE --create-options=TRUE --delete-master-logs=FALSE --comments=TRUE --default-character-set=utf8 --max_allowed_packet=1G --flush-logs=FALSE --dump-date=TRUE --lock-tables=TRUE --allow-keywords=FALSE --events=FALSE "wordpress" "wp_posts" Operation failed with exitcode -1073741819 Please help me with these issues Thank You

    Read the article

< Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >