Search Results

Search found 21054 results on 843 pages for 'void'.

Page 190/843 | < Previous Page | 186 187 188 189 190 191 192 193 194 195 196 197  | Next Page >

  • Physics in my game confused after restructuring the Game loop

    - by Julian Assange
    Hello! I'm on my way with making a game in Java. Now I have some trouble with an interpolation based game loop in my calculations. Before I used that system the calculation of a falling object was like this: Delta based system private static final float SPEED_OF_GRAVITY = 500.0f; @Override public void update(float timeDeltaSeconds, Object parentObject) { parentObject.y = parentObject.y + (parentObject.yVelocity * timeDeltaSeconds); parentObject.yVelocity -= SPEED_OF_GRAVITY * timeDeltaSeconds; ...... What you see here is that I used that delta value from previous frame to the current frame to calculate the physics. Now I switched and implement a interpolation based system and I actually left the current system where I used delta to calculate my physics. However, with the interpolation system the delta time is removed - but now are my calculations screwed up and I've tried the whole day to solve this: Interpolation based system private static final float SPEED_OF_GRAVITY = 500.0f; @Override public void update(Object parentObject) { parentObject.y = parentObject.y + (parentObject.yVelocity); parentObject.yVelocity -= SPEED_OF_GRAVITY; ...... I'm totally clueless - how should this be solved? The rendering part is solved with a simple prediction method. With the delta system I could see my object be smoothly rendered to the screen, but with this interpolation/prediction method the object just appear sticky for one second and then it's gone. The core of this game loop is actually from here deWiTTERS Game Loop, where I trying to implement the last solution he describes. Shortly - my physics are in a mess and this need to be solved. Any ideas? Thanks in advance!

    Read the article

  • ASP.NET GZip Encoding Caveats

    - by Rick Strahl
    GZip encoding in ASP.NET is pretty easy to accomplish using the built-in GZipStream and DeflateStream classes and applying them to the Response.Filter property.  While applying GZip and Deflate behavior is pretty easy there are a few caveats that you have watch out for as I found out today for myself with an application that was throwing up some garbage data. But before looking at caveats let’s review GZip implementation for ASP.NET. ASP.NET GZip/Deflate Basics Response filters basically are applied to the Response.OutputStream and transform it as data is written to it through the ASP.NET Response object. So a Response.Write eventually gets written into the output stream which if a filter is also written through the filter stream’s interface. To perform the actual GZip (and Deflate) encoding typically used by Web pages .NET includes the GZipStream and DeflateStream stream classes which can be readily assigned to the Repsonse.OutputStream. With these two stream classes in place it’s almost trivially easy to create a couple of reusable methods that allow you to compress your HTTP output. In my standard WebUtils utility class (from the West Wind West Wind Web Toolkit) created two static utility methods – IsGZipSupported and GZipEncodePage – that check whether the client supports GZip encoding and then actually encodes the current output (note that although the method includes ‘Page’ in its name this code will work with any ASP.NET output). /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("deflate")) { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } else { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } } } As you can see the actual assignment of the Filter is as simple as: Response.Filter = new DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); which applies the filter to the OutputStream. You also need to ensure that your response reflects the new GZip or Deflate encoding and ensure that any pages that are cached in Proxy servers can differentiate between pages that were encoded with the various different encodings (or no encoding). To use this utility function now is trivially easy: In any ASP.NET code that wants to compress its Response output you simply use: protected void Page_Load(object sender, EventArgs e) { WebUtils.GZipEncodePage(); Entry = WebLogFactory.GetEntry(); var entries = Entry.GetLastEntries(App.Configuration.ShowEntryCount, "pk,Title,SafeTitle,Body,Entered,Feedback,Location,ShowTopAd", "TEntries"); if (entries == null) throw new ApplicationException("Couldn't load WebLog Entries: " + Entry.ErrorMessage); this.repEntries.DataSource = entries; this.repEntries.DataBind(); } Here I use an ASP.NET page, but the above WebUtils.GZipEncode() method call will work in any ASP.NET application type including HTTP Handlers. The only requirement is that the filter needs to be applied before any other output is sent to the OutputStream. For example, in my CallbackHandler service implementation by default output over a certain size is GZip encoded. The output that is generated is JSON or XML and if the output is over 5k in size I apply WebUtils.GZipEncode(): if (sbOutput.Length > GZIP_ENCODE_TRESHOLD) WebUtils.GZipEncodePage(); Response.ContentType = ControlResources.STR_JsonContentType; HttpContext.Current.Response.Write(sbOutput.ToString()); Ok, so you probably get the idea: Encoding GZip/Deflate content is pretty easy. Hold on there Hoss –Watch your Caching Or is it? There are a few caveats that you need to watch out for when dealing with GZip content. The fist issue is that you need to deal with the fact that some clients don’t support GZip or Deflate content. Most modern browsers support it, but if you have a programmatic Http client accessing your content GZip/Deflate support is by no means guaranteed. For example, WinInet Http clients don’t support GZip out of the box – it has to be explicitly implemented. Other low level HTTP clients on other platforms too don’t support GZip out of the box. The problem is that your application, your Web Server and Proxy Servers on the Internet might be caching your generated content. If you return content with GZip once and then again without, either caching is not applied or worse the wrong type of content is returned back to the client from a cache or proxy. The result is an unreadable response for *some clients* which is also very hard to debug and fix once in production. You already saw the issue of Proxy servers addressed in the GZipEncodePage() function: // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); This ensures that any Proxy servers also check for the Content-Encoding HTTP Header to cache their content – not just the URL. The same thing applies if you do OutputCaching in your own ASP.NET code. If you generate output for GZip on an OutputCached page the GZipped content will be cached (either by ASP.NET’s cache or in some cases by the IIS Kernel Cache). But what if the next client doesn’t support GZip? She’ll get served a cached GZip page that won’t decode and she’ll get a page full of garbage. Wholly undesirable. To fix this you need to add some custom OutputCache rules by way of the GetVaryByCustom() HttpApplication method in your global_ASAX file: public override string GetVaryByCustomString(HttpContext context, string custom) { // Override Caching for compression if (custom == "GZIP") { string acceptEncoding = HttpContext.Current.Response.Headers["Content-Encoding"]; if (string.IsNullOrEmpty(acceptEncoding)) return ""; else if (acceptEncoding.Contains("gzip")) return "GZIP"; else if (acceptEncoding.Contains("deflate")) return "DEFLATE"; return ""; } return base.GetVaryByCustomString(context, custom); } In a page that use Output caching you then specify: <%@ OutputCache Duration="180" VaryByParam="none" VaryByCustom="GZIP" %> To use that custom rule. It’s all Fun and Games until ASP.NET throws an Error Ok, so you’re up and running with GZip, you have your caching squared away and your pages that you are applying it to are jamming along. Then BOOM, something strange happens and you get a lovely garbled page that look like this: Lovely isn’t it? What’s happened here is that I have WebUtils.GZipEncode() applied to my page, but there’s an error in the page. The error falls back to the ASP.NET error handler and the error handler removes all existing output (good) and removes all the custom HTTP headers I’ve set manually (usually good, but very bad here). Since I applied the Response.Filter (via GZipEncode) the output is now GZip encoded, but ASP.NET has removed my Content-Encoding header, so the browser receives the GZip encoded content without a notification that it is encoded as GZip. The result is binary output. Here’s what Fiddler says about the raw HTTP header output when an error occurs when GZip encoding was applied: HTTP/1.1 500 Internal Server Error Cache-Control: private Content-Type: text/html; charset=utf-8 Date: Sat, 30 Apr 2011 22:21:08 GMT Content-Length: 2138 Connection: close ?`I?%&/m?{J?J??t??` … binary output striped here Notice: no Content-Encoding header and that’s why we’re seeing this garbage. ASP.NET has stripped the Content-Encoding header but left our filter intact. So how do we fix this? In my applications I typically have a global Application_Error handler set up and in this case I’ve been using that. One thing that you can do in the Application_Error handler is explicitly clear out the Response.Filter and set it to null at the top: protected void Application_Error(object sender, EventArgs e) { // Remove any special filtering especially GZip filtering Response.Filter = null; … } And voila I get my Yellow Screen of Death or my custom generated error output back via uncompressed content. BTW, the same is true for Page level errors handled in Page_Error or ASP.NET MVC Error handling methods in a controller. Another and possibly even better solution is to check whether a filter is attached just before the headers are sent to the client as pointed out by Adam Schroeder in the comments: protected void Application_PreSendRequestHeaders() { // ensure that if GZip/Deflate Encoding is applied that headers are set // also works when error occurs if filters are still active HttpResponse response = HttpContext.Current.Response; if (response.Filter is GZipStream && response.Headers["Content-encoding"] != "gzip") response.AppendHeader("Content-encoding", "gzip"); else if (response.Filter is DeflateStream && response.Headers["Content-encoding"] != "deflate") response.AppendHeader("Content-encoding", "deflate"); } This uses the Application_PreSendRequestHeaders() pipeline event to check for compression encoding in a filter and adjusts the content accordingly. This is actually a better solution since this is generic – it’ll work regardless of how the content is cleaned up. For example, an error Response.Redirect() or short error display might get changed and the filter not cleared and this code actually handles that. Sweet, thanks Adam. It’s unfortunate that ASP.NET doesn’t natively clear out Response.Filters when an error occurs just as it clears the Response and Headers. I can’t see where leaving a Filter in place in an error situation would make any sense, but hey - this is what it is and it’s easy enough to fix as long as you know where to look. Riiiight! IIS and GZip I should also mention that IIS 7 includes good support for compression natively. If you can defer encoding to let IIS perform it for you rather than doing it in your code by all means you should do it! Especially any static or semi-dynamic content that can be made static should be using IIS built-in compression. Dynamic caching is also supported but is a bit more tricky to judge in terms of performance and footprint. John Forsyth has a great article on the benefits and drawbacks of IIS 7 compression which gives some detailed performance comparisons and impact reviews. I’ll post another entry next with some more info on IIS compression since information on it seems to be a bit hard to come by. Related Content Built-in GZip/Deflate Compression in IIS 7.x HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET   IIS7  

    Read the article

  • SignalR Auto Disconnect when Page Changed in AngularJS

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/05/30/signalr-auto-disconnect-when-page-changed-in-angularjs.aspxIf we are using SignalR, the connection lifecycle was handled by itself very well. For example when we connect to SignalR service from browser through SignalR JavaScript Client the connection will be established. And if we refresh the page, close the tab or browser, or navigate to another URL then the connection will be closed automatically. This information had been well documented here. In a browser, SignalR client code that maintains a SignalR connection runs in the JavaScript context of a web page. That's why the SignalR connection has to end when you navigate from one page to another, and that's why you have multiple connections with multiple connection IDs if you connect from multiple browser windows or tabs. When the user closes a browser window or tab, or navigates to a new page or refreshes the page, the SignalR connection immediately ends because SignalR client code handles that browser event for you and calls the "Stop" method. But unfortunately this behavior doesn't work if we are using SignalR with AngularJS. AngularJS is a single page application (SPA) framework created by Google. It hijacks browser's address change event, based on the route table user defined, launch proper view and controller. Hence in AngularJS we address was changed but the web page still there. All changes of the page content are triggered by Ajax. So there's no page unload and load events. This is the reason why SignalR cannot handle disconnect correctly when works with AngularJS. If we dig into the source code of SignalR JavaScript Client source code we will find something below. It monitors the browser page "unload" and "beforeunload" event and send the "stop" message to server to terminate connection. But in AngularJS page change events were hijacked, so SignalR will not receive them and will not stop the connection. 1: // wire the stop handler for when the user leaves the page 2: _pageWindow.bind("unload", function () { 3: connection.log("Window unloading, stopping the connection."); 4:  5: connection.stop(asyncAbort); 6: }); 7:  8: if (isFirefox11OrGreater) { 9: // Firefox does not fire cross-domain XHRs in the normal unload handler on tab close. 10: // #2400 11: _pageWindow.bind("beforeunload", function () { 12: // If connection.stop() runs runs in beforeunload and fails, it will also fail 13: // in unload unless connection.stop() runs after a timeout. 14: window.setTimeout(function () { 15: connection.stop(asyncAbort); 16: }, 0); 17: }); 18: }   Problem Reproduce In the codes below I created a very simple example to demonstrate this issue. Here is the SignalR server side code. 1: public class GreetingHub : Hub 2: { 3: public override Task OnConnected() 4: { 5: Debug.WriteLine(string.Format("Connected: {0}", Context.ConnectionId)); 6: return base.OnConnected(); 7: } 8:  9: public override Task OnDisconnected() 10: { 11: Debug.WriteLine(string.Format("Disconnected: {0}", Context.ConnectionId)); 12: return base.OnDisconnected(); 13: } 14:  15: public void Hello(string user) 16: { 17: Clients.All.hello(string.Format("Hello, {0}!", user)); 18: } 19: } Below is the configuration code which hosts SignalR hub in an ASP.NET WebAPI project with IIS Express. 1: public class Startup 2: { 3: public void Configuration(IAppBuilder app) 4: { 5: app.Map("/signalr", map => 6: { 7: map.UseCors(CorsOptions.AllowAll); 8: map.RunSignalR(new HubConfiguration() 9: { 10: EnableJavaScriptProxies = false 11: }); 12: }); 13: } 14: } Since we will host AngularJS application in Node.js in another process and port, the SignalR connection will be cross domain. So I need to enable CORS above. In client side I have a Node.js file to host AngularJS application as a web server. You can use any web server you like such as IIS, Apache, etc.. Below is the "index.html" page which contains a navigation bar so that I can change the page/state. As you can see I added jQuery, AngularJS, SignalR JavaScript Client Library as well as my AngularJS entry source file "app.js". 1: <html data-ng-app="demo"> 2: <head> 3: <script type="text/javascript" src="jquery-2.1.0.js"></script> 1:  2: <script type="text/javascript" src="angular.js"> 1: </script> 2: <script type="text/javascript" src="angular-ui-router.js"> 1: </script> 2: <script type="text/javascript" src="jquery.signalR-2.0.3.js"> 1: </script> 2: <script type="text/javascript" src="app.js"></script> 4: </head> 5: <body> 6: <h1>SignalR Auto Disconnect with AngularJS by Shaun</h1> 7: <div> 8: <a href="javascript:void(0)" data-ui-sref="view1">View 1</a> | 9: <a href="javascript:void(0)" data-ui-sref="view2">View 2</a> 10: </div> 11: <div data-ui-view></div> 12: </body> 13: </html> Below is the "app.js". My SignalR logic was in the "View1" page and it will connect to server once the controller was executed. User can specify a user name and send to server, all clients that located in this page will receive the server side greeting message through SignalR. 1: 'use strict'; 2:  3: var app = angular.module('demo', ['ui.router']); 4:  5: app.config(['$stateProvider', '$locationProvider', function ($stateProvider, $locationProvider) { 6: $stateProvider.state('view1', { 7: url: '/view1', 8: templateUrl: 'view1.html', 9: controller: 'View1Ctrl' }); 10:  11: $stateProvider.state('view2', { 12: url: '/view2', 13: templateUrl: 'view2.html', 14: controller: 'View2Ctrl' }); 15:  16: $locationProvider.html5Mode(true); 17: }]); 18:  19: app.value('$', $); 20: app.value('endpoint', 'http://localhost:60448'); 21: app.value('hub', 'GreetingHub'); 22:  23: app.controller('View1Ctrl', function ($scope, $, endpoint, hub) { 24: $scope.user = ''; 25: $scope.response = ''; 26:  27: $scope.greeting = function () { 28: proxy.invoke('Hello', $scope.user) 29: .done(function () {}) 30: .fail(function (error) { 31: console.log(error); 32: }); 33: }; 34:  35: var connection = $.hubConnection(endpoint); 36: var proxy = connection.createHubProxy(hub); 37: proxy.on('hello', function (response) { 38: $scope.$apply(function () { 39: $scope.response = response; 40: }); 41: }); 42: connection.start() 43: .done(function () { 44: console.log('signlar connection established'); 45: }) 46: .fail(function (error) { 47: console.log(error); 48: }); 49: }); 50:  51: app.controller('View2Ctrl', function ($scope, $) { 52: }); When we went to View1 the server side "OnConnect" method will be invoked as below. And in any page we send the message to server, all clients will got the response. If we close one of the client, the server side "OnDisconnect" method will be invoked which is correct. But is we click "View 2" link in the page "OnDisconnect" method will not be invoked even though the content and browser address had been changed. This might cause many SignalR connections remain between the client and server. Below is what happened after I clicked "View 1" and "View 2" links four times. As you can see there are 4 live connections.   Solution Since the reason of this issue is because, AngularJS hijacks the page event that SignalR need to stop the connection, we can handle AngularJS route or state change event and stop SignalR connect manually. In the code below I moved the "connection" variant to global scope, added a handler to "$stateChangeStart" and invoked "stop" method of "connection" if its state was not "disconnected". 1: var connection; 2: app.run(['$rootScope', function ($rootScope) { 3: $rootScope.$on('$stateChangeStart', function () { 4: if (connection && connection.state && connection.state !== 4 /* disconnected */) { 5: console.log('signlar connection abort'); 6: connection.stop(); 7: } 8: }); 9: }]); Now if we refresh the page and navigated to View 1, the connection will be opened. At this state if we clicked "View 2" link the content will be changed and the SignalR connection will be closed automatically.   Summary In this post I demonstrated an issue when we are using SignalR with AngularJS. The connection cannot be closed automatically when we navigate to other page/state in AngularJS. And the solution I mentioned below is to move the SignalR connection as a global variant and close it manually when AngularJS route/state changed. You can download the full sample code here. Moving the SignalR connection as a global variant might not be a best solution. It's just for easy to demo here. In production code I suggest wrapping all SignalR operations into an AngularJS factory. Since AngularJS factory is a singleton object, we can safely put the connection variant in the factory function scope.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • How to properly scroll a 2D tilemap?

    - by Sri Harsha Chilakapati
    Hello and I'm trying to make my own game engine in Java. I have completed all the necessary ones but I can't figure it out with the TileGame class. It just can't scroll. Also there are no exceptions. Here I'm listing the code. TileGame.java @Override public void draw(Graphics2D g) { if (back!=null){ back.render(g); } if (follower!=null){ follower.render(g); follower.draw(g); } for (int i=0; i<actors.size(); i++){ Actor actor = actors.get(i); if (actor!=follower&&getVisibleRect().intersects(actor.getBounds())){ g.drawImage(actor.getAnimation().getFrameImage(), actor.x - OffSetX, actor.y - OffSetY, null); actor.draw(g); } } } /** * This method returns the visible rectangle * @return The visible rectangle */ public Rectangle getVisibleRect(){ return new Rectangle(OffSetX, OffSetY, global.WIDTH, global.HEIGHT); } @Override public void update(){ if (follower!=null){ if (scrollHorizontally){ OffSetX = global.WIDTH/2 - Math.round((float)follower.x) - tileSize; OffSetX = Math.min(OffSetX, 0); OffSetX = Math.max(OffSetX, global.WIDTH - mapWidth); } if (scrollVertically){ OffSetY = global.HEIGHT/2 - Math.round((float)follower.y) - tileSize; OffSetY = Math.min(OffSetY, 0); OffSetY = Math.max(OffSetY, global.HEIGHT - mapHeight); } } for (int i=0; i<actors.size(); i++){ Actor actor1 = actors.get(i); if (getVisibleRect().contains(actor1.x, actor1.y)){ actor1.update(); for (int j=0; j<actors.size(); j++){ Actor actor2 = actors.get(j); if (actor1.isCollidingWith(actor2)){ actor1.collision(actor2); actor2.collision(actor1); } } } } } but the problem is that all the actors are working, but it just won't scroll. Help Please.. Thanks in Advance.

    Read the article

  • Spritebatch not working in winforms

    - by CodingMadeEasy
    I'm using the Winforms sample on the app hub and everything is working fine except my spritebatch won't draw anything unless I call Invalidate in the Draw method. I have this in my initialize method: Application.Idle += delegate { Invalidate(); }; I used a breakpoint and it is indeed invalidating my program and it is calling my draw method. I get no errors with the spritebatch and all the textures are loaded I just don't see anything on the screen. Here's the code I have: protected override void Draw() { GraphicsDevice.Clear(Color.CornflowerBlue); spriteBatch.Begin(); tileSheet.Draw(spriteBatch); foreach (Image img in selector) img.Draw(spriteBatch); spriteBatch.End(); } But when I do this: protected override void Draw() { GraphicsDevice.Clear(Color.CornflowerBlue); spriteBatch.Begin(); tileSheet.Draw(spriteBatch); foreach (Image img in selector) img.Draw(spriteBatch); spriteBatch.End(); Invalidate(); } then all of a sudden the drawing starts to work! but the problem is that it freezes everything else and only that control gets updated. What can I do to fix this? It's really frustrating.

    Read the article

  • Silverlight for Windows Embedded tutorial (step 6)

    - by Valter Minute
    In this tutorial step we will develop a very simple clock application that may be used as a screensaver on our devices and will allow us to discover a new feature of Silverlight for Windows Embedded (transforms) and how to use an “old” feature of Windows CE (timers) inside a Silverlight for Windows Embedded application. Let’s start with some XAML, as usual: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="640" Height="480" FontSize="18" x:Name="Clock">   <Canvas x:Name="LayoutRoot" Background="#FF000000"> <Grid Height="24" Width="150" Canvas.Left="320" Canvas.Top="234" x:Name="SecondsHand" Background="#FFFF0000"> <TextBlock Text="Seconds" TextWrapping="Wrap" Width="50" HorizontalAlignment="Right" VerticalAlignment="Center" x:Name="SecondsText" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> <Grid Height="24" x:Name="MinutesHand" Width="100" Background="#FF00FF00" Canvas.Left="320" Canvas.Top="234"> <TextBlock HorizontalAlignment="Right" x:Name="MinutesText" VerticalAlignment="Center" Width="50" Text="Minutes" TextWrapping="Wrap" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> <Grid Height="24" x:Name="HoursHand" Width="50" Background="#FF0000FF" Canvas.Left="320" Canvas.Top="234"> <TextBlock HorizontalAlignment="Right" x:Name="HoursText" VerticalAlignment="Center" Width="50" Text="Hours" TextWrapping="Wrap" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> </Canvas> </UserControl> This XAML file defines three grid panels, one for each hand of our clock (we are implementing an analog clock using one of the most advanced technologies of the digital world… how cool is that?). Inside each hand we put a TextBlock that will be used to display the current hour, minute, second inside the dial (you can’t do that on plain old analog clocks, but it looks nice). As usual we use XAML2CPP to generate the boring part of our code. We declare a class named “Clock” and derives from the TClock template that XAML2CPP has declared for us. class Clock : public TClock<Clock> { ... }; Our WinMain function is more or less the same we used in all the previous samples. It initializes the XAML runtime, create an instance of our class, initialize it and shows it as a dialog: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1; Clock clock;   if (FAILED(clock.Init(hInstance,app))) return -1;     UINT exitcode;   if (FAILED(clock.GetVisualHost()->StartDialog(&exitcode))) return -1;   return exitcode; } Silverlight for Windows Embedded provides a lot of features to implement our UI, but it does not provide timers. How we can update our clock if we don’t have a timer feature? We just use plain old Windows timers, as we do in “regular” Windows CE applications! To use a timer in WinCE we should declare an id for it: #define IDT_CLOCKUPDATE 0x12341234 We also need an HWND that will be used to receive WM_TIMER messages. Our Silverlight for Windows Embedded page is “hosted” inside a GWES Window and we can retrieve its handle using the GetContainerHWND function of our VisualHost object. Let’s see how this is implemented inside our Clock class’ Init method: HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TClock<Clock>::Init(hInstance,app))) return retcode;   // create the timer user to update the clock HWND clockhwnd;   if (FAILED(GetVisualHost()->GetContainerHWND(&clockhwnd))) return -1;   timer=SetTimer(clockhwnd,IDT_CLOCKUPDATE,1000,NULL); return 0; } We use SetTimer to create a new timer and GWES will send a WM_TIMER to our window every second, giving us a chance to update our clock. That sounds great… but how could we handle the WM_TIMER message if we didn’t implement a window procedure for our window? We have to move a step back and look how a visual host is created. This code is generated by XAML2CPP and is inside xaml2cppbase.h: virtual HRESULT CreateHost(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode; XRWindowCreateParams wp;   ZeroMemory(&wp, sizeof(XRWindowCreateParams)); InitWindowParms(&wp);   XRXamlSource xamlsrc;   SetXAMLSource(hInstance,&xamlsrc); if (FAILED(retcode=app->CreateHostFromXaml(&xamlsrc, &wp, &vhost))) return retcode;   if (FAILED(retcode=vhost->GetRootElement(&root))) return retcode; return S_OK; } As you can see the CreateHostFromXaml function of IXRApplication accepts a structure named XRWindowCreateParams that control how the “plain old” GWES Window is created by the runtime. This structure is initialized inside the InitWindowParm method: // Initializes Windows parameters, can be overridden in the user class to change its appearance virtual void InitWindowParms(XRWindowCreateParams* wp) { wp->Style = WS_OVERLAPPED; wp->pTitle = windowtitle; wp->Left = 0; wp->Top = 0; } This method set up the window style, title and position. But the XRWindowCreateParams contains also other fields and, since the function is declared as virtual, we could initialize them inside our version of InitWindowParms: // add hook procedure to the standard windows creation parms virtual void InitWindowParms(XRWindowCreateParams* wp) { TClock<Clock>::InitWindowParms(wp);   wp->pHookProc=StaticHostHookProc; wp->pvUserParam=this; } This method calls the base class implementation (useful to not having to re-write some code, did I told you that I’m quite lazy?) and then initializes the pHookProc and pvUserParam members of the XRWindowsCreateParams structure. Those members will allow us to install a “hook” procedure that will be called each time the GWES window “hosting” our Silverlight for Windows Embedded UI receives a message. We can declare a hook procedure inside our Clock class: // static hook procedure static BOOL CALLBACK StaticHostHookProc(VOID* pv,HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { ... } You should notice two things here. First that the function is declared as static. This is required because a non-static function has a “hidden” parameters, that is the “this” pointer of our object. Having an extra parameter is not allowed for the type defined for the pHookProc member of the XRWindowsCreateParams struct and so we should implement our hook procedure as static. But in a static procedure we will not have a this pointer. How could we access the data member of our class? Here’s the second thing to notice. We initialized also the pvUserParam of the XRWindowsCreateParams struct. We set it to our this pointer. This value will be passed as the first parameter of the hook procedure. In this way we can retrieve our this pointer and use it to call a non-static version of our hook procedure: // static hook procedure static BOOL CALLBACK StaticHostHookProc(VOID* pv,HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { return ((Clock*)pv)->HostHookProc(hwnd,Msg,wParam,lParam,pRetVal); } Inside our non-static hook procedure we will have access to our this pointer and we will be able to update our clock: // hook procedure (handles timers) BOOL HostHookProc(HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { switch (Msg) { case WM_TIMER: if (wParam==IDT_CLOCKUPDATE) UpdateClock(); *pRetVal=0; return TRUE; } return FALSE; } The UpdateClock member function will update the text inside our TextBlocks and rotate the hands to reflect current time: // udates Hands positions and labels HRESULT UpdateClock() { SYSTEMTIME time; HRESULT retcode;   GetLocalTime(&time);   //updates the text fields TCHAR timebuffer[32];   _itow(time.wSecond,timebuffer,10);   SecondsText->SetText(timebuffer);   _itow(time.wMinute,timebuffer,10);   MinutesText->SetText(timebuffer);   _itow(time.wHour,timebuffer,10);   HoursText->SetText(timebuffer);   if (FAILED(retcode=RotateHand(((float)time.wSecond)*6-90,SecondsHand))) return retcode;   if (FAILED(retcode=RotateHand(((float)time.wMinute)*6-90,MinutesHand))) return retcode;   if (FAILED(retcode=RotateHand(((float)(time.wHour%12))*30-90,HoursHand))) return retcode;   return S_OK; } The function retrieves current time, convert hours, minutes and seconds to strings and display those strings inside the three TextBlocks that we put inside our clock hands. Then it rotates the hands to position them at the right angle (angles are in degrees and we have to subtract 90 degrees because 0 degrees means horizontal on Silverlight for Windows Embedded and usually a clock 0 is in the top position of the dial. The code of the RotateHand function uses transforms to rotate our clock hands on the screen: // rotates a Hand HRESULT RotateHand(float angle,IXRFrameworkElement* Hand) { HRESULT retcode; IXRRotateTransformPtr rotatetransform; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode;   if (FAILED(retcode=app->CreateObject(IID_IXRRotateTransform,&rotatetransform))) return retcode;     if (FAILED(retcode=rotatetransform->SetAngle(angle))) return retcode;   if (FAILED(retcode=rotatetransform->SetCenterX(0.0))) return retcode;   float height;   if (FAILED(retcode==Hand->GetActualHeight(&height))) return retcode;   if (FAILED(retcode=rotatetransform->SetCenterY(height/2))) return retcode; if (FAILED(retcode=Hand->SetRenderTransform(rotatetransform))) return retcode;   return S_OK; } It creates a IXRotateTransform object, set its rotation angle and origin (the default origin is at the top-left corner of our Grid panel, we move it in the vertical center to keep the hand rotating around a single point in a more “clock like” way. Then we can apply the transform to our UI object using SetRenderTransform. Every UI element (derived from IXRFrameworkElement) can be rotated! And using different subclasses of IXRTransform also moved, scaled, skewed and distorted in many ways. You can also concatenate multiple transforms and apply them at once suing a IXRTransformGroup object. The XAML engine uses vector graphics and object will not look “pixelated” when they are rotated or scaled. As usual you can download the code here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/Clock.zip If you read up to (down to?) this point you seem to be interested in Silverlight for Windows Embedded. If you want me to discuss some specific topic, please feel free to point it out in the comments! Technorati Tags: Silverlight for Windows Embedded,Windows CE

    Read the article

  • Initially Unselected DropDownList

    - by Ricardo Peres
    One of the most (IMHO) things with DropDownList is its inability to show an unselected value at load time, which is something that HTML does permit. I decided to change the DropDownList to add this behavior. All was needed was some JavaScript and reflection. See the result for yourself: public class CustomDropDownList : DropDownList { public CustomDropDownList() { this.InitiallyUnselected = true; } [DefaultValue(true)] public Boolean InitiallyUnselected { get; set; } protected override void OnInit(EventArgs e) { this.Page.RegisterRequiresControlState(this); this.Page.PreRenderComplete += this.OnPreRenderComplete; base.OnInit(e); } protected virtual void OnPreRenderComplete(Object sender, EventArgs args) { FieldInfo cachedSelectedValue = typeof(ListControl).GetField("cachedSelectedValue", BindingFlags.NonPublic | BindingFlags.Instance); if (String.IsNullOrEmpty(cachedSelectedValue.GetValue(this) as String) == true) { if (this.InitiallyUnselected == true) { if ((ScriptManager.GetCurrent(this.Page) != null) && (ScriptManager.GetCurrent(this.Page).IsInAsyncPostBack == true)) { ScriptManager.RegisterStartupScript(this, this.GetType(), "unselect" + this.ClientID, "$get('" + this.ClientID + "').selectedIndex = -1;", true); } else { this.Page.ClientScript.RegisterStartupScript(this.GetType(), "unselect" + this.ClientID, "$get('" + this.ClientID + "').selectedIndex = -1;", true); } } } } } SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • //TODO: Test this thoroughly!!!!!!

    - by Edward Boyle
    I just ran into an ugly sight in my code: //TODO: Test this thoroughly!!!!!! private void ... I would very much like to go back in time and ask the past me what I meant, why did I add that TODO:? …And then, smack the s%#t out of him. No matter how much testing I do of this code I will always wonder if the past me found something. Was it actually that code or was it a calling method that may bring unwanted results. The fact that I find absolutely nothing wrong with the code makes it that much more haunting. The moral of the story; when you find something wrong and need to test it thoroughly, stay up another hour testing it. The clarity in your head at that moment, on that issue, at that specific moment in time, would take hours worth of commenting to justify not finishing it now. Maybe what I meant was: // TODO: Test this thoroughly!!!!!! // All seems fine but test it just in case, not to worry. private void ... Doubt it. -I’m screwed.

    Read the article

  • gl_PointCoord always zero

    - by Jonathan
    I am trying to draw point sprites in OpenGL with a shader but gl_PointCoord is always zero. Here is my code Setup: //Shader creation..(includes glBindAttribLocation(program, ATTRIB_P, "p");) glEnableVertexAttribArray(ATTRIB_P); In the rendering loop: glUseProgram(shader_particles); float vertices[]={0.0f,0.0f,0.0f}; glEnable(GL_TEXTURE_2D); glEnable(GL_POINT_SPRITE); glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); //glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);(tried with this on/off, doesn't work) glVertexAttribPointer(ATTRIB_P, 3, GL_FLOAT, GL_FALSE, 0, vertices); glDrawArrays(GL_POINTS, 0, 1); Vertex Shader: attribute highp vec4 p; void main() { gl_PointSize = 40.0f; gl_Position = p; } Fragment Shader: void main() { gl_FragColor = vec4(gl_PointCoord.st, 0, 1);//if the coords range from 0-1, this should draw a square with black,red,green,yellow corners } But this only draws a black square with a size of 40. What am I doing wrong? Edit: Point sprites work when i use the fixed function, but I need to use shaders because in the end the code will be for opengl es 2.0 glUseProgram(0); glEnable(GL_TEXTURE_2D); glEnable(GL_POINT_SPRITE); glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE); glPointSize(40); glBegin(GL_POINTS); glVertex3f(0.0f,0.0f,0.0f); glEnd(); Is anyone able to get point sprites working with shader? If so, please share some code.

    Read the article

  • Uploading and Importing CSV file to SQL Server in ASP.NET WebForms

    - by Vincent Maverick Durano
    Few weeks ago I was working with a small internal project  that involves importing CSV file to Sql Server database and thought I'd share the simple implementation that I did on the project. In this post I will demonstrate how to upload and import CSV file to SQL Server database. As some may have already know, importing CSV file to SQL Server is easy and simple but difficulties arise when the CSV file contains, many columns with different data types. Basically, the provider cannot differentiate data types between the columns or the rows, blindly it will consider them as a data type based on first few rows and leave all the data which does not match the data type. To overcome this problem, I used schema.ini file to define the data type of the CSV file and allow the provider to read that and recognize the exact data types of each column. Now what is schema.ini? Taken from the documentation: The Schema.ini is a information file, used to define the data structure and format of each column that contains data in the CSV file. If schema.ini file exists in the directory, Microsoft.Jet.OLEDB provider automatically reads it and recognizes the data type information of each column in the CSV file. Thus, the provider intelligently avoids the misinterpretation of data types before inserting the data into the database. For more information see: http://msdn.microsoft.com/en-us/library/ms709353%28VS.85%29.aspx Points to remember before creating schema.ini:   1. The schema information file, must always named as 'schema.ini'.   2. The schema.ini file must be kept in the same directory where the CSV file exists.   3. The schema.ini file must be created before reading the CSV file.   4. The first line of the schema.ini, must the name of the CSV file, followed by the properties of the CSV file, and then the properties of the each column in the CSV file. Here's an example of how the schema looked like: [Employee.csv] ColNameHeader=False Format=CSVDelimited DateTimeFormat=dd-MMM-yyyy Col1=EmployeeID Long Col2=EmployeeFirstName Text Width 100 Col3=EmployeeLastName Text Width 50 Col4=EmployeeEmailAddress Text Width 50 To get started lets's go a head and create a simple blank database. Just for the purpose of this demo I created a database called TestDB. After creating the database then lets go a head and fire up Visual Studio and then create a new WebApplication project. Under the root application create a folder called UploadedCSVFiles and then place the schema.ini on that folder. The uploaded CSV files will be stored in this folder after the user imports the file. Now add a WebForm in the project and set up the HTML mark up and add one (1) FileUpload control one(1)Button and three (3) Label controls. After that we can now proceed with the codes for uploading and importing the CSV file to SQL Server database. Here are the full code blocks below: 1: using System; 2: using System.Data; 3: using System.Data.SqlClient; 4: using System.Data.OleDb; 5: using System.IO; 6: using System.Text; 7:   8: namespace WebApplication1 9: { 10: public partial class CSVToSQLImporting : System.Web.UI.Page 11: { 12: private string GetConnectionString() 13: { 14: return System.Configuration.ConfigurationManager.ConnectionStrings["DBConnectionString"].ConnectionString; 15: } 16: private void CreateDatabaseTable(DataTable dt, string tableName) 17: { 18:   19: string sqlQuery = string.Empty; 20: string sqlDBType = string.Empty; 21: string dataType = string.Empty; 22: int maxLength = 0; 23: StringBuilder sb = new StringBuilder(); 24:   25: sb.AppendFormat(string.Format("CREATE TABLE {0} (", tableName)); 26:   27: for (int i = 0; i < dt.Columns.Count; i++) 28: { 29: dataType = dt.Columns[i].DataType.ToString(); 30: if (dataType == "System.Int32") 31: { 32: sqlDBType = "INT"; 33: } 34: else if (dataType == "System.String") 35: { 36: sqlDBType = "NVARCHAR"; 37: maxLength = dt.Columns[i].MaxLength; 38: } 39:   40: if (maxLength > 0) 41: { 42: sb.AppendFormat(string.Format(" {0} {1} ({2}), ", dt.Columns[i].ColumnName, sqlDBType, maxLength)); 43: } 44: else 45: { 46: sb.AppendFormat(string.Format(" {0} {1}, ", dt.Columns[i].ColumnName, sqlDBType)); 47: } 48: } 49:   50: sqlQuery = sb.ToString(); 51: sqlQuery = sqlQuery.Trim().TrimEnd(','); 52: sqlQuery = sqlQuery + " )"; 53:   54: using (SqlConnection sqlConn = new SqlConnection(GetConnectionString())) 55: { 56: sqlConn.Open(); 57: SqlCommand sqlCmd = new SqlCommand(sqlQuery, sqlConn); 58: sqlCmd.ExecuteNonQuery(); 59: sqlConn.Close(); 60: } 61:   62: } 63: private void LoadDataToDatabase(string tableName, string fileFullPath, string delimeter) 64: { 65: string sqlQuery = string.Empty; 66: StringBuilder sb = new StringBuilder(); 67:   68: sb.AppendFormat(string.Format("BULK INSERT {0} ", tableName)); 69: sb.AppendFormat(string.Format(" FROM '{0}'", fileFullPath)); 70: sb.AppendFormat(string.Format(" WITH ( FIELDTERMINATOR = '{0}' , ROWTERMINATOR = '\n' )", delimeter)); 71:   72: sqlQuery = sb.ToString(); 73:   74: using (SqlConnection sqlConn = new SqlConnection(GetConnectionString())) 75: { 76: sqlConn.Open(); 77: SqlCommand sqlCmd = new SqlCommand(sqlQuery, sqlConn); 78: sqlCmd.ExecuteNonQuery(); 79: sqlConn.Close(); 80: } 81: } 82: protected void Page_Load(object sender, EventArgs e) 83: { 84:   85: } 86: protected void BTNImport_Click(object sender, EventArgs e) 87: { 88: if (FileUpload1.HasFile) 89: { 90: FileInfo fileInfo = new FileInfo(FileUpload1.PostedFile.FileName); 91: if (fileInfo.Name.Contains(".csv")) 92: { 93:   94: string fileName = fileInfo.Name.Replace(".csv", "").ToString(); 95: string csvFilePath = Server.MapPath("UploadedCSVFiles") + "\\" + fileInfo.Name; 96:   97: //Save the CSV file in the Server inside 'MyCSVFolder' 98: FileUpload1.SaveAs(csvFilePath); 99:   100: //Fetch the location of CSV file 101: string filePath = Server.MapPath("UploadedCSVFiles") + "\\"; 102: string strSql = "SELECT * FROM [" + fileInfo.Name + "]"; 103: string strCSVConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + filePath + ";" + "Extended Properties='text;HDR=YES;'"; 104:   105: // load the data from CSV to DataTable 106:   107: OleDbDataAdapter adapter = new OleDbDataAdapter(strSql, strCSVConnString); 108: DataTable dtCSV = new DataTable(); 109: DataTable dtSchema = new DataTable(); 110:   111: adapter.FillSchema(dtCSV, SchemaType.Mapped); 112: adapter.Fill(dtCSV); 113:   114: if (dtCSV.Rows.Count > 0) 115: { 116: CreateDatabaseTable(dtCSV, fileName); 117: Label2.Text = string.Format("The table ({0}) has been successfully created to the database.", fileName); 118:   119: string fileFullPath = filePath + fileInfo.Name; 120: LoadDataToDatabase(fileName, fileFullPath, ","); 121:   122: Label1.Text = string.Format("({0}) records has been loaded to the table {1}.", dtCSV.Rows.Count, fileName); 123: } 124: else 125: { 126: LBLError.Text = "File is empty."; 127: } 128: } 129: else 130: { 131: LBLError.Text = "Unable to recognize file."; 132: } 133:   134: } 135: } 136: } 137: } The code above consists of three (3) private methods which are the GetConnectionString(), CreateDatabaseTable() and LoadDataToDatabase(). The GetConnectionString() is a method that returns a string. This method basically gets the connection string that is configured in the web.config file. The CreateDatabaseTable() is method that accepts two (2) parameters which are the DataTable and the filename. As the method name already suggested, this method automatically create a Table to the database based on the source DataTable and the filename of the CSV file. The LoadDataToDatabase() is a method that accepts three (3) parameters which are the tableName, fileFullPath and delimeter value. This method is where the actual saving or importing of data from CSV to SQL server happend. The codes at BTNImport_Click event handles the uploading of CSV file to the specified location and at the same time this is where the CreateDatabaseTable() and LoadDataToDatabase() are being called. If you notice I also added some basic trappings and validations within that event. Now to test the importing utility then let's create a simple data in a CSV format. Just for the simplicity of this demo let's create a CSV file and name it as "Employee" and add some data on it. Here's an example below: 1,VMS,Durano,[email protected] 2,Jennifer,Cortes,[email protected] 3,Xhaiden,Durano,[email protected] 4,Angel,Santos,[email protected] 5,Kier,Binks,[email protected] 6,Erika,Bird,[email protected] 7,Vianne,Durano,[email protected] 8,Lilibeth,Tree,[email protected] 9,Bon,Bolger,[email protected] 10,Brian,Jones,[email protected] Now save the newly created CSV file in some location in your hard drive. Okay let's run the application and browse the CSV file that we have just created. Take a look at the sample screen shots below: After browsing the CSV file. After clicking the Import Button Now if we look at the database that we have created earlier you'll notice that the Employee table is created with the imported data on it. See below screen shot.   That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,CSV,SQL,C#,ADO.NET

    Read the article

  • Connect ViewModel and View using Unity

    - by brainbox
    In this post i want to describe the approach of connecting View and ViewModel which I'm using in my last project.The main idea is to do it during resolve inside of unity container. It can be achived using InjectionFactory introduced in Unity 2.0 public static class MVVMUnityExtensions{    public static void RegisterView<TView, TViewModel>(this IUnityContainer container) where TView : FrameworkElement    {        container.RegisterView<TView, TView, TViewModel>();    }    public static void RegisterView<TViewFrom, TViewTo, TViewModel>(this IUnityContainer container)        where TViewTo : FrameworkElement, TViewFrom    {        container.RegisterType<TViewFrom>(new InjectionFactory(            c =>            {                var model = c.Resolve<TViewModel>();                var view = Activator.CreateInstance<TViewTo>();                view.DataContext = model;                return view;            }         ));    }}}And here is the sample how it could be used:var unityContainer = new UnityContainer();unityContainer.RegisterView<IFooView, FooView, FooViewModel>();IFooView view = unityContainer.Resolve<IFooView>(); // view with injected viewmodel in its datacontextPlease tell me your prefered way to connect viewmodel and view.

    Read the article

  • First toe in the water with Object Databases : DB4O

    - by REA_ANDREW
    I have been wanting to have a play with Object Databases for a while now, and today I have done just that.  One of the obvious choices I had to make was which one to use.  My criteria for choosing one today was simple, I wanted one which I could literally wack in and start using, which means I wanted one which either had a .NET API or was designed/ported to .NET.  My decision was between two being: db4o MongoDb I went for db4o for the single reason that it looked like I could get it running and integrated the quickest.  I am making a Blogging application and front end as a project with which I can test and learn with these object databases.  Another requirement which I thought I would mention is that I also want to be able to use the said database in a shared hosting environment where I cannot install, run and maintain a server instance of said object database.  I can do exactly this with db4o. I have not tried to do this with MongoDb at time of writing.  There are quite a few in the industry now and you read an interesting post about different ones and how they are used with some of the heavy weights in the industry here : http://blog.marcua.net/post/442594842/notes-from-nosql-live-boston-2010 In the example which I am building I am using StructureMap as my IOC.  To inject the object for db4o I went with a Singleton instance scope as I am using a single file and I need this to be available to any thread on in the process as opposed to using the server implementation where I could open and close client connections with the server handling each one respectively.  Again I want to point out that I have chosen to stick with the non server implementation of db4o as I wanted to use this in a shared hosting environment where I cannot have such servers installed and run.     public static class Bootstrapper    {        public static void ConfigureStructureMap()        {            ObjectFactory.Initialize(x => x.AddRegistry(new MyApplicationRegistry()));        }    }    public class MyApplicationRegistry : Registry    {        public const string DB4O_FILENAME = "blog123";        public string DbPath        {            get            {                return Path.Combine(Path.GetDirectoryName(Assembly.GetAssembly(typeof(IBlogRepository)).Location), DB4O_FILENAME);            }        }        public MyApplicationRegistry()        {            For<IObjectContainer>().Singleton().Use(                () => Db4oEmbedded.OpenFile(Db4oEmbedded.NewConfiguration(), DbPath));            Scan(assemblyScanner =>            {                assemblyScanner.TheCallingAssembly();                assemblyScanner.WithDefaultConventions();            });        }    } So my code above is the structure map plumbing which I use for the application.  I am doing this simply as a quick scratch pad to play around with different things so I am simply segregating logical layers with folder structure as opposed to different assemblies.  It will be easy if I want to do this with any segment but for the purposes of example I have literally just wacked everything in the one assembly.  You can see an example file structure I have on the right.  I am planning on testing out a few implementations of the object databases out there so I can program to an interface of IBlogRepository One of the things which I was unsure about was how it performed under a multi threaded environment which it will undoubtedly be used 9 times out of 10, and for the reason that I am using the db context as a singleton, I assumed that the library was of course thread safe but I did not know as I have not read any where in the documentation, again this is probably me not reading things correctly.  In short though I threw together a simple test where I simply iterate to a limit each time kicking a common task off with a thread from a thread pool.  This task simply created and added an random Post and added it to the storage. The execution of the threads I put inside the Setup of the Test and then simply ensure the number of posts committed to the database is equal to the number of iterations I made; here is the code I used to do the multi thread jobs: [TestInitialize] public void Setup() { var sw = new System.Diagnostics.Stopwatch(); sw.Start(); var resetEvent = new ManualResetEvent(false); ThreadPool.SetMaxThreads(20, 20); for (var i = 0; i < MAX_ITERATIONS; i++) { ThreadPool.QueueUserWorkItem(delegate(object state) { var eventToReset = (ManualResetEvent)state; var post = new Post { Author = MockUser, Content = "Mock Content", Title = "Title" }; Repository.Put(post); var counter = Interlocked.Decrement(ref _threadCounter); if (counter == 0) eventToReset.Set(); }, resetEvent); } WaitHandle.WaitAll(new[] { resetEvent }); sw.Stop(); Console.WriteLine("{0:00}.{1:00} seconds", sw.Elapsed.Seconds, sw.Elapsed.Milliseconds); }   I was not doing this to test out the speed performance of db4o but while I was doing this I could not help but put in a StopWatch and see out of sheer interest how fast it would take to insert a number of Posts.  I tested it out in this case with 10000 inserts of a small, simple POCO and it resulted in an average of:  899.36 object inserts / second.  Again this is just  simple crude test which came out of my curiosity at how it performed under many threads when using the non server implementation of db4o. The spec summary of the computer I used is as follows: With regards to the actual Repository implementation itself, it really is quite straight forward and I have to say I am very surprised at how easy it was to integrate and get up and running.  One thing I have noticed in the exposure I have had so far is that the Query returns IList<T> as opposed to IQueryable<T> but again I have not looked into this in depth and this could be there already and if not they have provided everything one needs to make there own repository.  An example of a couple of methods from by db4o implementation of the BlogRepository is below: public class BlogRepository : IBlogRepository { private readonly IObjectContainer _db; public BlogRepository(IObjectContainer db) { _db = db; } public void Put(DomainObject obj) { _db.Store(obj); } public void Delete(DomainObject obj) { _db.Delete(obj); } public Post GetByKey(object key) { return _db.Query<Post>(post => post.Key == key).FirstOrDefault(); } … Anyways I hope to get a few more implementations going of the object databases and literally just get familiarized with them and the concept of no sql databases. Cheers for now, Andrew

    Read the article

  • C#/.NET Little Wonders: The EventHandler and EventHandler&lt;TEventArgs&gt; delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last two weeks, we examined the Action family of delegates (and delegates in general), and the Func family of delegates and how they can be used to support generic, reusable algorithms and classes. So this week, we are going to look at a handy pair of delegates that can be used to eliminate the need for defining custom delegates when creating events: the EventHandler and EventHandler<TEventArgs> delegates. Events and delegates Before we begin, let’s quickly consider events in .NET.  According to the MSDN: An event in C# is a way for a class to provide notifications to clients of that class when some interesting thing happens to an object. So, basically, you can create an event in a type so that users of that type can subscribe to notifications of things of interest.  How is this different than some of the delegate programming that we talked about in the last two weeks?  Well, you can think of an event as a special access modifier on a delegate.  Some differences between the two are: Events are a special access case of delegates They behave much like delegates instances inside the type they are declared in, but outside of that type they can only be (un)subscribed to. Events can specify add/remove behavior explicitly If you want to do additional work when someone subscribes or unsubscribes to an event, you can specify the add and remove actions explicitly. Events have access modifiers, but these only specify the access level of those who can (un)subscribe A public event, for example, means anyone can (un)subscribe, but it does not mean that anyone can raise (invoke) the event directly.  Events can only be raised by the type that contains them In contrast, if a delegate is visible, it can be invoked outside of the object (not even in a sub-class!). Events tend to be for notifications only, and should be treated as optional Semantically speaking, events typically don’t perform work on the the class directly, but tend to just notify subscribers when something of note occurs. My basic rule-of-thumb is that if you are just wanting to notify any listeners (who may or may not care) that something has happened, use an event.  However, if you want the caller to provide some function to perform to direct the class about how it should perform work, make it a delegate. Declaring events using custom delegates To declare an event in a type, we simply use the event keyword and specify its delegate type.  For example, let’s say you wanted to create a new TimeOfDayTimer that triggers at a given time of the day (as opposed to on an interval).  We could write something like this: 1: public delegate void TimeOfDayHandler(object source, ElapsedEventArgs e); 2:  3: // A timer that will fire at time of day each day. 4: public class TimeOfDayTimer : IDisposable 5: { 6: // Event that is triggered at time of day. 7: public event TimeOfDayHandler Elapsed; 8:  9: // ... 10: } The first thing to note is that the event is a delegate type, which tells us what types of methods may subscribe to it.  The second thing to note is the signature of the event handler delegate, according to the MSDN: The standard signature of an event handler delegate defines a method that does not return a value, whose first parameter is of type Object and refers to the instance that raises the event, and whose second parameter is derived from type EventArgs and holds the event data. If the event does not generate event data, the second parameter is simply an instance of EventArgs. Otherwise, the second parameter is a custom type derived from EventArgs and supplies any fields or properties needed to hold the event data. So, in a nutshell, the event handler delegates should return void and take two parameters: An object reference to the object that raised the event. An EventArgs (or a subclass of EventArgs) reference to event specific information. Even if your event has no additional information to provide, you are still expected to provide an EventArgs instance.  In this case, feel free to pass the EventArgs.Empty singleton instead of creating new instances of EventArgs (to avoid generating unneeded memory garbage). The EventHandler delegate Because many events have no additional information to pass, and thus do not require custom EventArgs, the signature of the delegates for subscribing to these events is typically: 1: // always takes an object and an EventArgs reference 2: public delegate void EventHandler(object sender, EventArgs e) It would be insane to recreate this delegate for every class that had a basic event with no additional event data, so there already exists a delegate for you called EventHandler that has this very definition!  Feel free to use it to define any events which supply no additional event information: 1: public class Cache 2: { 3: // event that is raised whenever the cache performs a cleanup 4: public event EventHandler OnCleanup; 5:  6: // ... 7: } This will handle any event with the standard EventArgs (no additional information).  But what of events that do need to supply additional information?  Does that mean we’re out of luck for subclasses of EventArgs?  That’s where the generic for of EventHandler comes into play… The generic EventHandler<TEventArgs> delegate Starting with the introduction of generics in .NET 2.0, we have a generic delegate called EventHandler<TEventArgs>.  Its signature is as follows: 1: public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e) 2: where TEventArgs : EventArgs This is similar to EventHandler except it has been made generic to support the more general case.  Thus, it will work for any delegate where the first argument is an object (the sender) and the second argument is a class derived from EventArgs (the event data). For example, let’s say we wanted to create a message receiver, and we wanted it to have a few events such as OnConnected that will tell us when a connection is established (probably with no additional information) and OnMessageReceived that will tell us when a new message arrives (probably with a string for the new message text). So for OnMessageReceived, our MessageReceivedEventArgs might look like this: 1: public sealed class MessageReceivedEventArgs : EventArgs 2: { 3: public string Message { get; set; } 4: } And since OnConnected needs no event argument type defined, our class might look something like this: 1: public class MessageReceiver 2: { 3: // event that is called when the receiver connects with sender 4: public event EventHandler OnConnected; 5:  6: // event that is called when a new message is received. 7: public event EventHandler<MessageReceivedEventArgs> OnMessageReceived; 8:  9: // ... 10: } Notice, nowhere did we have to define a delegate to fit our event definition, the EventHandler and generic EventHandler<TEventArgs> delegates fit almost anything we’d need to do with events. Sidebar: Thread-safety and raising an event When the time comes to raise an event, we should always check to make sure there are subscribers, and then only raise the event if anyone is subscribed.  This is important because if no one is subscribed to the event, then the instance will be null and we will get a NullReferenceException if we attempt to raise the event. 1: // This protects against NullReferenceException... or does it? 2: if (OnMessageReceived != null) 3: { 4: OnMessageReceived(this, new MessageReceivedEventArgs(aMessage)); 5: } The above code seems to handle the null reference if no one is subscribed, but there’s a problem if this is being used in multi-threaded environments.  For example, assume we have thread A which is about to raise the event, and it checks and clears the null check and is about to raise the event.  However, before it can do that thread B unsubscribes to the event, which sets the delegate to null.  Now, when thread A attempts to raise the event, this causes the NullReferenceException that we were hoping to avoid! To counter this, the simplest best-practice method is to copy the event (just a multicast delegate) to a temporary local variable just before we raise it.  Since we are inside the class where this event is being raised, we can copy it to a local variable like this, and it will protect us from multi-threading since multicast delegates are immutable and assignments are atomic: 1: // always make copy of the event multi-cast delegate before checking 2: // for null to avoid race-condition between the null-check and raising it. 3: var handler = OnMessageReceived; 4: 5: if (handler != null) 6: { 7: handler(this, new MessageReceivedEventArgs(aMessage)); 8: } The very slight trade-off is that it’s possible a class may get an event after it unsubscribes in a multi-threaded environment, but this is a small risk and classes should be prepared for this possibility anyway.  For a more detailed discussion on this, check out this excellent Eric Lippert blog post on Events and Races. Summary Generic delegates give us a lot of power to make generic algorithms and classes, and the EventHandler delegate family gives us the flexibility to create events easily, without needing to redefine delegates over and over.  Use them whenever you need to define events with or without specialized EventArgs.   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Delegates, EventHandler

    Read the article

  • Passing multiple Vertex Attributes in GLSL 130

    - by Roy T.
    (note this question is closely related to this one however I didn't fully understand the accepted answer) To support videocards in laptops I have to rewrite my GLSL 330 shaders to GLSL 130. I'm trying to do this but somehow I don't get vertex attributes to work properly. My 330 shaders look like this: #version 330 layout(location = 0) in vec4 position; layout(location = 3) in vec4 color; smooth out vec4 theColor; void main() { gl_Position = position; theColor = color; } Now this explicit layout is not allowed in GLSL 130 so I referenced this page to see what the default layouts for some values would be. As you can see position should be the 0th vertex attribute and color should be the 3rd vertex attribute. Because this is a test case I had already configured my explicit layouts in the same way, which worked, so I now simply rewrote my shader to this and expected it to work: #version 130 smooth out vec4 theColor; void main() { gl_Position = gl_Vertex; theColor = gl_Color; } However this doesn't work, the value of gl_Color is always (1,1,1,1). So how should I pass multiple vertex attributes to my GLSL 130 shaders? For reference, this is how I set my vertex buffer object and attributes (I've just adapted this tutorial to JAVA+JOGL) gl.glBindBuffer(GL3.GL_ARRAY_BUFFER, vertex_buffer_id); gl.glEnableVertexAttribArray(0); gl.glEnableVertexAttribArray(3); gl.glVertexAttribPointer(0, 4 , GL3.GL_FLOAT, false, 0, 0); gl.glVertexAttribPointer(3, 4, GL3.GL_FLOAT, false, 0, 4*4*4); gl.glDrawArrays(GL3.GL_TRIANGLE_STRIP, 0, 4); gl.glDisableVertexAttribArray(0); gl.glDisableVertexAttribArray(3); EDIT I solved the problem by querying for the layout locations of position an color using glGetAttribLocation however I still don't understand why the 'hardcoded' values like gl_Color didn't work, can't I upload data in there as normal? Shouldn't they be used?

    Read the article

  • OpenGL: Where shoud I place shaders?

    - by mivic
    I'm trying to learn OpenGL ES 2.0 and I'm wondering what is the most common practice to "manage" shaders. I'm asking this question because in the examples I've found (like the one included in the API Demo provided with the android sdk), I usually see everything inside the GLRenderer class and I'd rather separate things so I can have, for example, a GLImage object that I can reuse whenever I want to draw a textured quad (I'm focusing on 2D only at the moment), just like I had in my OpenGL ES 1.0 code. In almost every example I've found, shaders are just defined as class attributes. For example: public class Square { public final String vertexShader = "uniform mat4 uMVPMatrix;\n" + "attribute vec4 aPosition;\n" + "attribute vec4 aColor;\n" + "varying vec4 vColor;\n" + "void main() {\n" + " gl_Position = uMVPMatrix * aPosition;\n" + " vColor = aColor;\n" + "}\n"; public final String fragmentShader = "precision mediump float;\n" + "varying vec4 vColor;\n" + "void main() {\n" + " gl_FragColor = vColor;\n" + "}\n"; // ... } I apologize in advance if some of these questions are dumb, but I've never worked with shaders before. 1) Is the above code the common way to define shaders (public final class properties)? 2) Should I have a separate Shader class? 3) If shaders are defined outside the class that uses them, how would I know the names of their attributes (e.g. "aColor" in the following piece of code) so I can bind them? colorHandle = GLES20.glGetAttribLocation(program, "aColor");

    Read the article

  • JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue

    - by John-Brown.Evans
    JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue ol{margin:0;padding:0} .c18_3{vertical-align:top;width:487.3pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c20_3{vertical-align:top;width:487.3pt;border-style:solid;border-color:#ffffff;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c19_3{background-color:#ffffff} .c17_3{list-style-type:circle;margin:0;padding:0} .c12_3{list-style-type:disc;margin:0;padding:0} .c6_3{font-style:italic;font-weight:bold} .c10_3{color:inherit;text-decoration:inherit} .c1_3{font-size:10pt;font-family:"Courier New"} .c2_3{line-height:1.0;direction:ltr} .c9_3{padding-left:0pt;margin-left:72pt} .c15_3{padding-left:0pt;margin-left:36pt} .c3_3{color:#1155cc;text-decoration:underline} .c5_3{height:11pt} .c14_3{border-collapse:collapse} .c7_3{font-family:"Courier New"} .c0_3{background-color:#ffff00} .c16_3{font-size:18pt} .c8_3{font-weight:bold} .c11_3{font-size:24pt} .c13_3{font-style:italic} .c4_3{direction:ltr} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}.subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. In the first post, JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g we looked at how to create a JMS queue and its dependent objects in WebLogic Server. In the previous post, JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue I showed how to write a message to that JMS queue using the QueueSend.java sample program. In this article, we will use a similar sample, the QueueReceive.java program to read the message from that queue. Please review the previous posts if you have not already done so, as they contain prerequisites for executing the sample in this article. 1. Source code The following java code will be used to read the message(s) from the JMS queue. As with the previous example, it is based on a sample program shipped with the WebLogic Server installation. The sample is not installed by default, but needs to be installed manually using the WebLogic Server Custom Installation option, together with many, other useful samples. You can either copy-paste the following code into your editor, or install all the samples. The knowledge base article in My Oracle Support: How To Install WebLogic Server and JMS Samples in WLS 10.3.x (Doc ID 1499719.1) describes how to install the samples. QueueReceive.java package examples.jms.queue; import java.util.Hashtable; import javax.jms.*; import javax.naming.Context; import javax.naming.InitialContext; import javax.naming.NamingException; /** * This example shows how to establish a connection to * and receive messages from a JMS queue. The classes in this * package operate on the same JMS queue. Run the classes together to * witness messages being sent and received, and to browse the queue * for messages. This class is used to receive and remove messages * from the queue. * * @author Copyright (c) 1999-2005 by BEA Systems, Inc. All Rights Reserved. */ public class QueueReceive implements MessageListener { // Defines the JNDI context factory. public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory"; // Defines the JMS connection factory for the queue. public final static String JMS_FACTORY="jms/TestConnectionFactory"; // Defines the queue. public final static String QUEUE="jms/TestJMSQueue"; private QueueConnectionFactory qconFactory; private QueueConnection qcon; private QueueSession qsession; private QueueReceiver qreceiver; private Queue queue; private boolean quit = false; /** * Message listener interface. * @param msg message */ public void onMessage(Message msg) { try { String msgText; if (msg instanceof TextMessage) { msgText = ((TextMessage)msg).getText(); } else { msgText = msg.toString(); } System.out.println("Message Received: "+ msgText ); if (msgText.equalsIgnoreCase("quit")) { synchronized(this) { quit = true; this.notifyAll(); // Notify main thread to quit } } } catch (JMSException jmse) { System.err.println("An exception occurred: "+jmse.getMessage()); } } /** * Creates all the necessary objects for receiving * messages from a JMS queue. * * @param ctx JNDI initial context * @param queueName name of queue * @exception NamingException if operation cannot be performed * @exception JMSException if JMS fails to initialize due to internal error */ public void init(Context ctx, String queueName) throws NamingException, JMSException { qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY); qcon = qconFactory.createQueueConnection(); qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); queue = (Queue) ctx.lookup(queueName); qreceiver = qsession.createReceiver(queue); qreceiver.setMessageListener(this); qcon.start(); } /** * Closes JMS objects. * @exception JMSException if JMS fails to close objects due to internal error */ public void close()throws JMSException { qreceiver.close(); qsession.close(); qcon.close(); } /** * main() method. * * @param args WebLogic Server URL * @exception Exception if execution fails */ public static void main(String[] args) throws Exception { if (args.length != 1) { System.out.println("Usage: java examples.jms.queue.QueueReceive WebLogicURL"); return; } InitialContext ic = getInitialContext(args[0]); QueueReceive qr = new QueueReceive(); qr.init(ic, QUEUE); System.out.println( "JMS Ready To Receive Messages (To quit, send a \"quit\" message)."); // Wait until a "quit" message has been received. synchronized(qr) { while (! qr.quit) { try { qr.wait(); } catch (InterruptedException ie) {} } } qr.close(); } private static InitialContext getInitialContext(String url) throws NamingException { Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY); env.put(Context.PROVIDER_URL, url); return new InitialContext(env); } } 2. How to Use This Class 2.1 From the file system on Linux This section describes how to use the class from the file system of a WebLogic Server installation. Log in to a machine with a WebLogic Server installation and create a directory to contain the source and code matching the package name, e.g. span$HOME/examples/jms/queue. Copy the above QueueReceive.java file to this directory. Set the CLASSPATH and environment to match the WebLogic server environment. Go to $MIDDLEWARE_HOME/user_projects/domains/base_domain/bin  and execute . ./setDomainEnv.sh Collect the following information required to run the script: The JNDI name of the JMS queue to use In the WebLogic server console > Services > Messaging > JMS Modules > Module name, (e.g. TestJMSModule) > JMS queue name, (e.g. TestJMSQueue) select the queue and note its JNDI name, e.g. jms/TestJMSQueue The JNDI name of the connection factory to use to connect to the queue Follow the same path as above to get the connection factory for the above queue, e.g. TestConnectionFactory and its JNDI name e.g. jms/TestConnectionFactory The URL and port of the WebLogic server running the above queue Check the JMS server for the above queue and the managed server it is targeted to, for example soa_server1. Now find the port this managed server is listening on, by looking at its entry under Environment > Servers in the WLS console, e.g. 8001 The URL for the server to be passed to the QueueReceive program will therefore be t3://host.domain:8001 e.g. t3://jbevans-lx.de.oracle.com:8001 Edit Queue Receive .java and enter the above queue name and connection factory respectively under ... public final static String JMS_FACTORY="jms/TestConnectionFactory"; ... public final static String QUEUE="jms/TestJMSQueue"; ... Compile Queue Receive .java using javac Queue Receive .java Go to the source’s top-level directory and execute it using java examples.jms.queue.Queue Receive   t3://jbevans-lx.de.oracle.com:8001 This will print a message that it is ready to receive messages or to send a “quit” message to end. The program will read all messages in the queue and print them to the standard output until it receives a message with the payload “quit”. 2.2 From JDeveloper The steps from JDeveloper are the same as those used for the previous program QueueSend.java, which is used to send a message to the queue. So we won't repeat them here. Please see the previous blog post at JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue and apply the same steps in that example to the QueueReceive.java program. This concludes the example. In the following post we will create a BPEL process which writes a message based on an XML schema to the queue.

    Read the article

  • OpenGL ES Shader help (Blending)

    - by Chris
    Earlier I required assistance getting to grips with how to retain the alpha channel of a transparent texture in my colourised texture shader program. Whilst playing with that first version of my program (before obtaining the solution to my first requirement), I managed to enable transparency for the whole texture (effectively blending via GLSL), and I quite liked this, and I would now like to know if and how it is possible to retain this blending effect, on top of the existing output without affecting the original alpha channel - as I don't know how to input this transparency via the parameter that is already being provided with the textures alpha channel. A basic example of the blending program I am referring to (minus any other functionality) is as follows... varying vec2 texCoord; uniform sampler2D texSampler; void main() { gl_FragColor = vec4(texture2D(texSampler,texCoord).xyz,0.5); } Where 0.5 is the transparency (blending effect) of the whole texture. This is the current version of my program, which provides the ability to colour a texture according the colour parameter passed to the program, and retains the alpha channel of the original texture. varying vec2 texCoord; uniform sampler2D texSampler; uniform vec3 colour; void main() { gl_FragColor = vec4(colour,1) * vec4(texture2D(texSampler,texCoord).xyz,texture2D(texSampler,texCoord).w); } I need to know if it is possible to apply transparency on top this program, without affecting the original alpha channel which I have already preserved. I hope this makes enough sense, I am sure it is possible, and if so I should imagine it is rather simple, but this has me stumped. Any help much appreachiated. Cheers, Chris

    Read the article

  • DocumentDB - Another Azure NoSQL Storage Service

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/08/25/documentdb---another-azure-nosql-storage-service.aspxMicrosoft just released a bunch of new features for Azure on 22nd and one of them I was interested in most is DocumentDB, a document NoSQL database service on the cloud.   Quick Look at DocumentDB We can try DocumentDB from the new azure preview portal. Just click the NEW button and select the item named DocumentDB to create a new account. Specify the name of the DocumentDB, which will be the endpoint we are going to use to connect later. Select the capacity unit, resource group and subscription. In resource group section we can select which region our DocumentDB will be located. Same as other azure services select the same location with your consumers of the DocumentDB, for example the website, web services, etc.. After several minutes the DocumentDB will be ready. Click the KEYS button we can find the URI and primary key, which will be used when connecting. Now let's open Visual Studio and try to use the DocumentDB we had just created. Create a new console application and install the DocumentDB .NET client library from NuGet with the keyword "DocumentDB". You need to select "Include Prerelase" in NuGet Package Manager window since this library was not yet released. Next we will create a new database and document collection under our DocumentDB account. The code below created an instance of DocumentClient with the URI and primary key we just copied from azure portal, and create a database and collection. And it also prints the document and collection link string which will be used later to insert and query documents. 1: static void Main(string[] args) 2: { 3: var endpoint = new Uri("https://shx.documents.azure.com:443/"); 4: var key = "LU2NoyS2fH0131TGxtBE4DW/CjHQBzAaUx/mbuJ1X77C4FWUG129wWk2oyS2odgkFO2Xdif9/ZddintQicF+lA=="; 5:  6: var client = new DocumentClient(endpoint, key); 7: Run(client).Wait(); 8:  9: Console.WriteLine("done"); 10: Console.ReadKey(); 11: } 12:  13: static async Task Run(DocumentClient client) 14: { 15:  16: var database = new Database() { Id = "testdb" }; 17: database = await client.CreateDatabaseAsync(database); 18: Console.WriteLine("database link = {0}", database.SelfLink); 19:  20: var collection = new DocumentCollection() { Id = "testcol" }; 21: collection = await client.CreateDocumentCollectionAsync(database.SelfLink, collection); 22: Console.WriteLine("collection link = {0}", collection.SelfLink); 23: } Below is the result from the console window. We need to copy the collection link string for future usage. Now if we back to the portal we will find a database was listed with the name we specified in the code. Next we will insert a document into the database and collection we had just created. In the code below we pasted the collection link which copied in previous step, create a dynamic object with several properties defined. As you can see we can add some normal properties contains string, integer, we can also add complex property for example an array, a dictionary and an object reference, unless they can be serialized to JSON. 1: static void Main(string[] args) 2: { 3: var endpoint = new Uri("https://shx.documents.azure.com:443/"); 4: var key = "LU2NoyS2fH0131TGxtBE4DW/CjHQBzAaUx/mbuJ1X77C4FWUG129wWk2oyS2odgkFO2Xdif9/ZddintQicF+lA=="; 5:  6: var client = new DocumentClient(endpoint, key); 7:  8: // collection link pasted from the result in previous demo 9: var collectionLink = "dbs/AAk3AA==/colls/AAk3AP6oFgA=/"; 10:  11: // document we are going to insert to database 12: dynamic doc = new ExpandoObject(); 13: doc.firstName = "Shaun"; 14: doc.lastName = "Xu"; 15: doc.roles = new string[] { "developer", "trainer", "presenter", "father" }; 16:  17: // insert the docuemnt 18: InsertADoc(client, collectionLink, doc).Wait(); 19:  20: Console.WriteLine("done"); 21: Console.ReadKey(); 22: } the insert code will be very simple as below, just provide the collection link and the object we are going to insert. 1: static async Task InsertADoc(DocumentClient client, string collectionLink, dynamic doc) 2: { 3: var document = await client.CreateDocumentAsync(collectionLink, doc); 4: Console.WriteLine(await JsonConvert.SerializeObjectAsync(document, Formatting.Indented)); 5: } Below is the result after the object had been inserted. Finally we will query the document from the database and collection. Similar to the insert code, we just need to specify the collection link so that the .NET SDK will help us to retrieve all documents in it. 1: static void Main(string[] args) 2: { 3: var endpoint = new Uri("https://shx.documents.azure.com:443/"); 4: var key = "LU2NoyS2fH0131TGxtBE4DW/CjHQBzAaUx/mbuJ1X77C4FWUG129wWk2oyS2odgkFO2Xdif9/ZddintQicF+lA=="; 5:  6: var client = new DocumentClient(endpoint, key); 7:  8: var collectionLink = "dbs/AAk3AA==/colls/AAk3AP6oFgA=/"; 9:  10: SelectDocs(client, collectionLink); 11:  12: Console.WriteLine("done"); 13: Console.ReadKey(); 14: } 15:  16: static void SelectDocs(DocumentClient client, string collectionLink) 17: { 18: var docs = client.CreateDocumentQuery(collectionLink + "docs/").ToList(); 19: foreach(var doc in docs) 20: { 21: Console.WriteLine(doc); 22: } 23: } Since there's only one document in my collection below is the result when I executed the code. As you can see all properties, includes the array was retrieve at the same time. DocumentDB also attached some properties we didn't specified such as "_rid", "_ts", "_self" etc., which is controlled by the service.   DocumentDB Benefit DocumentDB is a document NoSQL database service. Different from the traditional database, document database is truly schema-free. In a short nut, you can save anything in the same database and collection if it could be serialized to JSON. We you query the document database, all sub documents will be retrieved at the same time. This means you don't need to join other tables when using a traditional database. Document database is very useful when we build some high performance system with hierarchical data structure. For example, assuming we need to build a blog system, there will be many blog posts and each of them contains the content and comments. The comment can be commented as well. If we were using traditional database, let's say SQL Server, the database schema might be defined as below. When we need to display a post we need to load the post content from the Posts table, as well as the comments from the Comments table. We also need to build the comment tree based on the CommentID field. But if were using DocumentDB, what we need to do is to save the post as a document with a list contains all comments. Under a comment all sub comments will be a list in it. When we display this post we just need to to query the post document, the content and all comments will be loaded in proper structure. 1: { 2: "id": "xxxxx-xxxxx-xxxxx-xxxxx", 3: "title": "xxxxx", 4: "content": "xxxxx, xxxxxxxxx. xxxxxx, xx, xxxx.", 5: "postedOn": "08/25/2014 13:55", 6: "comments": 7: [ 8: { 9: "id": "xxxxx-xxxxx-xxxxx-xxxxx", 10: "content": "xxxxx, xxxxxxxxx. xxxxxx, xx, xxxx.", 11: "commentedOn": "08/25/2014 14:00", 12: "commentedBy": "xxx" 13: }, 14: { 15: "id": "xxxxx-xxxxx-xxxxx-xxxxx", 16: "content": "xxxxx, xxxxxxxxx. xxxxxx, xx, xxxx.", 17: "commentedOn": "08/25/2014 14:10", 18: "commentedBy": "xxx", 19: "comments": 20: [ 21: { 22: "id": "xxxxx-xxxxx-xxxxx-xxxxx", 23: "content": "xxxxx, xxxxxxxxx. xxxxxx, xx, xxxx.", 24: "commentedOn": "08/25/2014 14:18", 25: "commentedBy": "xxx", 26: "comments": 27: [ 28: { 29: "id": "xxxxx-xxxxx-xxxxx-xxxxx", 30: "content": "xxxxx, xxxxxxxxx. xxxxxx, xx, xxxx.", 31: "commentedOn": "08/25/2014 18:22", 32: "commentedBy": "xxx", 33: } 34: ] 35: }, 36: { 37: "id": "xxxxx-xxxxx-xxxxx-xxxxx", 38: "content": "xxxxx, xxxxxxxxx. xxxxxx, xx, xxxx.", 39: "commentedOn": "08/25/2014 15:02", 40: "commentedBy": "xxx", 41: } 42: ] 43: }, 44: { 45: "id": "xxxxx-xxxxx-xxxxx-xxxxx", 46: "content": "xxxxx, xxxxxxxxx. xxxxxx, xx, xxxx.", 47: "commentedOn": "08/25/2014 14:30", 48: "commentedBy": "xxx" 49: } 50: ] 51: }   DocumentDB vs. Table Storage DocumentDB and Table Storage are all NoSQL service in Microsoft Azure. One common question is "when we should use DocumentDB rather than Table Storage". Here are some ideas from me and some MVPs. First of all, they are different kind of NoSQL database. DocumentDB is a document database while table storage is a key-value database. Second, table storage is cheaper. DocumentDB supports scale out from one capacity unit to 5 in preview period and each capacity unit provides 10GB local SSD storage. The price is $0.73/day includes 50% discount. For storage service the highest price is $0.061/GB, which is almost 10% of DocumentDB. Third, table storage provides local-replication, geo-replication, read access geo-replication while DocumentDB doesn't support. Fourth, there is local emulator for table storage but none for DocumentDB. We have to connect to the DocumentDB on cloud when developing locally. But, DocumentDB supports some cool features that table storage doesn't have. It supports store procedure, trigger and user-defined-function. It supports rich indexing while table storage only supports indexing against partition key and row key. It supports transaction, table storage supports as well but restricted with Entity Group Transaction scope. And the last, table storage is GA but DocumentDB is still in preview.   Summary In this post I have a quick demonstration and introduction about the new DocumentDB service in Azure. It's very easy to interact through .NET and it also support REST API, Node.js SDK and Python SDK. Then I explained the concept and benefit of  using document database, then compared with table storage.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • MVC OnActionExecuting to Redirect

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2014/08/12/mvc-onactionexecuting-to-redirect.aspxI recently had the following requirements in an MVC application: Given a new user that still has the default password When they first login Then the user must change their password and optionally provide contact information I found that I can override the OnActionExecuting method in a BaseController class.public class BaseController : Controller { [Inject] public ISessionManager SessionManager { get; set; } protected override void OnActionExecuting(ActionExecutingContext filterContext) { // call the base method first base.OnActionExecuting(filterContext); // if the user hasn't changed their password yet, force them to the welcome page if (!filterContext.RouteData.Values.ContainsValue("WelcomeNewUser")) { var currentUser = this.SessionManager.GetCurrentUser(); if (currentUser.FusionUser.IsPasswordChangeRequired) { filterContext.Result = new RedirectResult("/welcome"); } } } } Better yet, you can use an ActionFilterAttribute (and here) and apply the attribute to the Base or individual controllers./// <summary> /// Redirect the user to the WelcomePage if the FusionUser.IsPasswordChangeRequired is true; /// </summary> public class WelcomePageRedirectActionFilterAttribute : ActionFilterAttribute { [Inject] public ISessionManager SessionManager { get; set; } public override void OnActionExecuting(ActionExecutingContext actionContext) { base.OnActionExecuting(actionContext); // if the user hasn't changed their password yet, force them to the welcome page if (actionContext.RouteData.Values.ContainsValue("WelcomeNewUser")) { return; } var currentUser = this.SessionManager.GetCurrentUser(); if (currentUser.FusionUser.IsPasswordChangeRequired) { actionContext.Result = new RedirectResult("/welcome"); } } }  [WelcomePageRedirectActionFilterAttribute] public class BaseController : Controller { ... } The requirement is now met.

    Read the article

  • A DirectoryCatalog class for Silverlight MEF (Managed Extensibility Framework)

    - by Dixin
    In the MEF (Managed Extension Framework) for .NET, there are useful ComposablePartCatalog implementations in System.ComponentModel.Composition.dll, like: System.ComponentModel.Composition.Hosting.AggregateCatalog System.ComponentModel.Composition.Hosting.AssemblyCatalog System.ComponentModel.Composition.Hosting.DirectoryCatalog System.ComponentModel.Composition.Hosting.TypeCatalog While in Silverlight, there is a extra System.ComponentModel.Composition.Hosting.DeploymentCatalog. As a wrapper of AssemblyCatalog, it can load all assemblies in a XAP file in the web server side. Unfortunately, in silverlight there is no DirectoryCatalog to load a folder. Background There are scenarios that Silverlight application may need to load all XAP files in a folder in the web server side, for example: If the Silverlight application is extensible and supports plug-ins, there would be a /ClinetBin/Plugins/ folder in the web server, and each pluin would be an individual XAP file in the folder. In this scenario, after the application is loaded and started up, it would like to load all XAP files in /ClinetBin/Plugins/ folder. If the aplication supports themes, there would be a /ClinetBin/Themes/ folder, and each theme would be an individual XAP file too. The application would qalso need to load all XAP files in /ClinetBin/Themes/. It is useful if we have a DirectoryCatalog: DirectoryCatalog catalog = new DirectoryCatalog("/Plugins"); catalog.DownloadCompleted += (sender, e) => { }; catalog.DownloadAsync(); Obviously, the implementation of DirectoryCatalog is easy. It is just a collection of DeploymentCatalog class. Retrieve file list from a directory Of course, to retrieve file list from a web folder, the folder’s “Directory Browsing” feature must be enabled: So when the folder is requested, it responses a list of its files and folders: This is nothing but a simple HTML page: <html> <head> <title>localhost - /Folder/</title> </head> <body> <h1>localhost - /Folder/</h1> <hr> <pre> <a href="/">[To Parent Directory]</a><br> <br> 1/3/2011 7:22 PM 185 <a href="/Folder/File.txt">File.txt</a><br> 1/3/2011 7:22 PM &lt;dir&gt; <a href="/Folder/Folder/">Folder</a><br> </pre> <hr> </body> </html> For the ASP.NET Deployment Server of Visual Studio, directory browsing is enabled by default: The HTML <Body> is almost the same: <body bgcolor="white"> <h2><i>Directory Listing -- /ClientBin/</i></h2> <hr width="100%" size="1" color="silver"> <pre> <a href="/">[To Parent Directory]</a> Thursday, January 27, 2011 11:51 PM 282,538 <a href="Test.xap">Test.xap</a> Tuesday, January 04, 2011 02:06 AM &lt;dir&gt; <a href="TestFolder/">TestFolder</a> </pre> <hr width="100%" size="1" color="silver"> <b>Version Information:</b>&nbsp;ASP.NET Development Server 10.0.0.0 </body> The only difference is, IIS’s links start with slash, but here the links do not. Here one way to get the file list is read the href attributes of the links: [Pure] private IEnumerable<Uri> GetFilesFromDirectory(string html) { Contract.Requires(html != null); Contract.Ensures(Contract.Result<IEnumerable<Uri>>() != null); return new Regex( "<a href=\"(?<uriRelative>[^\"]*)\">[^<]*</a>", RegexOptions.IgnoreCase | RegexOptions.CultureInvariant) .Matches(html) .OfType<Match>() .Where(match => match.Success) .Select(match => match.Groups["uriRelative"].Value) .Where(uriRelative => uriRelative.EndsWith(".xap", StringComparison.Ordinal)) .Select(uriRelative => { Uri baseUri = this.Uri.IsAbsoluteUri ? this.Uri : new Uri(Application.Current.Host.Source, this.Uri); uriRelative = uriRelative.StartsWith("/", StringComparison.Ordinal) ? uriRelative : (baseUri.LocalPath.EndsWith("/", StringComparison.Ordinal) ? baseUri.LocalPath + uriRelative : baseUri.LocalPath + "/" + uriRelative); return new Uri(baseUri, uriRelative); }); } Please notice the folders’ links end with a slash. They are filtered by the second Where() query. The above method can find files’ URIs from the specified IIS folder, or ASP.NET Deployment Server folder while debugging. To support other formats of file list, a constructor is needed to pass into a customized method: /// <summary> /// Initializes a new instance of the <see cref="T:System.ComponentModel.Composition.Hosting.DirectoryCatalog" /> class with <see cref="T:System.ComponentModel.Composition.Primitives.ComposablePartDefinition" /> objects based on all the XAP files in the specified directory URI. /// </summary> /// <param name="uri"> /// URI to the directory to scan for XAPs to add to the catalog. /// The URI must be absolute, or relative to <see cref="P:System.Windows.Interop.SilverlightHost.Source" />. /// </param> /// <param name="getFilesFromDirectory"> /// The method to find files' URIs in the specified directory. /// </param> public DirectoryCatalog(Uri uri, Func<string, IEnumerable<Uri>> getFilesFromDirectory) { Contract.Requires(uri != null); this._uri = uri; this._getFilesFromDirectory = getFilesFromDirectory ?? this.GetFilesFromDirectory; this._webClient = new Lazy<WebClient>(() => new WebClient()); // Initializes other members. } When the getFilesFromDirectory parameter is null, the above GetFilesFromDirectory() method will be used as default. Download the directory’s XAP file list Now a public method can be created to start the downloading: /// <summary> /// Begins downloading the XAP files in the directory. /// </summary> public void DownloadAsync() { this.ThrowIfDisposed(); if (Interlocked.CompareExchange(ref this._state, State.DownloadStarted, State.Created) == 0) { this._webClient.Value.OpenReadCompleted += this.HandleOpenReadCompleted; this._webClient.Value.OpenReadAsync(this.Uri, this); } else { this.MutateStateOrThrow(State.DownloadCompleted, State.Initialized); this.OnDownloadCompleted(new AsyncCompletedEventArgs(null, false, this)); } } Here the HandleOpenReadCompleted() method is invoked when the file list HTML is downloaded. Download all XAP files After retrieving all files’ URIs, the next thing becomes even easier. HandleOpenReadCompleted() just uses built in DeploymentCatalog to download the XAPs, and aggregate them into one AggregateCatalog: private void HandleOpenReadCompleted(object sender, OpenReadCompletedEventArgs e) { Exception error = e.Error; bool cancelled = e.Cancelled; if (Interlocked.CompareExchange(ref this._state, State.DownloadCompleted, State.DownloadStarted) != State.DownloadStarted) { cancelled = true; } if (error == null && !cancelled) { try { using (StreamReader reader = new StreamReader(e.Result)) { string html = reader.ReadToEnd(); IEnumerable<Uri> uris = this._getFilesFromDirectory(html); Contract.Assume(uris != null); IEnumerable<DeploymentCatalog> deploymentCatalogs = uris.Select(uri => new DeploymentCatalog(uri)); deploymentCatalogs.ForEach( deploymentCatalog => { this._aggregateCatalog.Catalogs.Add(deploymentCatalog); deploymentCatalog.DownloadCompleted += this.HandleDownloadCompleted; }); deploymentCatalogs.ForEach(deploymentCatalog => deploymentCatalog.DownloadAsync()); } } catch (Exception exception) { error = new InvalidOperationException(Resources.InvalidOperationException_ErrorReadingDirectory, exception); } } // Exception handling. } In HandleDownloadCompleted(), if all XAPs are downloaded without exception, OnDownloadCompleted() callback method will be invoked. private void HandleDownloadCompleted(object sender, AsyncCompletedEventArgs e) { if (Interlocked.Increment(ref this._downloaded) == this._aggregateCatalog.Catalogs.Count) { this.OnDownloadCompleted(e); } } Exception handling Whether this DirectoryCatelog can work only if the directory browsing feature is enabled. It is important to inform caller when directory cannot be browsed for XAP downloading. private void HandleOpenReadCompleted(object sender, OpenReadCompletedEventArgs e) { Exception error = e.Error; bool cancelled = e.Cancelled; if (Interlocked.CompareExchange(ref this._state, State.DownloadCompleted, State.DownloadStarted) != State.DownloadStarted) { cancelled = true; } if (error == null && !cancelled) { try { // No exception thrown when browsing directory. Downloads the listed XAPs. } catch (Exception exception) { error = new InvalidOperationException(Resources.InvalidOperationException_ErrorReadingDirectory, exception); } } WebException webException = error as WebException; if (webException != null) { HttpWebResponse webResponse = webException.Response as HttpWebResponse; if (webResponse != null) { // Internally, WebClient uses WebRequest.Create() to create the WebRequest object. Here does the same thing. WebRequest request = WebRequest.Create(Application.Current.Host.Source); Contract.Assume(request != null); if (request.CreatorInstance == WebRequestCreator.ClientHttp && // Silverlight is in client HTTP handling, all HTTP status codes are supported. webResponse.StatusCode == HttpStatusCode.Forbidden) { // When directory browsing is disabled, the HTTP status code is 403 (forbidden). error = new InvalidOperationException( Resources.InvalidOperationException_ErrorListingDirectory_ClientHttp, webException); } else if (request.CreatorInstance == WebRequestCreator.BrowserHttp && // Silverlight is in browser HTTP handling, only 200 and 404 are supported. webResponse.StatusCode == HttpStatusCode.NotFound) { // When directory browsing is disabled, the HTTP status code is 404 (not found). error = new InvalidOperationException( Resources.InvalidOperationException_ErrorListingDirectory_BrowserHttp, webException); } } } this.OnDownloadCompleted(new AsyncCompletedEventArgs(error, cancelled, this)); } Please notice Silverlight 3+ application can work either in client HTTP handling, or browser HTTP handling. One difference is: In browser HTTP handling, only HTTP status code 200 (OK) and 404 (not OK, including 500, 403, etc.) are supported In client HTTP handling, all HTTP status code are supported So in above code, exceptions in 2 modes are handled differently. Conclusion Here is the whole DirectoryCatelog’s looking: Please click here to download the source code, a simple unit test is included. This is a rough implementation. And, for convenience, some design and coding are just following the built in AggregateCatalog class and Deployment class. Please feel free to modify the code, and please kindly tell me if any issue is found.

    Read the article

  • A Simple Approach For Presenting With Code Samples

    - by Jesse Taber
    Originally posted on: http://geekswithblogs.net/GruffCode/archive/2013/07/31/a-simple-approach-for-presenting-with-code-samples.aspxI’ve been getting ready for a presentation and have been struggling a bit with the best way to show and execute code samples. I don’t present often (hardly ever), but when I do I like the presentation to have a lot of succinct and executable code snippets to help illustrate the points that I’m making. Depending on what the presentation is about, I might just want to build an entire sample application that I would run during the presentation. In other cases, however, building a full-blown application might not really be the best way to present the code. The presentation I’m working on now is for an open source utility library for dealing with dates and times. I could have probably cooked up a sample app for accepting date and time input and then contrived ways in which it could put the library through its paces, but I had trouble coming up with one app that would illustrate all of the various features of the library that I wanted to highlight. I finally decided that what I really needed was an approach that met the following criteria: Simple: I didn’t want the user interface or overall architecture of a sample application to serve as a distraction from the demonstration of the syntax of the library that the presentation is about. I want to be able to present small bits of code that are focused on accomplishing a single task. Several of these examples will look similar, and that’s OK. I want each sample to “stand on its own” and not rely much on external classes or methods (other than the library that is being presented, of course). “Debuggable” (not really a word, I know): I want to be able to easily run the sample with the debugger attached in Visual Studio should I want to step through any bits of code and show what certain values might be at run time. As far as I know this rules out something like LinqPad, though using LinqPad to present code samples like this is actually a very interesting idea that I might explore another time. Flexible and Selectable: I’m going to have lots of code samples to show, and I want to be able to just package them all up into a single project or module and have an easy way to just run the sample that I want on-demand. Since I’m presenting on a .NET framework library, one of the simplest ways in which I could execute some code samples would be to just create a Console application and use Console.WriteLine to output the pertinent info at run time. This gives me a “no frills” harness from which to run my code samples, and I just hit ‘F5’ to run it with the debugger. This satisfies numbers 1 and 2 from my list of criteria above, but item 3 is a little harder. By default, just running a console application is going to execute the ‘main’ method, and then terminate the program after all code is executed. If I want to have several different code samples and run them one at a time, it would be cumbersome to keep swapping the code I want in and out of the ‘main’ method of the console application. What I really want is an easy way to keep the console app running throughout the whole presentation and just have it run the samples I want when I want. I could setup a simple Windows Forms or WPF desktop application with buttons for the different samples, but then I’m getting away from my first criteria of keeping things as simple as possible. Infinite Loops To The Rescue I found a way to have a simple console application satisfy all three of my requirements above, and it involves using an infinite loop and some Console.ReadLine calls that will give the user an opportunity to break out and exit the program. (All programs that need to run until they are closed explicitly (or crash!) likely use similar constructs behind the scenes. Create a new Windows Forms project, look in the ‘Program.cs’ that gets generated, and then check out the docs for the Application.Run method that it calls.). Here’s how the main method might look: 1: static void Main(string[] args) 2: { 3: do 4: { 5: Console.Write("Enter command or 'exit' to quit: > "); 6: var command = Console.ReadLine(); 7: if ((command ?? string.Empty).Equals("exit", StringComparison.OrdinalIgnoreCase)) 8: { 9: Console.WriteLine("Quitting."); 10: break; 11: } 12: 13: } while (true); 14: } The idea here is the app prompts me for the command I want to run, or I can type in ‘exit’ to break out of the loop and let the application close. The only trick now is to create a set of commands that map to each of the code samples that I’m going to want to run. Each sample is already encapsulated in a single public method in a separate class, so I could just write a big switch statement or create a hashtable/dictionary that maps command text to an Action that will invoke the proper method, but why re-invent the wheel? CLAP For Your Own Presentation I’ve blogged about the CLAP library before, and it turns out that it’s a great fit for satisfying criteria #3 from my list above. CLAP lets you decorate methods in a class with an attribute and then easily invoke those methods from within a console application. CLAP was designed to take the arguments passed into the console app from the command line and parse them to determine which method to run and what arguments to pass to that method, but there’s no reason you can’t re-purpose it to accept command input from within the infinite loop defined above and invoke the corresponding method. Here’s how you might define a couple of different methods to contain two different code samples that you want to run during your presentation: 1: public static class CodeSamples 2: { 3: [Verb(Aliases="one")] 4: public static void SampleOne() 5: { 6: Console.WriteLine("This is sample 1"); 7: } 8:   9: [Verb(Aliases="two")] 10: public static void SampleTwo() 11: { 12: Console.WriteLine("This is sample 2"); 13: } 14: } A couple of things to note about the sample above: I’m using static methods. You don’t actually need to use static methods with CLAP, but the syntax ends up being a bit simpler and static methods happen to lend themselves well to the “one self-contained method per code sample” approach that I want to use. The methods are decorated with a ‘Verb’ attribute. This tells CLAP that they are eligible targets for commands. The “Aliases” argument lets me give them short and easy-to-remember aliases that can be used to invoke them. By default, CLAP just uses the full method name as the command name, but with aliases you can simply the usage a bit. I’m not using any parameters. CLAP’s main feature is its ability to parse out arguments from a command line invocation of a console application and automatically pass them in as parameters to the target methods. My code samples don’t need parameters ,and honestly having them would complicate giving the presentation, so this is a good thing. You could use this same approach to invoke methods with parameters, but you’d have a couple of things to figure out. When you invoke a .NET application from the command line, Windows will parse the arguments and pass them in as a string array (called ‘args’ in the boilerplate console project Program.cs). The parsing that gets done here is smart enough to deal with things like treating strings in double quotes as one argument, and you’d have to re-create that within your infinite loop if you wanted to use parameters. I plan on either submitting a pull request to CLAP to add this capability or maybe just making a small utility class/extension method to do it and posting that here in the future. So I now have a simple class with static methods to contain my code samples, and an infinite loop in my ‘main’ method that can accept text commands. Wiring this all up together is pretty easy: 1: static void Main(string[] args) 2: { 3: do 4: { 5: try 6: { 7: Console.Write("Enter command or 'exit' to quit: > "); 8: var command = Console.ReadLine(); 9: if ((command ?? string.Empty).Equals("exit", StringComparison.OrdinalIgnoreCase)) 10: { 11: Console.WriteLine("Quitting."); 12: break; 13: } 14:   15: Parser.Run<CodeSamples>(new[] { command }); 16: Console.WriteLine("---------------------------------------------------------"); 17: } 18: catch (Exception ex) 19: { 20: Console.Error.WriteLine("Error: " + ex.Message); 21: } 22:   23: } while (true); 24: } Note that I’m now passing the ‘CodeSamples’ class into the CLAP ‘Parser.Run’ as a type argument. This tells CLAP to inspect that class for methods that might be able to handle the commands passed in. I’m also throwing in a little “----“ style line separator and some basic error handling (because I happen to know that some of the samples are going to throw exceptions for demonstration purposes) and I’m good to go. Now during my presentation I can just have the console application running the whole time with the debugger attached and just type in the alias of the code sample method that I want to run when I want to run it.

    Read the article

  • Passing elapsed time to the update function from the game loop

    - by Sri Harsha Chilakapati
    I want to pass the time elapsed to the update() method as this would make easy to implement the animations and time related concepts. Here's my game-loop. public void gameLoop(){ boolean running = true; long gameTime = getCurrentTime(); long elapsedTime = 0; long lastUpdateTime = 0; int loops; while (running){ loops = 0; while(getCurrentTime()>gameTime && loops<Global.MAX_FRAMESKIP){ elapsedTime = getCurrentTime() - lastUpdateTime; lastUpdateTime = getCurrentTime(); update(elapsedTime); gameTime += SKIP_STEPS; loops++; } displayGame(); } } getCurrentTime() method public long getCurrentTime(){ return (System.nanoTime()/1000000); } update() method long time = 0; public void update(long elapsedTime){ time += elapsedTime; if (time>=1000){ System.out.println("A second elapsed"); time -= 1000; } } But this is printing the message for 3 seconds. Thanks.

    Read the article

  • Edit in desktop application with DataGridView

    - by SAMIR BHOGAYTA
    private void DataGridView_CellContentClick(object sender, DataGridViewCellEventArgs e) { if (e.ColumnIndex == 0) { string s = DataGridView.Rows[e.RowIndex].Cells[1].FormattedValue.ToString(); srno = Convert.ToInt16(s); FormName objFrm = new FormName(s); objFrm.MdiParent = this.MdiParent; objFrm.Show(); } } //Into the New Form public FormName(string id) { uid = id; i = Convert.ToInt16(id); InitializeComponent(); } //Get Detail As per id public void GetDetail() { string detail = "SELECT fieldname1,fieldname2 FROM TableName where PrimaryKeyField = "+id+""; DataSet ds = new DataSet(); ds = (DataSet)prm.RetriveData(detail); } //RetriveData Function public object RetriveData(string query) { // If you have sql connection use SqlConnection OleDbConnection con = new OleDbConnection(constr); OleDbDataAdapter drap = new OleDbDataAdapter(query, con); con.Open(); DataSet ds = new DataSet(); drap.Fill(ds); con.Close(); return ds; }

    Read the article

  • Random Movement for multiple entities

    - by opiop65
    I have this code for a arraylist of entities. All the entities use the same random and so all of them move in the same direction. How can I change it so it generates a new random number for each entity? public void moveFemale() { for(int i = 0; i < 1000; i++){ random = rand.nextInt(99); } if (random >= 0 && random <= 25) { posX -= enemyWalkSpeed; // right } if (random >= 26 && random <= 50) { posX += enemyWalkSpeed; // left } if (random >= 51 && random <= 75) { posY -= enemyWalkSpeed; // up } if (random >= 76 && random <= 100) { posY += enemyWalkSpeed; // down } } Is this correct? public void moveFemale() { for (Female female: GameFrame.females){ female.lastChangedDirectionTime += elapsedTime; if (female.lastChangedDirectionTime >= CHANGE_DIRECTION_TIME) { female.lastChangedDirectionTime = 0; random = rand.nextInt(100); if (random >= 0 && random <= 25) { posX -= enemyWalkSpeed; // right } if (random >= 26 && random <= 50) { posX += enemyWalkSpeed; // left } if (random >= 51 && random <= 75) { posY -= enemyWalkSpeed; // up } if (random >= 76 && random <= 100) { posY += enemyWalkSpeed; // down } } } }

    Read the article

  • How handle nifty initialization in a Slick2D state based game?

    - by nathan
    I'm using Slick2D and Nifty GUI. I decided to use a state based approach for my game and since i want to use Nifty GUI, i use the classes NiftyStateBasedGame for the main and NiftyOverlayBasicGameState for the states. As the description say, i'm suppose to initialize the GUI in the method initGameAndGUI on my states, no problem: @Override protected void initGameAndGUI(GameContainer gc, StateBasedGame sbg) throws SlickException { initNifty(gc, sbg) } It works great when i have only one state but if i'm doing a call to initNifty several times from different states, it will raise the following exception: org.bushe.swing.event.EventServiceExistsException: An event service by the name NiftyEventBusalready exists. Perhaps multiple threads tried to create a service about the same time? at org.bushe.swing.event.EventServiceLocator.setEventService(EventServiceLocator.java:123) at de.lessvoid.nifty.Nifty.initalizeEventBus(Nifty.java:221) at de.lessvoid.nifty.Nifty.initialize(Nifty.java:201) at de.lessvoid.nifty.Nifty.<init>(Nifty.java:142) at de.lessvoid.nifty.slick2d.NiftyCarrier.initNifty(NiftyCarrier.java:94) at de.lessvoid.nifty.slick2d.NiftyOverlayBasicGameState.initNifty(NiftyOverlayBasicGameState.java:332) at de.lessvoid.nifty.slick2d.NiftyOverlayBasicGameState.initNifty(NiftyOverlayBasicGameState.java:299) at de.lessvoid.nifty.slick2d.NiftyOverlayBasicGameState.initNifty(NiftyOverlayBasicGameState.java:280) at de.lessvoid.nifty.slick2d.NiftyOverlayBasicGameState.initNifty(NiftyOverlayBasicGameState.java:264) The initializeEventBus that raise the exception is called from the Nifty constructor and a new Nifty object is created within the initNifty method: public void initNifty( final SlickRenderDevice renderDevice, final SlickSoundDevice soundDevice, final SlickInputSystem inputSystem, final TimeProvider timeProvider) { if (isInitialized()) { throw new IllegalStateException("The Nifty-GUI was already initialized. Its illegal to do so twice."); } final InputSystem activeInputSystem; if (relayInputSystem == null) { activeInputSystem = inputSystem; } else { activeInputSystem = relayInputSystem; relayInputSystem.setTargetInputSystem(inputSystem); } nifty = new Nifty(renderDevice, soundDevice, activeInputSystem, timeProvider); } Is this a bug in the nifty for slick2d implementation or am i missing something? How am i supposed to handle nifty initialization over multiple states?

    Read the article

< Previous Page | 186 187 188 189 190 191 192 193 194 195 196 197  | Next Page >