Search Results

Search found 5026 results on 202 pages for 'blocked threads'.

Page 192/202 | < Previous Page | 188 189 190 191 192 193 194 195 196 197 198 199  | Next Page >

  • Thread feeding other MultiThreading

    - by alaamh
    I see it's easy to open pipe between two process using fork, but how we can passing open pipe to threads. Assume we need to pass out of PROGRAM A to PROGRAM B "may by more than one thread", PROGRAM B send his output to PROGRAM C #include <stdio.h> #include <stdlib.h> #include <pthread.h> struct targ_s { char* reader; }; void *thread1(void *arg) { struct targ_s *targ = (struct targ_s*) arg; int status, fd[2]; pid_t pid; pipe(fd); pid = fork(); if (pid == 0) { int fd = fileno( targ->fd_reader ); dup2(STDIN_FILENO, fd); close(fd[0]); dup2(fd[1], STDOUT_FILENO); close(fd[1]); execvp ("PROGRAM B", NULL); exit(1); } else { close(fd[1]); dup2(fd[0], STDIN_FILENO); close(fd[0]); execl("PROGRAM C", NULL); wait(&status); return NULL; } } int main(void) { FILE *fpipe; char *command = "PROGRAM A"; char buffer[1024]; if (!(fpipe = (FILE*) popen(command, "r"))) { perror("Problems with pipe"); exit(1); } char* outfile = "out.dat"; FILE* f = fopen (outfile, "wb"); int fd = fileno( f ); struct targ_s targ; targ.fd_reader = outfile; pthread_t thid; if (pthread_create(&thid, NULL, thread1, &targ) != 0) { perror("pthread_create() error"); exit(1); } int len; while (read(fpipe, buffer, sizeof (buffer)) != 0) { len = strlen(buffer); write(fd, buffer, len); } pclose(fpipe); return (0); }

    Read the article

  • Play! Framework - Can my view template be localised when rendering it as an AsyncResult?

    - by avik
    I've recently started using the Play! framework (v2.0.4) for writing a Java web application. In the majority of my controllers I'm following the paradigm of suspending the HTTP request until the promise of a web service response has been fulfilled. Once the promise has been fulfilled, I return an AsyncResult. This is what most of my actions look like (with a bunch of code omitted): public static Result myActionMethod() { Promise<MyWSResponse> wsResponse; // Perform a web service call that will return the promise of a MyWSResponse... return async(wsResponse.map(new Function<MyWSResponse, Result>() { @Override public Result apply(MyWSResponse response) { // Validate response... return ok(myScalaViewTemplate.render(response.data())); } })); } I'm now trying to internationalise my app, but hit the following error when I try to render a template from an async method: [error] play - Waiting for a promise, but got an error: There is no HTTP Context available from here. java.lang.RuntimeException: There is no HTTP Context available from here. at play.mvc.Http$Context.current(Http.java:27) ~[play_2.9.1.jar:2.0.4] at play.mvc.Http$Context$Implicit.lang(Http.java:124) ~[play_2.9.1.jar:2.0.4] at play.i18n.Messages.get(Messages.java:38) ~[play_2.9.1.jar:2.0.4] at views.html.myScalaViewTemplate$.apply(myScalaViewTemplate.template.scala:40) ~[classes/:na] at views.html.myScalaViewTemplate$.render(myScalaViewTemplate.template.scala:87) ~[classes/:na] at views.html.myScalaViewTemplate.render(myScalaViewTemplate.template.scala) ~[classes/:na] In short, where I've got a message bundle lookup in my view template, some Play! code is attempting to access the original HTTP request and retrieve the accept-languages header, in order to know which message bundle to use. But it seems that the HTTP request is inaccessible from the async method. I can see a couple of (unsatisfactory) ways to work around this: Go back to the 'one thread per request' paradigm and have threads block waiting for responses. Figure out which language to use at Controller level, and feed that choice into my template. I also suspect this might not be an issue on trunk. I know that there is a similar issue in 2.0.4 with regards to not being able to access or modify the Session object which has recently been fixed. However I'm stuck on 2.0.4 for the time being, so is there a better way that I can resolve this problem?

    Read the article

  • Java: Multithreading & UDP Socket Programming

    - by Ravi
    I am new to multithreading & socket programming in Java. I would like to know what is the best way to implement 2 threads - one for receiving a socket and one for sending a socket. If what I am trying to do sounds absurd, pls let me know why! The code is largely inspired from Sun's tutorials online.I want to use Multicast sockets so that I can work with a multicast group. class server extends Thread { static protected MulticastSocket socket = null; protected BufferedReader in = null; public InetAddress group; private static class receive implements Runnable { public void run() { try { byte[] buf = new byte[256]; DatagramPacket pkt = new DatagramPacket(buf,buf.length); socket.receive(pkt); String received = new String(pkt.getData(),0,pkt.getLength()); System.out.println("From server@" + received); Thread.sleep(1000); } catch (IOException e) { System.out.println("Error:"+e); } catch (InterruptedException e) { System.out.println("Error:"+e); } } } public server() throws IOException { super("server"); socket = new MulticastSocket(4446); group = InetAddress.getByName("239.231.12.3"); socket.joinGroup(group); } public void run() { while(1>0) { try { byte[] buf = new byte[256]; DatagramPacket pkt = new DatagramPacket(buf,buf.length); //String msg = reader.readLine(); String pid = ManagementFactory.getRuntimeMXBean().getName(); buf = pid.getBytes(); pkt = new DatagramPacket(buf,buf.length,group,4446); socket.send(pkt); Thread t = new Thread(new receive()); t.start(); while(t.isAlive()) { t.join(1000); } sleep(1); } catch (IOException e) { System.out.println("Error:"+e); } catch (InterruptedException e) { System.out.println("Error:"+e); } } //socket.close(); } public static void main(String[] args) throws IOException { new server().start(); //System.out.println("Hello"); } }

    Read the article

  • Twisted + SQLAlchemy and the best way to do it.

    - by Khorkrak
    So I'm writing yet another Twisted based daemon. It'll have an xmlrpc interface as usual so I can easily communicate with it and have other processes interchange data with it as needed. This daemon needs to access a database. We've been using SQL Alchemy in place of hard coding SQL strings for our latest projects - those mostly done for web apps in Pylons. We'd like to do the same for this app and re-use library code that makes use of SQL Alchemy. So what to do? Well of course since that library was written for use in a Pylons app it's all the straight-forward blocking style code that everyone is accustomed to and all of the non-blocking is magically handled by Pylons via threading, thread locals, scoped sessions and so on. So now for Twisted I guess I'm a bit stuck. I could: Just write the sql I need directly if it's minimal and use the dbapi pool in twisted to do runInteractions etc when I need to hit the db. Use the objects and inherently blocking methods in our library and block now and then in my Twisted daemon. Bah. Use sAsync which was last updated in 2008 and kind of reuse the models we have defined already but not really and it does address code that needs to work in Pylons either. Does that even work with the latest version SQL Alchemy? Who knows. That project looked great though - why was it apparently abandoned? Spawn a separate subprocess and have it deal with the library code and all it's blocking, the results being returned back to my daemon when ready as objects marshalled via YAML over xmlrpc. Use deferToThread and then expunge the objects returned having made sure to do eager loads so that I have all my stuff that I might need. Seems kind of ugha to me. I'm also stuck using Python 2.5.4 atm so no 2.6 yet and I don't think I can just do an import from future to get access to the cool new multiprocessing module stuff in there. That's OK though I guess as we've got dealing with interprocess communication down pretty well. So I'm leaning towards option 4 mostly as that would avoid the mortal sin of logic duplication with option 1 while also staying the heck away from threads. Any better ideas?

    Read the article

  • Achieving C# "readonly" behavior in C++

    - by Tommy Fisk
    Hi guys, this is my first question on stack overflow, so be gentle. Let me first explain the exact behavior I would like to see. If you are familiar with C# then you know that declaring a variable as "readonly" allows a programmer to assign some value to that variable exactly once. Further attempts to modify the variable will result in an error. What I am after: I want to make sure that any and all single-ton classes I define can be predictably instantiated exactly once in my program (more details at the bottom). My approach to realizing my goal is to use extern to declare a global reference to the single-ton (which I will later instantiate at a time I choose. What I have sort of looks like this, namespace Global { extern Singleton& mainInstance; // not defined yet, but it will be later! } int main() { // now that the program has started, go ahead and create the singleton object Singleton& Global::mainInstance = Singleton::GetInstance(); // invalid use of qualified name Global::mainInstance = Singleton::GetInstance(); // doesn't work either :( } class Singleton { /* Some details ommited */ public: Singleton& GetInstance() { static Singleton instance; // exists once for the whole program return instance; } } However this does not really work, and I don't know where to go from here. Some details about what I'm up against: I'm concerned about threading as I am working on code that will deal with game logic while communicating with several third-party processes and other processes I will create. Eventually I would have to implement some kind of synchronization so multiple threads could access the information in the Singleton class without worry. Because I don't know what kinds of optimizations I might like to do, or exactly what threading entails (never done a real project using it), I was thinking that being able to predictably control when Singletons were instantiated would be a Good Thing. Imagine if Process A creates Process B, where B contains several Singletons distributed against multiple files and/or libraries. It could be a real nightmare if I can not reliably ensure the order these singleton objects are instantiated (because they could depend on each other, and calling methods on a NULL object is generally a Bad Thing). If I were in C# I would just use the readonly keyword, but is there any way I can implement this (compiler supported) behavior in C++? Is this even a good idea? Thanks for any feedback.

    Read the article

  • synchronized in java - Proper use

    - by ZoharYosef
    I'm building a simple program to use in multi processes (Threads). My question is more to understand - when I have to use a reserved word synchronized? Do I need to use this word in any method that affects the bone variables? I know I can put it on any method that is not static, but I want to understand more. thank you! here is the code: public class Container { // *** data members *** public static final int INIT_SIZE=10; // the first (init) size of the set. public static final int RESCALE=10; // the re-scale factor of this set. private int _sp=0; public Object[] _data; /************ Constructors ************/ public Container(){ _sp=0; _data = new Object[INIT_SIZE]; } public Container(Container other) { // copy constructor this(); for(int i=0;i<other.size();i++) this.add(other.at(i)); } /** return true is this collection is empty, else return false. */ public synchronized boolean isEmpty() {return _sp==0;} /** add an Object to this set */ public synchronized void add (Object p){ if (_sp==_data.length) rescale(RESCALE); _data[_sp] = p; // shellow copy semantic. _sp++; } /** returns the actual amount of Objects contained in this collection */ public synchronized int size() {return _sp;} /** returns true if this container contains an element which is equals to ob */ public synchronized boolean isMember(Object ob) { return get(ob)!=-1; } /** return the index of the first object which equals ob, if none returns -1 */ public synchronized int get(Object ob) { int ans=-1; for(int i=0;i<size();i=i+1) if(at(i).equals(ob)) return i; return ans; } /** returns the element located at the ind place in this container (null if out of range) */ public synchronized Object at(int p){ if (p>=0 && p<size()) return _data[p]; else return null; }

    Read the article

  • Yet another Memory Leak Issue (memory is still gone when program terminates)- C program on SLES

    - by user1426181
    I run my C program on Suse Linux Enterprise that compresses several thousand large files (between 10MB and 100MB in size), and the program gets slower and slower as the program runs (it's running multi-threaded with 32 threads on a Intel Sandy Bridge board). When the program completes, and it's run again, it's still very slow. When I watch the program running, I see that the memory is being depleted while the program runs, which you would think is just a classic memory leak problem. But, with a normal malloc()/free() mismatch, I would expect all the memory to return when the program terminates. But, most of the memory doesn't get reclaimed when the program completes. The free or top command shows Mem: 63996M total, 63724M used, 272M free when the program is slowed down to a halt, but, after the termination, the free memory only grows back to about 3660M. When the program is rerun, the free memory is quickly used up. The top program only shows that the program, while running, is using at most 4% or so of the memory. I thought that it might be a memory fragmentation problem, but, I built a small test program that simulates all the memory allocation activity in the program (many randomized aspects were built in - size/quantity), and it always returns all the memory upon completion. So, I don't think that's it. Questions: Can there be a malloc()/free() mismatch that will lose memory permanently, i.e. even after the process completes? What other things in a C program (not C++) can cause permanent memory loss, i.e. after the program completes, and even the terminal window closes? Only a reboot brings the memory back. I've read other posts about files not being closed causing problems, but, I don't think I have that problem. Is it valid to be looking at top and free for the memory statistics, i.e. do they accurately describe the memory situation? They do seem to correspond to the slowness of the program. If the program only shows a 4% memory usage, will something like valgrind find this problem?

    Read the article

  • JPanel's child components paint/layout problem

    - by Tom Brito
    I'm having a problem that when my frame is shown (after a login dialog) the buttons are not on correct position, then in some miliseconds they go to the right position (the center of the panel with border layout). When I make a SSCCE, it works correct, but when I run my whole code I have this fast-miliseconds delay to the buttons to go to the correct place. Unfortunately, I can't post the whole code, but the method that shows the frame is: public void login(JComponent userView) { centerPanel.removeAll(); centerPanel.add(userView); centerPanel.revalidate(); centerPanel.repaint(); frame.setVisible(true); } What would cause this delay to the panel layout? (I'm running everything in the EDT) -- update In my machine, this SSCCE shows the layout problem in 2 of 10 times I run it: import java.awt.BorderLayout; import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.JPanel; import javax.swing.SwingUtilities; public class TEST { public static void main(String[] args) throws Exception { SwingUtilities.invokeAndWait(new Runnable() { @Override public void run() { System.out.println("Debug test..."); JPanel btnPnl = new JPanel(); btnPnl.add(new JButton("TEST")); JFrame f = new JFrame("TEST"); f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); f.getContentPane().setLayout(new BorderLayout()); f.getContentPane().add(btnPnl); f.pack(); f.setSize(800, 600); f.setVisible(true); System.out.println("End debug test!"); } }); } } The button first appers in the up-left, and then it goes to the center. Please, note that I'm understand, not just correct. Is it a java bug? --update OK, so the SSCCE don't show the problem with you that tried till now. Maybe it's my computer performance problem. But this don't answer the question, I still think Java Swing is creating new threads for make the layout behind the scenes.

    Read the article

  • Threadpool with pasistant worker instances

    - by Matt Smokey-waters Holmes
    So basically what im trying to do is queue up tasks in a thread pool to be executed as soon as a worker becomes free, i have found various examples of this but in all cases the examples have been setup to use a new Worker instance for each job, i want persistent workers. Im trying to make a ftp backup tool, i have it working but because of the limitations of a single connection it is slow. What i ideally want to do is have a single connection for scanning directories and building up a file list then four workers to download said files. Here is an example of my worker /** * FTP Worker */ public class Worker implements Runnable { protected FTPClient _ftp; // Connection details protected String _host = ""; protected String _user = ""; protected String _pass = ""; // worker status protected boolean _working = false; public Worker(String host, String user, String pass) { this._host = host; this._user = user; this._pass = pass; } // Check if the worker is in use public boolean inUse() { return this._working; } @Override public void run() { this._ftp = new FTPClient(); this._connect(); } // Download a file from the ftp server public boolean download(String base, String path, String file) { this._working = true; boolean outcome = true; //create directory if not exists File pathDir = new File(base + path); if (!pathDir.exists()) { pathDir.mkdirs(); } //download file try { OutputStream output = new FileOutputStream(base + path + file); this._ftp.retrieveFile(file, output); output.close(); } catch (Exception e) { outcome = false; } finally { this._working = false; return outcome; } } // Connect to the server protected boolean _connect() { try { this._ftp.connect(this._host); this._ftp.login(this._user, this._pass); } catch (Exception e) { return false; } return this._ftp.isConnected(); } // Disconnect from the server protected void _disconnect() { try { this._ftp.disconnect(); } catch (Exception e) { /* do nothing */ } } } and basically i want to be able to call Worker.download(...) for each task in a queue whenever a worker becomes available without having to create a new connection to the ftp server for each download Any help would be appreciated as iv'e never used threads before and I'm going round in circles at the moment

    Read the article

  • Socket Programming : Inputstream Stuck in loop - read() always return 0

    - by Atom Skaa ska Hic
    Server side code public static boolean sendFile() { int start = Integer.parseInt(startAndEnd[0]) - 1; int end = Integer.parseInt(startAndEnd[1]) - 1; int size = (end - start) + 1; try { bos = new BufferedOutputStream(initSocket.getOutputStream()); bos.write(byteArr,start,size); bos.flush(); bos.close(); initSocket.close(); System.out.println("Send file to : " + initSocket); } catch (IOException e) { System.out.println(e.getLocalizedMessage()); disconnected(); return false; } return true; } Client Side public boolean receiveFile() { int current = 0; try { int bytesRead = bis.read(byteArr,0,byteArr.length); System.out.println("Receive file from : " + client); current = bytesRead; do { bytesRead = bis.read(byteArr, current, (byteArr.length-current)); if(bytesRead >= 0) current += bytesRead; } while(bytesRead != -1); bis.close(); bos.write(byteArr, 0 , current); bos.flush(); bos.close(); } catch (IOException e) { System.out.println(e.getLocalizedMessage()); disconnected(); return false; } return true; } Client side is multithreading,server side not use multithreading. I just paste some code that made problem if you want see all code please tell me. After I debug the code, I found that if I set max thread to any and then the first thread always stuck in this loop. That bis.read(....) always return 0. Although, server had close stream and it not get out of the loop. I don't know why ... But another threads are work correctly. do { bytesRead = bis.read(byteArr, current, (byteArr.length-current)); if(bytesRead >= 0) current += bytesRead; } while(bytesRead != -1);

    Read the article

  • Should an object be fully complete before injected as a dependency?

    - by Hans
    This is an extension of this question: http://stackoverflow.com/questions/3027082/understanding-how-to-inject-object-dependencies. Since it is a bit different, I wanted to separate them, to make it, hopefully, easier to answer. Also, this is not a real system, just a simplified example that I thought we'd all be familiar with. TIA. : DB threads: thread_id, thread_name, etc posts: post_id, thread_id, post_name, post_contents, post_date, post_user_id, etc Overview Basically I'm looking at the most maintainable way to load $post_id and have it cascade and load the other things I want to know about and I'm trying to keep the controller skinny. BUT: I'm ending up with too many dependencies to inject I'm passing in initialized but empty objects I want to limit how many parameters I am passing around I could inject $post(-many) into $thread(one<-), but on that page I'm not looking at a thread, I'm looking at a post I could combine/inject them into a new object Detail If I am injecting an object into another, is it best to have it fully created first? I'm trying to limit how many parameters I have to pass in to a page, but I end up with a circle. // 1, empty object injected via constructor $thread = new Thread; $post = new Post($thread); // $thread is just an empty object $post->load($post_id); // I could now do something like $post->get('thread_id') to get everything I want in $post // 2, complete object injected via constructor $thread = new Thread; $thread->load($thread_id); // this page would have to have passed in a $thread_id, too $post = new Post($thread); // thread is a complete object, with the data I need, like thread name $post->load($post_id); // 3, inject $post into $thread, but this makes less sense to me, since I'm looking at a post page, not a thread page $post = new Post(); $post->load($post_id); $thread = new Thread($post); $thread->load(); // would load based on the $post->get('post_id') and combine. Now I have all the data I want, but it's non-intuitive to be heirarchially Thread->Post instead of Post-with-thread-info // Or, I could inject $post into $thread, but if I'm on a post page, // having an object with a top level of Thread instead of // Post-which-contains-thread-info, makes less sense to me. // to go with example 1 class post { public function __construct(&$thread) { $this->thread=$thread; } public function load($id) { // ... here I would load all the post data based on $id // now include the thread data $this->thread->load($this->get('thread_id')); return $this; } } // I don't want to do $thread = new Thread; $post = new Post; $post->load($post_id); $thread->load($post->get('post_id')); Or, I could create a new object and inject both $post and $thread into it, but then I have object with an increasing number of dependencies.

    Read the article

  • makecontext segfault?

    - by cdietschrun
    I am working on a homework assignment that will be due in the next semester. It requires us to implement our own context switching/thread library using the ucontext API. The professor provides code that does it, but before a thread returns, he manually does some work and calls an ISR that finds another thread to use and swapcontexts to it or if none are left, exits. The point of the assignment is to use the uc_link field of the context so that when it hits a return it takes care of the work. I've created a function (type void/void args) that just does the work the functions did before (clean up and then calls ISR). The professor said he wanted this. So all that's left is to do a makecontext somewhere along the way on the context in the uc_link field so that it runs my thread, right? Well, when I do makecontext on seemingly any combination of ucontext_t's and function, I get a segfault and gdb provides no help.. I can skip the makecontext and my program exist 'normally' when it hits a return in the threads I created because (presumably) the uc_link field is not properly setup (which is what I'm trying to do). I also can't find anything on why makecontext would segfault. Can anyone help? stack2.ss_sp = (void *)(malloc(STACKSIZE)); if(stack2.ss_sp == NULL){ printf("thread failed to get stack space\n"); exit(8); } stack2.ss_size = STACKSIZE; stack2.ss_flags = 0; if(getcontext(&main_context) == -1){ perror("getcontext in t_init, rtn_env"); exit(5); } //main_context.uc_stack = t_state[i].mystk; main_context.uc_stack = stack2; main_context.uc_link = 0; makecontext(&main_context, (void (*)(void))thread_rtn, 0); I've also tried just thread_rtn, &thread_rtn and other things. thread_rtn is declared as void thread_rtn(void). later, in each thread. run_env is of type ucontext_t: ... t_state[i].run_env.uc_link = &main_context;

    Read the article

  • Is it thread safe to read a form controls value (but not change it) without using Invoke/BeginInvoke from another thread

    - by goku_da_master
    I know you can read a gui control from a worker thread without using Invoke/BeginInvoke because my app is doing it now. The cross thread exception error is not being thrown and my System.Timers.Timer thread is able to read gui control values just fine (unlike this guy: can a worker thread read a control in the GUI?) Question 1: Given the cardinal rule of threads, should I be using Invoke/BeginInvoke to read form control values? And does this make it more thread-safe? The background to this question stems from a problem my app is having. It seems to randomly corrupt form controls another thread is referencing. (see question 2) Question 2: I have a second thread that needs to update form control values so I Invoke/BeginInvoke to update those values. Well this same thread needs a reference to those controls so it can update them. It holds a list of these controls (say DataGridViewRow objects). Sometimes (not always), the DataGridViewRow reference gets "corrupt". What I mean by corrupt, is the reference is still valid, but some of the DataGridViewRow properties are null (ex: row.Cells). Is this caused by question 1 or can you give me any tips on why this might be happening? Here's some code (the last line has the problem): public partial class MyForm : Form { void Timer_Elapsed(object sender) { // we're on a new thread (this function gets called every few seconds) UpdateUiHelper updateUiHelper = new UpdateUiHelper(this); foreach (DataGridViewRow row in dataGridView1.Rows) { object[] values = GetValuesFromDb(); updateUiHelper.UpdateRowValues(row, values[0]); } // .. do other work here updateUiHelper.UpdateUi(); } } public class UpdateUiHelper { private readonly Form _form; private Dictionary<DataGridViewRow, object> _rows; private delegate void RowDelegate(DataGridViewRow row); private readonly object _lockObject = new object(); public UpdateUiHelper(Form form) { _form = form; _rows = new Dictionary<DataGridViewRow, object>(); } public void UpdateRowValues(DataGridViewRow row, object value) { if (_rows.ContainsKey(row)) _rows[row] = value; else { lock (_lockObject) { _rows.Add(row, value); } } } public void UpdateUi() { foreach (DataGridViewRow row in _rows.Keys) { SetRowValueThreadSafe(row); } } private void SetRowValueThreadSafe(DataGridViewRow row) { if (_form.InvokeRequired) { _form.Invoke(new RowDelegate(SetRowValueThreadSafe), new object[] { row }); return; } // now we're on the UI thread object newValue = _rows[row]; row.Cells[0].Value = newValue; // randomly errors here with NullReferenceException, but row is never null! }

    Read the article

  • Announcing release of ASP.NET MVC 3, IIS Express, SQL CE 4, Web Farm Framework, Orchard, WebMatrix

    - by ScottGu
    I’m excited to announce the release today of several products: ASP.NET MVC 3 NuGet IIS Express 7.5 SQL Server Compact Edition 4 Web Deploy and Web Farm Framework 2.0 Orchard 1.0 WebMatrix 1.0 The above products are all free. They build upon the .NET 4 and VS 2010 release, and add a ton of additional value to ASP.NET (both Web Forms and MVC) and the Microsoft Web Server stack. ASP.NET MVC 3 Today we are shipping the final release of ASP.NET MVC 3.  You can download and install ASP.NET MVC 3 here.  The ASP.NET MVC 3 source code (released under an OSI-compliant open source license) can also optionally be downloaded here. ASP.NET MVC 3 is a significant update that brings with it a bunch of great features.  Some of the improvements include: Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to continuing to support/enhance the existing .aspx view engine).  Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, with Razor you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type.  You can learn more about Razor from some of the blog posts I’ve done about it over the last 6 months Introducing Razor New @model keyword in Razor Layouts with Razor Server-Side Comments with Razor Razor’s @: and <text> syntax Implicit and Explicit code nuggets with Razor Layouts and Sections with Razor Today’s release supports full code intellisense support for Razor (both VB and C#) with Visual Studio 2010 and the free Visual Web Developer 2010 Express. JavaScript Improvements ASP.NET MVC 3 enables richer JavaScript scenarios and takes advantage of emerging HTML5 capabilities. The AJAX and Validation helpers in ASP.NET MVC 3 now use an Unobtrusive JavaScript based approach.  Unobtrusive JavaScript avoids injecting inline JavaScript into HTML, and enables cleaner separation of behavior using the new HTML 5 “data-“ attribute convention (which conveniently works on older browsers as well – including IE6). This keeps your HTML tight and clean, and makes it easier to optionally swap out or customize JS libraries.  ASP.NET MVC 3 now includes built-in support for posting JSON-based parameters from client-side JavaScript to action methods on the server.  This makes it easier to exchange data across the client and server, and build rich JavaScript front-ends.  We think this capability will be particularly useful going forward with scenarios involving client templates and data binding (including the jQuery plugins the ASP.NET team recently contributed to the jQuery project).  Previous releases of ASP.NET MVC included the core jQuery library.  ASP.NET MVC 3 also now ships the jQuery Validate plugin (which our validation helpers use for client-side validation scenarios).  We are also now shipping and including jQuery UI by default as well (which provides a rich set of client-side JavaScript UI widgets for you to use within projects). Improved Validation ASP.NET MVC 3 includes a bunch of validation enhancements that make it even easier to work with data. Client-side validation is now enabled by default with ASP.NET MVC 3 (using an onbtrusive javascript implementation).  Today’s release also includes built-in support for Remote Validation - which enables you to annotate a model class with a validation attribute that causes ASP.NET MVC to perform a remote validation call to a server method when validating input on the client. The validation features introduced within .NET 4’s System.ComponentModel.DataAnnotations namespace are now supported by ASP.NET MVC 3.  This includes support for the new IValidatableObject interface – which enables you to perform model-level validation, and allows you to provide validation error messages specific to the state of the overall model, or between two properties within the model.  ASP.NET MVC 3 also supports the improvements made to the ValidationAttribute class in .NET 4.  ValidationAttribute now supports a new IsValid overload that provides more information about the current validation context, such as what object is being validated.  This enables richer scenarios where you can validate the current value based on another property of the model.  We’ve shipped a built-in [Compare] validation attribute  with ASP.NET MVC 3 that uses this support and makes it easy out of the box to compare and validate two property values. You can use any data access API or technology with ASP.NET MVC.  This past year, though, we’ve worked closely with the .NET data team to ensure that the new EF Code First library works really well for ASP.NET MVC applications.  These two posts of mine cover the latest EF Code First preview and demonstrates how to use it with ASP.NET MVC 3 to enable easy editing of data (with end to end client+server validation support).  The final release of EF Code First will ship in the next few weeks. Today we are also publishing the first preview of a new MvcScaffolding project.  It enables you to easily scaffold ASP.NET MVC 3 Controllers and Views, and works great with EF Code-First (and is pluggable to support other data providers).  You can learn more about it – and install it via NuGet today - from Steve Sanderson’s MvcScaffolding blog post. Output Caching Previous releases of ASP.NET MVC supported output caching content at a URL or action-method level. With ASP.NET MVC V3 we are also enabling support for partial page output caching – which allows you to easily output cache regions or fragments of a response as opposed to the entire thing.  This ends up being super useful in a lot of scenarios, and enables you to dramatically reduce the work your application does on the server.  The new partial page output caching support in ASP.NET MVC 3 enables you to easily re-use cached sub-regions/fragments of a page across multiple URLs on a site.  It supports the ability to cache the content either on the web-server, or optionally cache it within a distributed cache server like Windows Server AppFabric or memcached. I’ll post some tutorials on my blog that show how to take advantage of ASP.NET MVC 3’s new output caching support for partial page scenarios in the future. Better Dependency Injection ASP.NET MVC 3 provides better support for applying Dependency Injection (DI) and integrating with Dependency Injection/IOC containers. With ASP.NET MVC 3 you no longer need to author custom ControllerFactory classes in order to enable DI with Controllers.  You can instead just register a Dependency Injection framework with ASP.NET MVC 3 and it will resolve dependencies not only for Controllers, but also for Views, Action Filters, Model Binders, Value Providers, Validation Providers, and Model Metadata Providers that you use within your application. This makes it much easier to cleanly integrate dependency injection within your projects. Other Goodies ASP.NET MVC 3 includes dozens of other nice improvements that help to both reduce the amount of code you write, and make the code you do write cleaner.  Here are just a few examples: Improved New Project dialog that makes it easy to start new ASP.NET MVC 3 projects from templates. Improved Add->View Scaffolding support that enables the generation of even cleaner view templates. New ViewBag property that uses .NET 4’s dynamic support to make it easy to pass late-bound data from Controllers to Views. Global Filters support that allows specifying cross-cutting filter attributes (like [HandleError]) across all Controllers within an app. New [AllowHtml] attribute that allows for more granular request validation when binding form posted data to models. Sessionless controller support that allows fine grained control over whether SessionState is enabled on a Controller. New ActionResult types like HttpNotFoundResult and RedirectPermanent for common HTTP scenarios. New Html.Raw() helper to indicate that output should not be HTML encoded. New Crypto helpers for salting and hashing passwords. And much, much more… Learn More about ASP.NET MVC 3 We will be posting lots of tutorials and samples on the http://asp.net/mvc site in the weeks ahead.  Below are two good ASP.NET MVC 3 tutorials available on the site today: Build your First ASP.NET MVC 3 Application: VB and C# Building the ASP.NET MVC 3 Music Store We’ll post additional ASP.NET MVC 3 tutorials and videos on the http://asp.net/mvc site in the future. Visit it regularly to find new tutorials as they are published. How to Upgrade Existing Projects ASP.NET MVC 3 is compatible with ASP.NET MVC 2 – which means it should be easy to update existing MVC projects to ASP.NET MVC 3.  The new features in ASP.NET MVC 3 build on top of the foundational work we’ve already done with the MVC 1 and MVC 2 releases – which means that the skills, knowledge, libraries, and books you’ve acquired are all directly applicable with the MVC 3 release.  MVC 3 adds new features and capabilities – it doesn’t obsolete existing ones. You can upgrade existing ASP.NET MVC 2 projects by following the manual upgrade steps in the release notes.  Alternatively, you can use this automated ASP.NET MVC 3 upgrade tool to easily update your  existing projects. Localized Builds Today’s ASP.NET MVC 3 release is available in English.  We will be releasing localized versions of ASP.NET MVC 3 (in 9 languages) in a few days.  I’ll blog pointers to the localized downloads once they are available. NuGet Today we are also shipping NuGet – a free, open source, package manager that makes it easy for you to find, install, and use open source libraries in your projects. It works with all .NET project types (including ASP.NET Web Forms, ASP.NET MVC, WPF, WinForms, Silverlight, and Class Libraries).  You can download and install it here. NuGet enables developers who maintain open source projects (for example, .NET projects like Moq, NHibernate, Ninject, StructureMap, NUnit, Windsor, Raven, Elmah, etc) to package up their libraries and register them with an online gallery/catalog that is searchable.  The client-side NuGet tools – which include full Visual Studio integration – make it trivial for any .NET developer who wants to use one of these libraries to easily find and install it within the project they are working on. NuGet handles dependency management between libraries (for example: library1 depends on library2). It also makes it easy to update (and optionally remove) libraries from your projects later. It supports updating web.config files (if a package needs configuration settings). It also allows packages to add PowerShell scripts to a project (for example: scaffold commands). Importantly, NuGet is transparent and clean – and does not install anything at the system level. Instead it is focused on making it easy to manage libraries you use with your projects. Our goal with NuGet is to make it as simple as possible to integrate open source libraries within .NET projects.  NuGet Gallery This week we also launched a beta version of the http://nuget.org web-site – which allows anyone to easily search and browse an online gallery of open source packages available via NuGet.  The site also now allows developers to optionally submit new packages that they wish to share with others.  You can learn more about how to create and share a package here. There are hundreds of open-source .NET projects already within the NuGet Gallery today.  We hope to have thousands there in the future. IIS Express 7.5 Today we are also shipping IIS Express 7.5.  IIS Express is a free version of IIS 7.5 that is optimized for developer scenarios.  It works for both ASP.NET Web Forms and ASP.NET MVC project types. We think IIS Express combines the ease of use of the ASP.NET Web Server (aka Cassini) currently built-into Visual Studio today with the full power of IIS.  Specifically: It’s lightweight and easy to install (less than 5Mb download and a quick install) It does not require an administrator account to run/debug applications from Visual Studio It enables a full web-server feature set – including SSL, URL Rewrite, and other IIS 7.x modules It supports and enables the same extensibility model and web.config file settings that IIS 7.x support It can be installed side-by-side with the full IIS web server as well as the ASP.NET Development Server (they do not conflict at all) It works on Windows XP and higher operating systems – giving you a full IIS 7.x developer feature-set on all Windows OS platforms IIS Express (like the ASP.NET Development Server) can be quickly launched to run a site from a directory on disk.  It does not require any registration/configuration steps. This makes it really easy to launch and run for development scenarios.  You can also optionally redistribute IIS Express with your own applications if you want a lightweight web-server.  The standard IIS Express EULA now includes redistributable rights. Visual Studio 2010 SP1 adds support for IIS Express.  Read my VS 2010 SP1 and IIS Express blog post to learn more about what it enables.  SQL Server Compact Edition 4 Today we are also shipping SQL Server Compact Edition 4 (aka SQL CE 4).  SQL CE is a free, embedded, database engine that enables easy database storage. No Database Installation Required SQL CE does not require you to run a setup or install a database server in order to use it.  You can simply copy the SQL CE binaries into the \bin directory of your ASP.NET application, and then your web application can use it as a database engine.  No setup or extra security permissions are required for it to run. You do not need to have an administrator account on the machine. Just copy your web application onto any server and it will work. This is true even of medium-trust applications running in a web hosting environment. SQL CE runs in-memory within your ASP.NET application and will start-up when you first access a SQL CE database, and will automatically shutdown when your application is unloaded.  SQL CE databases are stored as files that live within the \App_Data folder of your ASP.NET Applications. Works with Existing Data APIs SQL CE 4 works with existing .NET-based data APIs, and supports a SQL Server compatible query syntax.  This means you can use existing data APIs like ADO.NET, as well as use higher-level ORMs like Entity Framework and NHibernate with SQL CE.  This enables you to use the same data programming skills and data APIs you know today. Supports Development, Testing and Production Scenarios SQL CE can be used for development scenarios, testing scenarios, and light production usage scenarios.  With the SQL CE 4 release we’ve done the engineering work to ensure that SQL CE won’t crash or deadlock when used in a multi-threaded server scenario (like ASP.NET).  This is a big change from previous releases of SQL CE – which were designed for client-only scenarios and which explicitly blocked running in web-server environments.  Starting with SQL CE 4 you can use it in a web-server as well. There are no license restrictions with SQL CE.  It is also totally free. Tooling Support with VS 2010 SP1 Visual Studio 2010 SP1 adds support for SQL CE 4 and ASP.NET Projects.  Read my VS 2010 SP1 and SQL CE 4 blog post to learn more about what it enables.  Web Deploy and Web Farm Framework 2.0 Today we are also releasing Microsoft Web Deploy V2 and Microsoft Web Farm Framework V2.  These services provide a flexible and powerful way to deploy ASP.NET applications onto either a single server, or across a web farm of machines. You can learn more about these capabilities from my previous blog posts on them: Introducing the Microsoft Web Farm Framework Automating Deployment with Microsoft Web Deploy Visit the http://iis.net website to learn more and install them. Both are free. Orchard 1.0 Today we are also releasing Orchard v1.0.  Orchard is a free, open source, community based project.  It provides Content Management System (CMS) and Blogging System support out of the box, and makes it possible to easily create and manage web-sites without having to write code (site owners can customize a site through the browser-based editing tools built-into Orchard).  Read these tutorials to learn more about how you can setup and manage your own Orchard site. Orchard itself is built as an ASP.NET MVC 3 application using Razor view templates (and by default uses SQL CE 4 for data storage).  Developers wishing to extend an Orchard site with custom functionality can open and edit it as a Visual Studio project – and add new ASP.NET MVC Controllers/Views to it.  WebMatrix 1.0 WebMatrix is a new, free, web development tool from Microsoft that provides a suite of technologies that make it easier to enable website development.  It enables a developer to start a new site by browsing and downloading an app template from an online gallery of web applications (which includes popular apps like Umbraco, DotNetNuke, Orchard, WordPress, Drupal and Joomla).  Alternatively it also enables developers to create and code web sites from scratch. WebMatrix is task focused and helps guide developers as they work on sites.  WebMatrix includes IIS Express, SQL CE 4, and ASP.NET - providing an integrated web-server, database and programming framework combination.  It also includes built-in web publishing support which makes it easy to find and deploy sites to web hosting providers. You can learn more about WebMatrix from my Introducing WebMatrix blog post this summer.  Visit http://microsoft.com/web to download and install it today. Summary I’m really excited about today’s releases – they provide a bunch of additional value that makes web development with ASP.NET, Visual Studio and the Microsoft Web Server a lot better.  A lot of folks worked hard to share this with you today. On behalf of my whole team – we hope you enjoy them! Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • VS 2010 SP1 and SQL CE

    - by ScottGu
    Last month we released the Beta of VS 2010 Service Pack 1 (SP1).  You can learn more about the VS 2010 SP1 Beta from Jason Zander’s two blog posts about it, and from Scott Hanselman’s blog post that covers some of the new capabilities enabled with it.   You can download and install the VS 2010 SP1 Beta here. Last week I blogged about the new Visual Studio support for IIS Express that we are adding with VS 2010 SP1. In today’s post I’m going to talk about the new VS 2010 SP1 tooling support for SQL CE, and walkthrough some of the cool scenarios it enables.  SQL CE – What is it and why should you care? SQL CE is a free, embedded, database engine that enables easy database storage. No Database Installation Required SQL CE does not require you to run a setup or install a database server in order to use it.  You can simply copy the SQL CE binaries into the \bin directory of your ASP.NET application, and then your web application can use it as a database engine.  No setup or extra security permissions are required for it to run. You do not need to have an administrator account on the machine. Just copy your web application onto any server and it will work. This is true even of medium-trust applications running in a web hosting environment. SQL CE runs in-memory within your ASP.NET application and will start-up when you first access a SQL CE database, and will automatically shutdown when your application is unloaded.  SQL CE databases are stored as files that live within the \App_Data folder of your ASP.NET Applications. Works with Existing Data APIs SQL CE 4 works with existing .NET-based data APIs, and supports a SQL Server compatible query syntax.  This means you can use existing data APIs like ADO.NET, as well as use higher-level ORMs like Entity Framework and NHibernate with SQL CE.  This enables you to use the same data programming skills and data APIs you know today. Supports Development, Testing and Production Scenarios SQL CE can be used for development scenarios, testing scenarios, and light production usage scenarios.  With the SQL CE 4 release we’ve done the engineering work to ensure that SQL CE won’t crash or deadlock when used in a multi-threaded server scenario (like ASP.NET).  This is a big change from previous releases of SQL CE – which were designed for client-only scenarios and which explicitly blocked running in web-server environments.  Starting with SQL CE 4 you can use it in a web-server as well. There are no license restrictions with SQL CE.  It is also totally free. Easy Migration to SQL Server SQL CE is an embedded database – which makes it ideal for development, testing, and light-usage scenarios.  For high-volume sites and applications you’ll probably want to migrate your database to use SQL Server Express (which is free), SQL Server or SQL Azure.  These servers enable much better scalability, more development features (including features like Stored Procedures – which aren’t supported with SQL CE), as well as more advanced data management capabilities. We’ll ship migration tools that enable you to optionally take SQL CE databases and easily upgrade them to use SQL Server Express, SQL Server, or SQL Azure.  You will not need to change your code when upgrading a SQL CE database to SQL Server or SQL Azure.  Our goal is to enable you to be able to simply change the database connection string in your web.config file and have your application just work. New Tooling Support for SQL CE in VS 2010 SP1 VS 2010 SP1 includes much improved tooling support for SQL CE, and adds support for using SQL CE within ASP.NET projects for the first time.  With VS 2010 SP1 you can now: Create new SQL CE Databases Edit and Modify SQL CE Database Schema and Indexes Populate SQL CE Databases within Data Use the Entity Framework (EF) designer to create model layers against SQL CE databases Use EF Code First to define model layers in code, then create a SQL CE database from them, and optionally edit the DB with VS Deploy SQL CE databases to remote servers using Web Deploy and optionally convert them to full SQL Server databases You can take advantage of all of the above features from within both ASP.NET Web Forms and ASP.NET MVC based projects. Download You can enable SQL CE tooling support within VS 2010 by first installing VS 2010 SP1 (beta). Once SP1 is installed, you’ll also then need to install the SQL CE Tools for Visual Studio download.  This is a separate download that enables the SQL CE tooling support for VS 2010 SP1. Walkthrough of Two Scenarios In this blog post I’m going to walkthrough how you can take advantage of SQL CE and VS 2010 SP1 using both an ASP.NET Web Forms and an ASP.NET MVC based application. Specifically, we’ll walkthrough: How to create a SQL CE database using VS 2010 SP1, then use the EF4 visual designers in Visual Studio to construct a model layer from it, and then display and edit the data using an ASP.NET GridView control. How to use an EF Code First approach to define a model layer using POCO classes and then have EF Code-First “auto-create” a SQL CE database for us based on our model classes.  We’ll then look at how we can use the new VS 2010 SP1 support for SQL CE to inspect the database that was created, populate it with data, and later make schema changes to it.  We’ll do all this within the context of an ASP.NET MVC based application. You can follow the two walkthroughs below on your own machine by installing VS 2010 SP1 (beta) and then installing the SQL CE Tools for Visual Studio download (which is a separate download that enables SQL CE tooling support for VS 2010 SP1). Walkthrough 1: Create a SQL CE Database, Create EF Model Classes, Edit the Data with a GridView This first walkthrough will demonstrate how to create and define a SQL CE database within an ASP.NET Web Form application.  We’ll then build an EF model layer for it and use that model layer to enable data editing scenarios with an <asp:GridView> control. Step 1: Create a new ASP.NET Web Forms Project We’ll begin by using the File->New Project menu command within Visual Studio to create a new ASP.NET Web Forms project.  We’ll use the “ASP.NET Web Application” project template option so that it has a default UI skin implemented: Step 2: Create a SQL CE Database Right click on the “App_Data” folder within the created project and choose the “Add->New Item” menu command: This will bring up the “Add Item” dialog box.  Select the “SQL Server Compact 4.0 Local Database” item (new in VS 2010 SP1) and name the database file to create “Store.sdf”: Note that SQL CE database files have a .sdf filename extension. Place them within the /App_Data folder of your ASP.NET application to enable easy deployment. When we clicked the “Add” button above a Store.sdf file was added to our project: Step 3: Adding a “Products” Table Double-clicking the “Store.sdf” database file will open it up within the Server Explorer tab.  Since it is a new database there are no tables within it: Right click on the “Tables” icon and choose the “Create Table” menu command to create a new database table.  We’ll name the new table “Products” and add 4 columns to it.  We’ll mark the first column as a primary key (and make it an identify column so that its value will automatically increment with each new row): When we click “ok” our new Products table will be created in the SQL CE database. Step 4: Populate with Data Once our Products table is created it will show up within the Server Explorer.  We can right-click it and choose the “Show Table Data” menu command to edit its data: Let’s add a few sample rows of data to it: Step 5: Create an EF Model Layer We have a SQL CE database with some data in it – let’s now create an EF Model Layer that will provide a way for us to easily query and update data within it. Let’s right-click on our project and choose the “Add->New Item” menu command.  This will bring up the “Add New Item” dialog – select the “ADO.NET Entity Data Model” item within it and name it “Store.edmx” This will add a new Store.edmx item to our solution explorer and launch a wizard that allows us to quickly create an EF model: Select the “Generate From Database” option above and click next.  Choose to use the Store.sdf SQL CE database we just created and then click next again.  The wizard will then ask you what database objects you want to import into your model.  Let’s choose to import the “Products” table we created earlier: When we click the “Finish” button Visual Studio will open up the EF designer.  It will have a Product entity already on it that maps to the “Products” table within our SQL CE database: The VS 2010 SP1 EF designer works exactly the same with SQL CE as it does already with SQL Server and SQL Express.  The Product entity above will be persisted as a class (called “Product”) that we can programmatically work against within our ASP.NET application. Step 6: Compile the Project Before using your model layer you’ll need to build your project.  Do a Ctrl+Shift+B to compile the project, or use the Build->Build Solution menu command. Step 7: Create a Page that Uses our EF Model Layer Let’s now create a simple ASP.NET Web Form that contains a GridView control that we can use to display and edit the our Products data (via the EF Model Layer we just created). Right-click on the project and choose the Add->New Item command.  Select the “Web Form from Master Page” item template, and name the page you create “Products.aspx”.  Base the master page on the “Site.Master” template that is in the root of the project. Add an <h2>Products</h2> heading the new Page, and add an <asp:gridview> control within it: Then click the “Design” tab to switch into design-view. Select the GridView control, and then click the top-right corner to display the GridView’s “Smart Tasks” UI: Choose the “New data source…” drop down option above.  This will bring up the below dialog which allows you to pick your Data Source type: Select the “Entity” data source option – which will allow us to easily connect our GridView to the EF model layer we created earlier.  This will bring up another dialog that allows us to pick our model layer: Select the “StoreEntities” option in the dropdown – which is the EF model layer we created earlier.  Then click next – which will allow us to pick which entity within it we want to bind to: Select the “Products” entity in the above dialog – which indicates that we want to bind against the “Product” entity class we defined earlier.  Then click the “Enable automatic updates” checkbox to ensure that we can both query and update Products.  When you click “Finish” VS will wire-up an <asp:EntityDataSource> to your <asp:GridView> control: The last two steps we’ll do will be to click the “Enable Editing” checkbox on the Grid (which will cause the Grid to display an “Edit” link on each row) and (optionally) use the Auto Format dialog to pick a UI template for the Grid. Step 8: Run the Application Let’s now run our application and browse to the /Products.aspx page that contains our GridView.  When we do so we’ll see a Grid UI of the Products within our SQL CE database. Clicking the “Edit” link for any of the rows will allow us to edit their values: When we click “Update” the GridView will post back the values, persist them through our EF Model Layer, and ultimately save them within our SQL CE database. Learn More about using EF with ASP.NET Web Forms Read this tutorial series on the http://asp.net site to learn more about how to use EF with ASP.NET Web Forms.  The tutorial series uses SQL Express as the database – but the nice thing is that all of the same steps/concepts can also now also be done with SQL CE.   Walkthrough 2: Using EF Code-First with SQL CE and ASP.NET MVC 3 We used a database-first approach with the sample above – where we first created the database, and then used the EF designer to create model classes from the database.  In addition to supporting a designer-based development workflow, EF also enables a more code-centric option which we call “code first development”.  Code-First Development enables a pretty sweet development workflow.  It enables you to: Define your model objects by simply writing “plain old classes” with no base classes or visual designer required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping Optionally auto-create a database based on the model classes you define – allowing you to start from code first I’ve done several blog posts about EF Code First in the past – I really think it is great.  The good news is that it also works very well with SQL CE. The combination of SQL CE, EF Code First, and the new VS tooling support for SQL CE, enables a pretty nice workflow.  Below is a simple example of how you can use them to build a simple ASP.NET MVC 3 application. Step 1: Create a new ASP.NET MVC 3 Project We’ll begin by using the File->New Project menu command within Visual Studio to create a new ASP.NET MVC 3 project.  We’ll use the “Internet Project” template so that it has a default UI skin implemented: Step 2: Use NuGet to Install EFCodeFirst Next we’ll use the NuGet package manager (automatically installed by ASP.NET MVC 3) to add the EFCodeFirst library to our project.  We’ll use the Package Manager command shell to do this.  Bring up the package manager console within Visual Studio by selecting the View->Other Windows->Package Manager Console menu command.  Then type: install-package EFCodeFirst within the package manager console to download the EFCodeFirst library and have it be added to our project: When we enter the above command, the EFCodeFirst library will be downloaded and added to our application: Step 3: Build Some Model Classes Using a “code first” based development workflow, we will create our model classes first (even before we have a database).  We create these model classes by writing code. For this sample, we will right click on the “Models” folder of our project and add the below three classes to our project: The “Dinner” and “RSVP” model classes above are “plain old CLR objects” (aka POCO).  They do not need to derive from any base classes or implement any interfaces, and the properties they expose are standard .NET data-types.  No data persistence attributes or data code has been added to them.   The “NerdDinners” class derives from the DbContext class (which is supplied by EFCodeFirst) and handles the retrieval/persistence of our Dinner and RSVP instances from a database. Step 4: Listing Dinners We’ve written all of the code necessary to implement our model layer for this simple project.  Let’s now expose and implement the URL: /Dinners/Upcoming within our project.  We’ll use it to list upcoming dinners that happen in the future. We’ll do this by right-clicking on our “Controllers” folder and select the “Add->Controller” menu command.  We’ll name the Controller we want to create “DinnersController”.  We’ll then implement an “Upcoming” action method within it that lists upcoming dinners using our model layer above.  We will use a LINQ query to retrieve the data and pass it to a View to render with the code below: We’ll then right-click within our Upcoming method and choose the “Add-View” menu command to create an “Upcoming” view template that displays our dinners.  We’ll use the “empty” template option within the “Add View” dialog and write the below view template using Razor: Step 4: Configure our Project to use a SQL CE Database We have finished writing all of our code – our last step will be to configure a database connection-string to use. We will point our NerdDinners model class to a SQL CE database by adding the below <connectionString> to the web.config file at the top of our project: EF Code First uses a default convention where context classes will look for a connection-string that matches the DbContext class name.  Because we created a “NerdDinners” class earlier, we’ve also named our connectionstring “NerdDinners”.  Above we are configuring our connection-string to use SQL CE as the database, and telling it that our SQL CE database file will live within the \App_Data directory of our ASP.NET project. Step 5: Running our Application Now that we’ve built our application, let’s run it! We’ll browse to the /Dinners/Upcoming URL – doing so will display an empty list of upcoming dinners: You might ask – but where did it query to get the dinners from? We didn’t explicitly create a database?!? One of the cool features that EF Code-First supports is the ability to automatically create a database (based on the schema of our model classes) when the database we point it at doesn’t exist.  Above we configured  EF Code-First to point at a SQL CE database in the \App_Data\ directory of our project.  When we ran our application, EF Code-First saw that the SQL CE database didn’t exist and automatically created it for us. Step 6: Using VS 2010 SP1 to Explore our newly created SQL CE Database Click the “Show all Files” icon within the Solution Explorer and you’ll see the “NerdDinners.sdf” SQL CE database file that was automatically created for us by EF code-first within the \App_Data\ folder: We can optionally right-click on the file and “Include in Project" to add it to our solution: We can also double-click the file (regardless of whether it is added to the project) and VS 2010 SP1 will open it as a database we can edit within the “Server Explorer” tab of the IDE. Below is the view we get when we double-click our NerdDinners.sdf SQL CE file.  We can drill in to see the schema of the Dinners and RSVPs tables in the tree explorer.  Notice how two tables - Dinners and RSVPs – were automatically created for us within our SQL CE database.  This was done by EF Code First when we accessed the NerdDinners class by running our application above: We can right-click on a Table and use the “Show Table Data” command to enter some upcoming dinners in our database: We’ll use the built-in editor that VS 2010 SP1 supports to populate our table data below: And now when we hit “refresh” on the /Dinners/Upcoming URL within our browser we’ll see some upcoming dinners show up: Step 7: Changing our Model and Database Schema Let’s now modify the schema of our model layer and database, and walkthrough one way that the new VS 2010 SP1 Tooling support for SQL CE can make this easier.  With EF Code-First you typically start making database changes by modifying the model classes.  For example, let’s add an additional string property called “UrlLink” to our “Dinner” class.  We’ll use this to point to a link for more information about the event: Now when we re-run our project, and visit the /Dinners/Upcoming URL we’ll see an error thrown: We are seeing this error because EF Code-First automatically created our database, and by default when it does this it adds a table that helps tracks whether the schema of our database is in sync with our model classes.  EF Code-First helpfully throws an error when they become out of sync – making it easier to track down issues at development time that you might otherwise only find (via obscure errors) at runtime.  Note that if you do not want this feature you can turn it off by changing the default conventions of your DbContext class (in this case our NerdDinners class) to not track the schema version. Our model classes and database schema are out of sync in the above example – so how do we fix this?  There are two approaches you can use today: Delete the database and have EF Code First automatically re-create the database based on the new model class schema (losing the data within the existing DB) Modify the schema of the existing database to make it in sync with the model classes (keeping/migrating the data within the existing DB) There are a couple of ways you can do the second approach above.  Below I’m going to show how you can take advantage of the new VS 2010 SP1 Tooling support for SQL CE to use a database schema tool to modify our database structure.  We are also going to be supporting a “migrations” feature with EF in the future that will allow you to automate/script database schema migrations programmatically. Step 8: Modify our SQL CE Database Schema using VS 2010 SP1 The new SQL CE Tooling support within VS 2010 SP1 makes it easy to modify the schema of our existing SQL CE database.  To do this we’ll right-click on our “Dinners” table and choose the “Edit Table Schema” command: This will bring up the below “Edit Table” dialog.  We can rename, change or delete any of the existing columns in our table, or click at the bottom of the column listing and type to add a new column.  Below I’ve added a new “UrlLink” column of type “nvarchar” (since our property is a string): When we click ok our database will be updated to have the new column and our schema will now match our model classes. Because we are manually modifying our database schema, there is one additional step we need to take to let EF Code-First know that the database schema is in sync with our model classes.  As i mentioned earlier, when a database is automatically created by EF Code-First it adds a “EdmMetadata” table to the database to track schema versions (and hash our model classes against them to detect mismatches between our model classes and the database schema): Since we are manually updating and maintaining our database schema, we don’t need this table – and can just delete it: This will leave us with just the two tables that correspond to our model classes: And now when we re-run our /Dinners/Upcoming URL it will display the dinners correctly: One last touch we could do would be to update our view to check for the new UrlLink property and render a <a> link to it if an event has one: And now when we refresh our /Dinners/Upcoming we will see hyperlinks for the events that have a UrlLink stored in the database: Summary SQL CE provides a free, embedded, database engine that you can use to easily enable database storage.  With SQL CE 4 you can now take advantage of it within ASP.NET projects and applications (both Web Forms and MVC). VS 2010 SP1 provides tooling support that enables you to easily create, edit and modify SQL CE databases – as well as use the standard EF designer against them.  This allows you to re-use your existing skills and data knowledge while taking advantage of an embedded database option.  This is useful both for small applications (where you don’t need the scalability of a full SQL Server), as well as for development and testing scenarios – where you want to be able to rapidly develop/test your application without having a full database instance.  SQL CE makes it easy to later migrate your data to a full SQL Server or SQL Azure instance if you want to – without having to change any code in your application.  All we would need to change in the above two scenarios is the <connectionString> value within the web.config file in order to have our code run against a full SQL Server.  This provides the flexibility to scale up your application starting from a small embedded database solution as needed. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

  • DropDownList and SelectListItem Array Item Updates in MVC

    - by Rick Strahl
    So I ran into an interesting behavior today as I deployed my first MVC 4 app tonight. I have a list form that has a filter drop down that allows selection of categories. This list is static and rarely changes so rather than loading these items from the database each time I load the items once and then cache the actual SelectListItem[] array in a static property. However, when we put the site online tonight we immediately noticed that the drop down list was coming up with pre-set values that randomly changed. Didn't take me long to trace this back to the cached list of SelectListItem[]. Clearly the list was getting updated - apparently through the model binding process in the selection postback. To clarify the scenario here's the drop down list definition in the Razor View:@Html.DropDownListFor(mod => mod.QueryParameters.Category, Model.CategoryList, "All Categories") where Model.CategoryList gets set with:[HttpPost] [CompressContent] public ActionResult List(MessageListViewModel model) { InitializeViewModel(model); busEntry entryBus = new busEntry(); var entries = entryBus.GetEntryList(model.QueryParameters); model.Entries = entries; model.DisplayMode = ApplicationDisplayModes.Standard; model.CategoryList = AppUtils.GetCachedCategoryList(); return View(model); } The AppUtils.GetCachedCategoryList() method gets the cached list or loads the list on the first access. The code to load up the list is housed in a Web utility class. The method looks like this:/// <summary> /// Returns a static category list that is cached /// </summary> /// <returns></returns> public static SelectListItem[] GetCachedCategoryList() { if (_CategoryList != null) return _CategoryList; lock (_SyncLock) { if (_CategoryList != null) return _CategoryList; var catBus = new busCategory(); var categories = catBus.GetCategories().ToList(); // Turn list into a SelectItem list var catList= categories .Select(cat => new SelectListItem() { Text = cat.Name, Value = cat.Id.ToString() }) .ToList(); catList.Insert(0, new SelectListItem() { Value = ((int)SpecialCategories.AllCategoriesButRealEstate).ToString(), Text = "All Categories except Real Estate" }); catList.Insert(1, new SelectListItem() { Value = "-1", Text = "--------------------------------" }); _CategoryList = catList.ToArray(); } return _CategoryList; } private static SelectListItem[] _CategoryList ; This seemed normal enough to me - I've been doing stuff like this forever caching smallish lists in memory to avoid an extra trip to the database. This list is used in various places throughout the application - for the list display and also when adding new items and setting up for notifications etc.. Watch that ModelBinder! However, it turns out that this code is clearly causing a problem. It appears that the model binder on the [HttpPost] method is actually updating the list that's bound to and changing the actual entry item in the list and setting its selected value. If you look at the code above I'm not setting the SelectListItem.Selected value anywhere - the only place this value can get set is through ModelBinding. Sure enough when stepping through the code I see that when an item is selected the actual model - model.CategoryList[x].Selected - reflects that. This is bad on several levels: First it's obviously affecting the application behavior - nobody wants to see their drop down list values jump all over the place randomly. But it's also a problem because the array is getting updated by multiple ASP.NET threads which likely would lead to odd crashes from time to time. Not good! In retrospect the modelbinding behavior makes perfect sense. The actual items and the Selected property is the ModelBinder's way of keeping track of one or more selected values. So while I assumed the list to be read-only, the ModelBinder is actually updating it on a post back producing the rather surprising results. Totally missed this during testing and is another one of those little - "Did you know?" moments. So, is there a way around this? Yes but it's maybe not quite obvious. I can't change the behavior of the ModelBinder, but I can certainly change the way that the list is generated. Rather than returning the cached list, I can return a brand new cloned list from the cached items like this:/// <summary> /// Returns a static category list that is cached /// </summary> /// <returns></returns> public static SelectListItem[] GetCachedCategoryList() { if (_CategoryList != null) { // Have to create new instances via projection // to avoid ModelBinding updates to affect this // globally return _CategoryList .Select(cat => new SelectListItem() { Value = cat.Value, Text = cat.Text }) .ToArray(); } …}  The key is that newly created instances of SelectListItems are returned not just filtered instances of the original list. The key here is 'new instances' so that the ModelBinding updates do not update the actual static instance. The code above uses LINQ and a projection into new SelectListItem instances to create this array of fresh instances. And this code works correctly - no more cross-talk between users. Unfortunately this code is also less efficient - it has to reselect the items and uses extra memory for the new array. Knowing what I know now I probably would have not cached the list and just take the hit to read from the database. If there is even a possibility of thread clashes I'm very wary of creating code like this. But since the method already exists and handles this load in one place this fix was easy enough to put in. Live and learn. It's little things like this that can cause some interesting head scratchers sometimes…© Rick Strahl, West Wind Technologies, 2005-2012Posted in MVC  ASP.NET  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Introducing Oracle VM Server for SPARC

    - by Honglin Su
    As you are watching Oracle's Virtualization Strategy Webcast and exploring the great virtualization offerings of Oracle VM product line, I'd like to introduce Oracle VM Server for SPARC --  highly efficient, enterprise-class virtualization solution for Sun SPARC Enterprise Systems with Chip Multithreading (CMT) technology. Oracle VM Server for SPARC, previously called Sun Logical Domains, leverages the built-in SPARC hypervisor to subdivide supported platforms' resources (CPUs, memory, network, and storage) by creating partitions called logical (or virtual) domains. Each logical domain can run an independent operating system. Oracle VM Server for SPARC provides the flexibility to deploy multiple Oracle Solaris operating systems simultaneously on a single platform. Oracle VM Server also allows you to create up to 128 virtual servers on one system to take advantage of the massive thread scale offered by the CMT architecture. Oracle VM Server for SPARC integrates both the industry-leading CMT capability of the UltraSPARC T1, T2 and T2 Plus processors and the Oracle Solaris operating system. This combination helps to increase flexibility, isolate workload processing, and improve the potential for maximum server utilization. Oracle VM Server for SPARC delivers the following: Leading Price/Performance - The low-overhead architecture provides scalable performance under increasing workloads without additional license cost. This enables you to meet the most aggressive price/performance requirement Advanced RAS - Each logical domain is an entirely independent virtual machine with its own OS. It supports virtual disk mutipathing and failover as well as faster network failover with link-based IP multipathing (IPMP) support. Moreover, it's fully integrated with Solaris FMA (Fault Management Architecture), which enables predictive self healing. CPU Dynamic Resource Management (DRM) - Enable your resource management policy and domain workload to trigger the automatic addition and removal of CPUs. This ability helps you to better align with your IT and business priorities. Enhanced Domain Migrations - Perform domain migrations interactively and non-interactively to bring more flexibility to the management of your virtualized environment. Improve active domain migration performance by compressing memory transfers and taking advantage of cryptographic acceleration hardware. These methods provide faster migration for load balancing, power saving, and planned maintenance. Dynamic Crypto Control - Dynamically add and remove cryptographic units (aka MAU) to and from active domains. Also, migrate active domains that have cryptographic units. Physical-to-virtual (P2V) Conversion - Quickly convert an existing SPARC server running the Oracle Solaris 8, 9 or 10 OS into a virtualized Oracle Solaris 10 image. Use this image to facilitate OS migration into the virtualized environment. Virtual I/O Dynamic Reconfiguration (DR) - Add and remove virtual I/O services and devices without needing to reboot the system. CPU Power Management - Implement power saving by disabling each core on a Sun UltraSPARC T2 or T2 Plus processor that has all of its CPU threads idle. Advanced Network Configuration - Configure the following network features to obtain more flexible network configurations, higher performance, and scalability: Jumbo frames, VLANs, virtual switches for link aggregations, and network interface unit (NIU) hybrid I/O. Official Certification Based On Real-World Testing - Use Oracle VM Server for SPARC with the most sophisticated enterprise workloads under real-world conditions, including Oracle Real Application Clusters (RAC). Affordable, Full-Stack Enterprise Class Support - Obtain worldwide support from Oracle for the entire virtualization environment and workloads together. The support covers hardware, firmware, OS, virtualization, and the software stack. SPARC Server Virtualization Oracle offers a full portfolio of virtualization solutions to address your needs. SPARC is the leading platform to have the hard partitioning capability that provides the physical isolation needed to run independent operating systems. Many customers have already used Oracle Solaris Containers for application isolation. Oracle VM Server for SPARC provides another important feature with OS isolation. This gives you the flexibility to deploy multiple operating systems simultaneously on a single Sun SPARC T-Series server with finer granularity for computing resources.  For SPARC CMT processors, the natural level of granularity is an execution thread, not a time-sliced microsecond of execution resources. Each CPU thread can be treated as an independent virtual processor. The scheduler is naturally built into the CPU for lower overhead and higher performance. Your organizations can couple Oracle Solaris Containers and Oracle VM Server for SPARC with the breakthrough space and energy savings afforded by Sun SPARC Enterprise systems with CMT technology to deliver a more agile, responsive, and low-cost environment. Management with Oracle Enterprise Manager Ops Center The Oracle Enterprise Manager Ops Center Virtualization Management Pack provides full lifecycle management of virtual guests, including Oracle VM Server for SPARC and Oracle Solaris Containers. It helps you streamline operations and reduce downtime. Together, the Virtualization Management Pack and the Ops Center Provisioning and Patch Automation Pack provide an end-to-end management solution for physical and virtual systems through a single web-based console. This solution automates the lifecycle management of physical and virtual systems and is the most effective systems management solution for Oracle's Sun infrastructure. Ease of Deployment with Configuration Assistant The Oracle VM Server for SPARC Configuration Assistant can help you easily create logical domains. After gathering the configuration data, the Configuration Assistant determines the best way to create a deployment to suit your requirements. The Configuration Assistant is available as both a graphical user interface (GUI) and terminal-based tool. Oracle Solaris Cluster HA Support The Oracle Solaris Cluster HA for Oracle VM Server for SPARC data service provides a mechanism for orderly startup and shutdown, fault monitoring and automatic failover of the Oracle VM Server guest domain service. In addition, applications that run on a logical domain, as well as its resources and dependencies can be controlled and managed independently. These are managed as if they were running in a classical Solaris Cluster hardware node. Supported Systems Oracle VM Server for SPARC is supported on all Sun SPARC Enterprise Systems with CMT technology. UltraSPARC T2 Plus Systems ·   Sun SPARC Enterprise T5140 Server ·   Sun SPARC Enterprise T5240 Server ·   Sun SPARC Enterprise T5440 Server ·   Sun Netra T5440 Server ·   Sun Blade T6340 Server Module ·   Sun Netra T6340 Server Module UltraSPARC T2 Systems ·   Sun SPARC Enterprise T5120 Server ·   Sun SPARC Enterprise T5220 Server ·   Sun Netra T5220 Server ·   Sun Blade T6320 Server Module ·   Sun Netra CP3260 ATCA Blade Server Note that UltraSPARC T1 systems are supported on earlier versions of the software.Sun SPARC Enterprise Systems with CMT technology come with the right to use (RTU) of Oracle VM Server, and the software is pre-installed. If you have the systems under warranty or with support, you can download the software and system firmware as well as their updates. Oracle Premier Support for Systems provides fully-integrated support for your server hardware, firmware, OS, and virtualization software. Visit oracle.com/support for information about Oracle's support offerings for Sun systems. For more information about Oracle's virtualization offerings, visit oracle.com/virtualization.

    Read the article

  • Soapi.CS : A fully relational fluent .NET Stack Exchange API client library

    - by Sky Sanders
    Soapi.CS for .Net / Silverlight / Windows Phone 7 / Mono as easy as breathing...: var context = new ApiContext(apiKey).Initialize(false); Question thisPost = context.Official .StackApps .Questions.ById(386) .WithComments(true) .First(); Console.WriteLine(thisPost.Title); thisPost .Owner .Questions .PageSize(5) .Sort(PostSort.Votes) .ToList() .ForEach(q=> { Console.WriteLine("\t" + q.Score + "\t" + q.Title); q.Timeline.ToList().ForEach(t=> Console.WriteLine("\t\t" + t.TimelineType + "\t" + t.Owner.DisplayName)); Console.WriteLine(); }); // if you can think it, you can get it. Output Soapi.CS : A fully relational fluent .NET Stack Exchange API client library 21 Soapi.CS : A fully relational fluent .NET Stack Exchange API client library Revision code poet Revision code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Answer code poet Revision code poet Revision code poet 14 SOAPI-WATCH: A realtime service that notifies subscribers via twitter when the API changes in any way. Votes code poet Revision code poet Votes code poet Comment code poet Comment code poet Comment code poet Votes lfoust Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Revision code poet Comment lfoust Votes code poet Revision code poet Votes code poet Votes lfoust Votes code poet Revision code poet Comment Dave DeLong Revision code poet Revision code poet Votes code poet Comment lfoust Comment Dave DeLong Comment lfoust Comment lfoust Comment Dave DeLong Revision code poet 11 SOAPI-EXPLORE: Self-updating single page JavaSript API test harness Votes code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Comment code poet Revision code poet Votes code poet Comment code poet Question code poet Votes code poet 11 Soapi.JS V1.0: fluent JavaScript wrapper for the StackOverflow API Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Answer George Edison Votes code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Answer code poet Comment code poet Revision code poet Comment code poet Comment code poet Comment code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Comment code poet 9 SOAPI-DIFF: Your app broke? Check SOAPI-DIFF to find out what changed in the API Votes code poet Revision code poet Comment Dennis Williamson Answer Dennis Williamson Votes code poet Votes Dennis Williamson Comment code poet Question code poet Votes code poet About A robust, fully relational, easy to use, strongly typed, end-to-end StackOverflow API Client Library. Out of the box, Soapi provides you with a robust client library that abstracts away most all of the messy details of consuming the API and lets you concentrate on implementing your ideas. A few features include: A fully relational model of the API data set exposed via a fully 'dot navigable' IEnumerable (LINQ) implementation. Simply tell Soapi what you want and it will get it for you. e.g. "On my first question, from the author of the first comment, get the first page of comments by that person on any post" my.Questions.First().Comments.First().Owner.Comments.ToList(); (yes this is a real expression that returns the data as expressed!) Full coverage of the API, all routes and all parameters with an intuitive syntax. Strongly typed Domain Data Objects for all API data structures. Eager and Lazy Loading of 'stub' objects. Eager\Lazy loading may be disabled. When finer grained control of requests is desired, the core RouteMap objects may be leveraged to request data from any of the API paths using all available parameters as documented on the help pages. A rich Asynchronous implementation. A configurable request cache to reduce unnecessary network traffic and to simplify your usage logic. There is no need to go out of your way to be frugal. You may set a distinct cache duration for any particular route. A configurable request throttle to ensure compliance with the api terms of usage and to simplify your code in that you do not have to worry about and respond to 50X errors. The RequestCache and Throttled Queue are thread-safe, so can make as many requests as you like from as many threads as you like as fast as you like and not worry about abusing the api or having to write reams of management/compensation code. Configurable retry threshold that will, by default, make up to 3 attempts to retrieve a request before failing. Every request made by Soapi is properly formed and directed so most any http error will be the result of a timeout or other network infrastructure. A retry buffer provides a level of fault tolerance that you can rely on. An almost identical javascript library, Soapi.JS, and it's full figured big brother, Soapi.JS2, that will enable you to leverage your server cycles and bandwidth for only those tasks that require it and offload things like status updates to the client's browser. License Licensed GPL Version 2 license. Why is Soapi.CS GPL? Can I get an LGPL license for Soapi.CS? (hint: probably) Platforms .NET 3.5 .NET 4.0 Silverlight 3 Silverlight 4 Windows Phone 7 Mono Download Source code lives @ http://soapics.codeplex.com. Binary releases are forthcoming. codeplex is acting up again. get the source and binaries @ http://bitbucket.org/bitpusher/soapi.cs/downloads The source is C# 3.5. and includes projects and solutions for the following IDEs Visual Studio 2008 Visual Studio 2010 ModoDevelop 2.4 Documentation Full documentation is available at http://soapi.info/help/cs/index.aspx Sample Code / Usage Examples Sample code and usage examples will be added as answers to this question. Full API Coverage all API routes are covered Full Parameter Parity If the API exposes it, Soapi giftwraps it for you. Building a simple app with Soapi.CS - a simple app that gathers all traces of a user in the whole stackiverse. Fluent Configuration - Setting up a Soapi.ApiContext could not be easier Bulk Data Import - A tiny app that quickly loads a SQLite data file with all users in the stackiverse. Paged Results - Soapi.CS transparently handles multi-page operations. Asynchronous Requests - Soapi.CS provides a rich asynchronous model that is especially useful when writing api apps in Silverlight or Windows Phone 7. Caching and Throttling - how and why Apps that use Soapi.CS Soapi.FindUser - .net utility for locating a user anywhere in the stackiverse Soapi.Explore - The entire API at your command Soapi.LastSeen - List users by last access time Add your app/site here - I know you are out there ;-) if you are not comfortable editing this post, simply add a comment and I will add it. The CS/SL/WP7/MONO libraries all compile the same code and with the exception of environmental considerations of Silverlight, the code samples are valid for all libraries. You may also find guidance in the test suites. More information on the SOAPI eco-system. Contact This library is currently the effort of me, Sky Sanders (code poet) and can be reached at gmail - sky.sanders Any who are interested in improving this library are welcome. Support Soapi You can help support this project by voting for Soapi's Open Source Ad post For more information about the origins of Soapi.CS and the rest of the Soapi eco-system see What is Soapi and why should I care?

    Read the article

  • ParallelWork: Feature rich multithreaded fluent task execution library for WPF

    - by oazabir
    ParallelWork is an open source free helper class that lets you run multiple work in parallel threads, get success, failure and progress update on the WPF UI thread, wait for work to complete, abort all work (in case of shutdown), queue work to run after certain time, chain parallel work one after another. It’s more convenient than using .NET’s BackgroundWorker because you don’t have to declare one component per work, nor do you need to declare event handlers to receive notification and carry additional data through private variables. You can safely pass objects produced from different thread to the success callback. Moreover, you can wait for work to complete before you do certain operation and you can abort all parallel work while they are in-flight. If you are building highly responsive WPF UI where you have to carry out multiple job in parallel yet want full control over those parallel jobs completion and cancellation, then the ParallelWork library is the right solution for you. I am using the ParallelWork library in my PlantUmlEditor project, which is a free open source UML editor built on WPF. You can see some realistic use of the ParallelWork library there. Moreover, the test project comes with 400 lines of Behavior Driven Development flavored tests, that confirms it really does what it says it does. The source code of the library is part of the “Utilities” project in PlantUmlEditor source code hosted at Google Code. The library comes in two flavors, one is the ParallelWork static class, which has a collection of static methods that you can call. Another is the Start class, which is a fluent wrapper over the ParallelWork class to make it more readable and aesthetically pleasing code. ParallelWork allows you to start work immediately on separate thread or you can queue a work to start after some duration. You can start an immediate work in a new thread using the following methods: void StartNow(Action doWork, Action onComplete) void StartNow(Action doWork, Action onComplete, Action<Exception> failed) For example, ParallelWork.StartNow(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }, () => { workEndedAt = DateTime.Now; }); Or you can use the fluent way Start.Work: Start.Work(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }) .OnComplete(() => { workCompletedAt = DateTime.Now; }) .Run(); Besides simple execution of work on a parallel thread, you can have the parallel thread produce some object and then pass it to the success callback by using these overloads: void StartNow<T>(Func<T> doWork, Action<T> onComplete) void StartNow<T>(Func<T> doWork, Action<T> onComplete, Action<Exception> fail) For example, ParallelWork.StartNow<Dictionary<string, string>>( () => { test = new Dictionary<string,string>(); test.Add("test", "test"); return test; }, (result) => { Assert.True(result.ContainsKey("test")); }); Or, the fluent way: Start<Dictionary<string, string>>.Work(() => { test = new Dictionary<string, string>(); test.Add("test", "test"); return test; }) .OnComplete((result) => { Assert.True(result.ContainsKey("test")); }) .Run(); You can also start a work to happen after some time using these methods: DispatcherTimer StartAfter(Action onComplete, TimeSpan duration) DispatcherTimer StartAfter(Action doWork,Action onComplete,TimeSpan duration) You can use this to perform some timed operation on the UI thread, as well as perform some operation in separate thread after some time. ParallelWork.StartAfter( () => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }, () => { workCompletedAt = DateTime.Now; }, waitDuration); Or, the fluent way: Start.Work(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }) .OnComplete(() => { workCompletedAt = DateTime.Now; }) .RunAfter(waitDuration);   There are several overloads of these functions to have a exception callback for handling exceptions or get progress update from background thread while work is in progress. For example, I use it in my PlantUmlEditor to perform background update of the application. // Check if there's a newer version of the app Start<bool>.Work(() => { return UpdateChecker.HasUpdate(Settings.Default.DownloadUrl); }) .OnComplete((hasUpdate) => { if (hasUpdate) { if (MessageBox.Show(Window.GetWindow(me), "There's a newer version available. Do you want to download and install?", "New version available", MessageBoxButton.YesNo, MessageBoxImage.Information) == MessageBoxResult.Yes) { ParallelWork.StartNow(() => { var tempPath = System.IO.Path.Combine( Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData), Settings.Default.SetupExeName); UpdateChecker.DownloadLatestUpdate(Settings.Default.DownloadUrl, tempPath); }, () => { }, (x) => { MessageBox.Show(Window.GetWindow(me), "Download failed. When you run next time, it will try downloading again.", "Download failed", MessageBoxButton.OK, MessageBoxImage.Warning); }); } } }) .OnException((x) => { MessageBox.Show(Window.GetWindow(me), x.Message, "Download failed", MessageBoxButton.OK, MessageBoxImage.Exclamation); }); The above code shows you how to get exception callbacks on the UI thread so that you can take necessary actions on the UI. Moreover, it shows how you can chain two parallel works to happen one after another. Sometimes you want to do some parallel work when user does some activity on the UI. For example, you might want to save file in an editor while user is typing every 10 second. In such case, you need to make sure you don’t start another parallel work every 10 seconds while a work is already queued. You need to make sure you start a new work only when there’s no other background work going on. Here’s how you can do it: private void ContentEditor_TextChanged(object sender, EventArgs e) { if (!ParallelWork.IsAnyWorkRunning()) { ParallelWork.StartAfter(SaveAndRefreshDiagram, TimeSpan.FromSeconds(10)); } } If you want to shutdown your application and want to make sure no parallel work is going on, then you can call the StopAll() method. ParallelWork.StopAll(); If you want to wait for parallel works to complete without a timeout, then you can call the WaitForAllWork(TimeSpan timeout). It will block the current thread until the all parallel work completes or the timeout period elapses. result = ParallelWork.WaitForAllWork(TimeSpan.FromSeconds(1)); The result is true, if all parallel work completed. If it’s false, then the timeout period elapsed and all parallel work did not complete. For details how this library is built and how it works, please read the following codeproject article: ParallelWork: Feature rich multithreaded fluent task execution library for WPF http://www.codeproject.com/KB/WPF/parallelwork.aspx If you like the article, please vote for me.

    Read the article

  • Regression testing with Selenium GRID

    - by Ben Adderson
    A lot of software teams out there are tasked with supporting and maintaining systems that have grown organically over time, and the web team here at Red Gate is no exception. We're about to embark on our first significant refactoring endeavour for some time, and as such its clearly paramount that the code be tested thoroughly for regressions. Unfortunately we currently find ourselves with a codebase that isn't very testable - the three layers (database, business logic and UI) are currently tightly coupled. This leaves us with the unfortunate problem that, in order to confidently refactor the code, we need unit tests. But in order to write unit tests, we need to refactor the code :S To try and ease the initial pain of decoupling these layers, I've been looking into the idea of using UI automation to provide a sort of system-level regression test suite. The idea being that these tests can help us identify regressions whilst we work towards a more testable codebase, at which point the more traditional combination of unit and integration tests can take over. Ending up with a strong battery of UI tests is also a nice bonus :) Following on from my previous posts (here, here and here) I knew I wanted to use Selenium. I also figured that this would be a good excuse to put my xUnit [Browser] attribute to good use. Pretty quickly, I had a raft of tests that looked like the following (this particular example uses Reflector Pro). In a nut shell the test traverses our shopping cart and, for a particular combination of number of users and months of support, checks that the price calculations all come up with the correct values. [BrowserTheory] [Browser(Browsers.Firefox3_6, "http://www.red-gate.com")] public void Purchase1UserLicenceNoSupport(SeleniumProvider seleniumProvider) {     //Arrange     _browser = seleniumProvider.GetBrowser();     _browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                  //Act     _browser = ShoppingCartHelpers.TraverseShoppingCart(_browser, 1, 0, ".NET Reflector Pro");     //Assert     var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);         Assert.Equal(priceResult.Price, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.Equal(priceResult.Tax, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.Equal(priceResult.Total, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } These tests are pretty concise, with much of the common code in the TraverseShoppingCart() and GetNewPurchasePrice() methods. The (inevitable) problem arose when it came to execute these tests en masse. Selenium is a very slick tool, but it can't mask the fact that UI automation is very slow. To give you an idea, the set of cases that covers all of our products, for all combinations of users and support, came to 372 tests (for now only considering purchases in dollars). In the world of automated integration tests, that's a very manageable number. For unit tests, it's a trifle. However for UI automation, those 372 tests were taking just over two hours to run. Two hours may not sound like a lot, but those cases only cover one of the three currencies we deal with, and only one of the many different ways our systems can be asked to calculate a price. It was already pretty clear at this point that in order for this approach to be viable, I was going to have to find a way to speed things up. Up to this point I had been using Selenium Remote Control to automate Firefox, as this was the approach I had used previously and it had worked well. Fortunately,  the guys at SeleniumHQ also maintain a tool for executing multiple Selenium RC tests in parallel: Selenium Grid. Selenium Grid uses a central 'hub' to handle allocation of Selenium tests to individual RCs. The Remote Controls simply register themselves with the hub when they start, and then wait to be assigned work. The (for me) really clever part is that, as far as the client driver library is concerned, the grid hub looks exactly the same as a vanilla remote control. To create a new browser session against Selenium RC, the following C# code suffices: new DefaultSelenium("localhost", 4444, "*firefox", "http://www.red-gate.com"); This assumes that the RC is running on the local machine, and is listening on port 4444 (the default). Assuming the hub is running on your local machine, then to create a browser session in Selenium Grid, via the hub rather than directly against the control, the code is exactly the same! Behind the scenes, the hub will take this request and hand it off to one of the registered RCs that provides the "*firefox" execution environment. It will then pass all communications back and forth between the test runner and the remote control transparently. This makes running existing RC tests on a Selenium Grid a piece of cake, as the developers intended. For a more detailed description of exactly how Selenium Grid works, see this page. Once I had a test environment capable of running multiple tests in parallel, I needed a test runner capable of doing the same. Unfortunately, this does not currently exist for xUnit (boo!). MbUnit on the other hand, has the concept of concurrent execution baked right into the framework. So after swapping out my assembly references, and fixing up the resulting mismatches in assertions, my example test now looks like this: [Test] public void Purchase1UserLicenceNoSupport() {    //Arrange    ISelenium browser = BrowserHelpers.GetBrowser();    var db = DbHelpers.GetWebsiteDBDataContext();    browser.Start();    browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                 //Act     browser = ShoppingCartHelpers.TraverseShoppingCart(browser, 1, 0, ".NET Reflector Pro");    var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);    //Assert     Assert.AreEqual(priceResult.Price, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.AreEqual(priceResult.Tax, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.AreEqual(priceResult.Total, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } This is pretty much the same as the xUnit version. The exceptions are that the attributes have changed,  the //Arrange phase now has to handle setting up the ISelenium object, as the attribute that previously did this has gone away, and the test now sets up its own database connection. Previously I was using a shared database connection, but this approach becomes more complicated when tests are being executed concurrently. To avoid complexity each test has its own connection, which it is responsible for closing. For the sake of readability, I snipped out the code that closes the browser session and the db connection at the end of the test. With all that done, there was only one more step required before the tests would execute concurrently. It is necessary to tell the test runner which tests are eligible to run in parallel, via the [Parallelizable] attribute. This can be done at the test, fixture or assembly level. Since I wanted to run all tests concurrently, I marked mine at the assembly level in the AssemblyInfo.cs using the following: [assembly: DegreeOfParallelism(3)] [assembly: Parallelizable(TestScope.All)] The second attribute marks all tests in the assembly as [Parallelizable], whilst the first tells the test runner how many concurrent threads to use when executing the tests. I set mine to three since I was using 3 RCs in separate VMs. With everything now in place, I fired up the Icarus* test runner that comes with MbUnit. Executing my 372 tests three at a time instead of one at a time reduced the running time from 2 hours 10 minutes, to 55 minutes, that's an improvement of about 58%! I'd like to have seen an improvement of 66%, but I can understand that either inefficiencies in the hub code, my test environment or the test runner code (or some combination of all three most likely) contributes to a slightly diminished improvement. That said, I'd love to hear about any experience you have in upping this efficiency. Ultimately though, it was a saving that was most definitely worth having. It makes regression testing via UI automation a far more plausible prospect. The other obvious point to make is that this approach scales far better than executing tests serially. So if ever we need to improve performance, we just register additional RC's with the hub, and up the DegreeOfParallelism. *This was just my personal preference for a GUI runner. The MbUnit/Gallio installer also provides a command line runner, a TestDriven.net runner, and a Resharper 4.5 runner. For now at least, Resharper 5 isn't supported.

    Read the article

  • Run Your Tests With Any NUnit Version

    - by Alois Kraus
    I always thought that the NUnit test runners and the test assemblies need to reference the same NUnit.Framework version. I wanted to be able to run my test assemblies with the newest GUI runner (currently 2.5.3). Ok so all I need to do is to reference both NUnit versions the newest one and the official for the current project. There is a nice article form Kent Bogart online how to reference the same assembly multiple times with different versions. The magic works by referencing one NUnit assembly with an alias which does prefix all types inside it. Then I could decorate my tests with the TestFixture and Test attribute from both NUnit versions and everything worked fine except that this was ugly. After playing a little bit around to make it simpler I found that I did not need to reference both NUnit.Framework assemblies. The test runners do not require the TestFixture and Test attribute in their specific version. That is really neat since the test runners are instructed by attributes what to do in a declarative way there is really no need to tie the runners to a specific version. At its core NUnit has this little method hidden to find matching TestFixtures and Tests   public bool CanBuildFrom(Type type) {     if (!(!type.IsAbstract || type.IsSealed))     {         return false;     }     return (((Reflect.HasAttribute(type,           "NUnit.Framework.TestFixtureAttribute", true) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TestAttribute"       , true)) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TestCaseAttribute"   , true)) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TheoryAttribute"     , true)); } That is versioning and backwards compatibility at its best. I tell NUnit what to do by decorating my tests classes with NUnit Attributes and the runner executes my intent without the need to bind me to a specific version. The contract between NUnit versions is actually a bit more complex (think of AssertExceptions) but this is also handled nicely by using not the concrete type but simply to check for the catched exception type by string. What can we learn from this? Versioning can be easy if the contract is small and the users of your library use it in a declarative way (Attributes). Everything beyond it will force you to reference several versions of the same assembly with all its consequences. Type equality is lost between versions so none of your casts will work. That means that you cannot simply use IBigInterface in two versions. You will need a wrapper to call the correct versioned one. To get out of this mess you can use one (and only one) version agnostic driver to encapsulate your business logic from the concrete versions. This is of course more work but as NUnit shows it can be easy. Simplicity is therefore not a nice thing to have but also requirement number one if you intend to make things more complex in version two and want to support any version (older and newer). Any interaction model above easy will not be maintainable. There are different approached to versioning. Below are my own personal observations how versioning works within the  .NET Framwork and NUnit.   Versioning Models 1. Bug Fixing and New Isolated Features When you only need to fix bugs there is no need to break anything. This is especially true when you have a big API surface. Microsoft did this with the .NET Framework 3.0 which did leave the CLR as is but delivered new assemblies for the features WPF, WCF and Windows Workflow Foundations. Their basic model was that the .NET 2.0 assemblies were declared as red assemblies which must not change (well mostly but each change was carefully reviewed to minimize the risk of breaking changes as much as possible) whereas the new green assemblies of .NET 3,3.5 did not have such obligations since they did implement new unrelated features which did not have any impact on the red assemblies. This is versioning strategy aimed at maximum compatibility and the delivery of new unrelated features. If you have a big API surface you should strive hard to do the same or you will break your customers code with every release. 2. New Breaking Features There are times when really new things need to be added to an existing product. The .NET Framework 4.0 did change the CLR in many ways which caused subtle different behavior although the API´s remained largely unchanged. Sometimes it is possible to simply recompile an application to make it work (e.g. changed method signature void Func() –> bool Func()) but behavioral changes need much more thought and cannot be automated. To minimize the impact .NET 2.0,3.0,3.5 applications will not automatically use the .NET 4.0 runtime when installed but they will keep using the “old” one. What is interesting is that a side by side execution model of both CLR versions (2 and 4) within one process is possible. Key to success was total isolation. You will have 2 GCs, 2 JIT compilers, 2 finalizer threads within one process. The two .NET runtimes cannot talk  (except via the usual IPC mechanisms) to each other. Both runtimes share nothing and run independently within the same process. This enables Explorer plugins written for the CLR 2.0 to work even when a CLR 4 plugin is already running inside the Explorer process. The price for isolation is an increased memory footprint because everything is loaded and running two times.   3. New Non Breaking Features It really depends where you break things. NUnit has evolved and many different Assert, Expect… methods have been added. These changes are all localized in the NUnit.Framework assembly which can be easily extended. As long as the test execution contract (TestFixture, Test, AssertException) remains stable it is possible to write test executors which can run tests written for NUnit 10 because the execution contract has not changed. It is possible to write software which executes other components in a version independent way but this is only feasible if the interaction model is relatively simple.   Versioning software is hard and it looks like it will remain hard since you suddenly work in a severely constrained environment when you try to innovate and to keep everything backwards compatible at the same time. These are contradicting goals and do not play well together. The easiest way out of this is to carefully watch what your customers are doing with your software. Minimizing the impact is much easier when you do not need to guess how many people will be broken when this or that is removed.

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • SPARC T3-1 Record Results Running JD Edwards EnterpriseOne Day in the Life Benchmark with Added Batch Component

    - by Brian
    Using Oracle's SPARC T3-1 server for the application tier and Oracle's SPARC Enterprise M3000 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne applications Day in the Life benchmark run concurrently with a batch workload. The SPARC T3-1 server based result has 25% better performance than the IBM Power 750 POWER7 server even though the IBM result did not include running a batch component. The SPARC T3-1 server based result has 25% better space/performance than the IBM Power 750 POWER7 server as measured by the online component. The SPARC T3-1 server based result is 5x faster than the x86-based IBM x3650 M2 server system when executing the online component of the JD Edwards EnterpriseOne 9.0.1 Day in the Life benchmark. The IBM result did not include a batch component. The SPARC T3-1 server based result has 2.5x better space/performance than the x86-based IBM x3650 M2 server as measured by the online component. The combination of SPARC T3-1 and SPARC Enterprise M3000 servers delivered a Day in the Life benchmark result of 5000 online users with 0.875 seconds of average transaction response time running concurrently with 19 Universal Batch Engine (UBE) processes at 10 UBEs/minute. The solution exercises various JD Edwards EnterpriseOne applications while running Oracle WebLogic Server 11g Release 1 and Oracle Web Tier Utilities 11g HTTP server in Oracle Solaris Containers, together with the Oracle Database 11g Release 2. The SPARC T3-1 server showed that it could handle the additional workload of batch processing while maintaining the same number of online users for the JD Edwards EnterpriseOne Day in the Life benchmark. This was accomplished with minimal loss in response time. JD Edwards EnterpriseOne 9.0.1 takes advantage of the large number of compute threads available in the SPARC T3-1 server at the application tier and achieves excellent response times. The SPARC T3-1 server consolidates the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth. A number of Oracle advanced technology and features were used to obtain this result: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle WebLogic Server 11g Release 1, Oracle Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and SPARC64 VII+ based servers. This is the first published result running both online and batch workload concurrently on the JD Enterprise Application server. No published results are available from IBM running the online component together with a batch workload. The 9.0.1 version of the benchmark saw some minor performance improvements relative to 9.0. When comparing between 9.0.1 and 9.0 results, the reader should take this into account when the difference between results is small. Performance Landscape JD Edwards EnterpriseOne Day in the Life Benchmark Online with Batch Workload This is the first publication on the Day in the Life benchmark run concurrently with batch jobs. The batch workload was provided by Oracle's Universal Batch Engine. System RackUnits Online Users Resp Time (sec) BatchConcur(# of UBEs) BatchRate(UBEs/m) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII+ (2.86 GHz), Solaris 10 4 5000 0.88 19 10 9.0.1 Resp Time (sec) — Response time of online jobs reported in seconds Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs Batch Rate (UBEs/m) — Batch transaction rate in UBEs/minute. JD Edwards EnterpriseOne Day in the Life Benchmark Online Workload Only These results are for the Day in the Life benchmark. They are run without any batch workload. System RackUnits Online Users ResponseTime (sec) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII (2.75 GHz), Solaris 10 4 5000 0.52 9.0.1 IBM Power 750, 1xPOWER7 (3.55 GHz), IBM i7.1 4 4000 0.61 9.0 IBM x3650M2, 2xIntel X5570 (2.93 GHz), OVM 2 1000 0.29 9.0 IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere Configuration Summary Hardware Configuration: 1 x SPARC T3-1 server 1 x 1.65 GHz SPARC T3 128 GB memory 16 x 300 GB 10000 RPM SAS 1 x Sun Flash Accelerator F20 PCIe Card, 92 GB 1 x 10 GbE NIC 1 x SPARC Enterprise M3000 server 1 x 2.86 SPARC64 VII+ 64 GB memory 1 x 10 GbE NIC 2 x StorageTek 2540 + 2501 Software Configuration: JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3 Oracle Database 11g Release 2 Oracle 11g WebLogic server 11g Release 1 version 10.3.2 Oracle Web Tier Utilities 11g Oracle Solaris 10 9/10 Mercury LoadRunner 9.10 with Oracle Day in the Life kit for JD Edwards EnterpriseOne 9.0.1 Oracle’s Universal Batch Engine - Short UBEs and Long UBEs Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE workload of 15 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large UBEs, and the QPROCESS queue for short UBEs run concurrently. One of the Oracle Solaris Containers ran 4 Long UBEs, while another Container ran 15 short UBEs concurrently. The mixed size UBEs ran concurrently from the SPARC T3-1 server with the 5000 online users driven by the LoadRunner. Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers. See Also SPARC T3-1 oracle.com SPARC Enterprise M3000 oracle.com Oracle Solaris oracle.com JD Edwards EnterpriseOne oracle.com Oracle Database 11g Release 2 Enterprise Edition oracle.com Disclosure Statement Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 6/27/2011.

    Read the article

  • My Code Kata–A Solution Kata

    - by Glav
    There are many developers and coders out there who like to do code Kata’s to keep their coding ability up to scratch and to practice their skills. I think it is a good idea. While I like the concept, I find them dead boring and of minimal purpose. Yes, they serve to hone your skills but that’s about it. They are often quite abstract, in that they usually focus on a small problem set requiring specific solutions. It is fair enough as that is how they are designed but again, I find them quite boring. What I personally like to do is go for something a little larger and a little more fun. It takes a little more time and is not as easily executed as a kata though, but it services the same purposes from a practice perspective and allows me to continue to solve some problems that are not directly part of the initial goal. This means I can cover a broader learning range and have a bit more fun. If I am lucky, sometimes they even end up being useful tools. With that in mind, I thought I’d share my current ‘kata’. It is not really a code kata as it is too big. I prefer to think of it as a ‘solution kata’. The code is on bitbucket here. What I wanted to do was create a kind of simplistic virtual world where I can create a player, or a class, stuff it into the world, and see if it survives, and can navigate its way to the exit. Requirements were pretty simple: Must be able to define a map to describe the world using simple X,Y co-ordinates. Z co-ordinates as well if you feel like getting clever. Should have the concept of entrances, exists, solid blocks, and potentially other materials (again if you want to get clever). A coder should be able to easily write a class which will act as an inhabitant of the world. An inhabitant will receive stimulus from the world in the form of surrounding environment and be able to make a decision on action which it passes back to the ‘world’ for processing. At a minimum, an inhabitant will have sight and speed characteristics which determine how far they can ‘see’ in the world, and how fast they can move. Coders who write a really bad ‘inhabitant’ should not adversely affect the rest of world. Should allow multiple inhabitants in the world. So that was the solution I set out to act as a practice solution and a little bit of fun. It had some interesting problems to solve and I figured, if it turned out ok, I could potentially use this as a ‘developer test’ for interviews. Ask a potential coder to write a class for an inhabitant. Show the coder the map they will navigate, but also mention that we will use their code to navigate a map they have not yet seen and a little more complex. I have been playing with solution for a short time now and have it working in basic concepts. Below is a screen shot using a very basic console visualiser that shows the map, boundaries, blocks, entrance, exit and players/inhabitants. The yellow asterisks ‘*’ are the players, green ‘O’ the entrance, purple ‘^’ the exit, maroon/browny ‘#’ are solid blocks. The players can move around at different speeds, knock into each others, and make directional movement decisions based on what they see and who is around them. It has been quite fun to write and it is also quite fun to develop different players to inject into the world. The code below shows a really simple implementation of an inhabitant that can work out what to do based on stimulus from the world. It is pretty simple and just tries to move in some direction if there is nothing blocking the path. public class TestPlayer:LivingEntity { public TestPlayer() { Name = "Beta Boy"; LifeKey = Guid.NewGuid(); } public override ActionResult DecideActionToPerform(EcoDev.Core.Common.Actions.ActionContext actionContext) { try { var action = new MovementAction(); // move forward if we can if (actionContext.Position.ForwardFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.ForwardFacingPositions[0])) { action.DirectionToMove = MovementDirection.Forward; return action; } } if (actionContext.Position.LeftFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.LeftFacingPositions[0])) { action.DirectionToMove = MovementDirection.Left; return action; } } if (actionContext.Position.RearFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.RearFacingPositions[0])) { action.DirectionToMove = MovementDirection.Back; return action; } } if (actionContext.Position.RightFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.RightFacingPositions[0])) { action.DirectionToMove = MovementDirection.Right; return action; } } return action; } catch (Exception ex) { World.WriteDebugInformation("Player: "+ Name, string.Format("Player Generated exception: {0}",ex.Message)); throw ex; } } private bool CheckAccessibilityOfMapBlock(MapBlock block) { if (block == null || block.Accessibility == MapBlockAccessibility.AllowEntry || block.Accessibility == MapBlockAccessibility.AllowExit || block.Accessibility == MapBlockAccessibility.AllowPotentialEntry) { return true; } return false; } } It is simple and it seems to work well. The world implementation itself decides the stimulus context that is passed to he inhabitant to make an action decision. All movement is carried out on separate threads and timed appropriately to be as fair as possible and to cater for additional skills such as speed, and eventually maybe stamina, strength, with actions like fighting. It is pretty fun to make up random maps and see how your inhabitant does. You can download the code from here. Along the way I have played with parallel extensions to make the compute intensive stuff spread across all cores, had to heavily factor in visibility of methods and properties so design of classes was paramount, work out movement algorithms that play fairly in the world and properly favour the players with higher abilities, as well as a host of other issues. So that is my ‘solution kata’. If I keep going with it, I may develop a web interface for it where people can upload assemblies and watch their player within a web browser visualiser and maybe even a map designer. What do you do to keep the fires burning?

    Read the article

< Previous Page | 188 189 190 191 192 193 194 195 196 197 198 199  | Next Page >