Search Results

Search found 30347 results on 1214 pages for 'public speaking'.

Page 192/1214 | < Previous Page | 188 189 190 191 192 193 194 195 196 197 198 199  | Next Page >

  • displaying a dialog using an activity?

    - by ricardo123
    what am i doing wrong here or what do i need to add? package dialog.com; import android.app.Activity; import android.app.AlertDialog; import android.content.DialogInterface; import android.app.Dialog; import android.os.Bundle; import android.view.View; import android.widget.Button; import android.widget.Toast; public class Dialog extends Activity { CharSequence [] items = { "google", "apple", "microsoft" }; boolean [] itemschecked = new boolean [items.length]; /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); Button btn = (Button) findViewById(R.id.btn_dialog); btn.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { showDialog(0); } }); } @Override protected Dialog onCreateDialog(int id) { switch(id) { case 0: return new AlertDialog.Builder(this) .setIcon(R.drawable.icon) .setTitle("This is a Dialog with some simple text...") .setPositiveButton("ok", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int whichbutton) { Toast.makeText(getBaseContext(), "OK Clicked!", Toast.LENGTH_SHORT).show(); } }); .setNegativeButton("cancel",new DialogInterface.OnclickListener() { public void onClick(DialogInterface dialog, int whichButton) {Toast.makeText(getBaseContext(), "cancel clicked!", Toast.LENGTH_SHORT).show(); } }); .setMultiChoiceItems(itemschecked, new DialogInterface.OnMultiChoiceClickListener() { @Override public void onClick(dialoginterface dialog, int which, boolean isChecked) { Toast.makeText(getBaseContext(), items[which] + (isChecked ? " checked!": "unchecked!"), Toast.LENGTH_SHORT).show(); } } ) .create(); } return null: }}}

    Read the article

  • Using addMouseListener() and paintComponent() for JPanel

    - by Alex
    This is a follow-up to my previous question. I've simplified things as much as I could, and it still doesn't work! Although the good thing I got around using getGraphics(). A detailed explanation on what goes wrong here is massively appreciated. My suspicion is that something's wrong with the the way I used addMouseListener() method here. import java.awt.Color; import java.awt.Graphics; import java.awt.event.MouseAdapter; import java.awt.event.MouseEvent; import javax.swing.JFrame; import javax.swing.JPanel; public class MainClass1{ private static PaintClass22 inst2 = new PaintClass22(); public static void main(String args[]){ JFrame frame1 = new JFrame(); frame1.add(inst2); frame1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame1.setTitle("NewPaintToolbox"); frame1.setSize(200, 200); frame1.setLocationRelativeTo(null); frame1.setVisible(true); } } class PaintClass11 extends MouseAdapter{ int xvar; int yvar; static PaintClass22 inst1 = new PaintClass22(); public PaintClass11(){ inst1.addMouseListener(this); inst1.addMouseMotionListener(this); } @Override public void mouseClicked(MouseEvent arg0) { // TODO Auto-generated method stub xvar = arg0.getX(); yvar = arg0.getY(); inst1.return_paint(xvar, yvar); } } class PaintClass22 extends JPanel{ private static int varx; private static int vary; public void return_paint(int input1, int input2){ varx = input1; vary = input2; repaint(varx,vary,10,10); } public void paintComponent(Graphics g){ super.paintComponents(g); g.setColor(Color.RED); g.fillRect(varx, vary, 10, 10); } }

    Read the article

  • Create and use a Button class on AS3.0

    - by Madcowe
    I am currently working on a game and it is all going well. On the shop screen there are several buttons that affect the player's stats for when the player restarts the game. The button's names (with a text on the left), however, are rather cryptic and it's hard to figure out what they do unless you test or something. So the solution I came up with, is to create an InfoBox with an InfoText inside so that when the cursor is over the button it appears with the description, cost and etc. This I managed to do too however, the way I was about to do it would mean that I had to create 3 event listeners per button (CLICK, ROLL_OVER, ROLL_OUT) and, obviously, 3 functions connected to each event listener. Now, I don't mind much about having 1 event listener per button, for the click, but since the other events are just to make a box appear and disappear as well as display some text, I thought it was way too much of a mess of code. What I tried to do: I created a new class called InfoBoxButton, and this is the class' code: package { import flash.display.SimpleButton; import flash.display.MovieClip; import flash.ui.Mouse; import flash.events.MouseEvent; public class InfoBoxButton extends SimpleButton { public var description:String; public var infoBox:InfoBox; public function InfoBoxButton(description) { this.addEventListener( MouseEvent.ROLL_OVER, displayInfoText, false, 0, true); this.addEventListener( MouseEvent.ROLL_OUT, hideInfoText, false, 0, true); } private function displayInfoText() { infoBox.infoText.text = description; infoBox.visible = true; } private function hideInfoText() { infoBox.infoText.text = ""; infoBox.visible = false; } } } But now I don't have an idea how to associate it with the button, I have tried this: public var SoonButton:InfoBoxButton = new InfoBoxButton("This is merely a test"); The SoonButton is a button I made on the shopscreen, SoonButton is it's instance name, but I can't think of a way of associating one button to the other... I have been fiddling with the code for like 3 hours yesterday and no luck... can anyone give me some pointers on how I should go about doing it?

    Read the article

  • LINQ Query using Multiple From and Multiple Collections

    1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5:  6: namespace ConsoleApplication2 7: { 8: class Program 9: { 10: static void Main(string[] args) 11: { 12: var emps = GetEmployees(); 13: var deps = GetDepartments(); 14:  15: var results = from e in emps 16: from d in deps 17: where e.EmpNo >= 1 && d.DeptNo <= 30 18: select new { Emp = e, Dept = d }; 19: 20: foreach (var item in results) 21: { 22: Console.WriteLine("{0},{1},{2},{3}", item.Dept.DeptNo, item.Dept.DName, item.Emp.EmpNo, item.Emp.EmpName); 23: } 24: } 25:  26: private static List<Emp> GetEmployees() 27: { 28: return new List<Emp>() { 29: new Emp() { EmpNo = 1, EmpName = "Smith", DeptNo = 10 }, 30: new Emp() { EmpNo = 2, EmpName = "Narayan", DeptNo = 20 }, 31: new Emp() { EmpNo = 3, EmpName = "Rishi", DeptNo = 30 }, 32: new Emp() { EmpNo = 4, EmpName = "Guru", DeptNo = 10 }, 33: new Emp() { EmpNo = 5, EmpName = "Priya", DeptNo = 20 }, 34: new Emp() { EmpNo = 6, EmpName = "Riya", DeptNo = 10 } 35: }; 36: } 37:  38: private static List<Department> GetDepartments() 39: { 40: return new List<Department>() { 41: new Department() { DeptNo=10, DName="Accounts" }, 42: new Department() { DeptNo=20, DName="Finance" }, 43: new Department() { DeptNo=30, DName="Travel" } 44: }; 45: } 46: } 47:  48: class Emp 49: { 50: public int EmpNo { get; set; } 51: public string EmpName { get; set; } 52: public int DeptNo { get; set; } 53: } 54:  55: class Department 56: { 57: public int DeptNo { get; set; } 58: public String DName { get; set; } 59: } 60: } span.fullpost {display:none;}

    Read the article

  • box2D simulation doesn't work

    - by shadow_of__soul
    has been a while since last time i used box2D, and i needed to make some stuff, and i saw that my simulation don't worked (compiles, but do anything). i haven't been able to even have working the examples or this simple example i'm pasting below: package { import flash.display.Sprite; import flash.events.Event; import Box2D.Common.Math.b2Vec2; import Box2D.Dynamics.b2World; import Box2D.Dynamics.b2BodyDef; import Box2D.Dynamics.b2Body; import Box2D.Collision.Shapes.b2CircleShape; import Box2D.Dynamics.b2Fixture; import Box2D.Dynamics.b2FixtureDef; import org.flashdevelop.utils.FlashConnect; import flash.events.TimerEvent; import flash.utils.Timer; public class Main extends Sprite { public var world:b2World; public var wheelBody:b2Body; public var stepTimer:Timer; public function Main():void { if (stage) init(); else addEventListener(Event.ADDED_TO_STAGE, init); } private function init(e:Event = null):void { removeEventListener(Event.ADDED_TO_STAGE, init); var gravity:b2Vec2 = new b2Vec2(0, 10); world = new b2World(gravity, true); var wheelBodyDef:b2BodyDef = new b2BodyDef(); wheelBodyDef.type = b2Body.b2_dynamicBody; wheelBody = world.CreateBody(wheelBodyDef); var circleShape:b2CircleShape = new b2CircleShape(5); var wheelFixtureDef:b2FixtureDef = new b2FixtureDef(); wheelFixtureDef.shape = circleShape; var wheelFixture:b2Fixture = wheelBody.CreateFixture(wheelFixtureDef); stepTimer = new Timer(0.025 * 1000); stepTimer.addEventListener(TimerEvent.TIMER, onTick); FlashConnect.trace(wheelBody.GetPosition().x, wheelBody.GetPosition().y); stepTimer.start(); // entry point } private function onTick(a_event:TimerEvent):void { world.Step(0.025, 10, 10); FlashConnect.trace(wheelBody.GetPosition().x, wheelBody.GetPosition().y); } } } on this, the object should fall down, but the positions reported me by the trace method, are always 0. so is not a display problem, that i see everything freeze, is why the simulation is not working, and i have no idea why :( can anyone point me to the right direction of where i need to look for the problem? my settings are: windows 7 flashdevelop 4.2.1 SDK: 4.6.0 compiling for flash 10, but i tried every target i have available (till flash 11.5) project set at 30fps

    Read the article

  • Problem to match font size to the screen resolution in libgdx

    - by Iñaki Bedoya
    I'm having problems to show text on my game at same size on different screens, and I did a simple test. This test consists to show a text fitting at the screen, I want the text has the same size independently from the screen and from DPI. I've found this and this answer that I think should solve my problem but don't. In desktop the size is ok, but in my phone is too big. This is the result on my Nexus 4: (768x1280, 2.0 density) And this is the result on my MacBook: (480x800, 0.6875 density) I'm using the Open Sans Condensed (link to google fonts) As you can see on desktop looks good, but on the phone is so big. Here the code of my test: public class TextTest extends ApplicationAdapter { private static final String TAG = TextTest.class.getName(); private static final String TEXT = "Tap the screen to start"; private OrthographicCamera camera; private Viewport viewport; private SpriteBatch batch; private BitmapFont font; @Override public void create () { Gdx.app.log(TAG, "Screen size: "+Gdx.graphics.getWidth()+"x"+Gdx.graphics.getHeight()); Gdx.app.log(TAG, "Density: "+Gdx.graphics.getDensity()); camera = new OrthographicCamera(); viewport = new ExtendViewport(Gdx.graphics.getWidth(), Gdx.graphics.getWidth(), camera); batch = new SpriteBatch(); FreeTypeFontGenerator generator = new FreeTypeFontGenerator(Gdx.files.internal("fonts/OpenSans-CondLight.ttf")); font = createFont(generator, 64); generator.dispose(); } private BitmapFont createFont(FreeTypeFontGenerator generator, float dp) { FreeTypeFontGenerator.FreeTypeFontParameter parameter = new FreeTypeFontGenerator.FreeTypeFontParameter(); int fontSize = (int)(dp * Gdx.graphics.getDensity()); parameter.size = fontSize; Gdx.app.log(TAG, "Font size: "+fontSize+"px"); return generator.generateFont(parameter); } @Override public void render () { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); int w = -(int)(font.getBounds(TEXT).width / 2); batch.setProjectionMatrix(camera.combined); batch.begin(); font.setColor(Color.BLACK); font.draw(batch, TEXT, w, 0); batch.end(); } @Override public void resize(int width, int height) { viewport.update(width, height); } @Override public void dispose() { font.dispose(); batch.dispose(); } } I'm trying to find a neat way to fix this. What I'm doing wrong? is the camera? the viewport? UPDATE: What I want is to keep the same margins in proportion, independently of the screen size or resolution. This image illustrates what I mean.

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • Passing text message to web page from web user control

    - by Narendra Tiwari
    Here is a brief summary how we can send a text message to webpage by a web user control. Delegates is the slolution. There are many good articles on .net delegates you can refer some of them below. The scenario is we want to send a text message to the page on completion of some activity on webcontrol. 1/ Create a Base class for webcontrol (refer code below), assuming we are passing some text messages to page from web user control  - Declare a delegate  - Declare an event of type delegate using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; //Declaring delegate with message parameter public delegate void SendMessageToThePageHandler(string messageToThePage); public         } class ControlBase: System.Web.UI.UserControl { public ControlBase() { // TODO: Add constructor logic here }protected override void OnInit(EventArgs e) { base.OnInit(e); }private string strMessageToPass;/// <summary> /// MessageToPass - Property to pass text message to page /// </summary> public string MessageToPass { get { return strMessageToPass; } set { strMessageToPass = value; } }/// <summary> /// SendMessageToPage - Called from control to invoke the event /// </summary> /// <param name="strMessage">Message to pass</param> public void SendMessageToPage(string strMessage) {   if (this.sendMessageToThePage != null)       this.sendMessageToThePage(strMessage); } 2/ Register events on webpage on page Load eventthis.AddControlEventHandler((ControlBase)WebUserControl1); this.AddControlEventHandler((ControlBase)WebUserControl2); /// <summary> /// AddControlEventHandler- Hooking web user control event /// </summary> /// <param name="ctrl"></param> private void AddControlEventHandler(ControlBase ctrl) { ctrl.sendMessageToThePage += delegate(string strMessage) {   //display message   lblMessage.Text = strMessage; }; } References: http://www.akadia.com/services/dotnet_delegates_and_events.html     3/

    Read the article

  • MVC data binding

    - by user441521
    I'm using MVC but I've read that MVVM is sort of about data binding and having pure markup in your views that data bind back to the backend via the data-* attributes. I've looked at knockout but it looks pretty low level and I feel like I can make a library that does this and is much easier to use where basically you only need to call 1 javascript function that will data bind your entire page because of the data-* attributes you assign to html elements. The benefits of this (that I see) is that your view is 100% decoupled from your back-end so that a given view never has to be changed if your back-end changes (ie for asp.net people no more razor in your view that makes your view specific to MS). My question would be, I know there is knockout out there but are there any others that provide this data binding functionality for MVC type applications? I don't want to recreate something that may already exist but I want to make something "better" and easier to use than knockout. To give an example of what I mean here is all the code one would need to get data binding in my library. This isn't final but just showing the idea that all you have to do is call 1 javascript function and set some data-* attribute values and everything ties together. Is this worth seeing through? <script> $(function () { // this is all you have to call to make databinding for POST or GET to work DataBind(); }); </script> <form id="addCustomer" data-bind="Customer" data-controller="Home" data-action="CreateCustomer"> Name: <input type="text" data-bind="Name" data-bind-type="text" /> Birthday: <input type="text" data-bind="Birthday" data-bind-type="text" /> Address: <input type="text" data-bind="Address" data-bind-type="text" /> <input type="submit" value="Save" id="btnSave" /> </form> ================================================= // controller action [HttpPost] public string CreateCustomer(Customer customer) { if(customer.Name == "Rick") return "success"; return "failure"; } // model public class Customer { public string Name { get; set; } public DateTime Birthday { get; set; } public string Address { get; set; } }

    Read the article

  • Voice echo in UDP based voice transmission [closed]

    - by Meherzad
    I have coded a java application for voice transmission between to ip in LAN. Here the code. public static Boolean flag= true; public static Boolean recFlag=true; DatagramSocket UDPSocket=null; AudioFormat format = null; TargetDataLine microphone=null; byte[] buffer=null; DatagramPacket UDPPacket=null; public void startChat(String ipAddress){ try{ buffer = new byte[1000]; UDPSocket=new DatagramSocket(1987); Thread th=new Thread(new Listener()); th.start(); microphone = AudioSystem.getTargetDataLine(format); format= new AudioFormat(8000.0f, 16, 1, true, true); UDPPacket = new DatagramPacket(buffer, buffer.length, InetAddress.getByName(ipAddress), 1988); microphone.open(format); microphone.start(); while (flag) { microphone.read(buffer, 0, buffer.length); UDPSocket.send(UDPPacket); } } catch(Exception e){ System.out.println(" ssss "+e.getMessage()); } } public class Listener extends Thread{ byte[] buff=new byte[1000]; DatagramSocket UDPSocket1=null; DatagramPacket recPacket=null; DataLine.Info info = new DataLine.Info(SourceDataLine.class, format); SourceDataLine line=null; @Override public void run(){ try{ UDPSocket1=new DatagramSocket(1988); format= new AudioFormat(8000.0f, 16, 1, true, true); line = (SourceDataLine) AudioSystem.getLine(info); line.open(format); line.start(); } catch(Exception e){ System.out.println("list "+ e.getMessage()); } recPacket=new DatagramPacket(buff, buff.length); while(recFlag){ try{ UDPSocket1.receive(recPacket); buff = (byte[])recPacket.getData(); line.write(buff, 0, buff.length); } catch(Exception e){ System.out.println("errr "+e.getMessage()); } } line.drain(); line.close(); } } Main problem which I am facing that I am getting only echo of my own voice. I am unable to hear voice from the other end only I am hearing is my own voice. Please suggest any solution.

    Read the article

  • Java Slick2d Animation not working

    - by user3558075
    Hello everyone I am trying to make a simple 2d game using java and the slick2d library. this is my first time doing it and i need some help. right now I am trying to make the Animations for the character, so that when you go right he turns right and when you go left he turns left... but I keep getting an error when im drawing the character, ive try'd re-downloading slick but that didnt work. when i get rid of the player.draw(x,y); line of code it dosen't crash but the character isnt there. heres my code, can anyone help? package enteties; import input.Keyinput; import org.newdawn.slick.Animation; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.Image; import org.newdawn.slick.Input; import org.newdawn.slick.SlickException; import org.newdawn.slick.state.BasicGameState; import org.newdawn.slick.state.StateBasedGame; import playerinfo.Playerinfo; public class Player extends BasicGameState{ Playerinfo pi = new Playerinfo(); Keyinput ki = new Keyinput(); Animation player,up,down,left,right; public void init(GameContainer gc, StateBasedGame sbg) throws SlickException { Image[] goingUp = {new Image("res/buckysBack.png") , new Image("res/charBack.png")}; Image[] goingDown = {new Image("res/buckysFront.png") , new Image("res/charFront.png")}; Image[] goingLeft = {new Image("res/buckysLeft.png") , new Image("res/charLeft.png")}; Image[] goingRight = {new Image("res/buckysRight.png") , new Image("res/charRight.png")}; int[] duration = {200,200}; Animation up = new Animation(goingUp,duration,false); Animation down = new Animation(goingDown,duration,false); Animation left = new Animation(goingLeft,duration,false); Animation right = new Animation(goingRight,duration,false); player = up; } public void render(GameContainer gc, StateBasedGame sbg, Graphics g) throws SlickException { //error happens here, when i remove this line it dosent crash player.draw(720,450); } public void update(GameContainer gc, StateBasedGame sbg, int delta) throws SlickException { } public int getID() { return 0; } }

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Tile-based 2D collision detection problems

    - by Vee
    I'm trying to follow this tutorial http://www.tonypa.pri.ee/tbw/tut05.html to implement real-time collisions in a tile-based world. I find the center coordinates of my entities thanks to these properties: public float CenterX { get { return X + Width / 2f; } set { X = value - Width / 2f; } } public float CenterY { get { return Y + Height / 2f; } set { Y = value - Height / 2f; } } Then in my update method, in the player class, which is called every frame, I have this code: public override void Update() { base.Update(); int downY = (int)Math.Floor((CenterY + Height / 2f - 1) / 16f); int upY = (int)Math.Floor((CenterY - Height / 2f) / 16f); int leftX = (int)Math.Floor((CenterX + Speed * NextX - Width / 2f) / 16f); int rightX = (int)Math.Floor((CenterX + Speed * NextX + Width / 2f - 1) / 16f); bool upleft = Game.CurrentMap[leftX, upY] != 1; bool downleft = Game.CurrentMap[leftX, downY] != 1; bool upright = Game.CurrentMap[rightX, upY] != 1; bool downright = Game.CurrentMap[rightX, downY] != 1; if(NextX == 1) { if (upright && downright) CenterX += Speed; else CenterX = (Game.GetCellX(CenterX) + 1)*16 - Width / 2f; } } downY, upY, leftX and rightX should respectively find the lowest Y position, the highest Y position, the leftmost X position and the rightmost X position. I add + Speed * NextX because in the tutorial the getMyCorners function is called with these parameters: getMyCorners (ob.x+ob.speed*dirx, ob.y, ob); The GetCellX and GetCellY methods: public int GetCellX(float mX) { return (int)Math.Floor(mX / SGame.Camera.TileSize); } public int GetCellY(float mY) { return (int)Math.Floor(mY / SGame.Camera.TileSize); } The problem is that the player "flickers" while hitting a wall, and the corner detection doesn't even work correctly since it can overlap walls that only hit one of the corners. I do not understand what is wrong. In the tutorial the ob.x and ob.y fields should be the same as my CenterX and CenterY properties, and the ob.width and ob.height should be the same as Width / 2f and Height / 2f. However it still doesn't work. Thanks for your help.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Composite-like pattern and SRP violation

    - by jimmy_keen
    Recently I've noticed myself implementing pattern similar to the one described below. Starting with interface: public interface IUserProvider { User GetUser(UserData data); } GetUser method's pure job is to somehow return user (that would be an operation speaking in composite terms). There might be many implementations of IUserProvider, which all do the same thing - return user basing on input data. It doesn't really matter, as they are only leaves in composite terms and that's fairly simple. Now, my leaves are used by one own them all composite class, which at the moment follows this implementation: public interface IUserProviderComposite : IUserProvider { void RegisterProvider(Predicate<UserData> predicate, IUserProvider provider); } public class UserProviderComposite : IUserProviderComposite { public User GetUser(SomeUserData data) ... public void RegisterProvider(Predicate<UserData> predicate, IUserProvider provider) ... } Idea behind UserProviderComposite is simple. You register providers, and this class acts as a reusable entry-point. When calling GetUser, it will use whatever registered provider matches predicate for requested user data (if that helps, it stores key-value map of predicates and providers internally). Now, what confuses me is whether RegisterProvider method (brings to mind composite's add operation) should be a part of that class. It kind of expands its responsibilities from providing user to also managing providers collection. As far as my understanding goes, this violates Single Responsibility Principle... or am I wrong here? I thought about extracting register part into separate entity and inject it to the composite. As long as it looks decent on paper (in terms of SRP), it feels bit awkward because: I would be essentially injecting Dictionary (or other key-value map) ...or silly wrapper around it, doing nothing more than adding entires This won't be following composite anymore (as add won't be part of composite) What exactly is the presented pattern called? Composite felt natural to compare it with, but I realize it's not exactly the one however nothing else rings any bells. Which approach would you take - stick with SRP or stick with "composite"/pattern? Or is the design here flawed and given the problem this can be done in a better way?

    Read the article

  • Strange rendering in XNA/Monogame

    - by Gerhman
    I am trying to render G-Code generated for a 3d-printer as the printed product by reading the file as line segments and the drawing cylinders with the diameter of the filament around the segment. I think I have managed to do this part right because the vertex I am sending to the graphics device appear to have been processed correctly. My problem I think lies somewhere in the rendering. What basically happens is that when I start rotating my model in the X or Y axis then it renders perfectly for half of the rotation but then for the other half it has this weird effect where you start seeing through the outer filament into some of the shapes inside. This effect is the strongest with X rotations though. Here is a picture of the part of the rotation that looks correct: And here is one that looks horrible: I am still quite new to XNA and/Monogame and 3d programming as a whole. I have no idea what could possibly be causing this and even less of an idea of what this type of behavior is called. I am guessing this has something to do with rendering so have added the code for that part: protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Black); basicEffect.World = world; basicEffect.View = view; basicEffect.Projection = projection; basicEffect.VertexColorEnabled = true; basicEffect.EnableDefaultLighting(); GraphicsDevice.SetVertexBuffer(vertexBuffer); RasterizerState rasterizerState = new RasterizerState(); rasterizerState.CullMode = CullMode.CullClockwiseFace; rasterizerState.ScissorTestEnable = true; GraphicsDevice.RasterizerState = rasterizerState; foreach (EffectPass pass in basicEffect.CurrentTechnique.Passes) { pass.Apply(); GraphicsDevice.DrawPrimitives(PrimitiveType.TriangleList, 0, vertexBuffer.VertexCount); } base.Draw(gameTime); } I don't know if it could be because I am shading something that does not really have a texture. I am using this custom vertex declaration I found on some tutorial that allows me to store a vertex with a position, color and normal: public struct VertexPositionColorNormal { public Vector3 Position; public Color Color; public Vector3 Normal; public readonly static VertexDeclaration VertexDeclaration = new VertexDeclaration ( new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0), new VertexElement(sizeof(float) * 3, VertexElementFormat.Color, VertexElementUsage.Color, 0), new VertexElement(sizeof(float) * 3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0) ); } If any of you have ever seen this type of thing please help. Also, if you think that the problem might lay somewhere else in my code then please just request what part you would like to see in the comments section.

    Read the article

  • Arrive steering behavior

    - by dbostream
    I bought a book called Programming game AI by example and I am trying to implement the arrive steering behavior. The problem I am having is that my objects oscillate around the target position; after oscillating less and less for awhile they finally come to a stop at the target position. Does anyone have any idea why this oscillating behavior occur? Since the examples accompanying the book are written in C++ I had to rewrite the code into C#. Below is the relevant parts of the steering behavior: private enum Deceleration { Fast = 1, Normal = 2, Slow = 3 } public MovingEntity Entity { get; private set; } public Vector2 SteeringForce { get; private set; } public Vector2 Target { get; set; } public Vector2 Calculate() { SteeringForce.Zero(); SteeringForce = SumForces(); SteeringForce.Truncate(Entity.MaxForce); return SteeringForce; } private Vector2 SumForces() { Vector2 force = new Vector2(); if (Activated(BehaviorTypes.Arrive)) { force += Arrive(Target, Deceleration.Slow); if (!AccumulateForce(force)) return SteeringForce; } return SteeringForce; } private Vector2 Arrive(Vector2 target, Deceleration deceleration) { Vector2 toTarget = target - Entity.Position; double distance = toTarget.Length(); if (distance > 0) { //because Deceleration is enumerated as an int, this value is required //to provide fine tweaking of the deceleration.. double decelerationTweaker = 0.3; double speed = distance / ((double)deceleration * decelerationTweaker); speed = Math.Min(speed, Entity.MaxSpeed); Vector2 desiredVelocity = toTarget * speed / distance; return desiredVelocity - Entity.Velocity; } return new Vector2(); } private bool AccumulateForce(Vector2 forceToAdd) { double magnitudeRemaining = Entity.MaxForce - SteeringForce.Length(); if (magnitudeRemaining <= 0) return false; double magnitudeToAdd = forceToAdd.Length(); if (magnitudeToAdd > magnitudeRemaining) magnitudeToAdd = magnitudeRemaining; SteeringForce += Vector2.NormalizeRet(forceToAdd) * magnitudeToAdd; return true; } This is the update method of my objects: public void Update(double deltaTime) { Vector2 steeringForce = Steering.Calculate(); Vector2 acceleration = steeringForce / Mass; Velocity = Velocity + acceleration * deltaTime; Velocity.Truncate(MaxSpeed); Position = Position + Velocity * deltaTime; } If you want to see the problem with your own eyes you can download a minimal example here. Thanks in advance.

    Read the article

  • Calling functions from different classes

    - by A Ron Hubbard Clevenger
    I'm writing a program and I'm supposed to check and see if a certain object is in the list before I call it. I set up the contains() method which is supposed to use the equals() method of the Comparable interface I implemented on my Golfer class but it doesn't seem to call it (I put print statements in to check). I can't seem to figure out whats wrong with the code, the ArrayUnsortedList class I'm using to go through the list even uses the correct toString() method I defined in my Golfer class but for some reason it won't use the equals() method I implemented. //From "GolfApp.java" public class GolfApp{ ListInterface <Golfer>golfers = new ArraySortedList<Golfer> (20); Golfer golfer; //..*snip*.. if(this.golfers.contains(new Golfer(name,score))) System.out.println("The list already contains this golfer"); else{ this.golfers.add(this.golfer = new Golfer(name,score)); System.out.println("This golfer is already on the list"); } //From "ArrayUnsortedList.java" protected void find(T target){ location = 0; found = false; while (location < numElements){ if (list[location].equals(target)) //Where I think the problem is { found = true; return; } else location++; } } public boolean contains(T element){ find(element); return found; } //From "Golfer.java" public class Golfer implements Comparable<Golfer>{ //..irrelavant code sniped..// public boolean equals(Golfer golfer) { String thisString = score + ":" + name; String otherString = golfer.getScore() + ":" + golfer.getName() ; System.out.println("Golfer.equals() has bee called"); return thisString.equalsIgnoreCase(otherString); } public String toString() { return (score + ":" + name); } My main problem seems to be getting the find function of the ArrayUnsortedList to call my equals function in the find() part of the List but I'm not exactly sure why, like I said when I have it printed out it works with the toString() method I implemented perfectly. I'm almost positive the problem has to do with the find() function in the ArraySortedList not calling my equals() method. I tried using some other functions that relied on the find() method and got the same results.

    Read the article

  • Throwing exception from a property when my object state is invalid

    - by Rumi P.
    Microsoft guidelines say: "Avoid throwing exceptions from property getters", and I normally follow that. But my application uses Linq2SQL, and there is the case where my object can be in invalid state because somebody or something wrote nonsense into the database. Consider this toy example: [Table(Name="Rectangle")] public class Rectangle { [Column(Name="ID", IsPrimaryKey = true, IsDbGenerated = true)] public int ID {get; set;} [Column(Name="firstSide")] public double firstSide {get; set;} [Column(Name="secondSide")] public double secondSide {get; set;} public double sideRatio { get { return firstSide/secondSide; } } } Here, I could write code which ensures that my application never writes a Rectangle with a zero-length side into the database. But no matter how bulletproof I make my own code, somebody could open the database with a different application and create an invalid Rectangle, especially one with a 0 for secondSide. (For this example, please forget that it is possible to design the database in a way such that writing a side length of zero into the rectangle table is impossible; my domain model is very complex and there are constraints on model state which cannot be expressed in a relational database). So, the solution I am gravitating to is to change the getter to: get { if(firstSide > 0 && secondSide > 0) return firstSide/secondSide; else throw new System.InvalidOperationException("All rectangle sides should have a positive length"); } The reasoning behind not throwing exceptions from properties is that programmers should be able to use them without having to make precautions about catching and handling them them. But in this case, I think that it is OK to continue to use this property without such precautions: if the exception is thrown because my application wrote a non-zero rectangle side into the database, then this is a serious bug. It cannot and shouldn't be handled in the application, but there should be code which prevents it. It is good that the exception is visibly thrown, because that way the bug is caught. if the exception is thrown because a different application changed the data in the database, then handling it is outside of the scope of my application. So I can't do anything about it if I catch it. Is this a good enough reasoning to get over the "avoid" part of the guideline and throw the exception? Or should I turn it into a method after all? Note that in the real code, the properties which can have an invalid state feel less like the result of a calculation, so they are "natural" properties, not methods.

    Read the article

  • Another question about handling game states

    - by Eva
    I'm making a game designed with the entity-component paradigm that uses systems to communicate between components as explained here. I've reached the point in my development that I need to add game states (such as paused, playing, level start, round start, game over, etc.), but I'm not sure how to do it with my framework. I've looked at this code example on game states which everyone seems to reference, but I don't think it fits with my framework. It seems to have each state handling its own drawing and updating. My framework has a SystemManager that handles all the updating using systems. For example, here's my RenderingSystem class: public class RenderingSystem extends GameSystem { private GameView gameView_; /** * Constructor * Creates a new RenderingSystem. * @param gameManager The game manager. Used to get the game components. */ public RenderingSystem(GameManager gameManager) { super(gameManager); } /** * Method: registerGameView * Registers gameView into the RenderingSystem. * @param gameView The game view registered. */ public void registerGameView(GameView gameView) { gameView_ = gameView; } /** * Method: triggerRender * Adds a repaint call to the event queue for the dirty rectangle. */ public void triggerRender() { Rectangle dirtyRect = new Rectangle(); for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); dirtyRect.add(graphicsComponent.getDirtyRect()); } gameView_.repaint(dirtyRect); } /** * Method: renderGameView * Renders the game objects onto the game view. * @param g The graphics object that draws the game objects. */ public void renderGameView(Graphics g) { for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); if (!graphicsComponent.isVisible()) continue; GraphicsComponent.Shape shape = graphicsComponent.getShape(); BoundsComponent boundsComponent = object.getComponent(BoundsComponent.class); Rectangle bounds = boundsComponent.getBounds(); g.setColor(graphicsComponent.getColor()); if (shape == GraphicsComponent.Shape.RECTANGULAR) { g.fill3DRect(bounds.x, bounds.y, bounds.width, bounds.height, true); } else if (shape == GraphicsComponent.Shape.CIRCULAR) { g.fillOval(bounds.x, bounds.y, bounds.width, bounds.height); } } } /** * Method: getRenderableObjects * @return The renderable game objects. */ private HashSet<GameObject> getRenderableObjects() { return gameManager.getGameObjectManager().getRelevantObjects( getClass()); } } Also all the updating in my game is event-driven. I don't have a loop like theirs that simply updates everything at the same time. I like my framework because it makes it easy to add new GameObjects, but doesn't have the problems some component-based designs encounter when communicating between components. I would hate to chuck it just to get pause to work. Is there a way I can add game states to my game without removing the entity-component design? Does the game state example actually fit my framework, and I'm just missing something?

    Read the article

  • design a model for a system of dependent variables

    - by dbaseman
    I'm dealing with a modeling system (financial) that has dozens of variables. Some of the variables are independent, and function as inputs to the system; most of them are calculated from other variables (independent and calculated) in the system. What I'm looking for is a clean, elegant way to: define the function of each dependent variable in the system trigger a re-calculation, whenever a variable changes, of the variables that depend on it A naive way to do this would be to write a single class that implements INotifyPropertyChanged, and uses a massive case statement that lists out all the variable names x1, x2, ... xn on which others depend, and, whenever a variable xi changes, triggers a recalculation of each of that variable's dependencies. I feel that this naive approach is flawed, and that there must be a cleaner way. I started down the path of defining a CalculationManager<TModel> class, which would be used (in a simple example) something like as follows: public class Model : INotifyPropertyChanged { private CalculationManager<Model> _calculationManager = new CalculationManager<Model>(); // each setter triggers a "PropertyChanged" event public double? Height { get; set; } public double? Weight { get; set; } public double? BMI { get; set; } public Model() { _calculationManager.DefineDependency<double?>( forProperty: model => model.BMI, usingCalculation: (height, weight) => weight / Math.Pow(height, 2), withInputs: model => model.Height, model.Weight); } // INotifyPropertyChanged implementation here } I won't reproduce CalculationManager<TModel> here, but the basic idea is that it sets up a dependency map, listens for PropertyChanged events, and updates dependent properties as needed. I still feel that I'm missing something major here, and that this isn't the right approach: the (mis)use of INotifyPropertyChanged seems to me like a code smell the withInputs parameter is defined as params Expression<Func<TModel, T>>[] args, which means that the argument list of usingCalculation is not checked at compile time the argument list (weight, height) is redundantly defined in both usingCalculation and withInputs I am sure that this kind of system of dependent variables must be common in computational mathematics, physics, finance, and other fields. Does someone know of an established set of ideas that deal with what I'm grasping at here? Would this be a suitable application for a functional language like F#? Edit More context: The model currently exists in an Excel spreadsheet, and is being migrated to a C# application. It is run on-demand, and the variables can be modified by the user from the application's UI. Its purpose is to retrieve variables that the business is interested in, given current inputs from the markets, and model parameters set by the business.

    Read the article

  • Is 2 lines of push/pop code for each pre-draw-state too many?

    - by Griffin
    I'm trying to simplify vector graphics management in XNA; currently by incorporating state preservation. 2X lines of push/pop code for X states feels like too many, and it just feels wrong to have 2 lines of code that look identical except for one being push() and the other being pop(). The goal is to eradicate this repetitiveness,and I hoped to do so by creating an interface in which a client can give class/struct refs in which he wants restored after the rendering calls. Also note that many beginner-programmers will be using this, so forcing lambda expressions or other advanced C# features to be used in client code is not a good idea. I attempted to accomplish my goal by using Daniel Earwicker's Ptr class: public class Ptr<T> { Func<T> getter; Action<T> setter; public Ptr(Func<T> g, Action<T> s) { getter = g; setter = s; } public T Deref { get { return getter(); } set { setter(value); } } } an extension method: //doesn't work for structs since this is just syntatic sugar public static Ptr<T> GetPtr <T> (this T obj) { return new Ptr<T>( ()=> obj, v=> obj=v ); } and a Push Function: //returns a Pop Action for later calling public static Action Push <T> (ref T structure) where T: struct { T pushedValue = structure; //copies the struct data Ptr<T> p = structure.GetPtr(); return new Action( ()=> {p.Deref = pushedValue;} ); } However this doesn't work as stated in the code. How might I accomplish my goal? Example of code to be refactored: protected override void RenderLocally (GraphicsDevice device) { if (!(bool)isCompiled) {Compile();} //TODO: make sure state settings don't implicitly delete any buffers/resources RasterizerState oldRasterState = device.RasterizerState; DepthFormat oldFormat = device.PresentationParameters.DepthStencilFormat; DepthStencilState oldBufferState = device.DepthStencilState; { //Rendering code } device.RasterizerState = oldRasterState; device.DepthStencilState = oldBufferState; device.PresentationParameters.DepthStencilFormat = oldFormat; }

    Read the article

  • Marshalling C# Structs into DX11 cbuffers

    - by Craig
    I'm having some issues with the packing of my structure in C# and passing them through to cbuffers I have registered in HLSL. When I pack my struct in one manner the information seems to be able to pass to the shader: [StructLayout(LayoutKind.Explicit, Size = 16)] internal struct TestStruct { [FieldOffset(0)] public Vector3 mEyePosition; [FieldOffset(12)] public int type; } This works perfectly when used against this HLSL fragment: cbuffer PerFrame : register(b0) { Vector3 eyePos; int type; } float3 GetColour() { float3 returnColour = float(0.0f, 0.0f, 0.0f); switch(type) { case 0: returnColour = float3(1.0f, 0.0f, 0.0f); break; case 1: returnColour = float3(0.0f, 1.0f, 0.0f); break; case 2: returnColour = float3(0.0f, 0.0f, 1.0f); break; } return returnColour; } However, when I use the following structure definitions... // Note this is 16 because HLSL packs in 4 float 'chunks'. // It is also simplified, but still demonstrates the problem. [StructLayout(Layout.Explicit, Size = 16)] internal struct InternalTestStruct { [FieldOffset(0)] public int type; } [StructLayout(LayoutKind.Explicit, Size = 32)] internal struct TestStruct { [FieldOffset(0)] public Vector3 mEyePosition; //Missing 4 bytes here for correct packing. [FieldOffset(16)] public InternalTestStruct mInternal; } ... the following HLSL fragment no longer works. struct InternalType { int type; } cbuffer PerFrame : register(b0) { Vector3 eyePos; InternalType internalStruct; } float3 GetColour() { float3 returnColour = float(0.0f, 0.0f, 0.0f); switch(internaltype.type) { case 0: returnColour = float3(1.0f, 0.0f, 0.0f); break; case 1: returnColour = float3(0.0f, 1.0f, 0.0f); break; case 2: returnColour = float3(0.0f, 0.0f, 1.0f); break; } return returnColour; } Is there a problem with the way I am packing the struct, or is it another issue? To re-iterate: I can pass a struct in a cbuffer so long as it does not contain a nested struct.

    Read the article

  • Using elapsed time for SlowMo in XNA

    - by Dave Voyles
    I'm trying to create a slow-mo effect in my pong game so that when a player is a button the paddles and ball will suddenly move at a far slower speed. I believe my understanding of the concepts of adjusting the timing in XNA are done, but I'm not sure of how to incorporate it into my design exactly. The updates for my bats (paddles) are done in my Bat.cs class: /// Controls the bat moving up the screen /// </summary> public void MoveUp() { SetPosition(Position + new Vector2(0, -moveSpeed)); } /// <summary> /// Controls the bat moving down the screen /// </summary> public void MoveDown() { SetPosition(Position + new Vector2(0, moveSpeed)); } /// <summary> /// Updates the position of the AI bat, in order to track the ball /// </summary> /// <param name="ball"></param> public virtual void UpdatePosition(Ball ball) { size.X = (int)Position.X; size.Y = (int)Position.Y; } While the rest of my game updates are done in my GameplayScreen.cs class (I'm using the XNA game state management sample) Class GameplayScreen { ........... bool slow; .......... public override void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen) base.Update(gameTime, otherScreenHasFocus, false); if (IsActive) { // SlowMo Stuff Elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; if (Slowmo) Elapsed *= .8f; MoveTimer += Elapsed; double elapsedTime = gameTime.ElapsedGameTime.TotalMilliseconds; if (Keyboard.GetState().IsKeyDown(Keys.Up)) slow = true; else if (Keyboard.GetState().IsKeyDown(Keys.Down)) slow = false; if (slow == true) elapsedTime *= .1f; // Updating bat position leftBat.UpdatePosition(ball); rightBat.UpdatePosition(ball); // Updating the ball position ball.UpdatePosition(); and finally my fixed time step is declared in the constructor of my Game1.cs Class: /// <summary> /// The main game constructor. /// </summary> public Game1() { IsFixedTimeStep = slow = false; } So my question is: Where do I place the MoveTimer or elapsedTime, so that my bat will slow down accordingly?

    Read the article

  • Mutable Records in F#

    - by MarkPearl
    I’m loving my expert F# book – today I thought I would give a post on using mutable records as covered in Chapter 4 of Expert F#. So as they explain the simplest mutable data structures in F# are mutable records. The whole concept of things by default being immutable is a new one for me from my C# background. Anyhow… lets look at some C# code first. using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace MutableRecords { public class DiscreteEventCounter { public int Total { get; set; } public int Positive { get; set; } public string Name { get; private set; } public DiscreteEventCounter(string name) { Name = name; } } class Program { private static void recordEvent(DiscreteEventCounter s, bool isPositive) { s.Total += 1; if (isPositive) s.Positive += 1; } private static void reportStatus (DiscreteEventCounter s) { Console.WriteLine("We have {0} {1} out of {2}", s.Positive, s.Name, s.Total); } static void Main(string[] args) { var longCounter = new DiscreteEventCounter("My Discrete Counter"); recordEvent(longCounter, true); recordEvent(longCounter, true); reportStatus(longCounter); Console.ReadLine(); } } } Quite simple, we have a class that has a few values. We instantiate an instance of the class and perform increments etc on the instance. Now lets look at an equivalent F# sample. namespace EncapsulationNS module Module1 = open System type DiscreteEventCounter = { mutable Total : int mutable Positive : int Name : string } let recordEvent (s: DiscreteEventCounter) isPositive = s.Total <- s.Total+1 if isPositive then s.Positive <- s.Positive+1 let reportStatus (s: DiscreteEventCounter) = printfn "We have %d %s out of %d" s.Positive s.Name s.Total let newCounter nm = { Total = 0; Positive = 0; Name = nm } // // Using it... // let longCounter = newCounter "My Discrete Counter" recordEvent longCounter (true) recordEvent longCounter (true) reportStatus longCounter System.Console.ReadLine() Notice in the type declaration of the DiscreteEventCounter we had to explicitly declare that the total and positive value holders were mutable. And that’s it – a very simple example of mutable types.

    Read the article

< Previous Page | 188 189 190 191 192 193 194 195 196 197 198 199  | Next Page >