Search Results

Search found 11166 results on 447 pages for 'justin standard'.

Page 195/447 | < Previous Page | 191 192 193 194 195 196 197 198 199 200 201 202  | Next Page >

  • Testing Workflows &ndash; Test-After

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-after.aspxIn this post I’m going to outline a few common methods that can be used to increase the coverage of of your test suite.  This won’t be yet another post on why you should be doing testing; there are plenty of those types of posts already out there.  Assuming you know you should be testing, then comes the problem of how do I actual fit that into my day job.  When the opportunity to automate testing comes do you take it, or do you even recognize it? There are a lot of ways (workflows) to go about creating automated tests, just like there are many workflows to writing a program.  When writing a program you can do it from a top-down approach where you write the main skeleton of the algorithm and call out to dummy stub functions, or a bottom-up approach where the low level functionality is fully implement before it is quickly wired together at the end.  Both approaches are perfectly valid under certain contexts. Each approach you are skilled at applying is another tool in your tool belt.  The more vectors of attack you have on a problem – the better.  So here is a short, incomplete list of some of the workflows that can be applied to increasing the amount of automation in your testing and level of quality in general.  Think of each workflow as an opportunity that is available for you to take. Test workflows basically fall into 2 categories:  test first or test after.  Test first is the best approach.  However, this post isn’t about the one and only best approach.  I want to focus more on the lesser known, less ideal approaches that still provide an opportunity for adding tests.  In this post I’ll enumerate some test-after workflows.  In my next post I’ll cover test-first. Bug Reporting When someone calls you up or forwards you a email with a vague description of a bug its usually standard procedure to create or verify a reproduction plan for the bug via manual testing and log that in a bug tracking system.  This can be problematic.  Often reproduction plans when written down might skip a step that seemed obvious to the tester at the time or they might be missing some crucial environment setting. Instead of data entry into a bug tracking system, try opening up the test project and adding a failing unit test to prove the bug.  The test project guarantees that all aspects of the environment are setup properly and no steps are missing.  The language in the test project is much more precise than the English that goes into a bug tracking system. This workflow can easily be extended for Enhancement Requests as well as Bug Reporting. Exploratory Testing Exploratory testing comes in when you aren’t sure how the system will behave in a new scenario.  The scenario wasn’t planned for in the initial system requirements and there isn’t an existing test for it.  By definition the system behaviour is “undefined”. So write a new unit test to define that behaviour.  Add assertions to the tests to confirm your assumptions.  The new test becomes part of the living system specification that is kept up to date with the test suite. Examples This workflow is especially good when developing APIs.  When you are finally done your production API then comes the job of writing documentation on how to consume the API.  Good documentation will also include code examples.  Don’t let these code examples merely exist in some accompanying manual; implement them in a test suite. Example tests and documentation do not have to be created after the production API is complete.  It is best to write the example code (tests) as you go just before the production code. Smoke Tests Every system has a typical use case.  This represents the basic, core functionality of the system.  If this fails after an upgrade the end users will be hosed and they will be scratching their heads as to how it could be possible that an update got released with this core functionality broken. The tests for this core functionality are referred to as “smoke tests”.  It is a good idea to have them automated and run with each build in order to avoid extreme embarrassment and angry customers. Coverage Analysis Code coverage analysis is a tool that reports how much of the production code base is exercised by the test suite.  In Visual Studio this can be found under the Test main menu item. The tool will report a total number for the code coverage, which can be anywhere between 0 and 100%.  Coverage Analysis shouldn’t be used strictly for numbers reporting.  Companies shouldn’t set minimum coverage targets that mandate that all projects must have at least 80% or 100% test coverage.  These arbitrary requirements just invite gaming of the coverage analysis, which makes the numbers useless. The analysis tool will break down the coverage by the various classes and methods in projects.  Instead of focusing on the total number, drill down into this view and see which classes have high or low coverage.  It you are surprised by a low number on a class this is an opportunity to add tests. When drilling through the classes there will be generally two types of reaction to a surprising low test coverage number.  The first reaction type is a recognition that there is low hanging fruit to be picked.  There may be some classes or methods that aren’t being tested, which could easy be.  The other reaction type is “OMG”.  This were you find a critical piece of code that isn’t under test.  In both cases, go and add the missing tests. Test Refactoring The general theme of this post up to this point has been how to add more and more tests to a test suite.  I’ll step back from that a bit and remind that every line of code is a liability.  Each line of code has to be read and maintained, which costs money.  This is true regardless whether the code is production code or test code. Remember that the primary goal of the test suite is that it be easy to read so that people can easily determine the specifications of the system.  Make sure that adding more and more tests doesn’t interfere with this primary goal. Perform code reviews on the test suite as often as on production code.  Hold the test code up to the same high readability standards as the production code.  If the tests are hard to read then change them.  Look to remove duplication.  Duplicate setup code between two or more test methods that can be moved to a shared function.  Entire test methods can be removed if it is found that the scenario it tests is covered by other tests.  Its OK to delete a test that isn’t pulling its own weight anymore. Remember to only start refactoring when all the test are green.  Don’t refactor the tests and the production code at the same time.  An automated test suite can be thought of as a double entry book keeping system.  The unchanging, passing production code serves as the tests for the test suite while refactoring the tests. As with all refactoring, it is best to fit this into your regular work rather than asking for time later to get it done.  Fit this into the standard red-green-refactor cycle.  The refactor step no only applies to production code but also the tests, but not at the same time.  Perhaps the cycle should be called red-green-refactor production-refactor tests (not quite as catchy).   That about covers most of the test-after workflows I can think of.  In my next post I’ll get into test-first workflows.

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • Spacewalk 2.0 provided to manage Oracle Linux systems

    - by wcoekaer
    Oracle Linux customers have a few options to manage and provision their servers. We provide a license to use Oracle Enterprise Manager's Linux OS management, monitoring and provisioning features without additional cost for every server that has an Oracle Linux support subscription. So there is no additional pack to license and no additional per server cost, it's all included in our Basic, Premier and Systems support subscriptions. The nice thing with Oracle Enterprise Manager is that you end up with a single management product that can manage all aspects of your software stack. You have complete insight into the applications running, you have roles and responsibilities, you have third party connectors for storage or other products and it makes it very easy and convenient to correlate data and events when something happens. If you use Oracle VM as well, you end up with a complete cloud portal with selfservice, chargeback, etc... Another, much simpler option, is just using yum. It is very easy to take a server and create directories and expose these through apache as repositories. You can have a simple yum config on each server pointing to a few specific repositories. It requires some manual effort in terms of creating directories, downloading packages and creating local repo files but it's easy to do and for many people a preferred solution. There are also a good number of customers that just connect their servers directly to ULN or to our free update server public-yum. Just to re-iterate, our public-yum servers have all the errata and updates available for free. Now we added another option. Many of our customers have switched from a competing Linux vendor and they had familiarity with their management tools. Switching to Oracle for support is very easy since we don't require changes to the installed servers but we also want to make sure there is a very easy and almost transparent switch for the management tools as well. While Oracle Enterprise Manager is our preferred way of managing systems, we now are offering Spacewalk 2.0 to our customers. The community project can be found here. We have made a few changes to ensure easy and complete support for Oracle Linux, tested it with public-yum, etc.. You can find the rpms in our public-yum repos at http://public-yum.oracle.com/repo/OracleLinux/OL6/. There are repositories for spacewalk server and then for each version (OL5,OL6) and architecture (x86 and x86-64) we have the client repositories as well. Spacewalk itself is only made available for OL6 x86-64. Documentation can be found here. I set it up myself and here are some quick steps on how you can get going in just a matter of minutes: Spacewalk Server Installation : 1) Installing an Oracle Database Use an existing Oracle Database or install a new Oracle Database (Standard or Enterprise Edition) [at this time use 11g, we will add support for 12c in the near future]. This database can be installed on the spacewalk server or on a separate remote server. While Oracle XE might work to create a small sample POC, we do not support the use of Oracle XE, spacewalk repositories can become large and create a significant database workload. Customers can use their existing database licenses, they can download the database with a trial licence from http://edelivery.oracle.com or Oracle Linux subscribers (customers) will be allowed to use the Oracle Database as a spacewalk repository as part of their Oracle Linux subscription at no additional cost. |NOTE : spacewalk requires the database to be configured with the UTF8 characterset. |Installation will fail if your database does not use UTF8. |To verify if your database is configured correctly, run the following command in sqlplus: | |select value from nls_database_parameters where parameter='NLS_CHARACTERSET'; |This should return 'AL32UTF8' 2) Configure the database schema for spacewalk Ideally, create a tablespace in the database to hold the spacewalk schema tables/data; create tablespace spacewalk datafile '/u01/app/oracle/oradata/orcl/spacewalk.dbf' size 10G autoextend on; Create the database user spacewalk (or use some other schema name) in sqlplus. example : create user spacewalk identified by spacewalk; grant connect, resource to spacewalk; grant create table, create trigger, create synonym, create view, alter session to spacewalk; grant unlimited tablespace to spacewalk; alter user spacewalk default tablespace spacewalk; 4) Spacewalk installation and configuration Spacewalk server requires an Oracle Linux 6 x86-64 system. Clients can be Oracle Linux 5 or 6, both 32- and 64bit. The server is only supported on OL6/64bit. The easiest way to get started is to do a 'Minimal' install of Oracle Linux on a server and configure the yum repository to include the spacewalk repo from public-yum. Once you have a system with a minimal install, modify your yum repo to include the spacewalk repo. Example : edit /etc/yum.repos.d/public-yum-ol.repo and add the following lines at the end of the file : [spacewalk] name=spacewalk baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/spacewalk20/server/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=1 Install the following pre-requisite packages on your spacewalk server : oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64 oracle-instantclient11.2-sqlplus-11.2.0.3.0-1.x86_64 rpm -ivh oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64 rpm -ivh oracle-instantclient11.2-sqlplus-11.2.0.3.0-1.x86_64 The above RPMs can be found on the Oracle Technology Network website : http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html As the root user, configure the library path to include the Oracle Instant Client libraries : cd /etc/ld.so.conf.d echo /usr/lib/oracle/11.2/client64/lib oracle-instantclient11.2.conf ldconfig Install spacewalk : # yum install spacewalk-oracle The above yum command should download and install all required packages to run spacewalk on your local server. | NOTE : if you did a full, desktop or workstation installation, | you have to remove the JTA package | BEFORE installing spacewalk-oracle (rpm -e --nodeps jta) Once the installation completes, simply run the spacewalk configuration tool and you are all set. (make sure to run the command with the 2 arguments) spacewalk-setup --disconnected --external-db Answer the questions during the setup, ensure you provide the current database user (example : spacewalk) and password (example : spacewalk) and database server hostname (the standard hostname of the server on which you have deployed the Oracle database) At the end of the setup script, your spacewalk server should be fully configured and you can log into the web portal. Use your favorite browser to connect to the website : http://[spacewalkserverhostname] The very first action will be to create the main admin account.

    Read the article

  • How to Identify Which Hardware Component is Failing in Your Computer

    - by Chris Hoffman
    Concluding that your computer has a hardware problem is just the first step. If you’re dealing with a hardware issue and not a software issue, the next step is determining what hardware problem you’re actually dealing with. If you purchased a laptop or pre-built desktop PC and it’s still under warranty, you don’t need to care about this. Have the manufacturer fix the PC for you — figuring it out is their problem. If you’ve built your own PC or you want to fix a computer that’s out of warranty, this is something you’ll need to do on your own. Blue Screen 101: Search for the Error Message This may seem like obvious advice, but searching for information about a blue screen’s error message can help immensely. Most blue screens of death you’ll encounter on modern versions of Windows will likely be caused by hardware failures. The blue screen of death often displays information about the driver that crashed or the type of error it encountered. For example, let’s say you encounter a blue screen that identified “NV4_disp.dll” as the driver that caused the blue screen. A quick Google search will reveal that this is the driver for NVIDIA graphics cards, so you now have somewhere to start. It’s possible that your graphics card is failing if you encounter such an error message. Check Hard Drive SMART Status Hard drives have a built in S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) feature. The idea is that the hard drive monitors itself and will notice if it starts to fail, providing you with some advance notice before the drive fails completely. This isn’t perfect, so your hard drive may fail even if SMART says everything is okay. If you see any sort of “SMART error” message, your hard drive is failing. You can use SMART analysis tools to view the SMART health status information your hard drives are reporting. Test Your RAM RAM failure can result in a variety of problems. If the computer writes data to RAM and the RAM returns different data because it’s malfunctioning, you may see application crashes, blue screens, and file system corruption. To test your memory and see if it’s working properly, use Windows’ built-in Memory Diagnostic tool. The Memory Diagnostic tool will write data to every sector of your RAM and read it back afterwards, ensuring that all your RAM is working properly. Check Heat Levels How hot is is inside your computer? Overheating can rsult in blue screens, crashes, and abrupt shut downs. Your computer may be overheating because you’re in a very hot location, it’s ventilated poorly, a fan has stopped inside your computer, or it’s full of dust. Your computer monitors its own internal temperatures and you can access this information. It’s generally available in your computer’s BIOS, but you can also view it with system information utilities such as SpeedFan or Speccy. Check your computer’s recommended temperature level and ensure it’s within the appropriate range. If your computer is overheating, you may see problems only when you’re doing something demanding, such as playing a game that stresses your CPU and graphics card. Be sure to keep an eye on how hot your computer gets when it performs these demanding tasks, not only when it’s idle. Stress Test Your CPU You can use a utility like Prime95 to stress test your CPU. Such a utility will fore your computer’s CPU to perform calculations without allowing it to rest, working it hard and generating heat. If your CPU is becoming too hot, you’ll start to see errors or system crashes. Overclockers use Prime95 to stress test their overclock settings — if Prime95 experiences errors, they throttle back on their overclocks to ensure the CPU runs cooler and more stable. It’s a good way to check if your CPU is stable under load. Stress Test Your Graphics Card Your graphics card can also be stress tested. For example, if your graphics driver crashes while playing games, the games themselves crash, or you see odd graphical corruption, you can run a graphics benchmark utility like 3DMark. The benchmark will stress your graphics card and, if it’s overheating or failing under load, you’ll see graphical problems, crashes, or blue screens while running the benchmark. If the benchmark seems to work fine but you have issues playing a certain game, it may just be a problem with that game. Swap it Out Not every hardware problem is easy to diagnose. If you have a bad motherboard or power supply, their problems may only manifest through occasional odd issues with other components. It’s hard to tell if these components are causing problems unless you replace them completely. Ultimately, the best way to determine whether a component is faulty is to swap it out. For example, if you think your graphics card may be causing your computer to blue screen, pull the graphics card out of your computer and swap in a new graphics card. If everything is working well, it’s likely that your previous graphics card was bad. This isn’t easy for people who don’t have boxes of components sitting around, but it’s the ideal way to troubleshoot. Troubleshooting is all about trial and error, and swapping components out allows you to pin down which component is actually causing the problem through a process of elimination. This isn’t a complete guide to everything that could likely go wrong and how to identify it — someone could write a full textbook on identifying failing components and still not cover everything. But the tips above should give you some places to start dealing with the more common problems. Image Credit: Justin Marty on Flickr     

    Read the article

  • Behavior Driven Development (BDD) and DevExpress XAF

    - by Patrick Liekhus
    So in my previous posts I showed you how I used EDMX to quickly build my business objects within XPO and XAF.  But how do you test whether your business objects are actually doing what you want and verify that your business logic is correct?  Well I was reading my monthly MSDN magazine last last year and came across an article about using SpecFlow and WatiN to build BDD tests.  So why not use these same techniques to write SpecFlow style scripts and have them generate EasyTest scripts for use with XAF.  Let me outline and show a few things below.  I plan on releasing this code in a short while, I just wanted to preview what I was thinking. Before we begin… First, if you have not read the article in MSDN, here is the link to the article that I found my inspiration.  It covers the overview of BDD vs. TDD, how to write some of the SpecFlow syntax and how use the “Steps” logic to create your own tests. Second, if you have not heard of EasyTest from DevExpress I strongly recommend you review it here.  It basically takes the power of XAF and the beauty of your application and allows you to create text based files to execute automated commands within your application. Why would we do this?  Because as you will see below, the cucumber syntax is easier for business analysts to interpret and digest the business rules from.  You can find most of the information you will need on Cucumber syntax within The Secret Ninja Cucumber Scrolls located here.  The basics of the syntax are that Given X When Y Then Z.  For example, Given I am at the login screen When I enter my login credentials Then I expect to see the home screen.  Pretty easy syntax to follow. Finally, we will need to download and install SpecFlow.  You can find it on their website here.  Once you have this installed then let’s write our first test. Let’s get started… So where to start.  Create a new testing project within your solution.  I typically call this with a similar naming convention as used by XAF, my project name .FunctionalTests (i.e.  AlbumManager.FunctionalTests).  Remove the basic test that is created for you.  We will not use the default test but rather create our own SpecFlow “Feature” files.  Add a new item to your project and select the SpecFlow Feature file under C#.  Name your feature file as you do your class files after the test they are performing. Now you can crack open your new feature file and write the actual test.  Make sure to have your Ninja Scrolls from above as it provides valuable resources on how to write your test syntax.  In this test below you can see how I defined the documentation in the Feature section.  This is strictly for our purposes of readability and do not effect the test.  The next section is the Scenario Outline which is considered a test template.  You can see the brackets <> around the fields that will be filled in for each test.  So in the example below you can see that Given I am starting a new test and the application is open.  This means I want a new EasyTest file and the windows application generated by XAF is open.  Next When I am at the Albums screen tells XAF to navigate to the Albums list view.  And I click the New:Album button, tells XAF to click the new button on the list grid.  And I enter the following information tells XAF which fields to complete with the mapped values.  And I click the Save and Close button causes the record to be saved and the detail form to be closed.  Then I verify results tests the input data against what is visible in the grid to ensure that your record was created. The Scenarios section gives each test a unique name and then fills in the values for each test.  This way you can use the same test to make multiple passes with different data. Almost there.  Now we must save the feature file and the BDD tests will be written using standard unit test syntax.  This is all handled for you by SpecFlow so just save the file.  What you will see in your Test List Editor is a unit test for each of the above scenarios you just built. You can now use standard unit testing frameworks to execute the test as you desire.  As you would expect then, these BDD SpecFlow tests can be automated into your build process to ensure that your business requirements are satisfied each and every time. How does it work? What we have done is to intercept the testing logic at runtime to interpret the SpecFlow syntax into EasyTest syntax.  This is the basic StepDefinitions that we are working on now.  We expect to put these on CodePlex within the next few days.  You can always override and make your own rules as you see fit for your project.  Follow the MSDN magazine above to start your own.  You can see part of our implementation below. As you can gather from the MSDN article and the code sample below, we have created our own common rules to build the above syntax. The code implementation for these rules basically saves your information from the feature file into an EasyTest file format.  It then executes the EasyTest file and parses the XML results of the test.  If the test succeeds the test is passed.  If the test fails, the EasyTest failure message is logged and the screen shot (as captured by EasyTest) is saved for your review. Again we are working on getting this code ready for mass consumption, but at this time it is not ready.  We will post another message when it is ready with all details about usage and setup. Thanks

    Read the article

  • Oracle Partner Store (OPS) New Enhancements

    - by Kristin Rose
    Effective June 29th, Oracle Partner Store (OPS) will release the enhancements listed below to improve your overall ordering experience. v Online Transactional Oracle Master Agreement (Online TOMA) The Online TOMA enables end users to execute a transactional end user license agreement with Oracle. The new Online TOMA in OPS will replace the need for you to obtain a signed hard copy of the TOMA from the end user. You will now initiate the Online TOMA via OPS. Navigation: OPS Home > Order Tools > Online TOMA Query > Request Online TOMA> End User Contact, click “Select for TOMA” > Select Language > Submit (an automated email is sent immediately to the requestor and the end user) Ø The Online TOMA can also be initiated from the ‘My OPS’ tab. Under the Online TOMA Query section partners can track Online TOMA request details submitted to end users. The status of the Online TOMA request and the OMA Key generated (once Ts&Cs of the Online TOMA are accepted by an end user) are also displayed in this table. There is also the ability to resend pending Online TOMA requests by clicking ‘Resend’. Navigation: OPS Home > Order Tools > Online TOMA Query For more details on the Transactional OMA, please click here. v Convert Deals to Carts The partner deal registration system within OPS will now allow you to convert approved deals into carts with a simple click of a button. VADs can use Deal to Cart on all of their partners' registrations, regardless of whether they submitted on their partner's behalf, or the partner submitted themselves. Navigation: Login > Deal Registrations > Deal Registration List > Open the approved deal > Click Deal Reg ID number link to open > Click on 'Create Cart' link You can locate your newly created cart in the Saved Carts section of OPS. Links are also available from within an open deal or from the Deal Registration List. Click on the cart number to proceed. v Partner Opportunity Management: Deal Registration on OPS now allows you to see updated information on your opportunities from Oracle’s Fusion CRM opportunity management system.  Key fields such as close date, sales stage, products and status can be viewed by clicking the opportunity ID associated with the deal registration.  This new feature allows you to see regular updates to your opportunities after registrations are approved.  Through ongoing communication with Oracle Channel Managers and Sales Reps, you can ensure that Oracle has the latest information on your active registered deals. v Product Recommendations: When adding products to the Deal Registrations tab, OPS will now show additional products that you can try to include to maximize your sale and rebate. v Advanced Customer Support(ACS) Services Note: This will be available from July 9th. Initiate the purchase of the complete stack (HW/SW/Services) online with one single OPS order. More ACS services now supported online with exception of Start-Up Pack: · New SW installation services for Standard Configurations & stand alone System Software. · New Pre-production & Go-live services for Standard & Engineered Systems · New SW configuration & Platinum Pre-Production & Go-Live services for Engineered Systems · New Travel & Expenses Estimate included · New Partner & VAD volume discount supported v Software as a Service (SaaS) for Independent Software Vendors (ISVs): Oracle SaaS ISVs can now use OPS to submit their monthly usage reports to Oracle within 20 days after the end of every month. Navigation: OPS Home > Cart > Transaction Type: Partner SaaS for ISV’s > Add Eligible Products > Check out v Existing Approvals: In an effort to reduce the processing time of discount approvals, we have added a new section in the Request Approval page for you to communicate pre-existing approvals without having to attach the DAT. Just enter the Approval ID and submit your request. In case of existing software approvals, you will be required to submit the DAT with the Contact Information section filled out. v Additional data for Shipping Box Labels and Packing Slips OPS now has additional fields in the Shipping Notes section for you to add PO details. This will help you easily identify shipments as they arrive. Partners will have an End User PO field, whereas VADs will have VAR and End User PO fields. v Shipping Notes on OPS Hardware delivery Shipping Notes will now have multiple options to better suit your requirements. v Reminders for Royalty Reporting Partners: If you have not submitted your royalty report online, OPS will now send an automated alert to remind you. v Order Tracker Changes: · Order Tracker will now have a deal reg flag (Yes/No). You can now clearly distinguish between orders that have registered opportunities. · All lines of the order will be visible in the order details list. v Changes in Terminology · You will notice textual changes on some of our labels and messages relating to approval requests. “Discount Requests” has been replaced with “Approval Requests” to cater to some of our other offerings. · First Line Support (FLS) transaction type has been renamed to Support Provider Partner (SPP). OPS Support For more details on these enhancements, please request a training here. For assistance on the Oracle Partner Store, please contact the OPS support team in your region. NAMER: [email protected] LAD: [email protected] EMEA : [email protected] APAC: [email protected] Japan: [email protected] You can even call us on our Hotline! Find your local number here.     Thank you, Oracle Partner Store Support Team      

    Read the article

  • Windows Azure – Write, Run or Use Software

    - by BuckWoody
    Windows Azure is a platform that has you covered, whether you need to write software, run software that is already written, or Install and use “canned” software whether you or someone else wrote it. Like any platform, it’s a set of tools you can use where it makes sense to solve a problem. The primary location for Windows Azure information is located at http://windowsazure.com. You can find everything there from the development kits for writing software to pricing, licensing and tutorials on all of that. I have a few links here for learning to use Windows Azure – although it’s best if you focus not on the tools, but what you want to solve. I’ve got it broken down here into various sections, so you can quickly locate things you want to know. I’ll include resources here from Microsoft and elsewhere – I use these same resources in the Architectural Design Sessions (ADS) I do with my clients worldwide. Write Software Also called “Platform as a Service” (PaaS), Windows Azure has lots of components you can use together or separately that allow you to write software in .NET or various Open Source languages to work completely online, or in partnership with code you have on-premises or both – even if you’re using other cloud providers. Keep in mind that all of the features you see here can be used together, or independently. For instance, you might only use a Web Site, or use Storage, but you can use both together. You can access all of these components through standard REST API calls, or using our Software Development Kit’s API’s, which are a lot easier. In any case, you simply use Visual Studio, Eclipse, Cloud9 IDE, or even a text editor to write your code from a Mac, PC or Linux.  Components you can use: Azure Web Sites: Windows Azure Web Sites allow you to quickly write an deploy websites, without setting a Virtual Machine, installing a web server or configuring complex settings. They work alone, with other Windows Azure Web Sites, or with other parts of Windows Azure. Web and Worker Roles: Windows Azure Web Roles give you a full stateless computing instance with Internet Information Services (IIS) installed and configured. Windows Azure Worker Roles give you a full stateless computing instance without Information Services (IIS) installed, often used in a "Services" mode. Scale-out is achieved either manually or programmatically under your control. Storage: Windows Azure Storage types include Blobs to store raw binary data, Tables to use key/value pair data (like NoSQL data structures), Queues that allow interaction between stateless roles, and a relational SQL Server database. Other Services: Windows Azure has many other services such as a security mechanism, a Cache (memcacheD compliant), a Service Bus, a Traffic Manager and more. Once again, these features can be used with a Windows Azure project, or alone based on your needs. Various Languages: Windows Azure supports the .NET stack of languages, as well as many Open-Source languages like Java, Python, PHP, Ruby, NodeJS, C++ and more.   Use Software Also called “Software as a Service” (SaaS) this often means consumer or business-level software like Hotmail or Office 365. In other words, you simply log on, use the software, and log off – there’s nothing to install, and little to even configure. For the Information Technology professional, however, It’s not quite the same. We want software that provides services, but in a platform. That means we want things like Hadoop or other software we don’t want to have to install and configure.  Components you can use: Kits: Various software “kits” or packages are supported with just a few clicks, such as Umbraco, Wordpress, and others. Windows Azure Media Services: Windows Azure Media Services is a suite of services that allows you to upload media for encoding, processing and even streaming – or even one or more of those functions. We can add DRM and even commercials to your media if you like. Windows Azure Media Services is used to stream large events all the way down to small training videos. High Performance Computing and “Big Data”: Windows Azure allows you to scale to huge workloads using a few clicks to deploy Hadoop Clusters or the High Performance Computing (HPC) nodes, accepting HPC Jobs, Pig and Hive Jobs, and even interfacing with Microsoft Excel. Windows Azure Marketplace: Windows Azure Marketplace offers data and programs you can quickly implement and use – some free, some for-fee.   Run Software Also known as “Infrastructure as a Service” (IaaS), this offering allows you to build or simply choose a Virtual Machine to run server-based software.  Components you can use: Persistent Virtual Machines: You can choose to install Windows Server, Windows Server with Active Directory, with SQL Server, or even SharePoint from a pre-configured gallery. You can configure your own server images with standard Hyper-V technology and load them yourselves – and even bring them back when you’re done. As a new offering, we also even allow you to select various distributions of Linux – a first for Microsoft. Windows Azure Connect: You can connect your on-premises networks to Windows Azure Instances. Storage: Windows Azure Storage can be used as a remote backup, a hybrid storage location and more using software or even hardware appliances.   Decision Matrix With all of these options, you can use Windows Azure to solve just about any computing problem. It’s often hard to know when to use something on-premises, in the cloud, and what kind of service to use. I’ve used a decision matrix in the last couple of years to take a particular problem and choose the proper technology to solve it. It’s all about options – there is no “silver bullet”, whether that’s Windows Azure or any other set of functions. I take the problem, decide which particular component I want to own and control – and choose the column that has that box darkened. For instance, if I have to control the wiring for a solution (a requirement in some military and government installations), that means the “Networking” component needs to be dark, and so I select the “On Premises” column for that particular solution. If I just need the solution provided and I want no control at all, I can look as “Software as a Service” solutions. Security, Pricing, and Other Info  Security: Security is one of the first questions you should ask in any distributed computing environment. We have certification info, coding guidelines and more, even a general “Request for Information” RFI Response already created for you.   Pricing: Are there licenses? How much does this cost? Is there a way to estimate the costs in this new environment? New Features: Many new features were added to Windows Azure - a good roundup of those changes can be found here. Support: Software Support on Virtual Machines, general support.    

    Read the article

  • General Policies and Procedures for Maintaining the Value of Data Assets

    Here is a general list for policies and procedures regarding maintaining the value of data assets. Data Backup Policies and Procedures Backups are very important when dealing with data because there is always the chance of losing data due to faulty hardware or a user activity. So the need for a strategic backup system should be mandatory for all companies. This being said, in the real world some companies that I have worked for do not really have a good data backup plan. Typically when companies tend to take this kind of approach in data backups usually the data is not really recoverable.  Unfortunately when companies do not regularly test their backup plans they get a false sense of security because they think that they are covered. However, I can tell you from personal and professional experience that a backup plan/system is never fully implemented until it is regularly tested prior to the time when it actually needs to be used. Disaster Recovery Plan Expanding on Backup Policies and Procedures, a company needs to also have a disaster recovery plan in order to protect its data in case of a catastrophic disaster.  Disaster recovery plans typically encompass how to restore all of a company’s data and infrastructure back to a restored operational status.  Most Disaster recovery plans also include time estimates on how long each step of the disaster recovery plan should take to be executed.  It is important to note that disaster recovery plans are never fully implemented until they have been tested just like backup plans. Disaster recovery plans should be tested regularly so that the business can be confident in not losing any or minimal data due to a catastrophic disaster. Firewall Policies and Content Filters One way companies can protect their data is by using a firewall to separate their internal network from the outside. Firewalls allow for enabling or disabling network access as data passes through it by applying various defined restrictions. Furthermore firewalls can also be used to prevent access from the internal network to the outside by these same factors. Common Firewall Restrictions Destination/Sender IP Address Destination/Sender Host Names Domain Names Network Ports Companies can also desire to restrict what their network user’s view on the internet through things like content filters. Content filters allow a company to track what webpages a person has accessed and can also restrict user’s access based on established rules set up in the content filter. This device and/or software can block access to domains or specific URLs based on a few factors. Common Content Filter Criteria Known malicious sites Specific Page Content Page Content Theme  Anti-Virus/Mal-ware Polices Fortunately, most companies utilize antivirus programs on all computers and servers for good reason, virus have been known to do the following: Corrupt/Invalidate Data, Destroy Data, and Steal Data. Anti-Virus applications are a great way to prevent any malicious application from being able to gain access to a company’s data.  However, anti-virus programs must be constantly updated because new viruses are always being created, and the anti-virus vendors need to distribute updates to their applications so that they can catch and remove them. Data Validation Policies and Procedures Data validation is very important to ensure that only accurate information is stored. The existence of invalid data can cause major problems when businesses attempt to use data for knowledge based decisions and for performance reporting. Data Scrubbing Policies and Procedures Data scrubbing is valuable to companies in one of two ways. The first can be used to clean data prior to being analyzed for report generation. The second is that it allows companies to remove things like personally Identifiable information from its data prior to transmit it between multiple environments or if the information is sent to an external location. An example of this can be seen with medical records in regards to HIPPA laws that prohibit the storage of specific personal and medical information. Additionally, I have professionally run in to a scenario where the Canadian government does not allow any Canadian’s personal information to be stored on a server not located in Canada. Encryption Practices The use of encryption is very valuable when a company needs to any personal information. This allows users with the appropriated access levels to view or confirm the existence or accuracy of data within a system by either decrypting the information or encrypting a piece of data and comparing it to the stored version.  Additionally, if for some unforeseen reason the data got in to the wrong hands then they would have to first decrypt the data before they could even be able to read it. Encryption just adds and additional layer of protection around data itself. Standard Normalization Practices The use of standard data normalization practices is very important when dealing with data because it can prevent allot of potential issues by eliminating the potential for unnecessary data duplication. Issues caused by data duplication include excess use of data storage, increased chance for invalidated data, and over use of data processing. Network and Database Security/Access Policies Every company has some form of network/data access policy even if they have none. These policies help secure data from being seen by inappropriate users along with preventing the data from being updated or deleted by users. In addition, without a good security policy there is a large potential for data to be corrupted by unassuming users or even stolen. Data Storage Policies Data storage polices are very important depending on how they are implemented especially when a company is trying to utilize them in conjunction with other policies like Data Backups. I have worked at companies where all network user folders are constantly backed up, and if a user wanted to ensure the existence of a piece of data in the form of a file then they had to store that file in their network folder. Conversely, I have also worked in places where when a user logs on or off of the network there entire user profile is backed up. Training Policies One of the biggest ways to prevent data loss and ensure that data will remain a company asset is through training. The practice of properly train employees on how to work with in systems that access data is crucial when trying to ensure a company’s data will remain an asset. Users need to be trained on how to manipulate a company’s data in order to perform their tasks to reduce the chances of invalidating data.

    Read the article

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • Webcast Q&A: ING on How to Scale Role Management and Compliance

    - by Tanu Sood
    Thanks to all who attended the live webcast we hosted on ING: Scaling Role Management and Access Certifications to Thousands of Applications on Wed, April 11th. Those of you who couldn’t join us, the webcast replay is now available. Many thanks to our guest speaker, Mark Robison, Enterprise Architect at ING for walking us through ING’s drivers and rationale for the platform approach, the phased implementation strategy, results & metrics, roadmap and recommendations. We greatly appreciate the insight he shared with us all on the deployment synergies between Oracle Identity Manager (OIM) and Oracle Identity Analytics (OIA) to enforce streamlined user and role management and scalable compliance. Mark was also kind enough to walk us through specific solutions features that helped ING manage the problem of role explosion and implement closed loop remediation. Our host speaker, Neil Gandhi, Principal Product Manager, Oracle rounded off the presentation by discussing common use cases and deployment scenarios we see organizations implement to automate user/identity administration and enforce closed-loop scalable compliance. Neil also called out the specific features in Oracle Identity Analytics 11gR1 that cater to expediting and streamlining compliance processes such as access certifications. While we tackled a few questions during the webcast, we have captured the responses to those that we weren’t able to get to here; our sincere thanks to Mark Robison for taking the time to respond to questions specific to ING’s implementation and strategy. Q. Did you include business friendly entitlment descriptions, or is the business seeing application descriptors A. We include very business friendly descriptions.  The OIA tool has the facility to allow this. Q. When doing attestation on job change, who is in the workflow to review and confirm that the employee should continue to have access? Is that a best practice?   A. The new and old manager  are in the workflow.  The tool can check for any Separation of Duties (SOD) violations with both having similiar accesses.  It may not be a best practice, but it is a reality of doing your old and new job for a transition period on a transfer. Q. What versions of OIM and OIA are being used at ING?   A. OIM 11gR1 and OIA 11gR1; the very latest versions available. Q. Are you using an entitlements / role catalog?   A. Yes. We use both roles and entitlements. Q. What specific unexpected benefits did the Identity Warehouse provide ING?   A. The most unanticipated was to help Legal Hold identify user ID's in the various applications.   Other benefits included providing a one stop shop for all aggregated ID information. Q. How fine grained are your application and entitlements? Did OIA, OIM support that level of granularity?   A. We have some very fine grained entitlements, but we role this up into approved Roles to allow for easier management.   For managing very fine grained entitlements, Oracle offers the Oracle Entitlement Server.  We currently do not own this software but are considering it. Q. Do you allow any individual access or is everything truly role based?   A. We are a hybrid environment with roles and individual positive and negative entitlements Q. Did you use an Agile methodology like scrum to deliver functionality during your project? A. We started with waterfall, but used an agile approach to provide benefits after the initial implementation Q. How did you handle rolling out the standard ID format to existing users? A. We just used the standard IDs for new users.  We have not taken on a project to address the existing nonstandard IDs. Q. To avoid role explosion, how do you deal with apps that require more than a couple of entitlement TYPES? For example, an app may have different levels of access and it may need to know the user's country/state to associate them with particular customers.   A. We focus on the functional user and craft the role around their daily job requirements.  The role captures the required application entitlements.  To keep role explosion down, we use role mining in OIA and also meet and interview the business.  It is an iterative process to get role consensus. Q. Great presentation! How many rounds of Certifications has ING performed so far?  A. Around 7 quarters and constant certifications on transfer. Q. Did you have executive support from the top down   A. Yes  The executive support was key to our success. Q. For your cloud instance are you using OIA or OIM as SaaS?  A. No.  We are just provisioning and deprovisioning to various Cloud providers.  (Service Now is an example) Q. How do you ensure a role owner does not get more priviliges as are intended and thus violates another role, e,g, a DBA Roles should not get tor rigt to run somethings as root, as this would affect the root role? A. We have SOD  checks.  Also all Roles are initially approved by external audit and the role owners have to certify the roles and any changes Q. What is your ratio of employees to roles?   A. We are still in process going through our various lines of business, so I do not have a final ratio.  From what we have seen, the ratio varies greatly depending on the Line of Business and the diversity of Job Functions.  For standardized lines of business such as call centers, the ratio is very good where we can have a single role that covers many employees.  For specialized lines of business like treasury, it can be one or two people per role. Q. Is ING using Oracle On Demand service ?   A. No Q. Do you have to implement or migrate to OIM in order to get the Identity Warehouse, or can OIA provide the identity warehouse as well if you haven't reached OIM yet? A. No, OIM deployment is not required to implement OIA’s Identity Warehouse but as you heard during the webcast, there are tremendous deployment synergies in deploying both OIA and OIM together. Q. When is the Security Governor product coming out? A. Oracle Security Governor for Healthcare is available today. Hope you enjoyed the webcast and we look forward to having you join us for the next webcast in the Customers Talk: Identity as a Platform webcast series: Toyota: Putting Customers First – Identity Platform as a Business Enabler Wednesday, May 16th at 10 am PST/ 1 pm EST Register Today You can also register for a live event at a city near you where Aberdeen’s Derek Brink will discuss the survey results from the recently published report “Analyzing Platform vs. Point Solution Approach in Identity”. And, you can do a quick (& free)  online assessment of your identity programs by benchmarking it against the 160 organizations surveyed  in the Aberdeen report, compliments of Oracle. Here’s the slide deck from our ING webcast: ING webcast platform View more presentations from OracleIDM

    Read the article

  • An Introduction to jQuery Templates

    - by Stephen Walther
    The goal of this blog entry is to provide you with enough information to start working with jQuery Templates. jQuery Templates enable you to display and manipulate data in the browser. For example, you can use jQuery Templates to format and display a set of database records that you have retrieved with an Ajax call. jQuery Templates supports a number of powerful features such as template tags, template composition, and wrapped templates. I’ll concentrate on the features that I think that you will find most useful. In order to focus on the jQuery Templates feature itself, this blog entry is server technology agnostic. All the samples use HTML pages instead of ASP.NET pages. In a future blog entry, I’ll focus on using jQuery Templates with ASP.NET Web Forms and ASP.NET MVC (You can do some pretty powerful things when jQuery Templates are used on the client and ASP.NET is used on the server). Introduction to jQuery Templates The jQuery Templates plugin was developed by the Microsoft ASP.NET team in collaboration with the open-source jQuery team. While working at Microsoft, I wrote the original proposal for jQuery Templates, Dave Reed wrote the original code, and Boris Moore wrote the final code. The jQuery team – especially John Resig – was very involved in each step of the process. Both the jQuery community and ASP.NET communities were very active in providing feedback. jQuery Templates will be included in the jQuery core library (the jQuery.js library) when jQuery 1.5 is released. Until jQuery 1.5 is released, you can download the jQuery Templates plugin from the jQuery Source Code Repository or you can use jQuery Templates directly from the ASP.NET CDN. The documentation for jQuery Templates is already included with the official jQuery documentation at http://api.jQuery.com. The main entry for jQuery templates is located under the topic plugins/templates. A Basic Sample of jQuery Templates Let’s start with a really simple sample of using jQuery Templates. We’ll use the plugin to display a list of books stored in a JavaScript array. Here’s the complete code: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head> <title>Intro</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg" }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg" }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg" }, ]; // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html> When you open this page in a browser, a list of books is displayed: There are several things going on in this page which require explanation. First, notice that the page uses both the jQuery 1.4.4 and jQuery Templates libraries. Both libraries are retrieved from the ASP.NET CDN: <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> You can use the ASP.NET CDN for free (even for production websites). You can learn more about the files included on the ASP.NET CDN by visiting the ASP.NET CDN documentation page. Second, you should notice that the actual template is included in a script tag with a special MIME type: <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> This template is displayed for each of the books rendered by the template. The template displays a book picture, title, and price. Notice that the SCRIPT tag which wraps the template has a MIME type of text/x-jQuery-tmpl. Why is the template wrapped in a SCRIPT tag and why the strange MIME type? When a browser encounters a SCRIPT tag with an unknown MIME type, it ignores the content of the tag. This is the behavior that you want with a template. You don’t want a browser to attempt to parse the contents of a template because this might cause side effects. For example, the template above includes an <img> tag with a src attribute that points at “BookPictures/${picture}”. You don’t want the browser to attempt to load an image at the URL “BookPictures/${picture}”. Instead, you want to prevent the browser from processing the IMG tag until the ${picture} expression is replaced by with the actual name of an image by the jQuery Templates plugin. If you are not worried about browser side-effects then you can wrap a template inside any HTML tag that you please. For example, the following DIV tag would also work with the jQuery Templates plugin: <div id="bookTemplate" style="display:none"> <div> <h2>${title}</h2> price: ${formatPrice(price)} </div> </div> Notice that the DIV tag includes a style=”display:none” attribute to prevent the template from being displayed until the template is parsed by the jQuery Templates plugin. Third, notice that the expression ${…} is used to display the value of a JavaScript expression within a template. For example, the expression ${title} is used to display the value of the book title property. You can use any JavaScript function that you please within the ${…} expression. For example, in the template above, the book price is formatted with the help of the custom JavaScript formatPrice() function which is defined lower in the page. Fourth, and finally, the template is rendered with the help of the tmpl() method. The following statement selects the bookTemplate and renders an array of books using the bookTemplate. The results are appended to a DIV element named bookContainer by using the standard jQuery appendTo() method. $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); Using Template Tags Within a template, you can use any of the following template tags. {{tmpl}} – Used for template composition. See the section below. {{wrap}} – Used for wrapped templates. See the section below. {{each}} – Used to iterate through a collection. {{if}} – Used to conditionally display template content. {{else}} – Used with {{if}} to conditionally display template content. {{html}} – Used to display the value of an HTML expression without encoding the value. Using ${…} or {{= }} performs HTML encoding automatically. {{= }}-- Used in exactly the same way as ${…}. {{! }} – Used for displaying comments. The contents of a {{!...}} tag are ignored. For example, imagine that you want to display a list of blog entries. Each blog entry could, possibly, have an associated list of categories. The following page illustrates how you can use the { if}} and {{each}} template tags to conditionally display categories for each blog entry:   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>each</title> <link href="1_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="blogPostContainer"></div> <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> var blogPosts = [ { postTitle: "How to fix a sink plunger in 5 minutes", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.", categories: ["HowTo", "Sinks", "Plumbing"] }, { postTitle: "How to remove a broken lightbulb", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.", categories: ["HowTo", "Lightbulbs", "Electricity"] }, { postTitle: "New associate website", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna." } ]; // Render the blog posts $("#blogPostTemplate").tmpl(blogPosts).appendTo("#blogPostContainer"); </script> </body> </html> When this page is opened in a web browser, the following list of blog posts and categories is displayed: Notice that the first and second blog entries have associated categories but the third blog entry does not. The third blog entry is “Uncategorized”. The template used to render the blog entries and categories looks like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script> Notice the special expression $value used within the {{each}} template tag. You can use $value to display the value of the current template item. In this case, $value is used to display the value of each category in the collection of categories. Template Composition When building a fancy page, you might want to build a template out of multiple templates. In other words, you might want to take advantage of template composition. For example, imagine that you want to display a list of products. Some of the products are being sold at their normal price and some of the products are on sale. In that case, you might want to use two different templates for displaying a product: a productTemplate and a productOnSaleTemplate. The following page illustrates how you can use the {{tmpl}} tag to build a template from multiple templates:   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Composition</title> <link href="2_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContainer"> <h1>Products</h1> <div id="productListContainer"></div> <!-- Show list of products using composition --> <script id="productListTemplate" type="text/x-jQuery-tmpl"> <div> {{if onSale}} {{tmpl "#productOnSaleTemplate"}} {{else}} {{tmpl "#productTemplate"}} {{/if}} </div> </script> <!-- Show product --> <script id="productTemplate" type="text/x-jQuery-tmpl"> ${name} </script> <!-- Show product on sale --> <script id="productOnSaleTemplate" type="text/x-jQuery-tmpl"> <b>${name}</b> <img src="images/on_sale.png" alt="On Sale" /> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> var products = [ { name: "Laptop", onSale: false }, { name: "Apples", onSale: true }, { name: "Comb", onSale: false } ]; $("#productListTemplate").tmpl(products).appendTo("#productListContainer"); </script> </div> </body> </html>   In the page above, the main template used to display the list of products looks like this: <script id="productListTemplate" type="text/x-jQuery-tmpl"> <div> {{if onSale}} {{tmpl "#productOnSaleTemplate"}} {{else}} {{tmpl "#productTemplate"}} {{/if}} </div> </script>   If a product is on sale then the product is displayed with the productOnSaleTemplate (which includes an on sale image): <script id="productOnSaleTemplate" type="text/x-jQuery-tmpl"> <b>${name}</b> <img src="images/on_sale.png" alt="On Sale" /> </script>   Otherwise, the product is displayed with the normal productTemplate (which does not include the on sale image): <script id="productTemplate" type="text/x-jQuery-tmpl"> ${name} </script>   You can pass a parameter to the {{tmpl}} tag. The parameter becomes the data passed to the template rendered by the {{tmpl}} tag. For example, in the previous section, we used the {{each}} template tag to display a list of categories for each blog entry like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script>   Another way to create this template is to use template composition like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{tmpl(categories) "#categoryTemplate"}} {{else}} Uncategorized {{/if}} </script> <script id="categoryTemplate" type="text/x-jQuery-tmpl"> <i>${$data}</i> &nbsp; </script>   Using the {{each}} tag or {{tmpl}} tag is largely a matter of personal preference. Wrapped Templates The {{wrap}} template tag enables you to take a chunk of HTML and transform the HTML into another chunk of HTML (think easy XSLT). When you use the {{wrap}} tag, you work with two templates. The first template contains the HTML being transformed and the second template includes the filter expressions for transforming the HTML. For example, you can use the {{wrap}} template tag to transform a chunk of HTML into an interactive tab strip: When you click any of the tabs, you see the corresponding content. This tab strip was created with the following page: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Wrapped Templates</title> <style type="text/css"> body { font-family: Arial; background-color:black; } .tabs div { display:inline-block; border-bottom: 1px solid black; padding:4px; background-color:gray; cursor:pointer; } .tabs div.tabState_true { background-color:white; border-bottom:1px solid white; } .tabBody { border-top:1px solid white; padding:10px; background-color:white; min-height:400px; width:400px; } </style> </head> <body> <div id="tabsView"></div> <script id="tabsContent" type="text/x-jquery-tmpl"> {{wrap "#tabsWrap"}} <h3>Tab 1</h3> <div> Content of tab 1. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 2</h3> <div> Content of tab 2. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 3</h3> <div> Content of tab 3. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> {{/wrap}} </script> <script id="tabsWrap" type="text/x-jquery-tmpl"> <div class="tabs"> {{each $item.html("h3", true)}} <div class="tabState_${$index === selectedTabIndex}"> ${$value} </div> {{/each}} </div> <div class="tabBody"> {{html $item.html("div")[selectedTabIndex]}} </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Global for tracking selected tab var selectedTabIndex = 0; // Render the tab strip $("#tabsContent").tmpl().appendTo("#tabsView"); // When a tab is clicked, update the tab strip $("#tabsView") .delegate(".tabState_false", "click", function () { var templateItem = $.tmplItem(this); selectedTabIndex = $(this).index(); templateItem.update(); }); </script> </body> </html>   The “source” for the tab strip is contained in the following template: <script id="tabsContent" type="text/x-jquery-tmpl"> {{wrap "#tabsWrap"}} <h3>Tab 1</h3> <div> Content of tab 1. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 2</h3> <div> Content of tab 2. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 3</h3> <div> Content of tab 3. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> {{/wrap}} </script>   The tab strip is created with a list of H3 elements (which represent each tab) and DIV elements (which represent the body of each tab). Notice that the HTML content is wrapped in the {{wrap}} template tag. This template tag points at the following tabsWrap template: <script id="tabsWrap" type="text/x-jquery-tmpl"> <div class="tabs"> {{each $item.html("h3", true)}} <div class="tabState_${$index === selectedTabIndex}"> ${$value} </div> {{/each}} </div> <div class="tabBody"> {{html $item.html("div")[selectedTabIndex]}} </div> </script> The tabs DIV contains all of the tabs. The {{each}} template tag is used to loop through each of the H3 elements from the source template and render a DIV tag that represents a particular tab. The template item html() method is used to filter content from the “source” HTML template. The html() method accepts a jQuery selector for its first parameter. The tabs are retrieved from the source template by using an h3 filter. The second parameter passed to the html() method – the textOnly parameter -- causes the filter to return the inner text of each h3 element. You can learn more about the html() method at the jQuery website (see the section on $item.html()). The tabBody DIV renders the body of the selected tab. Notice that the {{html}} template tag is used to display the tab body so that HTML content in the body won’t be HTML encoded. The html() method is used, once again, to grab all of the DIV elements from the source HTML template. The selectedTabIndex global variable is used to display the contents of the selected tab. Remote Templates A common feature request for jQuery templates is support for remote templates. Developers want to be able to separate templates into different files. Adding support for remote templates requires only a few lines of extra code (Dave Ward has a nice blog entry on this). For example, the following page uses a remote template from a file named BookTemplate.htm: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Remote Templates</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg" }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg" }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg" }, ]; // Get the remote template $.get("BookTemplate.htm", null, function (bookTemplate) { // Render the books using the remote template $.tmpl(bookTemplate, books).appendTo("#bookContainer"); }); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   The remote template is retrieved (and rendered) with the following code: // Get the remote template $.get("BookTemplate.htm", null, function (bookTemplate) { // Render the books using the remote template $.tmpl(bookTemplate, books).appendTo("#bookContainer"); });   This code uses the standard jQuery $.get() method to get the BookTemplate.htm file from the server with an Ajax request. After the BookTemplate.htm file is successfully retrieved, the $.tmpl() method is used to render an array of books with the template. Here’s what the BookTemplate.htm file looks like: <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> Notice that the template in the BooksTemplate.htm file is not wrapped by a SCRIPT element. There is no need to wrap the template in this case because there is no possibility that the template will get interpreted before you want it to be interpreted. If you plan to use the bookTemplate multiple times – for example, you are paging or sorting the books -- then you should compile the template into a function and cache the compiled template function. For example, the following page can be used to page through a list of 100 products (using iPhone style More paging). <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Template Caching</title> <link href="6_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <h1>Products</h1> <div id="productContainer"></div> <button id="more">More</button> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Globals var pageIndex = 0; // Create an array of products var products = []; for (var i = 0; i < 100; i++) { products.push({ name: "Product " + (i + 1) }); } // Get the remote template $.get("ProductTemplate.htm", null, function (productTemplate) { // Compile and cache the template $.template("productTemplate", productTemplate); // Render the products renderProducts(0); }); $("#more").click(function () { pageIndex++; renderProducts(); }); function renderProducts() { // Get page of products var pageOfProducts = products.slice(pageIndex * 5, pageIndex * 5 + 5); // Used cached productTemplate to render products $.tmpl("productTemplate", pageOfProducts).appendTo("#productContainer"); } function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   The ProductTemplate is retrieved from an external file named ProductTemplate.htm. This template is retrieved only once. Furthermore, it is compiled and cached with the help of the $.template() method: // Get the remote template $.get("ProductTemplate.htm", null, function (productTemplate) { // Compile and cache the template $.template("productTemplate", productTemplate); // Render the products renderProducts(0); });   The $.template() method compiles the HTML representation of the template into a JavaScript function and caches the template function with the name productTemplate. The cached template can be used by calling the $.tmp() method. The productTemplate is used in the renderProducts() method: function renderProducts() { // Get page of products var pageOfProducts = products.slice(pageIndex * 5, pageIndex * 5 + 5); // Used cached productTemplate to render products $.tmpl("productTemplate", pageOfProducts).appendTo("#productContainer"); } In the code above, the first parameter passed to the $.tmpl() method is the name of a cached template. Working with Template Items In this final section, I want to devote some space to discussing Template Items. A new Template Item is created for each rendered instance of a template. For example, if you are displaying a list of 100 products with a template, then 100 Template Items are created. A Template Item has the following properties and methods: data – The data associated with the Template Instance. For example, a product. tmpl – The template associated with the Template Instance. parent – The parent template item if the template is nested. nodes – The HTML content of the template. calls – Used by {{wrap}} template tag. nest – Used by {{tmpl}} template tag. wrap – Used to imperatively enable wrapped templates. html – Used to filter content from a wrapped template. See the above section on wrapped templates. update – Used to re-render a template item. The last method – the update() method -- is especially interesting because it enables you to re-render a template item with new data or even a new template. For example, the following page displays a list of books. When you hover your mouse over any of the books, additional book details are displayed. In the following screenshot, details for ASP.NET Kick Start are displayed. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Template Item</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div class="bookItem"> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> <script id="bookDetailsTemplate" type="text/x-jQuery-tmpl"> <div class="bookItem"> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} <p> ${description} </p> </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg", description: "The most comprehensive book on Microsoft’s new ASP.NET 4.. " }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg", description: "Writing for professional programmers, Walther explains the crucial concepts that make the Model-View-Controller (MVC) development paradigm work…" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg", description: "Visual Studio .NET is the premier development environment for creating .NET applications…." }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg", description: "ASP.NET MVC Unleashed for the iPhone…" }, ]; // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); // Get compiled details template var bookDetailsTemplate = $("#bookDetailsTemplate").template(); // Add hover handler $(".bookItem").mouseenter(function () { // Get template item associated with DIV var templateItem = $(this).tmplItem(); // Change template to compiled template templateItem.tmpl = bookDetailsTemplate; // Re-render template templateItem.update(); }); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   There are two templates used to display a book: bookTemplate and bookDetailsTemplate. When you hover your mouse over a template item, the standard bookTemplate is swapped out for the bookDetailsTemplate. The bookDetailsTemplate displays a book description. The books are rendered with the bookTemplate with the following line of code: // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer");   The following code is used to swap the bookTemplate and the bookDetailsTemplate to show details for a book: // Get compiled details template var bookDetailsTemplate = $("#bookDetailsTemplate").template(); // Add hover handler $(".bookItem").mouseenter(function () { // Get template item associated with DIV var templateItem = $(this).tmplItem(); // Change template to compiled template templateItem.tmpl = bookDetailsTemplate; // Re-render template templateItem.update(); });   When you hover your mouse over a DIV element rendered by the bookTemplate, the mouseenter handler executes. First, this handler retrieves the Template Item associated with the DIV element by calling the tmplItem() method. The tmplItem() method returns a Template Item. Next, a new template is assigned to the Template Item. Notice that a compiled version of the bookDetailsTemplate is assigned to the Template Item’s tmpl property. The template is compiled earlier in the code by calling the template() method. Finally, the Template Item update() method is called to re-render the Template Item with the bookDetailsTemplate instead of the original bookTemplate. Summary This is a long blog entry and I still have not managed to cover all of the features of jQuery Templates J However, I’ve tried to cover the most important features of jQuery Templates such as template composition, template wrapping, and template items. To learn more about jQuery Templates, I recommend that you look at the documentation for jQuery Templates at the official jQuery website. Another great way to learn more about jQuery Templates is to look at the (unminified) source code.

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • MySQL Syslog Audit Plugin

    - by jonathonc
    This post shows the construction process of the Syslog Audit plugin that was presented at MySQL Connect 2012. It is based on an environment that has the appropriate development tools enabled including gcc,g++ and cmake. It also assumes you have downloaded the MySQL source code (5.5.16 or higher) and have compiled and installed the system into the /usr/local/mysql directory ready for use.  The information provided below is designed to show the different components that make up a plugin, and specifically an audit type plugin, and how it comes together to be used within the MySQL service. The MySQL Reference Manual contains information regarding the plugin API and how it can be used, so please refer there for more detailed information. The code in this post is designed to give the simplest information necessary, so handling every return code, managing race conditions etc is not part of this example code. Let's start by looking at the most basic implementation of our plugin code as seen below: /*    Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.    Author:  Jonathon Coombes    Licence: GPL    Description: An auditing plugin that logs to syslog and                 can adjust the loglevel via the system variables. */ #include <stdio.h> #include <string.h> #include <mysql/plugin_audit.h> #include <syslog.h> There is a commented header detailing copyright/licencing and meta-data information and then the include headers. The two important include statements for our plugin are the syslog.h plugin, which gives us the structures for syslog, and the plugin_audit.h include which has details regarding the audit specific plugin api. Note that we do not need to include the general plugin header plugin.h, as this is done within the plugin_audit.h file already. To implement our plugin within the current implementation we need to add it into our source code and compile. > cd /usr/local/src/mysql-5.5.28/plugin > mkdir audit_syslog > cd audit_syslog A simple CMakeLists.txt file is created to manage the plugin compilation: MYSQL_ADD_PLUGIN(audit_syslog audit_syslog.cc MODULE_ONLY) Run the cmake  command at the top level of the source and then you can compile the plugin using the 'make' command. This results in a compiled audit_syslog.so library, but currently it is not much use to MySQL as there is no level of api defined to communicate with the MySQL service. Now we need to define the general plugin structure that enables MySQL to recognise the library as a plugin and be able to install/uninstall it and have it show up in the system. The structure is defined in the plugin.h file in the MySQL source code.  /*   Plugin library descriptor */ mysql_declare_plugin(audit_syslog) {   MYSQL_AUDIT_PLUGIN,           /* plugin type                    */   &audit_syslog_descriptor,     /* descriptor handle               */   "audit_syslog",               /* plugin name                     */   "Author Name",                /* author                          */   "Simple Syslog Audit",        /* description                     */   PLUGIN_LICENSE_GPL,           /* licence                         */   audit_syslog_init,            /* init function     */   audit_syslog_deinit,          /* deinit function */   0x0001,                       /* plugin version                  */   NULL,                         /* status variables        */   NULL,                         /* system variables                */   NULL,                         /* no reserves                     */   0,                            /* no flags                        */ } mysql_declare_plugin_end; The general plugin descriptor above is standard for all plugin types in MySQL. The plugin type is defined along with the init/deinit functions and interface methods into the system for sharing information, and various other metadata information. The descriptors have an internally recognised version number so that plugins can be matched against the api on the running server. The other details are usually related to the type-specific methods and structures to implement the plugin. Each plugin has a type-specific descriptor as well which details how the plugin is implemented for the specific purpose of that plugin type. /*   Plugin type-specific descriptor */ static struct st_mysql_audit audit_syslog_descriptor= {   MYSQL_AUDIT_INTERFACE_VERSION,                        /* interface version    */   NULL,                                                 /* release_thd function */   audit_syslog_notify,                                  /* notify function      */   { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |                     MYSQL_AUDIT_CONNECTION_CLASSMASK }  /* class mask           */ }; In this particular case, the release_thd function has not been defined as it is not required. The important method for auditing is the notify function which is activated when an event occurs on the system. The notify function is designed to activate on an event and the implementation will determine how it is handled. For the audit_syslog plugin, the use of the syslog feature sends all events to the syslog for recording. The class mask allows us to determine what type of events are being seen by the notify function. There are currently two major types of event: 1. General Events: This includes general logging, errors, status and result type events. This is the main one for tracking the queries and operations on the database. 2. Connection Events: This group is based around user logins. It monitors connections and disconnections, but also if somebody changes user while connected. With most audit plugins, the principle behind the plugin is to track changes to the system over time and counters can be an important part of this process. The next step is to define and initialise the counters that are used to track the events in the service. There are 3 counters defined in total for our plugin - the # of general events, the # of connection events and the total number of events.  static volatile int total_number_of_calls; /* Count MYSQL_AUDIT_GENERAL_CLASS event instances */ static volatile int number_of_calls_general; /* Count MYSQL_AUDIT_CONNECTION_CLASS event instances */ static volatile int number_of_calls_connection; The init and deinit functions for the plugin are there to be called when the plugin is activated and when it is terminated. These offer the best option to initialise the counters for our plugin: /*  Initialize the plugin at server start or plugin installation. */ static int audit_syslog_init(void *arg __attribute__((unused))) {     openlog("mysql_audit:",LOG_PID|LOG_PERROR|LOG_CONS,LOG_USER);     total_number_of_calls= 0;     number_of_calls_general= 0;     number_of_calls_connection= 0;     return(0); } The init function does a call to openlog to initialise the syslog functionality. The parameters are the service to log under ("mysql_audit" in this case), the syslog flags and the facility for the logging. Then each of the counters are initialised to zero and a success is returned. If the init function is not defined, it will return success by default. /*  Terminate the plugin at server shutdown or plugin deinstallation. */ static int audit_syslog_deinit(void *arg __attribute__((unused))) {     closelog();     return(0); } The deinit function will simply close our syslog connection and return success. Note that the syslog functionality is part of the glibc libraries and does not require any external factors.  The function names are what we define in the general plugin structure, so these have to match otherwise there will be errors. The next step is to implement the event notifier function that was defined in the type specific descriptor (audit_syslog_descriptor) which is audit_syslog_notify. /* Event notifier function */ static void audit_syslog_notify(MYSQL_THD thd __attribute__((unused)), unsigned int event_class, const void *event) { total_number_of_calls++; if (event_class == MYSQL_AUDIT_GENERAL_CLASS) { const struct mysql_event_general *event_general= (const struct mysql_event_general *) event; number_of_calls_general++; syslog(audit_loglevel,"%lu: User: %s Command: %s Query: %s\n", event_general->general_thread_id, event_general->general_user, event_general->general_command, event_general->general_query ); } else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS) { const struct mysql_event_connection *event_connection= (const struct mysql_event_connection *) event; number_of_calls_connection++; syslog(audit_loglevel,"%lu: User: %s@%s[%s] Event: %d Status: %d\n", event_connection->thread_id, event_connection->user, event_connection->host, event_connection->ip, event_connection->event_subclass, event_connection->status ); } }   In the case of an event, the notifier function is called. The first step is to increment the total number of events that have occurred in our database.The event argument is then cast into the appropriate event structure depending on the class type, of general event or connection event. The event type counters are incremented and details are sent via the syslog() function out to the system log. There are going to be different line formats and information returned since the general events have different data compared to the connection events, even though some of the details overlap, for example, user, thread id, host etc. On compiling the code now, there should be no errors and the resulting audit_syslog.so can be loaded into the server and ready to use. Log into the server and type: mysql> INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so'; This will install the plugin and will start updating the syslog immediately. Note that the audit plugin attaches to the immediate thread and cannot be uninstalled while that thread is active. This means that you cannot run the UNISTALL command until you log into a different connection (thread) on the server. Once the plugin is loaded, the system log will show output such as the following: Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: show tables Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: show tables Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: select * from t1 Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: select * from t1 It appears that two of each event is being shown, but in actuality, these are two separate event types - the result event and the status event. This could be refined further by changing the audit_syslog_notify function to handle the different event sub-types in a different manner.  So far, it seems that the logging is working with events showing up in the syslog output. The issue now is that the counters created earlier to track the number of events by type are not accessible when the plugin is being run. Instead there needs to be a way to expose the plugin specific information to the service and vice versa. This could be done via the information_schema plugin api, but for something as simple as counters, the obvious choice is the system status variables. This is done using the standard structure and the declaration: /*  Plugin status variables for SHOW STATUS */ static struct st_mysql_show_var audit_syslog_status[]= {   { "Audit_syslog_total_calls",     (char *) &total_number_of_calls,     SHOW_INT },   { "Audit_syslog_general_events",     (char *) &number_of_calls_general,     SHOW_INT },   { "Audit_syslog_connection_events",     (char *) &number_of_calls_connection,     SHOW_INT },   { 0, 0, SHOW_INT } };   The structure is simply the name that will be displaying in the mysql service, the address of the associated variables, and the data type being used for the counter. It is finished with a blank structure to show that there are no more variables. Remember that status variables may have the same name for variables from other plugin, so it is considered appropriate to add the plugin name at the start of the status variable name to avoid confusion. Looking at the status variables in the mysql client shows something like the following: mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 2     | | Audit_syslog_total_calls       | 3     | +--------------------------------+-------+ 3 rows in set (0.00 sec) The final connectivity piece for the plugin is to allow the interactive change of the logging level between the plugin and the system. This requires the ability to send changes via the mysql service through to the plugin. This is done using the system variables interface and defining a single variable to keep track of the active logging level for the facility. /* Plugin system variables for SHOW VARIABLES */ static MYSQL_SYSVAR_STR(loglevel, audit_loglevel,                         PLUGIN_VAR_RQCMDARG,                         "User can specify the log level for auditing",                         audit_loglevel_check, audit_loglevel_update, "LOG_NOTICE"); static struct st_mysql_sys_var* audit_syslog_sysvars[] = {     MYSQL_SYSVAR(loglevel),     NULL }; So now the system variable 'loglevel' is defined for the plugin and associated to the global variable 'audit_loglevel'. The check or validation function is defined to make sure that no garbage values are attempted in the update of the variable. The update function is used to save the new value to the variable. Note that the audit_syslog_sysvars structure is defined in the general plugin descriptor to associate the link between the plugin and the system and how much they interact. Next comes the implementation of the validation function and the update function for the system variable. It is worth noting that if you have a simple numeric such as integers for the variable types, the validate function is often not required as MySQL will handle the automatic check and validation of simple types. /* longest valid value */ #define MAX_LOGLEVEL_SIZE 100 /* hold the valid values */ static const char *possible_modes[]= { "LOG_ERROR", "LOG_WARNING", "LOG_NOTICE", NULL };  static int audit_loglevel_check(     THD*                        thd,    /*!< in: thread handle */     struct st_mysql_sys_var*    var,    /*!< in: pointer to system                                         variable */     void*                       save,   /*!< out: immediate result                                         for update function */     struct st_mysql_value*      value)  /*!< in: incoming string */ {     char buff[MAX_LOGLEVEL_SIZE];     const char *str;     const char **found;     int length;     length= sizeof(buff);     if (!(str= value->val_str(value, buff, &length)))         return 1;     /*         We need to return a pointer to a locally allocated value in "save".         Here we pick to search for the supplied value in an global array of         constant strings and return a pointer to one of them.         The other possiblity is to use the thd_alloc() function to allocate         a thread local buffer instead of the global constants.     */     for (found= possible_modes; *found; found++)     {         if (!strcmp(*found, str))         {             *(const char**)save= *found;             return 0;         }     }     return 1; } The validation function is simply to take the value being passed in via the SET GLOBAL VARIABLE command and check if it is one of the pre-defined values allowed  in our possible_values array. If it is found to be valid, then the value is assigned to the save variable ready for passing through to the update function. static void audit_loglevel_update(     THD*                        thd,        /*!< in: thread handle */     struct st_mysql_sys_var*    var,        /*!< in: system variable                                             being altered */     void*                       var_ptr,    /*!< out: pointer to                                             dynamic variable */     const void*                 save)       /*!< in: pointer to                                             temporary storage */ {     /* assign the new value so that the server can read it */     *(char **) var_ptr= *(char **) save;     /* assign the new value to the internal variable */     audit_loglevel= *(char **) save; } Since all the validation has been done already, the update function is quite simple for this plugin. The first part is to update the system variable pointer so that the server can read the value. The second part is to update our own global plugin variable for tracking the value. Notice that the save variable is passed in as a void type to allow handling of various data types, so it must be cast to the appropriate data type when assigning it to the variables. Looking at how the latest changes affect the usage of the plugin and the interaction within the server shows: mysql> show global variables like "audit%"; +-----------------------+------------+ | Variable_name         | Value      | +-----------------------+------------+ | audit_syslog_loglevel | LOG_NOTICE | +-----------------------+------------+ 1 row in set (0.00 sec) mysql> set global audit_syslog_loglevel="LOG_ERROR"; Query OK, 0 rows affected (0.00 sec) mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 11    | | Audit_syslog_total_calls       | 12    | +--------------------------------+-------+ 3 rows in set (0.00 sec) mysql> show global variables like "audit%"; +-----------------------+-----------+ | Variable_name         | Value     | +-----------------------+-----------+ | audit_syslog_loglevel | LOG_ERROR | +-----------------------+-----------+ 1 row in set (0.00 sec)   So now we have a plugin that will audit the events on the system and log the details to the system log. It allows for interaction to see the number of different events within the server details and provides a mechanism to change the logging level interactively via the standard system methods of the SET command. A more complex auditing plugin may have more detailed code, but each of the above areas is what will be involved and simply expanded on to add more functionality. With the above skeleton code, it is now possible to create your own audit plugins to implement your own auditing requirements. If, however, you are not of the coding persuasion, then you could always consider the option of the MySQL Enterprise Audit plugin that is available to purchase.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Why do I get error "1337 The security ID structure is invalid" when using subinacl?

    - by ralbatross
    I have a standard Win 7 account 'popuser' to which I'd like to grant start and stop permissions for the OpenVPNService. I've used the following command successfully on other machines, but for some reason on a new Acer Aspire 5830T that I'm setting up this doesn't do the trick for me: subinacl /service OpenVPNService /grant=popuser=TO I keep getting the following error message: LookupAccountName : OpenVPNService:popuser 1337 The security ID structure is invalid. Current object OpenVPNService will not be processed Elapsed Time: 00 00:00:00 Done: 0, Modified 0, Failed 0, Syntax errors 1 Last Syntax Error:WARNING : /grant=popuser=to : Error when checking arguments - OpenVPNService I've tried adding the machine name to the username and the service name to no avail. I'm running command prompt as an administrator. Anyone have any ideas what's going on?

    Read the article

  • Sharepoint 2010, 404 error after installation

    - by Tommy Jakobsen
    Running Windows Server 2008 Standard R2, SQL Server 2008 Enterprise, Team Foundation Server 2010, I installed Sharepoint Server 2010 (single server). It installed correctly, and the wizard configured it without errors. When accessing the sharepoint server through http://localhost/ I get a 404 error. I also get a 404 when trying to access the admin interface on port 42620. Sharepoint, TFS and Reporting services are the only application on my IIS. NOT sharing the same port, so that can't be the error. Do you have any ideas what the problem can be? Is there some way that I can debug this?

    Read the article

  • Continual "The Windows Filtering Platform has blocked a connection" errors?

    - by Richard
    Our systems have been compromised by something recently which has lead us to carry out a more detailed look at what is happening on our workstations. I have noticed an issue where the Security log of this Windows 7 workstation is continually logging a security "Audit Failure" where the detail is that "The Windows Filtering Platform has blocked a connection". This is happening thousands of times a day and would appear to be our BT Business Broadband HGV 2700 ADSL router attempting to connect to Port 137 (NET Bios) on my workstation and being blocked. This has unfortunately had the effect of filling up the log files so much that anything which might have been of use which was logged over the weekend to help debug the intrusion has been "overwritten off the end" of the Security log. (I've since increased the log file size limits massively and turned on archiving). Does anyone know if this is standard behaviour of a BT ADSL router or whether this indicates that the router is compromised in some way or malfunctioning, or have any further suggestions as to how to diagnose this problem?

    Read the article

  • Event 36888 : The following fatal alert was generated: 10. The internal error state is 1203

    - by Param
    I search on the Internet, but i am unable to find, Why this error is coming? It has flooded my Event Viewer, after interval of 1 minutes, this Error pops-up. ( means the frequency is 1 minutes ) I didn't have any IIS installed. This server is purely Domain controller and no other role has been added. Please suggest, what should i do? Server OS - Window Server 2008 R2 Standard Edition More detail:- Log Name: System Source: Schannel Date: 6/28/2012 6:06:11 PM Event ID: 36888 Task Category: None Level: Error Keywords: User: SYSTEM Computer: QKSRVDC212.Corp.abc.com Description: The following fatal alert was generated: 10. The internal error state is 1203. Event Xml: 36888 0 2 0 0 0x8000000000000000 9305 System QKSRVDC212.Corp.abc.com 10 1203 Thanks & Regards, Param

    Read the article

  • MS Windows Server 2008R2 slow file copy, slow network connection

    - by MattrixHax
    i just setup a windows 2008R2 standard server, with the only installed app being Hyper-V, and only 1 windows XP VM is running. Whenever i try to copy a file from my windows 7 laptop over to the 2008R2 server machine's admin shares ( \\servername\c$ ) the files start transferring around 60mb/s and then drop to around 5mb/s. My windows 7 machine and the server 2008 machine are both in WORKGROUP (no domain here). when i try the same transfer to our server 2003 box the transfer speeds are fine. tried disabling autotuning (netsh interface tcp set global autotuninglevel=disabled) as well as turning off the checksum offload to the adapter (tx and rx) - i still see strange packet errors (bad header checksum) using wireshark and just cannot seem to track down what the issue is - over 1 hour to transfer 4gb of files from 1 server to another that are on the same GB switch is just crazy.... any ideas would be greatly appreciated!

    Read the article

  • Rewrite rules doesn’t work apache 1.3

    - by Sander Versluys
    I'm using a couple of rewrite directives that always works before on apache2 but now i'm trying new a shared hosting and the rewrite rules do not seem to get applied. I've reduced the .htaccess files to the following essential rules: RewriteEngine On Rewritebase /demo/ RewriteRule ^(.*)$ index.php/$1 [L] As you can see, i want to rewrite every request to my index.php file in the demo folder from root. So everything like http://www.example.com/demo/albums/show/1 should be processed by http://www.example.com/demo/index.php for a standard MVC setup. (I'm using CodeIgniter btw) The directives above results in a 500 error, so i thought maybe because of some possible syntax differences between 1.3 and 2.x. After some trail and error editing, i've found the rewrite rule itself to be at fault but i really don't understand why. Any ideas to why my rewrite rule doesn't work? it did before on lots of different servers. Suggestions how to fix it? Note: mod_rewrite does work, i've written a small test to be sure

    Read the article

  • HP Network Utility Error

    - by William Ricci
    Using the HP Network Utility to team 2 ports on Windows 2008 R2 Standard results in this error:----- An error occurred when making a call into the operating system. Happens on either of two cards that are installed. This happened before and after upgrading to PSP 9.10. Uninstalled the HP Network Configuration Utility and re-installed version 10.65.0.6. Updated NIC drivers. NC382i DP - HP Broadcom 1Gb Multifunction Driver 7.4.23.0 (from 6.2.9.0) NC365T - Intel E1R 11.14.80.0 (from 11.14.49.0)

    Read the article

  • Windows Server 2003 Terminal Server with installed licenses will not go beyond 2 connections

    - by Erwin Blonk
    I installed the Terminal Server role in Windows Server 2003 Standard 64-bits. Still, only 2 connections are allowed. The License Manager says that there are 10 Device CALs available, which is correct, and that none are given out. For good measure I let the server reboot, to no effect. Before this, there was another server (same Windows, except that it is 32 bits) active as a licensing server. I removed the role first and then then added it to the new server. I then removed the Terminal Server Licensing Server component off the old one and added it to the new one. After that, I added to licenses. When that didn't give the required result, I rebooted to new server. Still, the new server, with licenses and all, acts as if it has the 2 license RDP. The server are all stand-alone, there is no active directory been set up. Both servers are in different workgroups.

    Read the article

  • Fonts still missing in Flash after cleaning caches

    - by Anriëtte Combrink
    Hi there I was having missing fonts in Flash CS4, so I cleaned the font caches using the following commands in Terminal: sudo atsutil databases -remove atsutil server -shutdown atsutil server -ping These commands ran fine, so I restarted and opened my Flash file. Now suddenly Verdana is missing in Flash which was previously there. I ran FontNuke, and cleaned caches, and rebooted. Still nothing showed in Flash. I ran Cocktail, and cleaned just the font caches (all users on system), still nothing in Flash. I reinstalled Flash (didn't work) I then uninstalled Flash, rebooted and installed Flash, rebooted. (didn't work) After all this, Verdana still doesn't load in Flash. I validated all fonts in Font Book and removed the erroneous fonts. Is there any other way I can have all the fonts load in Flash (eliminate another cache I am not seeing)? I am so sick of Flash and its font caches and Verdana is pretty much a standard font so what am I doing wrong here?

    Read the article

  • IIS 7.5 Custom HTTP Response Headers Not Working

    - by Craig
    Trying to setup custom HTTP Response Headers on a new install of IIS7.5 on Windows Server 2008 R2 Standard and they are not working. Default headers work fine (X-Powered-By, etc...). Modifying default header values work (ie. change X-Powered-By to ASP.NET2). Modifying default header names cause header to stop being output (ie. Change X-Powered-By to X-Powered-By2). Site in question is a test site with a single html page. Custom headers also don't work on ASP.NET 2.0 site. I've tried setting the headers at the global level and at the site level to no effect.

    Read the article

  • HyperV on Domain Controller or DC on HyperV?

    - by Michael Stum
    I want to setup a little fileserver/domain controller/sharepoint server. SharePoint shouldn't run on the DC directly, so I want to use HyperV. But I never used it before, so I wonder: Should I install the Domain Controller and HyperV Role and run 1 VM for SharePoint? Or should I run HyperV server and then 2 servers, one for SharePoint and 1 for DC? Usage is minimal with only 1 user. Hardware will be an Athlon II X3 with 3x2.9 GHz and 4 GB RAM. Operating System will be Server 2008 R2 Standard in all cases.

    Read the article

< Previous Page | 191 192 193 194 195 196 197 198 199 200 201 202  | Next Page >