Search Results

Search found 5245 results on 210 pages for 'william hand'.

Page 196/210 | < Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >

  • VS 2010 Debugger Improvements (BreakPoints, DataTips, Import/Export)

    - by ScottGu
    This is the twenty-first in a series of blog posts I’m doing on the VS 2010 and .NET 4 release.  Today’s blog post covers a few of the nice usability improvements coming with the VS 2010 debugger.  The VS 2010 debugger has a ton of great new capabilities.  Features like Intellitrace (aka historical debugging), the new parallel/multithreaded debugging capabilities, and dump debuging support typically get a ton of (well deserved) buzz and attention when people talk about the debugging improvements with this release.  I’ll be doing blog posts in the future that demonstrate how to take advantage of them as well.  With today’s post, though, I thought I’d start off by covering a few small, but nice, debugger usability improvements that were also included with the VS 2010 release, and which I think you’ll find useful. Breakpoint Labels VS 2010 includes new support for better managing debugger breakpoints.  One particularly useful feature is called “Breakpoint Labels” – it enables much better grouping and filtering of breakpoints within a project or across a solution.  With previous releases of Visual Studio you had to manage each debugger breakpoint as a separate item. Managing each breakpoint separately can be a pain with large projects and for cases when you want to maintain “logical groups” of breakpoints that you turn on/off depending on what you are debugging.  Using the new VS 2010 “breakpoint labeling” feature you can now name these “groups” of breakpoints and manage them as a unit. Grouping Multiple Breakpoints Together using a Label Below is a screen-shot of the breakpoints window within Visual Studio 2010.  This lists all of the breakpoints defined within my solution (which in this case is the ASP.NET MVC 2 code base): The first and last breakpoint in the list above breaks into the debugger when a Controller instance is created or released by the ASP.NET MVC Framework. Using VS 2010, I can now select these two breakpoints, right-click, and then select the new “Edit labels…” menu command to give them a common label/name (making them easier to find and manage): Below is the dialog that appears when I select the “Edit labels” command.  We can use it to create a new string label for our breakpoints or select an existing one we have already defined.  In this case we’ll create a new label called “Lifetime Management” to describe what these two breakpoints cover: When we press the OK button our two selected breakpoints will be grouped under the newly created “Lifetime Management” label: Filtering/Sorting Breakpoints by Label We can use the “Search” combobox to quickly filter/sort breakpoints by label.  Below we are only showing those breakpoints with the “Lifetime Management” label: Toggling Breakpoints On/Off by Label We can also toggle sets of breakpoints on/off by label group.  We can simply filter by the label group, do a Ctrl-A to select all the breakpoints, and then enable/disable all of them with a single click: Importing/Exporting Breakpoints VS 2010 now supports importing/exporting breakpoints to XML files – which you can then pass off to another developer, attach to a bug report, or simply re-load later.  To export only a subset of breakpoints, you can filter by a particular label and then click the “Export breakpoint” button in the Breakpoints window: Above I’ve filtered my breakpoint list to only export two particular breakpoints (specific to a bug that I’m chasing down).  I can export these breakpoints to an XML file and then attach it to a bug report or email – which will enable another developer to easily setup the debugger in the correct state to investigate it on a separate machine.  Pinned DataTips Visual Studio 2010 also includes some nice new “DataTip pinning” features that enable you to better see and track variable and expression values when in the debugger.  Simply hover over a variable or expression within the debugger to expose its DataTip (which is a tooltip that displays its value)  – and then click the new “pin” button on it to make the DataTip always visible: You can “pin” any number of DataTips you want onto the screen.  In addition to pinning top-level variables, you can also drill into the sub-properties on variables and pin them as well.  Below I’ve “pinned” three variables: “category”, “Request.RawUrl” and “Request.LogonUserIdentity.Name”.  Note that these last two variable are sub-properties of the “Request” object.   Associating Comments with Pinned DataTips Hovering over a pinned DataTip exposes some additional UI within the debugger: Clicking the comment button at the bottom of this UI expands the DataTip - and allows you to optionally add a comment with it: This makes it really easy to attach and track debugging notes: Pinned DataTips are usable across both Debug Sessions and Visual Studio Sessions Pinned DataTips can be used across multiple debugger sessions.  This means that if you stop the debugger, make a code change, and then recompile and start a new debug session - any pinned DataTips will still be there, along with any comments you associate with them.  Pinned DataTips can also be used across multiple Visual Studio sessions.  This means that if you close your project, shutdown Visual Studio, and then later open the project up again – any pinned DataTips will still be there, along with any comments you associate with them. See the Value from Last Debug Session (Great Code Editor Feature) How many times have you ever stopped the debugger only to go back to your code and say: $#@! – what was the value of that variable again??? One of the nice things about pinned DataTips is that they keep track of their “last value from debug session” – and you can look these values up within the VB/C# code editor even when the debugger is no longer running.  DataTips are by default hidden when you are in the code editor and the debugger isn’t running.  On the left-hand margin of the code editor, though, you’ll find a push-pin for each pinned DataTip that you’ve previously setup: Hovering your mouse over a pinned DataTip will cause it to display on the screen.  Below you can see what happens when I hover over the first pin in the editor - it displays our debug session’s last values for the “Request” object DataTip along with the comment we associated with them: This makes it much easier to keep track of state and conditions as you toggle between code editing mode and debugging mode on your projects. Importing/Exporting Pinned DataTips As I mentioned earlier in this post, pinned DataTips are by default saved across Visual Studio sessions (you don’t need to do anything to enable this). VS 2010 also now supports importing/exporting pinned DataTips to XML files – which you can then pass off to other developers, attach to a bug report, or simply re-load later. Combined with the new support for importing/exporting breakpoints, this makes it much easier for multiple developers to share debugger configurations and collaborate across debug sessions. Summary Visual Studio 2010 includes a bunch of great new debugger features – both big and small.  Today’s post shared some of the nice debugger usability improvements. All of the features above are supported with the Visual Studio 2010 Professional edition (the Pinned DataTip features are also supported in the free Visual Studio 2010 Express Editions)  I’ll be covering some of the “big big” new debugging features like Intellitrace, parallel/multithreaded debugging, and dump file analysis in future blog posts.  Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Enabling Service Availability in WCF Services

    - by cibrax
    It is very important for the enterprise to know which services are operational at any given point. There are many factors that can affect the availability of the services, some of them are external like a database not responding or any dependant service not working. However, in some cases, you only want to know whether a service is up or down, so a simple heart-beat mechanism with “Ping” messages would do the trick. Unfortunately, WCF does not provide a built-in mechanism to support this functionality, and you probably don’t to implement a “Ping” operation in any service that you have out there. For solving this in a generic way, there is a WCF extensibility point that comes to help us, the “Operation Invokers”. In a nutshell, an operation invoker is the class responsible invoking the service method with a set of parameters and generate the output parameters with the return value. What I am going to do here is to implement a custom operation invoker that intercepts any call to the service, and detects whether a “Ping” header was attached to the message. If the “Ping” header is detected, the operation invoker returns a new header to tell the client that the service is alive, and the real operation execution is omitted. In that way, we have a simple heart beat mechanism based on the messages that include a "Ping” header, so the client application can determine at any point whether the service is up or down. My operation invoker wraps the default implementation attached by default to any operation by WCF. internal class PingOperationInvoker : IOperationInvoker { IOperationInvoker innerInvoker; object[] outputs = null; object returnValue = null; public const string PingHeaderName = "Ping"; public const string PingHeaderNamespace = "http://tellago.serviceModel"; public PingOperationInvoker(IOperationInvoker innerInvoker, OperationDescription description) { this.innerInvoker = innerInvoker; outputs = description.SyncMethod.GetParameters() .Where(p => p.IsOut) .Select(p => DefaultForType(p.ParameterType)).ToArray(); var returnValue = DefaultForType(description.SyncMethod.ReturnType); } private static object DefaultForType(Type targetType) { return targetType.IsValueType ? Activator.CreateInstance(targetType) : null; } public object Invoke(object instance, object[] inputs, out object[] outputs) { object returnValue; if (Invoke(out returnValue, out outputs)) { return returnValue; } else { return this.innerInvoker.Invoke(instance, inputs, out outputs); } } private bool Invoke(out object returnValue, out object[] outputs) { object untypedProperty = null; if (OperationContext.Current .IncomingMessageProperties.TryGetValue(HttpRequestMessageProperty.Name, out untypedProperty)) { var httpRequestProperty = untypedProperty as HttpRequestMessageProperty; if (httpRequestProperty != null) { if (httpRequestProperty.Headers[PingHeaderName] != null) { outputs = this.outputs; if (OperationContext.Current .IncomingMessageProperties.TryGetValue(HttpRequestMessageProperty.Name, out untypedProperty)) { var httpResponseProperty = untypedProperty as HttpResponseMessageProperty; httpResponseProperty.Headers.Add(PingHeaderName, "Ok"); } returnValue = this.returnValue; return true; } } } var headers = OperationContext.Current.IncomingMessageHeaders; if (headers.FindHeader(PingHeaderName, PingHeaderNamespace) > -1) { outputs = this.outputs; MessageHeader<string> header = new MessageHeader<string>("Ok"); var untyped = header.GetUntypedHeader(PingHeaderName, PingHeaderNamespace); OperationContext.Current.OutgoingMessageHeaders.Add(untyped); returnValue = this.returnValue; return true; } returnValue = null; outputs = null; return false; } } The implementation above looks for the “Ping” header either in the Http Request or the Soap message. The next step is to implement a behavior for attaching this operation invoker to the services we want to monitor. [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class, AllowMultiple = false, Inherited = true)] public class PingBehavior : Attribute, IServiceBehavior, IOperationBehavior { public void AddBindingParameters(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase, Collection<ServiceEndpoint> endpoints, BindingParameterCollection bindingParameters) { } public void ApplyDispatchBehavior(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase) { } public void Validate(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase) { foreach (var endpoint in serviceDescription.Endpoints) { foreach (var operation in endpoint.Contract.Operations) { if (operation.Behaviors.Find<PingBehavior>() == null) operation.Behaviors.Add(this); } } } public void AddBindingParameters(OperationDescription operationDescription, BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, ClientOperation clientOperation) { } public void ApplyDispatchBehavior(OperationDescription operationDescription, DispatchOperation dispatchOperation) { dispatchOperation.Invoker = new PingOperationInvoker(dispatchOperation.Invoker, operationDescription); } public void Validate(OperationDescription operationDescription) { } } As an operation invoker can only be added in an “operation behavior”, a trick I learned in the past is that you can implement a service behavior as well and use the “Validate” method to inject it in all the operations, so the final configuration is much easier and cleaner. You only need to decorate the service with a simple attribute to enable the “Ping” functionality. [PingBehavior] public class HelloWorldService : IHelloWorld { public string Hello(string name) { return "Hello " + name; } } On the other hand, the client application needs to send a dummy message with a “Ping” header to detect whether the service is available or not. In order to simplify this task, I created a extension method in the WCF client channel to do this work. public static class ClientChannelExtensions { const string PingNamespace = "http://tellago.serviceModel"; const string PingName = "Ping"; public static bool IsAvailable<TChannel>(this IClientChannel channel, Action<TChannel> operation) { try { using (OperationContextScope scope = new OperationContextScope(channel)) { MessageHeader<string> header = new MessageHeader<string>(PingName); var untyped = header.GetUntypedHeader(PingName, PingNamespace); OperationContext.Current.OutgoingMessageHeaders.Add(untyped); try { operation((TChannel)channel); var headers = OperationContext.Current.IncomingMessageHeaders; if (headers.Any(h => h.Name == PingName && h.Namespace == PingNamespace)) { return true; } else { return false; } } catch (CommunicationException) { return false; } } } catch (Exception) { return false; } } } This extension method basically adds a “Ping” header to the request message, executes the operation passed as argument (Action<TChannel> operation), and looks for the corresponding “Ping” header in the response to see the results. The client application can use this extension with a single line of code, var client = new ServiceReference.HelloWorldClient(); var isAvailable = client.InnerChannel.IsAvailable<IHelloWorld>((c) => c.Hello(null)); The “isAvailable” variable will tell the client application whether the service is available or not. You can download the complete implementation from this location.    

    Read the article

  • European Interoperability Framework - a new beginning?

    - by trond-arne.undheim
    The most controversial document in the history of the European Commission's IT policy is out. EIF is here, wrapped in the Communication "Towards interoperability for European public services", and including the new feature European Interoperability Strategy (EIS), arguably a higher strategic take on the same topic. Leaving EIS aside for a moment, the EIF controversy has been around IPR, defining open standards and about the proper terminology around standardization deliverables. Today, as the document finally emerges, what is the verdict? First of all, to be fair to those among you who do not spend your lives in the intricate labyrinths of Commission IT policy documents on interoperability, let's define what we are talking about. According to the Communication: "An interoperability framework is an agreed approach to interoperability for organisations that want to collaborate to provide joint delivery of public services. Within its scope of applicability, it specifies common elements such as vocabulary, concepts, principles, policies, guidelines, recommendations, standards, specifications and practices." The Good - EIF reconfirms that "The Digital Agenda can only take off if interoperability based on standards and open platforms is ensured" and also confirms that "The positive effect of open specifications is also demonstrated by the Internet ecosystem." - EIF takes a productive and pragmatic stance on openness: "In the context of the EIF, openness is the willingness of persons, organisations or other members of a community of interest to share knowledge and stimulate debate within that community, the ultimate goal being to advance knowledge and the use of this knowledge to solve problems" (p.11). "If the openness principle is applied in full: - All stakeholders have the same possibility of contributing to the development of the specification and public review is part of the decision-making process; - The specification is available for everybody to study; - Intellectual property rights related to the specification are licensed on FRAND terms or on a royalty-free basis in a way that allows implementation in both proprietary and open source software" (p. 26). - EIF is a formal Commission document. The former EIF 1.0 was a semi-formal deliverable from the PEGSCO, a working group of Member State representatives. - EIF tackles interoperability head-on and takes a clear stance: "Recommendation 22. When establishing European public services, public administrations should prefer open specifications, taking due account of the coverage of functional needs, maturity and market support." - The Commission will continue to support the National Interoperability Framework Observatory (NIFO), reconfirming the importance of coordinating such approaches across borders. - The Commission will align its internal interoperability strategy with the EIS through the eCommission initiative. - One cannot stress the importance of using open standards enough, whether in the context of open source or non-open source software. The EIF seems to have picked up on this fact: What does the EIF says about the relation between open specifications and open source software? The EIF introduces, as one of the characteristics of an open specification, the requirement that IPRs related to the specification have to be licensed on FRAND terms or on a royalty-free basis in a way that allows implementation in both proprietary and open source software. In this way, companies working under various business models can compete on an equal footing when providing solutions to public administrations while administrations that implement the standard in their own software (software that they own) can share such software with others under an open source licence if they so decide. - EIF is now among the center pieces of the Digital Agenda (even though this demands extensive inter-agency coordination in the Commission): "The EIS and the EIF will be maintained under the ISA Programme and kept in line with the results of other relevant Digital Agenda actions on interoperability and standards such as the ones on the reform of rules on implementation of ICT standards in Europe to allow use of certain ICT fora and consortia standards, on issuing guidelines on essential intellectual property rights and licensing conditions in standard-setting, including for ex-ante disclosure, and on providing guidance on the link between ICT standardisation and public procurement to help public authorities to use standards to promote efficiency and reduce lock-in.(Communication, p.7)" All in all, quite a few good things have happened to the document in the two years it has been on the shelf or was being re-written, depending on your perspective, in any case, awaiting the storms to calm. The Bad - While a certain pragmatism is required, and governments cannot migrate to full openness overnight, EIF gives a bit too much room for governments not to apply the openness principle in full. Plenty of reasons are given, which should maybe have been put as challenges to be overcome: "However, public administrations may decide to use less open specifications, if open specifications do not exist or do not meet functional interoperability needs. In all cases, specifications should be mature and sufficiently supported by the market, except if used in the context of creating innovative solutions". - EIF does not use the internationally established terminology: open standards. Rather, the EIF introduces the notion of "formalised specification". How do "formalised specifications" relate to "standards"? According to the FAQ provided: The word "standard" has a specific meaning in Europe as defined by Directive 98/34/EC. Only technical specifications approved by a recognised standardisation body can be called a standard. Many ICT systems rely on the use of specifications developed by other organisations such as a forum or consortium. The EIF introduces the notion of "formalised specification", which is either a standard pursuant to Directive 98/34/EC or a specification established by ICT fora and consortia. The term "open specification" used in the EIF, on the one hand, avoids terminological confusion with the Directive and, on the other, states the main features that comply with the basic principle of openness laid down in the EIF for European Public Services. Well, this may be somewhat true, but in reality, Europe is 30 year behind in terminology. Unless the European Standardization Reform gets completed in the next few months, most Member States will likely conclude that they will go on referencing and using standards beyond those created by the three European endorsed monopolists of standardization, CEN, CENELEC and ETSI. Who can afford to begin following the strict Brussels rules for what they can call open standards when, in reality, standards stemming from global standardization organizations, so-called fora/consortia, dominate in the IT industry. What exactly is EIF saying? Does it encourage Member States to go on using non-ESO standards as long as they call it something else? I guess I am all for it, although it is a bit cumbersome, no? Why was there so much interest around the EIF? The FAQ attempts to explain: Some Member States have begun to adopt policies to achieve interoperability for their public services. These actions have had a significant impact on the ecosystem built around the provision of such services, e.g. providers of ICT goods and services, standardisation bodies, industry fora and consortia, etc... The Commission identified a clear need for action at European level to ensure that actions by individual Member States would not create new electronic barriers that would hinder the development of interoperable European public services. As a result, all stakeholders involved in the delivery of electronic public services in Europe have expressed their opinions on how to increase interoperability for public services provided by the different public administrations in Europe. Well, it does not take two years to read 50 consultation documents, and the EU Standardization Reform is not yet completed, so, more pragmatically, you finally had to release the document. Ok, let's leave some of that aside because the document is out and some people are happy (and others definitely not). The Verdict Considering the controversy, the delays, the lobbying, and the interests at stake both in the EU, in Member States and among vendors large and small, this document is pretty impressive. As with a good wine that has not yet come to full maturity, let's say that it seems to be coming in in the 85-88/100 range, but only a more fine-grained analysis, enjoyment in good company, and ultimately, implementation, will tell. The European Commission has today adopted a significant interoperability initiative to encourage public administrations across the EU to maximise the social and economic potential of information and communication technologies. Today, we should rally around this achievement. Tomorrow, let's sit down and figure out what it means for the future.

    Read the article

  • Granular Clipboard Control in Oracle IRM

    - by martin.abrahams
    One of the main leak prevention controls that customers are looking for is clipboard control. After all, there is little point in controlling access to a document if authorised users can simply make unprotected copies by use of the cut and paste mechanism. Oddly, for such a fundamental requirement, many solutions only offer very simplistic clipboard control - and require the customer to make an awkward choice between usability and security. In many cases, clipboard control is simply an ON-OFF option. By turning the clipboard OFF, you disable one of the most valuable edit functions known to man. Try working for any length of time without copying and pasting, and you'll soon appreciate how valuable that function is. Worse, some solutions disable the clipboard completely - not just for the protected document but for all of the various applications you have open at the time. Normal service is only resumed when you close the protected document. In this way, policy enforcement bleeds out of the particular assets you need to protect and interferes with the entire user experience. On the other hand, turning the clipboard ON satisfies a fundamental usability requirement - but also makes it really easy for users to create unprotected copies of sensitive information, maliciously or otherwise. All they need to do is paste into another document. If creating unprotected copies is this simple, you have to question how much you are really gaining by applying protection at all. You may not be allowed to edit, forward, or print the protected asset, but all you need to do is create a copy and work with that instead. And that activity would not be tracked in any way. So, a simple ON-OFF control creates a real tension between usability and security. If you are only using IRM on a small scale, perhaps security can outweigh usability - the business can put up with the restriction if it only applies to a handful of important documents. But try extending protection to large numbers of documents and large user communities, and the restriction rapidly becomes really unwelcome. I am aware of one solution that takes a different tack. Rather than disable the clipboard, pasting is always permitted, but protection is automatically applied to any document that you paste into. At first glance, this sounds great - protection travels with the content. However, at any scale this model may not be so appealing once you've had to deal with support calls from users who have accidentally applied protection to documents that really don't need it - which would be all too easily done. This may help control leakage, but it also pollutes the system with documents that have policies applied with no obvious rhyme or reason, and it can seriously inconvenience the business by making non-sensitive documents difficult to access. And what policy applies if you paste some protected content into an already protected document? Which policy applies? There are no prizes for guessing that Oracle IRM takes a rather different approach. The Oracle IRM Approach Oracle IRM offers a spectrum of clipboard controls between the extremes of ON and OFF, and it leverages the classification-based rights model to give granular control that satisfies both security and usability needs. Firstly, we take it for granted that if you have EDIT rights, of course you can use the clipboard within a given document. Why would we force you to retype a piece of content that you want to move from HERE... to HERE...? If the pasted content remains in the same document, it is equally well protected whether it be at the beginning, middle, or end - or all three. So, the first point is that Oracle IRM always enables the clipboard if you have the right to edit the file. Secondly, whether we enable or disable the clipboard, we only affect the protected document. That is, you can continue to use the clipboard in the usual way for unprotected documents and applications regardless of whether the clipboard is enabled or disabled for the protected document(s). And if you have multiple protected documents open, each may have the clipboard enabled or disabled independently, according to whether you have Edit rights for each. So, even for the simplest cases - the ON-OFF cases - Oracle IRM adds value by containing the effect to the protected documents rather than to the whole desktop environment. Now to the granular options between ON and OFF. Thanks to our classification model, we can define rights that enable pasting between documents in the same classification - ie. between documents that are protected by the same policy. So, if you are working on this month's financial report and you want to pull some data from last month's report, you can simply cut and paste between the two documents. The two documents are classified the same way, subject to the same policy, so the content is equally safe in both documents. However, if you try to paste the same data into an unprotected document or a document in a different classification, you can be prevented. Thus, the control balances legitimate user requirements to allow pasting with legitimate information security concerns to keep data protected. We can take this further. You may have the right to paste between related classifications of document. So, the CFO might want to copy some financial data into a board document, where the two documents are sealed to different classifications. The CFO's rights may well allow this, as it is a reasonable thing for a CFO to want to do. But policy might prevent the CFO from copying the same data into a classification that is accessible to external parties. The above option, to copy between classifications, may be for specific classifications or open-ended. That is, your rights might enable you to go from A to B but not to C, or you might be allowed to paste to any classification subject to your EDIT rights. As for so many features of Oracle IRM, our classification-based rights model makes this type of granular control really easy to manage - you simply define that pasting is permitted between classifications A and B, but omit C. Or you might define that pasting is permitted between all classifications, but not to unprotected locations. The classification model enables millions of documents to be controlled by a few such rules. Finally, you MIGHT have the option to paste anywhere - such that unprotected copies may be created. This is rare, but a legitimate configuration for some users, some use cases, and some classifications - but not something that you have to permit simply because the alternative is too restrictive. As always, these rights are defined in user roles - so different users are subject to different clipboard controls as required in different classifications. So, where most solutions offer just two clipboard options - ON-OFF or ON-but-encrypt-everything-you-touch - Oracle IRM offers real granularity that leverages our classification model. Indeed, I believe it is the lack of a classification model that makes such granularity impractical for other IRM solutions, because the matrix of rules for controlling pasting would be impossible to manage - there are so many documents to consider, and more are being created all the time.

    Read the article

  • Building KPIs to monitor your business Its not really about the Technology

    When I have discussions with people about Business Intelligence, one of the questions the inevitably come up is about building KPIs and how to accomplish that. From a technical level the concept of a KPI is very simple, almost too simple in that it is like the tip of an iceberg floating above the water. The key to that iceberg is not really the tip, but the mass of the iceberg that is hidden beneath the surface upon which the tip sits. The analogy of the iceberg is not meant to indicate that the foundation of the KPI is overly difficult or complex. The disparity in size in meant to indicate that the larger thing that needs to be defined is not the technical tip, but the underlying business definition of what the KPI means. From a technical perspective the KPI consists of primarily the following items: Actual Value This is the actual value data point that is being measured. An example would be something like the amount of sales. Target Value This is the target goal for the KPI. This is a number that can be measured against Actual Value. An example would be $10,000 in monthly sales. Target Indicator Range This is the definition of ranges that define what type of indicator the user will see comparing the Actual Value to the Target Value. Most often this is defined by stoplight, but can be any indicator that is going to show a status in a quick fashion to the user. Typically this would be something like: Red Light = Actual Value more than 5% below target; Yellow Light = Within 5% of target either direction; Green Light = More than 5% higher than Target Value Status\Trend Indicator This is an optional attribute of a KPI that is typically used to show some kind of trend. The vast majority of these indicators are used to show some type of progress against a previous period. As an example, the status indicator might be used to show how the monthly sales compare to last month. With this type of indicator there needs to be not only a definition of what the ranges are for your status indictor, but then also what value the number needs to be compared against. So now we have an idea of what data points a KPI consists of from a technical perspective lets talk a bit about tools. As you can see technically there is not a whole lot to them and the choice of technology is not as important as the definition of the KPIs, which we will get to in a minute. There are many different types of tools in the Microsoft BI stack that you can use to expose your KPI to the business. These include Performance Point, SharePoint, Excel, and SQL Reporting Services. There are pluses and minuses to each technology and the right technology is based a lot on your goals and how you want to deliver the information to the users. Additionally, there are other non-Microsoft tools that can be used to expose KPI indicators to your business users. Regardless of the technology used as your front end, the heavy lifting of KPI is in the business definition of the values and benchmarks for that KPI. The discussion about KPIs is very dependent on the history of an organization and how much they are exposed to the attributes of a KPI. Often times when discussing KPIs with a business contact who has not been exposed to KPIs the discussion tends to also be a session educating the business user about what a KPI is and what goes into the definition of a KPI. The majority of times the business user has an idea of what their actual values are and they have been tracking those numbers for some time, generally in Excel and all manually. So they will know the amount of sales last month along with sales two years ago in the same month. Where the conversation tends to get stuck is when you start discussing what the target value should be. The actual value is answering the What and How much questions. When you are talking about the Target values you are asking the question Is this number good or bad. Typically, the user will know whether or not the value is good or bad, but most of the time they are not able to quantify what is good or bad. Their response is usually something like I just know. Because they have been watching the sales quantity for years now, they can tell you that a 5% decrease in sales this month might actually be a good thing, maybe because the salespeople are all waiting until next month when the new versions come out. It can sometimes be very hard to break the business people of this habit. One of the fears generally is that the status indicator is not subjective. Thus, in the scenario above, the business user is going to be fearful that their boss, just looking at a negative red indicator, is going to haul them out to the woodshed for a bad month. But, on the flip side, if all you are displaying is the amount of sales, only a person with knowledge of last month sales and the target amount for this month would have any idea if $10,000 in sales is good or not. Here is where a key point about KPIs needs to be communicated to both the business user and any user who might be viewing the results of that KPI. The KPI is just one tool that is used to report on business performance. The KPI is meant as a quick indicator of one business statistic. It is not meant to tell the entire story. It does not answer the question Why. Its primary purpose is to objectively and quickly expose an area of the business that might warrant more review. There is always going to be the need to do further analysis on any potential negative or neutral KPI. So, hopefully, once you have convinced your business user to come up with some target numbers and ranges for status indicators, you then need to take the next step and help them answer the Why question. The main question here to ask is, Okay, you see the indicator and you need to discover why the number is what is, where do you go?. The answer is usually a combination of sources. A sales manager might have some of the following items at their disposal (Marketing report showing a decrease in the promotional discounts for the month, Pricing Report showing the reduction of prices of older models, an Inventory Report showing the discontinuation of a particular product line, or a memo showing the ending of a large affiliate partnership. The answers to the question Why are never as simple as a single indicator value. Bring able to quickly get to this information is all about designing how a user accesses the KPIs and then also how easily they can get to the additional information they need. This is where a Dashboard mentality can come in handy. For example, the business user can have a dashboard that shows their KPIs, but also has links to some of the common reports that they run regarding Sales Data. The users boss may have the same KPIs on their dashboard, but instead of links to individual reports they are going to have a link to a status report that was created by the user that pulls together all the data about the KPI in a summary format the users boss can review. So some of the key things to think about when building or evaluating KPIs for your organization: Technology should not be the driving factor KPIs are of little value without some indicator for whether a value is good, bad or neutral. KPIs only give an answer to the Is this number good\bad? question Make sure the ability to drill into the Why of a KPI is close at hand and relevant to the user who is viewing the KPI. The KPI is a key business tool when defined properly to help monitor business performance across the enterprise in an objective and consistent manner. At times it might feel like the process of defining the business aspects of a KPI can sometimes be arduous, the payoff in the end can far outweigh the costs. Some of the benefits of going through this process are a better understanding of the key metrics for an organization and the measure of those metrics and a consistent snapshot of business performance that can be utilized across the organization. And I think that these are benefits to any organization regardless of the technology or the implementation.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Diagnosing ADF Mobile iOS deployment problems

    - by Chris Muir
    From time to time I encounter customers who have taken possession of a brand new Apple Mac, have that excited "I've just spent more on a computer then I ever wanted to but it's okay" crazy gleam in their eye, but on pre-loading all the necessary software for Oracle's ADF Mobile to start their mobile campaign, following Oracle's setup instructions and deploying their first app to Apple's XCode iPhone Simulator they hit this error message in the JDeveloper Log-Deployment window: [01:36:46 PM] Deployment cancelled. [01:36:46 PM] ----  Deployment incomplete  ----. [01:36:46 PM] Failed to build the iOS application bundle. [01:36:46 PM] Deployment failed due to one or more errors returned by '/Applications/Xcode.app/Contents/Developer/usr/bin/xcodebuild'.  The following is a summary of the returned error(s): Command-line execution failed (Return code: 69) "Oh, return code 69, I know that well" I hear you say.  Admittedly the error code is less than useful besides drawing some titters from the peanut gallery. Before explaining what's gone wrong, I think it's useful to teach customers how to diagnose these issues themselves.  When ADF Mobile commences a deployment, be it to Apple's iOS or Google's Android platforms, JDeveloper and ADF Mobile do a good job in the Log window of showing you what the deployment process entails.  In the case of deploying to iOS the log window will literally include the XCode commands executed to complete the deployment cycle. As example here's the log output that was produced before the error message was raised.... take the opportunity to read this line by line and note the command line calls highlighted in blue: (Note some of the following lines have been split over multiple lines to suit reading on this blog, each original line is preceded by a timestamp. Ensure to check the exact commands from JDev) [01:36:33 PM] Target platform is (iOS). [01:36:33 PM] Beginning deployment of ADF Mobile application 'LayoutDemo' to iOS using profile 'IOS_MOBILE_NATIVE_archive1'. [01:36:34 PM] Command-line executed: [/Applications/Xcode.app/Contents/Developer/usr/bin/xcodebuild, -version] [01:36:34 PM] Command-line execution succeeded. [01:36:34 PM] Running dependency analysis... [01:36:34 PM] Building... [01:36:34 PM] Deploying 3 profiles... [01:36:35 PM] Wrote Archive Module to /Users/chris/fmw/jdeveloper/jdev/extensions/ oracle.adf.mobile/Samples/PublicSamples/LayoutDemo/ApplicationController/ deploy/ApplicationController.jar [01:36:35 PM] WARNING: No Resource Catalog enabled ADF components found to package [01:36:36 PM] Wrote Archive Module to /Users/chris/fmw/jdeveloper/jdev/extensions/ oracle.adf.mobile/Samples/PublicSamples/LayoutDemo/ViewController/ deploy/ViewController.jar [01:36:36 PM] Verifying existence of the .adf source directory of the ADF Mobile application... [01:36:36 PM] Verifying Application Controller project exists... [01:36:36 PM] Verifying application dependencies... [01:36:36 PM] The application may not function correctly because the following dependent libraries are missing: /Users/chris/jdev/jdeveloper/jdeveloper/jdev/extensions/oracle.adf.mobile/ lib/adfmf.springboard.jar [01:36:36 PM] Verifying project dependencies... [01:36:36 PM] Validating application XML files... [01:36:36 PM] Validating XML files in project ApplicationController... [01:36:36 PM] Validating XML files in project ViewController... [01:36:40 PM] Copying common javascript files... [01:36:41 PM] Copying FARs to the ADF Mobile Framework application... [01:36:41 PM] Extracting Feature Archive file, "ApplicationController.jar" to deployment folder, "ApplicationController". [01:36:42 PM] Extracting Feature Archive file, "ViewController.jar" to deployment folder, "ViewController". [01:36:42 PM] Deploying skinning files... [01:36:43 PM] Copying the CVM SDK files built for the x86 processor... [01:36:43 PM] Copying the CVM JDK files built for the x86 processor... [01:36:43 PM] Command-line executed: [cp, -R, -p, /Users/chris/fmw/jdeveloper/jdev/extensions/oracle.adf.mobile/iOS/jvmti/x86/, /Users/chris/fmw/jdeveloper/jdev/extensions/oracle.adf.mobile/ Samples/PublicSamples/ LayoutDemo/deploy/IOS_MOBILE_NATIVE_archive1/temporary_xcode_project/lib] [01:36:43 PM] Command-line execution succeeded. [01:36:43 PM] Command-line executed: [cp, -R, -p, /Users/chris/fmw/jdeveloper/jdev/extensions/oracle.adf.mobile/iOS/jvmti/jar/, /Users/chris/fmw/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples/ PublicSamples/LayoutDemo/deploy/IOS_MOBILE_NATIVE_archive1/ temporary_xcode_project/lib] [01:36:43 PM] Command-line execution succeeded. [01:36:43 PM] Copying security related files to the ADF Mobile Framework application... [01:36:44 PM] Command-line executed from path: /Users/chris/fmw/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples/ PublicSamples/LayoutDemo/deploy/IOS_MOBILE_NATIVE_archive1/temporary_xcode_project/ [01:36:44 PM] Command-line executed: /Applications/Xcode.app/Contents/Developer/usr/bin/xcodebuild clean install -configuration Debug -sdk /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/ Developer/SDKs/iPhoneSimulator6.1.sdk DSTROOT=/Users/chris/fmw/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples/ PublicSamples/LayoutDemo/deploy/IOS_MOBILE_NATIVE_archive1/Destination_Root/ IPHONEOS_DEPLOYMENT_TARGET=5.0 TARGETED_DEVICE_FAMILY=1,2 PRODUCT_NAME=LayoutDemo ADD_SETTINGS_BUNDLE=NO As you can see when we move from JDeveloper undertaking its work, it then passes the code off in the last few lines for Apple's XCode to assemble and deploy the required .ipa file.  From the original error message which followed this complaining about xcodebuild failing with return code 69, we can quickly see the exact command line used to call xcodebuild. As this is the exact command line call with all its options, you're free to open a Terminal window in Mac OSX and execute the same command by simply copying and pasting the command line. And via this you'll then find out what return code actually 69 means.  Unfortunately it's not that exciting. For Macs that have just been installed and configured with XCode, XCode (and for that matter iTunes) which is required by ADF Mobile to deploy must have been run at least once before hand on your brand new Mac (to be clear that's once ever, not once every restart). On doing so you will be presented with a license agreement from Apple that you must accept. Only once you've done this will the command line calls work.  They're currently failing as you haven't accepted the legal terms and conditions. (arguably you an also accept the terms and conditions from the command line too, but ADF Mobile cannot do this on your behalf, so it's just easier to open the tools and confirm the legal requirements that way). Putting aside the error code and its meaning, watching the log window, watching what commands are executed, learning what they do, this will assist you to diagnose issues yourself and solve these sort of issues more relatively quickly.  From my perspective as an Oracle Product Manager, it allows me to say "this is the stuff you don't need to worry about when you use ADF Mobile when it's configured correctly" .... as you can see my salesman qualities shine through. For anyone who is happily using ADF Mobile on a Mac and wondering why you didn't hit these issues, it's quite likely that you already accepted the license conditions before deploying via ADF Mobile.  For instance, though I'm not a fan of iTunes itself, iTunes was one of the first things I loaded on my Mac to access my Justin Bieber albums. Image courtesy of winnond / FreeDigitalPhotos.net

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • Responsive Inline Elements with Twitter Bootstrap

    - by MightyZot
    Originally posted on: http://geekswithblogs.net/MightyZot/archive/2013/11/12/responsive-inline-elements-with-twitter-bootstrap.aspxTwitter Boostrap is a responsive css platform created by some dudes affiliated with Twitter and since supported and maintained by an open source following. I absolutely love the new version of this css toolkit. They rebuilt it with a mobile first strategy and it’s very easy to layout pages once you get the hang of it. Using a css / javascript framework like bootstrap is certainly much easier than coding your layout by hand. And, you get a “leg up” when it comes to adding responsive features to your site. Bootstrap includes column layout classes that let you specify size and placement based upon the viewport width. In addition, there are a handful of responsive helpers to hide and show content based upon the user’s device size. Most notably, the visible-xs, visible-sm, visible-md, and visible-lg classes let you show content for devices corresponding to those sizes (they are listed in the bootstrap docs.) hidden-xs, hidden-sm, hidden-md, and hidden-lg let you hide content for devices with those respective sizes. These helpers work great for showing and hiding block elements. Unfortunately, there isn’t a provision yet in Twitter Bootstrap (as of the time of this writing) for inline elements. We are using the navbar classes to create a navigation bar at the top of our website, www.crowdit.com. When you shrink the width of the screen to tablet or phone size, the tools in the navbar are turned into a drop down menu, and a button appears on the right side of the navbar. This is great! But, we wanted different content to display based upon whether the items were on the navbar versus when they were in the dropdown menu. The visible-?? and hidden-?? classes make this easy for images and block elements. In our case, we wanted our anchors to show different text depending upon whether they’re in the navbar, or in the dropdown. span is inherently inline and it can be a block element. My first approach was to create two anchors for each options, one set visible when the navbar is on a desktop or laptop with a wide display and another set visible when the elements converted to a dropdown menu. That works fine with the visible-?? and hidden-?? classes, but it just doesn’t seem that clean to me. I put up with that for about a week…last night I created the following classes to augment the block-based classes provided by bootstrap. .cdt-hidden-xs, .cdt-hidden-sm, .cdt-hidden-md, .cdt-hidden-lg {     display: inline !important; } @media (max-width:767px) {     .cdt-hidden-xs, .cdt-hidden-sm.cdt-hidden-xs, .cdt-hidden-md.cdt-hidden-xs, .cdt-hidden-lg.cdt-hidden-xs {         display: none !important;     } } @media (min-width:768px) and (max-width:991px) {     .cdt-hidden-xs.cdt-hidden-sm, .cdt-hidden-sm, .cdt-hidden-md.cdt-hidden-sm, .cdt-hidden-lg.cdt-hidden-sm {         display: none !important;     } } @media (min-width:992px) and (max-width:1199px) {     .cdt-hidden-xs.cdt-hidden-md, .cdt-hidden-sm.cdt-hidden-md, .cdt-hidden-md, .cdt-hidden-lg.cdt-hidden-md {         display: none !important;     } } @media (min-width:1200px) {     .cdt-hidden-xs.cdt-hidden-lg, .cdt-hidden-sm.cdt-hidden-lg, .cdt-hidden-md.cdt-hidden-lg, .cdt-hidden-lg {         display: none !important;     } } .cdt-visible-xs, .cdt-visible-sm, .cdt-visible-md, .cdt-visible-lg {     display: none !important; } @media (max-width:767px) {     .cdt-visible-xs, .cdt-visible-sm.cdt-visible-xs, .cdt-visible-md.cdt-visible-xs, .cdt-visible-lg.cdt-visible-xs {         display: inline !important;     } } @media (min-width:768px) and (max-width:991px) {     .cdt-visible-xs.cdt-visible-sm, .cdt-visible-sm, .cdt-visible-md.cdt-visible-sm, .cdt-visible-lg.cdt-visible-sm {         display: inline !important;     } } @media (min-width:992px) and (max-width:1199px) {     .cdt-visible-xs.cdt-visible-md, .cdt-visible-sm.cdt-visible-md, .cdt-visible-md, .cdt-visible-lg.cdt-visible-md {         display: inline !important;     } } @media (min-width:1200px) {     .cdt-visible-xs.cdt-visible-lg, .cdt-visible-sm.cdt-visible-lg, .cdt-visible-md.cdt-visible-lg, .cdt-visible-lg {         display: inline !important;     } } I created these by looking at the example provided by bootstrap and consolidating the styles. “cdt” is just a prefix that I’m using to distinguish these classes from the block-based classes in bootstrap. You are welcome to change the prefix to whatever feels right for you. These classes can be applied to spans in textual content to hide and show text based upon the browser width. Applying the styles is simple… <span class=”cdt-visible-xs”>This text is visible in extra small</span> <span class=”cdt-visible-sm”>This text is visible in small</span> Why would you want to do this? Here are a couple of examples, shown in screen shots. This is the CrowdIt navbar on larger displays. Notice how the text is two line and certain words are capitalized? Now, check this out! Here is a screen shot showing the dropdown menu that’s displayed when the browser window is tablet or phone sized. The markup to make this happen is quite simple…take a look. <li>     <a href="@Url.Action("what-is-crowdit","home")" title="Learn about what CrowdIt can do for your Small Business">         <span class="cdt-hidden-xs">WHAT<br /><small>is CrowdIt?</small></span>         <span class="cdt-visible-xs">What is CrowdIt?</span>     </a> </li> There is a single anchor tag in this example and only the spans change visibility based on browser width. I left them separate for readability and because I wanted to use the small tag; however, you could just as easily hide the “WHAT” and the br tag on small displays and replace them with “What “, consolidating this even further to text containing a single span. <span class=”cdt-hidden-xs”>WHAT<br /></span><span class=”cdt-visible-xs”>What </span>is CrowdIt? You might be a master of css and have a better method of handling this problem. If so, I’d love to hear about your solution…leave me some feedback! You’ll be entered into a drawing for a chance to win an autographed picture of ME! Yay!

    Read the article

  • Windows Azure Evolution &ndash; Deploy Web Sites (WAWS Part 3)

    - by Shaun
    This is the sixth post of my Windows Azure Evolution series. After talked a bit about the new caching preview feature in the previous one, let’s back to the Windows Azure Web Sites (WAWS).   Git and GitHub Integration In the third post I introduced the overview functionality of WAWS and demonstrated how to create a WordPress blog through the build-in application gallery. And in the fourth post I covered how to use the TFS service preview to deploy an ASP.NET MVC application to the web site through the TFS integration. WAWS also have the Git integration. I’m not going to talk very detailed about the Git and GitHub integration since there are a bunch of information on the internet you can refer to. To enable the Git just go to the web site item in the developer portal and click the “Set up Git publishing”. After specified the username and password the windows azure platform will establish the Git integration and provide some basic guide. As you can see, you can download the Git binaries, commit the files and then push to the remote repository. Regarding the GitHub, since it’s built on top of Git it should work. Maarten Balliauw have a wonderful post about how to integrate GitHub to Windows Azure Web Site you can find here.   WebMatrix 2 RC WebMatrix is a lightweight web application development tool provided by Microsoft. It utilizes WebDeploy or FTP to deploy the web application to the server. And in WebMatrix 2.0 RC it added the feature to work with Windows Azure. First of all we need to download the latest WebMatrix 2 through the Web Platform Installer 4.0. Just open the WebPI and search “WebMatrix”, or go to its home page download its web installer. Once we have WebMatrix 2, we need to download the publish file of our WAWS. Let’s go to the developer portal and open the web site we want to deploy and download the publish file from the link on the right hand side. This file contains the necessary information of publishing the web site through WebDeploy and FTP, which can be used in WebMatrix, Visual Studio, etc.. Once we have the publish file we can open the WebMatrix, click the Open Site, Remote Site. Then it will bring up a dialog where we can input the information of the remote site. Since we have our publish file already, we can click the “Import publish settings” and select the publish file, then we can see the site information will be populated automatically. Click OK, the WebMatrix will connect to the remote site, which is the WAWS we had deployed already, retrieve the folders and files information. We can open files in WebMatrix and modify. But since WebMatrix is a lightweight web application tool, we cannot update the backend C# code. So in this case, we will modify the frontend home page only. After saved our modification, WebMatrix will compare the files between in local and remote and then it will only upload the modified files to Windows Azure through the connection information in the publish file. Since it only update the files which were changed, this minimized the bandwidth and deployment duration. After few seconds we back to the website and the modification had been applied.   Visual Studio and WebDeploy The publish file we had downloaded can be used not only in WebMatrix but also Visual Studio. As we know in Visual Studio we can publish a web application by clicking the “Publish” item from the project context menu in the solution explorer, and we can specify the WebDeploy, FTP or File System for the publish target. Now we can use the WAWS publish file to let Visual Studio publish the web application to WAWS. Let’s create a new ASP.NET MVC Web Application in Visual Studio 2010 and then click the “Publish” in solution explorer. Once we have the Windows Azure SDK 1.7 installed, it will update the web application publish dialog. So now we can import the publish information from the publish file. Select WebDeploy as the publish method. We can select FTP as well, which is supported by Windows Azure and the FTP information was in the same publish file. In the last step the publish wizard can check the files which will be uploaded to the remote site before the actually publishing. This gives us a chance to review and amend the files. Same as the WebMatrix, Visual Studio will compare the files between local and WAWS and determined which had been changed and need to be published. Finally Visual Studio will publish the web application to windows azure through WebDeploy protocol. Once it finished we can browse our website.   FTP Deployment The publish file we downloaded contains the connection information to our web site via both WebDeploy and FTP. When using WebMatrix and Visual Studio we can select WebDeploy or FTP. WebDeploy method can be used very easily from WebMatrix and Visual Studio, with the file compare feature. But the FTP gives more flexibility. We can use any FTP client to upload files to windows azure regardless which client and OS we are using. Open the publish file in any text editor, we can find the connection information very easily. As you can see the publish file is actually a XML file with WebDeploy and FTP information in plain text attributes. And once we have the FTP URL, username and password, when can connect to the site and upload and download files. For example I opened FileZilla and connected to my WAWS through FTP. Then I can download files I am interested in and modify them on my local disk. Then upload back to windows azure through FileZilla. Then I can see the new page.   Summary In this simple and quick post I introduced vary approaches to deploy our web application to Windows Azure Web Site. It supports TFS integration which I mentioned previously. It also supports Git and GitHub, WebDeploy and FTP as well.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • Working With Extended Events

    - by Fatherjack
    SQL Server 2012 has made working with Extended Events (XE) pretty simple when it comes to what sessions you have on your servers and what options you have selected and so forth but if you are like me then you still have some SQL Server instances that are 2008 or 2008 R2. For those servers there is no built-in way to view the Extended Event sessions in SSMS. I keep coming up against the same situations – Where are the xel log files? What events, actions or predicates are set for the events on the server? What sessions are there on the server already? I got tired of this being a perpetual question and wrote some TSQL to save as a snippet in SQL Prompt so that these details are permanently only a couple of clicks away. First, some history. If you just came here for the code skip down a few paragraphs and it’s all there. If you want a little time to reminisce about SQL Server then stick with me through the next paragraph or two. We are in a bit of a cross-over period currently, there are many versions of SQL Server but I would guess that SQL Server 2008, 2008 R2 and 2012 comprise the majority of installations. With each of these comes a set of management tools, of which SQL Server Management Studio (SSMS) is one. In 2008 and 2008 R2 Extended Events made their first appearance and there was no way to work with them in the SSMS interface. At some point the Extended Events guru Jonathan Kehayias (http://www.sqlskills.com/blogs/jonathan/) created the SQL Server 2008 Extended Events SSMS Addin which is really an excellent tool to ease XE session administration. This addin will install in SSMS 2008 or 2008R2 but not SSMS 2012. If you use a compatible version of SSMS then I wholly recommend downloading and using it to make your work with XE much easier. If you have SSMS 2012 installed, and there is no reason not to as it will let you work with all versions of SQL Server, then you cannot install this addin. If you are working with SQL Server 2012 then SSMS 2012 has built in functionality to manage XE sessions – this functionality does not apply for 2008 or 2008 R2 instances though. This means you are somewhat restricted and have to use TSQL to manage XE sessions on older versions of SQL Server. OK, those of you that skipped ahead for the code, you need to start from here: So, you are working with SSMS 2012 but have a SQL Server that is an earlier version that needs an XE session created or you think there is a session created but you aren’t sure, or you know it’s there but can’t remember if it is running and where the output is going. How do you find out? Well, none of the information is hidden as such but it is a bit of a wrangle to locate it and it isn’t a lot of code that is unlikely to remain in your memory. I have created two pieces of code. The first examines the SYS.Server_Event_… management views in combination with the SYS.DM_XE_… management views to give the name of all sessions that exist on the server, regardless of whether they are running or not and two pieces of TSQL code. One piece will alter the state of the session: if the session is running then the code will stop the session if executed and vice versa. The other piece of code will drop the selected session. If the session is running then the code will stop it first. Do not execute the DROP code unless you are sure you have the Create code to hand. It will be dropped from the server without a second chance to change your mind. /**************************************************************/ /***   To locate and describe event sessions on a server    ***/ /***                                                        ***/ /***   Generates TSQL to start/stop/drop sessions           ***/ /***                                                        ***/ /***        Jonathan Allen - @fatherjack                    ***/ /***                 June 2013                                ***/ /***                                                        ***/ /**************************************************************/ SELECT  [EES].[name] AS [Session Name - all sessions] ,         CASE WHEN [MXS].[name] IS NULL THEN ISNULL([MXS].[name], 'Stopped')              ELSE 'Running'         END AS SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'ALTER EVENT SESSION [' + [EES].[name]                          + '] ON SERVER STATE = START;')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP;'         END AS ALTER_SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'DROP EVENT SESSION [' + [EES].[name]                          + '] ON SERVER; -- This WILL drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP; ' + CHAR(10)                   + '-- DROP EVENT SESSION [' + [EES].[name]                   + '] ON SERVER; -- This WILL stop and drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.'         END AS DROP_Session FROM    [sys].[server_event_sessions] AS EES         LEFT JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name] WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) ORDER BY SessionState GO I have excluded the system_health and AlwaysOn sessions as I don’t want to accidentally execute the drop script for these sessions that are created as part of the SQL Server installation. It is possible to recreate the sessions but that is a whole lot of aggravation I’d rather avoid. The second piece of code gathers details of running XE sessions only and provides information on the Events being collected, any predicates that are set on those events, the actions that are set to be collected, where the collected information is being logged and if that logging is to a file target, where that file is located. /**********************************************/ /***    Running Session summary                ***/ /***                                        ***/ /***    Details key values of XE sessions     ***/ /***    that are in a running state            ***/ /***                                        ***/ /***        Jonathan Allen - @fatherjack    ***/ /***        June 2013                        ***/ /***                                        ***/ /**********************************************/ SELECT  [EES].[name] AS [Session Name - running sessions] ,         [EESE].[name] AS [Event Name] ,         COALESCE([EESE].[predicate], 'unfiltered') AS [Event Predicate Filter(s)] ,         [EESA].[Action] AS [Event Action(s)] ,         [EEST].[Target] AS [Session Target(s)] ,         ISNULL([EESF].[value], 'No file target in use') AS [File_Target_UNC] -- select * FROM    [sys].[server_event_sessions] AS EES         INNER JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name]         INNER JOIN [sys].[server_event_session_events] AS [EESE] ON [EES].[event_session_id] = [EESE].[event_session_id]         LEFT JOIN [sys].[server_event_session_fields] AS EESF ON ( [EES].[event_session_id] = [EESF].[event_session_id]                                                               AND [EESF].[name] = 'filename'                                                               )         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + sest.name                                         FROM    [sys].[server_event_session_targets]                                                 AS SEST                                         WHERE   [EES].[event_session_id] = [SEST].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Target]                     ) AS EEST         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + [sesa].NAME                                         FROM    [sys].[server_event_session_actions]                                                 AS sesa                                         WHERE   [sesa].[event_session_id] = [EES].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Action]                     ) AS EESA WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) /*Optional to exclude 'out-of-the-box' traces*/ I hope that these scripts are useful to you and I would be obliged if you would keep my name in the script comments. I have no problem with you using it in production or personal circumstances, however it has no warranty or guarantee. Don’t use it unless you understand it and are happy with what it is going to do. I am not ever responsible for the consequences of executing this script on your servers.

    Read the article

  • Why Is Faulty Behaviour In The .NET Framework Not Fixed?

    - by Alois Kraus
    Here is the scenario: You have a Windows Form Application that calls a method via Invoke or BeginInvoke which throws exceptions. Now you want to find out where the error did occur and how the method has been called. Here is the output we do get when we call Begin/EndInvoke or simply Invoke The actual code that was executed was like this:         private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }            [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));   The faulting method is called GenerateError which does throw a NotImplementedException exception and wraps it in a NotSupportedException.           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         } It is clear that the method F2 and F1 did actually throw these exceptions but we do not see them in the call stack. If we directly call the InvokingFunction and catch and print the exception we can find out very easily how we did get into this situation. We see methods F1,F2,GenerateError and InvokingFunction directly in the stack trace and we see that actually two exceptions did occur. Here is for comparison what we get from Invoke/EndInvoke System.NotImplementedException: Inner Exception     StackTrace:    at System.Windows.Forms.Control.MarshaledInvoke(Control caller, Delegate method, Object[] args, Boolean synchronous)     at System.Windows.Forms.Control.Invoke(Delegate method, Object[] args)     at WindowsFormsApplication1.AppForm.InvokingFunction(CallMode mode)     at WindowsFormsApplication1.AppForm.cInvoke_Click(Object sender, EventArgs e)     at System.Windows.Forms.Control.OnClick(EventArgs e)     at System.Windows.Forms.Button.OnClick(EventArgs e) The exception message is kept but the stack starts running from our Invoke call and not from the faulting method F2. We have therefore no clue where this exception did occur! The stack starts running at the method MarshaledInvoke because the exception is rethrown with the throw catchedException which resets the stack trace. That is bad but things are even worse because if previously lets say 5 exceptions did occur .NET will return only the first (innermost) exception. That does mean that we do not only loose the original call stack but all other exceptions and all data contained therein as well. It is a pity that MS does know about this and simply closes this issue as not important. Programmers will play a lot more around with threads than before thanks to TPL, PLINQ that do come with .NET 4. Multithreading is hyped quit a lot in the press and everybody wants to use threads. But if the .NET Framework makes it nearly impossible to track down the easiest UI multithreading issue I have a problem with that. The problem has been reported but obviously not been solved. .NET 4 Beta 2 did not have changed that dreaded GetBaseException call in MarshaledInvoke to return only the innermost exception of the complete exception stack. It is really time to fix this. WPF on the other hand does the right thing and wraps the exceptions inside a TargetInvocationException which makes much more sense. But Not everybody uses WPF for its daily work and Windows forms applications will still be used for a long time. Below is the code to repro the issues shown and how the exceptions can be rendered in a meaningful way. The default Exception.ToString implementation generates a hard to interpret stack if several nested exceptions did occur. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.Threading; using System.Globalization; using System.Runtime.CompilerServices;   namespace WindowsFormsApplication1 {     public partial class AppForm : Form     {         enum CallMode         {             Direct = 0,             BeginInvoke = 1,             Invoke = 2         };           public AppForm()         {             InitializeComponent();             Thread.CurrentThread.CurrentUICulture = CultureInfo.InvariantCulture;             Application.ThreadException += new System.Threading.ThreadExceptionEventHandler(Application_ThreadException);         }           void Application_ThreadException(object sender, System.Threading.ThreadExceptionEventArgs e)         {             cOutput.Text = PrintException(e.Exception, 0, null).ToString();         }           private void cDirectUnhandled_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Direct);         }           private void cDirectCall_Click(object sender, EventArgs e)         {             try             {                 InvokingFunction(CallMode.Direct);             }             catch (Exception ex)             {                 cOutput.Text = PrintException(ex, 0, null).ToString();             }         }           private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }           private void cBeginInvokeCall_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.BeginInvoke);         }           [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Direct:                     GenerateError();                     break;                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));                     break;                 case CallMode.BeginInvoke:                     IAsyncResult res = this.BeginInvoke(new MethodInvoker(GenerateError));                     this.EndInvoke(res);                     break;             }         }           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         }           StringBuilder PrintException(Exception ex, int identLevel, StringBuilder sb)         {             StringBuilder builtStr = sb;             if( builtStr == null )                 builtStr = new StringBuilder();               if( ex == null )                 return builtStr;                 WriteLine(builtStr, String.Format("{0}: {1}", ex.GetType().FullName, ex.Message), identLevel);             WriteLine(builtStr, String.Format("StackTrace: {0}", ShortenStack(ex.StackTrace)), identLevel + 1);             builtStr.AppendLine();               return PrintException(ex.InnerException, ++identLevel, builtStr);         }               void WriteLine(StringBuilder sb, string msg, int identLevel)         {             foreach (string trimmedLine in SplitToLines(msg)                                            .Select( (line) => line.Trim()) )             {                 for (int i = 0; i < identLevel; i++)                     sb.Append('\t');                 sb.Append(trimmedLine);                 sb.AppendLine();             }         }           string ShortenStack(string stack)         {             int nonAppFrames = 0;             // Skip stack frames not part of our app but include two foreign frames and skip the rest             // If our stack frame is encountered reset counter to 0             return SplitToLines(stack)                               .Where((line) =>                               {                                   nonAppFrames = line.Contains("WindowsFormsApplication1") ? 0 : nonAppFrames + 1;                                   return nonAppFrames < 3;                               })                              .Select((line) => line)                              .Aggregate("", (current, line) => current + line + Environment.NewLine);         }           static char[] NewLines = Environment.NewLine.ToCharArray();         string[] SplitToLines(string str)         {             return str.Split(NewLines, StringSplitOptions.RemoveEmptyEntries);         }     } }

    Read the article

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • Cloud Computing = Elasticity * Availability

    - by Herve Roggero
    What is cloud computing? Is hosting the same thing as cloud computing? Are you running a cloud if you already use virtual machines? What is the difference between Infrastructure as a Service (IaaS) and a cloud provider? And the list goes on… these questions keep coming up and all try to fundamentally explain what “cloud” means relative to other concepts. At the risk of over simplification, answering these questions becomes simpler once you understand the primary foundations of cloud computing: Elasticity and Availability.   Elasticity The basic value proposition of cloud computing is to pay as you go, and to pay for what you use. This implies that an application can expand and contract on demand, across all its tiers (presentation layer, services, database, security…).  This also implies that application components can grow independently from each other. So if you need more storage for your database, you should be able to grow that tier without affecting, reconfiguring or changing the other tiers. Basically, cloud applications behave like a sponge; when you add water to a sponge, it grows in size; in the application world, the more customers you add, the more it grows. Pure IaaS providers will provide certain benefits, specifically in terms of operating costs, but an IaaS provider will not help you in making your applications elastic; neither will Virtual Machines. The smallest elasticity unit of an IaaS provider and a Virtual Machine environment is a server (physical or virtual). While adding servers in a datacenter helps in achieving scale, it is hardly enough. The application has yet to use this hardware.  If the process of adding computing resources is not transparent to the application, the application is not elastic.   As you can see from the above description, designing for the cloud is not about more servers; it is about designing an application for elasticity regardless of the underlying server farm.   Availability The fact of the matter is that making applications highly available is hard. It requires highly specialized tools and trained staff. On top of it, it's expensive. Many companies are required to run multiple data centers due to high availability requirements. In some organizations, some data centers are simply on standby, waiting to be used in a case of a failover. Other organizations are able to achieve a certain level of success with active/active data centers, in which all available data centers serve incoming user requests. While achieving high availability for services is relatively simple, establishing a highly available database farm is far more complex. In fact it is so complex that many companies establish yearly tests to validate failover procedures.   To a certain degree certain IaaS provides can assist with complex disaster recovery planning and setting up data centers that can achieve successful failover. However the burden is still on the corporation to manage and maintain such an environment, including regular hardware and software upgrades. Cloud computing on the other hand removes most of the disaster recovery requirements by hiding many of the underlying complexities.   Cloud Providers A cloud provider is an infrastructure provider offering additional tools to achieve application elasticity and availability that are not usually available on-premise. For example Microsoft Azure provides a simple configuration screen that makes it possible to run 1 or 100 web sites by clicking a button or two on a screen (simplifying provisioning), and soon SQL Azure will offer Data Federation to allow database sharding (which allows you to scale the database tier seamlessly and automatically). Other cloud providers offer certain features that are not available on-premise as well, such as the Amazon SC3 (Simple Storage Service) which gives you virtually unlimited storage capabilities for simple data stores, which is somewhat equivalent to the Microsoft Azure Table offering (offering a server-independent data storage model). Unlike IaaS providers, cloud providers give you the necessary tools to adopt elasticity as part of your application architecture.    Some cloud providers offer built-in high availability that get you out of the business of configuring clustered solutions, or running multiple data centers. Some cloud providers will give you more control (which puts some of that burden back on the customers' shoulder) and others will tend to make high availability totally transparent. For example, SQL Azure provides high availability automatically which would be very difficult to achieve (and very costly) on premise.   Keep in mind that each cloud provider has its strengths and weaknesses; some are better at achieving transparent scalability and server independence than others.    Not for Everyone Note however that it is up to you to leverage the elasticity capabilities of a cloud provider, as discussed previously; if you build a website that does not need to scale, for which elasticity is not important, then you can use a traditional host provider unless you also need high availability. Leveraging the technologies of cloud providers can be difficult and can become a journey for companies that build their solutions in a scale up fashion. Cloud computing promises to address cost containment and scalability of applications with built-in high availability. If your application does not need to scale or you do not need high availability, then cloud computing may not be for you. In fact, you may pay a premium to run your applications with cloud providers due to the underlying technologies built specifically for scalability and availability requirements. And as such, the cloud is not for everyone.   Consistent Customer Experience, Predictable Cost With all its complexities, buzz and foggy definition, cloud computing boils down to a simple objective: consistent customer experience at a predictable cost.  The objective of a cloud solution is to provide the same user experience to your last customer than the first, while keeping your operating costs directly proportional to the number of customers you have. Making your applications elastic and highly available across all its tiers, with as much automation as possible, achieves the first objective of a consistent customer experience. And the ability to expand and contract the infrastructure footprint of your application dynamically achieves the cost containment objectives.     Herve Roggero is a SQL Azure MVP and co-author of Pro SQL Azure (APress).  He is the co-founder of Blue Syntax Consulting (www.bluesyntax.net), a company focusing on cloud computing technologies helping customers understand and adopt cloud computing technologies. For more information contact herve at hroggero @ bluesyntax.net .

    Read the article

  • Curing the Database-Application mismatch

    - by Phil Factor
    If an application requires access to a database, then you have to be able to deploy it so as to be version-compatible with the database, in phase. If you can deploy both together, then the application and database must normally be deployed at the same version in which they, together, passed integration and functional testing.  When a single database supports more than one application, then the problem gets more interesting. I’ll need to be more precise here. It is actually the application-interface definition of the database that needs to be in a compatible ‘version’.  Most databases that get into production have no separate application-interface; in other words they are ‘close-coupled’.  For this vast majority, the whole database is the application-interface, and applications are free to wander through the bowels of the database scot-free.  If you’ve spurned the perceived wisdom of application architects to have a defined application-interface within the database that is based on views and stored procedures, any version-mismatch will be as sensitive as a kitten.  A team that creates an application that makes direct access to base tables in a database will have to put a lot of energy into keeping Database and Application in sync, to say nothing of having to tackle issues such as security and audit. It is not the obvious route to development nirvana. I’ve been in countless tense meetings with application developers who initially bridle instinctively at the apparent restrictions of being ‘banned’ from the base tables or routines of a database.  There is no good technical reason for needing that sort of access that I’ve ever come across.  Everything that the application wants can be delivered via a set of views and procedures, and with far less pain for all concerned: This is the application-interface.  If more than zero developers are creating a database-driven application, then the project will benefit from the loose-coupling that an application interface brings. What is important here is that the database development role is separated from the application development role, even if it is the same developer performing both roles. The idea of an application-interface with a database is as old as I can remember. The big corporate or government databases generally supported several applications, and there was little option. When a new application wanted access to an existing corporate database, the developers, and myself as technical architect, would have to meet with hatchet-faced DBAs and production staff to work out an interface. Sure, they would talk up the effort involved for budgetary reasons, but it was routine work, because it decoupled the database from its supporting applications. We’d be given our own stored procedures. One of them, I still remember, had ninety-two parameters. All database access was encapsulated in one application-module. If you have a stable defined application-interface with the database (Yes, one for each application usually) you need to keep the external definitions of the components of this interface in version control, linked with the application source,  and carefully track and negotiate any changes between database developers and application developers.  Essentially, the application development team owns the interface definition, and the onus is on the Database developers to implement it and maintain it, in conformance.  Internally, the database can then make all sorts of changes and refactoring, as long as source control is maintained.  If the application interface passes all the comprehensive integration and functional tests for the particular version they were designed for, nothing is broken. Your performance-testing can ‘hang’ on the same interface, since databases are judged on the performance of the application, not an ‘internal’ database process. The database developers have responsibility for maintaining the application-interface, but not its definition,  as they refactor the database. This is easily tested on a daily basis since the tests are normally automated. In this setting, the deployment can proceed if the more stable application-interface, rather than the continuously-changing database, passes all tests for the version of the application. Normally, if all goes well, a database with a well-designed application interface can evolve gracefully without changing the external appearance of the interface, and this is confirmed by integration tests that check the interface, and which hopefully don’t need to be altered at all often.  If the application is rapidly changing its ‘domain model’  in the light of an increased understanding of the application domain, then it can change the interface definitions and the database developers need only implement the interface rather than refactor the underlying database.  The test team will also have to redo the functional and integration tests which are, of course ‘written to’ the definition.  The Database developers will find it easier if these tests are done before their re-wiring  job to implement the new interface. If, at the other extreme, an application receives no further development work but survives unchanged, the database can continue to change and develop to keep pace with the requirements of the other applications it supports, and needs only to take care that the application interface is never broken. Testing is easy since your automated scripts to test the interface do not need to change. The database developers will, of course, maintain their own source control for the database, and will be likely to maintain versions for all major releases. However, this will not need to be shared with the applications that the database servers. On the other hand, the definition of the application interfaces should be within the application source. Changes in it have to be subject to change-control procedures, as they will require a chain of tests. Once you allow, instead of an application-interface, an intimate relationship between application and database, we are in the realms of impedance mismatch, over and above the obvious security problems.  Part of this impedance problem is a difference in development practices. Whereas the application has to be regularly built and integrated, this isn’t necessarily the case with the database.  An RDBMS is inherently multi-user and self-integrating. If the developers work together on the database, then a subsequent integration of the database on a staging server doesn’t often bring nasty surprises. A separate database-integration process is only needed if the database is deliberately built in a way that mimics the application development process, but which hampers the normal database-development techniques.  This process is like demanding a official walking with a red flag in front of a motor car.  In order to closely coordinate databases with applications, entire databases have to be ‘versioned’, so that an application version can be matched with a database version to produce a working build without errors.  There is no natural process to ‘version’ databases.  Each development project will have to define a system for maintaining the version level. A curious paradox occurs in development when there is no formal application-interface. When the strains and cracks happen, the extra meetings, bureaucracy, and activity required to maintain accurate deployments looks to IT management like work. They see activity, and it looks good. Work means progress.  Management then smile on the design choices made. In IT, good design work doesn’t necessarily look good, and vice versa.

    Read the article

  • Using Sitecore RenderingContext Parameters as MVC controller action arguments

    - by Kyle Burns
    I have been working with the Technical Preview of Sitecore 6.6 on a project and have been for the most part happy with the way that Sitecore (which truly is an MVC implementation unto itself) has been expanded to support ASP.NET MVC. That said, getting up to speed with the combined platform has not been entirely without stumbles and today I want to share one area where Sitecore could have really made things shine from the "it just works" perspective. A couple days ago I was asked by a colleague about the usage of the "Parameters" field that is defined on Sitecore's Controller Rendering data template. Based on the standard way that Sitecore handles a field named Parameters, I was able to deduce that the field expected key/value pairs separated by the "&" character, but beyond that I wasn't sure and didn't see anything from a documentation perspective to guide me, so it was time to dig and find out where the data in the field was made available. My first thought was that it would be really nice if Sitecore handled the parameters in this field consistently with the way that ASP.NET MVC handles the various parameter collections on the HttpRequest object and automatically maps them to parameters of the action method executing. Being the hopeful sort, I configured a name/value pair on one of my renderings, added a parameter with matching name to the controller action and fired up the bugger to see... that the parameter was not populated. Having established that the field's value was not going to be presented to me the way that I had hoped it would, the next assumption that I would work on was that Sitecore would handle this field similar to how they handle other similar data and would plug it into some ambient object that I could reference from within the controller method. After a considerable amount of guessing, testing, and cracking code open with Redgate's Reflector (a must-have companion to Sitecore documentation), I found that the most direct way to access the parameter was through the ambient RenderingContext object using code similar to: string myArgument = string.Empty; var rc = Sitecore.Mvc.Presentation.RenderingContext.CurrentOrNull; if (rc != null) {     var parms = rc.Rendering.Parameters;     myArgument = parms["myArgument"]; } At this point, we know how this field is used out of the box from Sitecore and can provide information from Sitecore's Content Editor that will be available when the controller action is executing, but it feels a little dirty. In order to properly test the action method I would have to do a lot of setup work and possible use an isolation framework such as Pex and Moles to get at a value that my action method is dependent upon. Notice I said that my method is dependent upon the value but in order to meet that dependency I've accepted another dependency upon Sitecore's RenderingContext.  I'm a big believer in, when possible, ensuring that any piece of code explicitly advertises dependencies using the method signature, so I found myself still wanting this to work the same as if the parameters were in the request route, querystring, or form by being able to add a myArgument parameter to the action method and have this parameter populated by the framework. Lucky for us, the ASP.NET MVC framework is extremely flexible and provides some easy to grok and use extensibility points. ASP.NET MVC is able to provide information from the request as input parameters to controller actions because it uses objects which implement an interface called IValueProvider and have been registered to service the application. The most basic statement of responsibility for an IValueProvider implementation is "I know about some data which is indexed by key. If you hand me the key for a piece of data that I know about I give you that data". When preparing to invoke a controller action, the framework queries registered IValueProvider implementations with the name of each method argument to see if the ValueProvider can supply a value for the parameter. (the rest of this post will assume you're working along and make a lot more sense if you do) Let's pull Sitecore out of the equation for a second to simplify things and create an extremely simple IValueProvider implementation. For this example, I first create a new ASP.NET MVC3 project in Visual Studio, selecting "Internet Application" and otherwise taking defaults (I'm assuming that anyone reading this far in the post either already knows how to do this or will need to take a quick run through one of the many available basic MVC tutorials such as the MVC Music Store). Once the new project is created, go to the Index action of HomeController.  This action sets a Message property on the ViewBag to "Welcome to ASP.NET MVC!" and invokes the View, which has been coded to display the Message. For our example, we will remove the hard coded message from this controller (although we'll leave it just as hard coded somewhere else - this is sample code). For the first step in our exercise, add a string parameter to the Index action method called welcomeMessage and use the value of this argument to set the ViewBag.Message property. The updated Index action should look like: public ActionResult Index(string welcomeMessage) {     ViewBag.Message = welcomeMessage;     return View(); } This represents the entirety of the change that you will make to either the controller or view.  If you run the application now, the home page will display and no message will be presented to the user because no value was supplied to the Action method. Let's now write a ValueProvider to ensure this parameter gets populated. We'll start by creating a new class called StaticValueProvider. When the class is created, we'll update the using statements to ensure that they include the following: using System.Collections.Specialized; using System.Globalization; using System.Web.Mvc; With the appropriate using statements in place, we'll update the StaticValueProvider class to implement the IValueProvider interface. The System.Web.Mvc library already contains a pretty flexible dictionary-like implementation called NameValueCollectionValueProvider, so we'll just wrap that and let it do most of the real work for us. The completed class looks like: public class StaticValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider;     public StaticValueProvider(ControllerContext controllerContext)     {         var parameters = new NameValueCollection();         parameters.Add("welcomeMessage", "Hello from the value provider!");         _wrappedProvider = new NameValueCollectionValueProvider(parameters, CultureInfo.InvariantCulture);     }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } Notice that the only entry in the collection matches the name of the argument to our HomeController's Index action.  This is the important "secret sauce" that will make things work. We've got our new value provider now, but that's not quite enough to be finished. Mvc obtains IValueProvider instances using factories that are registered when the application starts up. These factories extend the abstract ValueProviderFactory class by initializing and returning the appropriate implementation of IValueProvider from the GetValueProvider method. While I wouldn't do so in production code, for the sake of this example, I'm going to add the following class definition within the StaticValueProvider.cs source file: public class StaticValueProviderFactory : ValueProviderFactory {     public override IValueProvider GetValueProvider(ControllerContext controllerContext)     {         return new StaticValueProvider(controllerContext);     } } Now that we have a factory, we can register it by adding the following line to the end of the Application_Start method in Global.asax.cs: ValueProviderFactories.Factories.Add(new StaticValueProviderFactory()); If you've done everything right to this point, you should be able to run the application and be presented with the home page reading "Hello from the value provider!". Now that you have the basics of the IValueProvider down, you have everything you need to enhance your Sitecore MVC implementation by adding an IValueProvider that exposes values from the ambient RenderingContext's Parameters property. I'll provide the code for the IValueProvider implementation (which should look VERY familiar) and you can use the work we've already done as a reference to create and register the factory: public class RenderingContextValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider = null;     public RenderingContextValueProvider(ControllerContext controllerContext)     {         var collection = new NameValueCollection();         var rc = RenderingContext.CurrentOrNull;         if (rc != null && rc.Rendering != null)         {             foreach(var parameter in rc.Rendering.Parameters)             {                 collection.Add(parameter.Key, parameter.Value);             }         }         _wrappedProvider = new NameValueCollectionValueProvider(collection, CultureInfo.InvariantCulture);         }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } In this post I've discussed the MVC IValueProvider used to map data to controller action method arguments and how this can be integrated into your Sitecore 6.6 MVC solution.

    Read the article

  • Fraud Detection with the SQL Server Suite Part 2

    - by Dejan Sarka
    This is the second part of the fraud detection whitepaper. You can find the first part in my previous blog post about this topic. My Approach to Data Mining Projects It is impossible to evaluate the time and money needed for a complete fraud detection infrastructure in advance. Personally, I do not know the customer’s data in advance. I don’t know whether there is already an existing infrastructure, like a data warehouse, in place, or whether we would need to build one from scratch. Therefore, I always suggest to start with a proof-of-concept (POC) project. A POC takes something between 5 and 10 working days, and involves personnel from the customer’s site – either employees or outsourced consultants. The team should include a subject matter expert (SME) and at least one information technology (IT) expert. The SME must be familiar with both the domain in question as well as the meaning of data at hand, while the IT expert should be familiar with the structure of data, how to access it, and have some programming (preferably Transact-SQL) knowledge. With more than one IT expert the most time consuming work, namely data preparation and overview, can be completed sooner. I assume that the relevant data is already extracted and available at the very beginning of the POC project. If a customer wants to have their people involved in the project directly and requests the transfer of knowledge, the project begins with training. I strongly advise this approach as it offers the establishment of a common background for all people involved, the understanding of how the algorithms work and the understanding of how the results should be interpreted, a way of becoming familiar with the SQL Server suite, and more. Once the data has been extracted, the customer’s SME (i.e. the analyst), and the IT expert assigned to the project will learn how to prepare the data in an efficient manner. Together with me, knowledge and expertise allow us to focus immediately on the most interesting attributes and identify any additional, calculated, ones soon after. By employing our programming knowledge, we can, for example, prepare tens of derived variables, detect outliers, identify the relationships between pairs of input variables, and more, in only two or three days, depending on the quantity and the quality of input data. I favor the customer’s decision of assigning additional personnel to the project. For example, I actually prefer to work with two teams simultaneously. I demonstrate and explain the subject matter by applying techniques directly on the data managed by each team, and then both teams continue to work on the data overview and data preparation under our supervision. I explain to the teams what kind of results we expect, the reasons why they are needed, and how to achieve them. Afterwards we review and explain the results, and continue with new instructions, until we resolve all known problems. Simultaneously with the data preparation the data overview is performed. The logic behind this task is the same – again I show to the teams involved the expected results, how to achieve them and what they mean. This is also done in multiple cycles as is the case with data preparation, because, quite frankly, both tasks are completely interleaved. A specific objective of the data overview is of principal importance – it is represented by a simple star schema and a simple OLAP cube that will first of all simplify data discovery and interpretation of the results, and will also prove useful in the following tasks. The presence of the customer’s SME is the key to resolving possible issues with the actual meaning of the data. We can always replace the IT part of the team with another database developer; however, we cannot conduct this kind of a project without the customer’s SME. After the data preparation and when the data overview is available, we begin the scientific part of the project. I assist the team in developing a variety of models, and in interpreting the results. The results are presented graphically, in an intuitive way. While it is possible to interpret the results on the fly, a much more appropriate alternative is possible if the initial training was also performed, because it allows the customer’s personnel to interpret the results by themselves, with only some guidance from me. The models are evaluated immediately by using several different techniques. One of the techniques includes evaluation over time, where we use an OLAP cube. After evaluating the models, we select the most appropriate model to be deployed for a production test; this allows the team to understand the deployment process. There are many possibilities of deploying data mining models into production; at the POC stage, we select the one that can be completed quickly. Typically, this means that we add the mining model as an additional dimension to an existing DW or OLAP cube, or to the OLAP cube developed during the data overview phase. Finally, we spend some time presenting the results of the POC project to the stakeholders and managers. Even from a POC, the customer will receive lots of benefits, all at the sole risk of spending money and time for a single 5 to 10 day project: The customer learns the basic patterns of frauds and fraud detection The customer learns how to do the entire cycle with their own people, only relying on me for the most complex problems The customer’s analysts learn how to perform much more in-depth analyses than they ever thought possible The customer’s IT experts learn how to perform data extraction and preparation much more efficiently than they did before All of the attendees of this training learn how to use their own creativity to implement further improvements of the process and procedures, even after the solution has been deployed to production The POC output for a smaller company or for a subsidiary of a larger company can actually be considered a finished, production-ready solution It is possible to utilize the results of the POC project at subsidiary level, as a finished POC project for the entire enterprise Typically, the project results in several important “side effects” Improved data quality Improved employee job satisfaction, as they are able to proactively contribute to the central knowledge about fraud patterns in the organization Because eventually more minds get to be involved in the enterprise, the company should expect more and better fraud detection patterns After the POC project is completed as described above, the actual project would not need months of engagement from my side. This is possible due to our preference to transfer the knowledge onto the customer’s employees: typically, the customer will use the results of the POC project for some time, and only engage me again to complete the project, or to ask for additional expertise if the complexity of the problem increases significantly. I usually expect to perform the following tasks: Establish the final infrastructure to measure the efficiency of the deployed models Deploy the models in additional scenarios Through reports By including Data Mining Extensions (DMX) queries in OLTP applications to support real-time early warnings Include data mining models as dimensions in OLAP cubes, if this was not done already during the POC project Create smart ETL applications that divert suspicious data for immediate or later inspection I would also offer to investigate how the outcome could be transferred automatically to the central system; for instance, if the POC project was performed in a subsidiary whereas a central system is available as well Of course, for the actual project, I would repeat the data and model preparation as needed It is virtually impossible to tell in advance how much time the deployment would take, before we decide together with customer what exactly the deployment process should cover. Without considering the deployment part, and with the POC project conducted as suggested above (including the transfer of knowledge), the actual project should still only take additional 5 to 10 days. The approximate timeline for the POC project is, as follows: 1-2 days of training 2-3 days for data preparation and data overview 2 days for creating and evaluating the models 1 day for initial preparation of the continuous learning infrastructure 1 day for presentation of the results and discussion of further actions Quite frequently I receive the following question: are we going to find the best possible model during the POC project, or during the actual project? My answer is always quite simple: I do not know. Maybe, if we would spend just one hour more for data preparation, or create just one more model, we could get better patterns and predictions. However, we simply must stop somewhere, and the best possible way to do this, according to my experience, is to restrict the time spent on the project in advance, after an agreement with the customer. You must also never forget that, because we build the complete learning infrastructure and transfer the knowledge, the customer will be capable of doing further investigations independently and improve the models and predictions over time without the need for a constant engagement with me.

    Read the article

  • Integrating Oracle Hyperion Smart View Data Queries with MS Word and Power Point

    - by Andreea Vaduva
    Untitled Document table { border: thin solid; } Most Smart View users probably appreciate that they can use just one add-in to access data from the different sources they might work with, like Oracle Essbase, Oracle Hyperion Planning, Oracle Hyperion Financial Management and others. But not all of them are aware of the options to integrate data analyses not only in Excel, but also in MS Word or Power Point. While in the past, copying and pasting single numbers or tables from a recent analysis in Excel made the pasted content a static snapshot, copying so called Data Points now creates dynamic, updateable references to the data source. It also provides additional nice features, which can make life easier and less stressful for Smart View users. So, how does this option work: after building an ad-hoc analysis with Smart View as usual in an Excel worksheet, any area including data cells/numbers from the database can be highlighted in order to copy data points - even single data cells only.   TIP It is not necessary to highlight and copy the row or column descriptions   Next from the Smart View ribbon select Copy Data Point. Then transfer to the Word or Power Point document into which the selected content should be copied. Note that in these Office programs you will find a menu item Smart View;from it select the Paste Data Point icon. The copied details from the Excel report will be pasted, but showing #NEED_REFRESH in the data cells instead of the original numbers. =After clicking the Refresh icon on the Smart View menu the data will be retrieved and displayed. (Maybe at that moment a login window pops up and you need to provide your credentials.) It works in the same way if you just copy one single number without any row or column descriptions, for example in order to incorporate it into a continuous text: Before refresh: After refresh: From now on for any subsequent updates of the data shown in your documents you only need to refresh data by clicking the Refresh button on the Smart View menu, without copying and pasting the context or content again. As you might realize, trying out this feature on your own, there won’t be any Point of View shown in the Office document. Also you have seen in the example, where only a single data cell was copied, that there aren’t any member names or row/column descriptions copied, which are usually required in an ad-hoc report in order to exactly define where data comes from or how data is queried from the source. Well, these definitions are not visible, but they are transferred to the Word or Power Point document as well. They are stored in the background for each individual data cell copied and can be made visible by double-clicking the data cell as shown in the following screen shot (but which is taken from another context).   So for each cell/number the complete connection information is stored along with the exact member/cell intersection from the database. And that’s not all: you have the chance now to exchange the members originally selected in the Point of View (POV) in the Excel report. Remember, at that time we had the following selection:   By selecting the Manage POV option from the Smart View meny in Word or Power Point…   … the following POV Manager – Queries window opens:   You can now change your selection for each dimension from the original POV by either double-clicking the dimension member in the lower right box under POV: or by selecting the Member Selector icon on the top right hand side of the window. After confirming your changes you need to refresh your document again. Be aware, that this will update all (!) numbers taken from one and the same original Excel sheet, even if they appear in different locations in your Office document, reflecting your recent changes in the POV. TIP Build your original report already in a way that dimensions you might want to change from within Word or Power Point are placed in the POV. And there is another really nice feature I wouldn’t like to miss mentioning: Using Dynamic Data Points in the way described above, you will never miss or need to search again for your original Excel sheet from which values were taken and copied as data points into an Office document. Because from even only one single data cell Smart View is able to recreate the entire original report content with just a few clicks: Select one of the numbers from within your Word or Power Point document by double-clicking.   Then select the Visualize in Excel option from the Smart View menu. Excel will open and Smart View will rebuild the entire original report, including POV settings, and retrieve all data from the most recent actual state of the database. (It might be necessary to provide your credentials before data is displayed.) However, in order to make this work, an active online connection to your databases on the server is necessary and at least read access to the retrieved data. But apart from this, your newly built Excel report is fully functional for ad-hoc analysis and can be used in the common way for drilling, pivoting and all the other known functions and features. So far about embedding Dynamic Data Points into Office documents and linking them back into Excel worksheets. You can apply this in the described way with ad-hoc analyses directly on Essbase databases or using Hyperion Planning and Hyperion Financial Management ad-hoc web forms. If you are also interested in other new features and smart enhancements in Essbase or Hyperion Planning stay tuned for coming articles or check our training courses and web presentations. You can find general information about offerings for the Essbase and Planning curriculum or other Oracle-Hyperion products here (please make sure to select your country/region at the top of this page) or in the OU Learning paths section , where Planning, Essbase and other Hyperion products can be found under the Fusion Middleware heading (again, please select the right country/region). Or drop me a note directly: [email protected] . About the Author: Bernhard Kinkel started working for Hyperion Solutions as a Presales Consultant and Consultant in 1998 and moved to Hyperion Education Services in 1999. He joined Oracle University in 2007 where he is a Principal Education Consultant. Based on these many years of working with Hyperion products he has detailed product knowledge across several versions. He delivers both classroom and live virtual courses. His areas of expertise are Oracle/Hyperion Essbase, Oracle Hyperion Planning and Hyperion Web Analysis.  

    Read the article

  • Summit Time!

    - by Ajarn Mark Caldwell
    Boy, how time flies!  I can hardly believe that the 2011 PASS Summit is just one week away.  Maybe it snuck up on me because it’s a few weeks earlier than last year.  Whatever the cause, I am really looking forward to next week.  The PASS Summit is the largest SQL Server conference in the world and a fantastic networking opportunity thrown in for no additional charge.  Here are a few thoughts to help you maximize the week. Networking As Karen Lopez (blog | @DataChick) mentioned in her presentation for the Professional Development Virtual Chapter just a couple of weeks ago, “Don’t wait until you need a new job to start networking.”  You should always be working on your professional network.  Some people, especially technical-minded people, get confused by the term networking.  The first image that used to pop into my head was the image of some guy standing, awkwardly, off to the side of a cocktail party, trying to shmooze those around him.  That’s not what I’m talking about.  If you’re good at that sort of thing, and you can strike up a conversation with some stranger and learn all about them in 5 minutes, and walk away with your next business deal all but approved by the lawyers, then congratulations.  But if you’re not, and most of us are not, I have two suggestions for you.  First, register for Don Gabor’s 2-hour session on Tuesday at the Summit called Networking to Build Business Contacts.  Don is a master at small talk, and at teaching others, and in just those two short hours will help you with important tips about breaking the ice, remembering names, and smooth transitions into and out of conversations.  Then go put that great training to work right away at the Tuesday night Welcome Reception and meet some new people; which is really my second suggestion…just meet a few new people.  You see, “networking” is about meeting new people and being friendly without trying to “work it” to get something out of the relationship at this point.  In fact, Don will tell you that a better way to build the connection with someone is to look for some way that you can help them, not how they can help you. There are a ton of opportunities as long as you follow this one key point: Don’t stay in your hotel!  At the least, get out and go to the free events such as the Tuesday night Welcome Reception, the Wednesday night Exhibitor Reception, and the Thursday night Community Appreciation Party.  All three of these are perfect opportunities to meet other professionals with a similar job or interest as you, and you never know how that may help you out in the future.  Maybe you just meet someone to say HI to at breakfast the next day instead of eating alone.  Or maybe you cross paths several times throughout the Summit and compare notes on different sessions you attended.  And you just might make new friends that you look forward to seeing year after year at the Summit.  Who knows, it might even turn out that you have some specific experience that will help out that other person a few months’ from now when they run into the same challenge that you just overcame, or vice-versa.  But the point is, if you don’t get out and meet people, you’ll never have the chance for anything else to happen in the future. One more tip for shy attendees of the Summit…if you can’t bring yourself to strike up conversation with strangers at these events, then at the least, after you sit through a good session that helps you out, go up to the speaker and introduce yourself and thank them for taking the time and effort to put together their presentation.  Ideally, when you do this, tell them WHY it was beneficial to you (e.g. “Now I have a new idea of how to tackle a problem back at the office.”)  I know you think the speakers are all full of confidence and are always receiving a ton of accolades and applause, but you’re wrong.  Most of them will be very happy to hear first-hand that all the work they put into getting ready for their presentation is paying off for somebody. Training With over 170 technical sessions at the Summit, training is what it’s all about, and the training is fantastic!  Of course there are the big-name trainers like Paul Randall, Kimberly Tripp, Kalen Delaney, Itzik Ben-Gan and several others, but I am always impressed by the quality of the training put on by so many other “regular” members of the SQL Server community.  It is amazing how you don’t have to be a published author or otherwise recognized as an “expert” in an area in order to make a big impact on others just by sharing your personal experience and lessons learned.  I would rather hear the story of, and lessons learned from, “some guy or gal” who has actually been through an issue and came out the other side, than I would a trained professor who is speaking just from theory or an intellectual understanding of a topic. In addition to the three full days of regular sessions, there are also two days of pre-conference intensive training available.  There is an extra cost to this, but it is a fantastic opportunity.  Think about it…you’re already coming to this area for training, so why not extend your stay a little bit and get some in-depth training on a particular topic or two?  I did this for the first time last year.  I attended one day of extra training and it was well worth the time and money.  One of the best reasons for it is that I am extremely busy at home with my regular job and family, that it was hard to carve out the time to learn about the topic on my own.  It worked out so well last year that I am doubling up and doing two days or “pre-cons” this year. And then there are the DVDs.  I think these are another great option.  I used the online schedule builder to get ready and have an idea of which sessions I want to attend and when they are (much better than trying to figure this out at the last minute every day).  But the problem that I have run into (seems this happens every year) is that nearly every session block has two different sessions that I would like to attend.  And some of them have three!  ACK!  That won’t work!  What is a guy supposed to do?  Well, one option is to purchase the DVDs which are recordings of the audio and projected images from each session so you can continue to attend sessions long after the Summit is officially over.  Yes, many (possibly all) of these also get posted online and attendees can access those for no extra charge, but those are not necessarily all available as quickly as the DVD recording are, and the DVDs are often more convenient than downloading, especially if you want to share the training with someone who was not able to attend in person. Remember, I don’t make any money or get any other benefit if you buy the DVDs or from anything else that I have recommended here.  These are just my own thoughts, trying to help out based on my experiences from the 8 or so Summits I have attended.  There is nothing like the Summit.  It is an awesome experience, fantastic training, and a whole lot of fun which is just compounded if you’ll take advantage of the first part of this article and make some new friends along the way.

    Read the article

  • How to Tell a Hardware Problem From a Software Problem

    - by Chris Hoffman
    Your computer seems to be malfunctioning — it’s slow, programs are crashing or Windows may be blue-screening. Is your computer’s hardware failing, or does it have a software problem that you can fix on your own? This can actually be a bit tricky to figure out. Hardware problems and software problems can lead to the same symptoms — for example, frequent blue screens of death may be caused by either software or hardware problems. Computer is Slow We’ve all heard the stories — someone’s computer slows down over time because they install too much software that runs at startup or it becomes infected with malware. The person concludes that their computer is slowing down because it’s old, so they replace it. But they’re wrong. If a computer is slowing down, it has a software problem that can be fixed. Hardware problems shouldn’t cause your computer to slow down. There are some rare exceptions to this — perhaps your CPU is overheating and it’s downclocking itself, running slower to stay cooler — but most slowness is caused by software issues. Blue Screens Modern versions of Windows are much more stable than older versions of Windows. When used with reliable hardware with well-programmed drivers, a typical Windows computer shouldn’t blue-screen at all. If you are encountering frequent blue screens of death, there’s a good chance your computer’s hardware is failing. Blue screens could also be caused by badly programmed hardware drivers, however. If you just installed or upgraded hardware drivers and blue screens start, try uninstalling the drivers or using system restore — there may be something wrong with the drivers. If you haven’t done anything with your drivers recently and blue screens start, there’s a very good chance you have a hardware problem. Computer Won’t Boot If your computer won’t boot, you could have either a software problem or a hardware problem. Is Windows attempting to boot and failing part-way through the boot process, or does the computer no longer recognize its hard drive or not power on at all? Consult our guide to troubleshooting boot problems for more information. When Hardware Starts to Fail… Here are some common components that can fail and the problems their failures may cause: Hard Drive: If your hard drive starts failing, files on your hard drive may become corrupted. You may see long delays when you attempt to access files or save to the hard drive. Windows may stop booting entirely. CPU: A failing CPU may result in your computer not booting at all. If the CPU is overheating, your computer may blue-screen when it’s under load — for example, when you’re playing a demanding game or encoding video. RAM: Applications write data to your RAM and use it for short-term storage. If your RAM starts failing, an application may write data to part of the RAM, then later read it back and get an incorrect value. This can result in application crashes, blue screens, and file corruption. Graphics Card: Graphics card problems may result in graphical errors while rendering 3D content or even just while displaying your desktop. If the graphics card is overheating, it may crash your graphics driver or cause your computer to freeze while under load — for example, when playing demanding 3D games. Fans: If any of the fans fail in your computer, components may overheat and you may see the above CPU or graphics card problems. Your computer may also shut itself down abruptly so it doesn’t overheat any further and damage itself. Motherboard: Motherboard problems can be extremely tough to diagnose. You may see occasional blue screens or similar problems. Power Supply: A malfunctioning power supply is also tough to diagnose — it may deliver too much power to a component, damaging it and causing it to malfunction. If the power supply dies completely, your computer won’t power on and nothing will happen when you press the power button. Other common problems — for example, a computer slowing down — are likely to be software problems. It’s also possible that software problems can cause many of the above symptoms — malware that hooks deep into the Windows kernel can cause your computer to blue-screen, for example. The Only Way to Know For Sure We’ve tried to give you some idea of the difference between common software problems and hardware problems with the above examples. But it’s often tough to know for sure, and troubleshooting is usually a trial-and-error process. This is especially true if you have an intermittent problem, such as your computer blue-screening a few times a week. You can try scanning your computer for malware and running System Restore to restore your computer’s system software back to its previous working state, but these aren’t  guaranteed ways to fix software problems. The best way to determine whether the problem you have is a software or hardware one is to bite the bullet and restore your computer’s software back to its default state. That means reinstalling Windows or using the Refresh or reset feature on Windows 8. See whether the problem still persists after you restore its operating system to its default state. If you still see the same problem – for example, if your computer is blue-screening and continues to blue-screen after reinstalling Windows — you know you have a hardware problem and need to have your computer fixed or replaced. If the computer crashes or freezes while reinstalling Windows, you definitely have a hardware problem. Even this isn’t a completely perfect method — for example, you may reinstall Windows and install the same hardware drivers afterwards. If the hardware drivers are badly programmed, the blue-screens may continue. Blue screens of death aren’t as common on Windows these days — if you’re encountering them frequently, you likely have a hardware problem. Most blue screens you encounter will likely be caused by hardware issues. On the other hand, other common complaints like “my computer has slowed down” are easily fixable software problems. When in doubt, back up your files and reinstall Windows. Image Credit: Anders Sandberg on Flickr, comedy_nose on Flickr     

    Read the article

  • Windows 8 Launch&ndash;Why OEM and Retailers Should STFU

    - by D'Arcy Lussier
    Microsoft has gotten a lot of flack for the Surface from OEM/hardware partners who create Windows-based devices and I’m sure, to an extent, retailers who normally stock and sell Windows-based devices. I mean we all know how this is supposed to work – Microsoft makes the OS, partners make the hardware, retailers sell the hardware. Now Microsoft is breaking the rules by not only offering their own hardware but selling them via online and through their Microsoft branded stores! The thought has been that Microsoft is trying to set a standard for the other hardware companies to reach for. Maybe. I hope, at some level, Microsoft may be covertly responding to frustrations associated with trusting the OEMs and Retailers to deliver on their part of the supply chain. I know as a consumer, I’m very frustrated with the Windows 8 launch. Aside from the Surface sales, there’s nothing happening at the retail level. Let me back up and explain. Over the weekend I visited a number of stores in hopes of trying out various Windows 8 devices. Out of three retailers (Staples, Best Buy, and Future Shop), not *one* met my expectations. Let me be honest with you Staples, I never really have high expectations from your computer department. If I need paper or pens, whatever, but computers – you’re not the top of my list for price or selection. Still, considering you flaunted Win 8 devices in your flyer I expected *something* – some sign of effort that you took the Windows 8 launch seriously. As I entered the 1910 Pembina Highway location in Winnipeg, there was nothing – no signage, no banners – nothing that would suggest Windows 8 had even launched. I made my way to the laptops. I had to play with each machine to determine which ones were running Windows 8. There wasn’t anything on the placards that made it obvious which were Windows 8 machines and which ones were Windows 7. Likewise, there was no easy way to identify the touch screen laptop (the HP model) from the others without physically touching the screen to verify. Horrible experience. In the same mall as the Staples I mentioned above, there’s a Future Shop. Surely they would be more on the ball. I walked in to the 1910 Pembina Highway location and immediately realized I would not get a better experience. Except for the sign by the front door mentioning Windows 8, there was *nothing* in the computer department pointing you to the Windows 8 devices. Like in Staples, the Win 8 laptops were mixed in with the Win 7 ones and there was nothing notable calling out which ones were running Win 8. I happened to hit up the St. James Street location today, thinking since its a busier store they must have more options. To their credit, they did have two staff members decked out in Windows 8 shirts and who were helping a customer understand Windows 8. But otherwise, there was nothing highlighting the Windows 8 devices and they were again mixed in with the rest of the Win 7 machines. Finally, we have the St. James Street Best Buy location here in Winnipeg. I’m sure Best Buy will have their act together. Nope, not even close. Same story as the others: minimal signage (there was a sign as you walked in with a link to this schedule of demo days), Windows 8 hardware mixed with the rest of the PC offerings, and no visible call-outs identifying which were Win 8 based. This meant that, like Future Shop and Staples, if you wanted to know which machine had Windows 8 you had to go and scrutinize each machine. Also, there was nothing identifying which ones were touch based and which were not. Just Another Day… To these retailers, it seemed that the Windows 8 launch was just another day, with another product to add to the showroom floor. Meanwhile, Apple has their dedicated areas *in all three stores*. It was dead simple to find where the Apple products were compared to the Windows 8 products. No wonder Microsoft is starting to push their own retail stores. No wonder Microsoft is trying to funnel orders through them instead of relying on these bloated retail big box stores who obviously can’t manage a product launch. It’s Not Just The Retailers… Remember when the Acer CEO, Founder, and President of Computer Global Operations all weighed in on how Microsoft releasing the Surface would have a “huge negative impact for the ecosystem and other brands may take a negative reaction”? Also remember the CEO stating “[making hardware] is not something you are good at so please think twice”? Well the launch day has come and gone, and so far Microsoft is the only one that delivered on having hardware available on the October 26th date. Oh sure, there are laptops running Windows 8 – but all in one desktop PCs? I’ve only seen one or two! And tablets are *non existent*, with some showing an early to late November availability on Best Buy’s website! So while the retailers could be doing more to make it easier to find Windows 8 devices, the manufacturers could help by *getting devices into stores*! That’s supposedly something that these companies are good at, according to the Acer CEO. So Here’s What the Retailers and Manufacturers Need To Do… Get Product Out The pivotal timeframe will be now to the end of November. We need to start seeing all these fantastic pieces of hardware ship – including the Samsung ATIV Smart PC Pro, the Acer Iconia, the Asus TAICHI 21, and the sexy Samsung Series 7 27” desktop. It’s not enough to see product announcements, we need to see actual devices. Make It Easy For Customers To Find Win8 Devices You want to make it easy to sell these things? Make it easy for people to find them! Have staff on hand that really know how these devices run and what can be done with them. Don’t just have a single demo day, have people who can demo it every day! Make It Easy to See the Features There’s touch screen desktops, touch screen laptops, tablets, non-touch laptops, etc. People need to easily find the features for each machine. If I’m looking for a touch-laptop, I shouldn’t need to sift through all the non-touch laptops to find them – at the least, I need to quickly be able to see which ones are touch. I feel silly even typing this because this should be retail 101 and I have no retail background (but I do have an extensive background as a customer). In Summary… Microsoft launching the Surface and selling them through their own channels isn’t slapping its OEM and retail partners in the face; its slapping them to wake the hell up and stop coasting through Windows launch events like they don’t matter. Unless I see some improvements from vendors and retailers in November, I may just hold onto my money for a Surface Pro even if I have to wait until early 2013. Your move OEM/Retailers. *Update – While my experience has been in Winnipeg, similar experiences have been voiced from colleagues in Calgary and Edmonton.

    Read the article

  • Pluggable Rules for Entity Framework Code First

    - by Ricardo Peres
    Suppose you want a system that lets you plug custom validation rules on your Entity Framework context. The rules would control whether an entity can be saved, updated or deleted, and would be implemented in plain .NET. Yes, I know I already talked about plugable validation in Entity Framework Code First, but this is a different approach. An example API is in order, first, a ruleset, which will hold the collection of rules: 1: public interface IRuleset : IDisposable 2: { 3: void AddRule<T>(IRule<T> rule); 4: IEnumerable<IRule<T>> GetRules<T>(); 5: } Next, a rule: 1: public interface IRule<T> 2: { 3: Boolean CanSave(T entity, DbContext ctx); 4: Boolean CanUpdate(T entity, DbContext ctx); 5: Boolean CanDelete(T entity, DbContext ctx); 6: String Name 7: { 8: get; 9: } 10: } Let’s analyze what we have, starting with the ruleset: Only has methods for adding a rule, specific to an entity type, and to list all rules of this entity type; By implementing IDisposable, we allow it to be cancelled, by disposing of it when we no longer want its rules to be applied. A rule, on the other hand: Has discrete methods for checking if a given entity can be saved, updated or deleted, which receive as parameters the entity itself and a pointer to the DbContext to which the ruleset was applied; Has a name property for helping us identifying what failed. A ruleset really doesn’t need a public implementation, all we need is its interface. The private (internal) implementation might look like this: 1: sealed class Ruleset : IRuleset 2: { 3: private readonly IDictionary<Type, HashSet<Object>> rules = new Dictionary<Type, HashSet<Object>>(); 4: private ObjectContext octx = null; 5:  6: internal Ruleset(ObjectContext octx) 7: { 8: this.octx = octx; 9: } 10:  11: public void AddRule<T>(IRule<T> rule) 12: { 13: if (this.rules.ContainsKey(typeof(T)) == false) 14: { 15: this.rules[typeof(T)] = new HashSet<Object>(); 16: } 17:  18: this.rules[typeof(T)].Add(rule); 19: } 20:  21: public IEnumerable<IRule<T>> GetRules<T>() 22: { 23: if (this.rules.ContainsKey(typeof(T)) == true) 24: { 25: foreach (IRule<T> rule in this.rules[typeof(T)]) 26: { 27: yield return (rule); 28: } 29: } 30: } 31:  32: public void Dispose() 33: { 34: this.octx.SavingChanges -= RulesExtensions.OnSaving; 35: RulesExtensions.rulesets.Remove(this.octx); 36: this.octx = null; 37:  38: this.rules.Clear(); 39: } 40: } Basically, this implementation: Stores the ObjectContext of the DbContext to which it was created for, this is so that later we can remove the association; Has a collection - a set, actually, which does not allow duplication - of rules indexed by the real Type of an entity (because of proxying, an entity may be of a type that inherits from the class that we declared); Has generic methods for adding and enumerating rules of a given type; Has a Dispose method for cancelling the enforcement of the rules. A (really dumb) rule applied to Product might look like this: 1: class ProductRule : IRule<Product> 2: { 3: #region IRule<Product> Members 4:  5: public String Name 6: { 7: get 8: { 9: return ("Rule 1"); 10: } 11: } 12:  13: public Boolean CanSave(Product entity, DbContext ctx) 14: { 15: return (entity.Price > 10000); 16: } 17:  18: public Boolean CanUpdate(Product entity, DbContext ctx) 19: { 20: return (true); 21: } 22:  23: public Boolean CanDelete(Product entity, DbContext ctx) 24: { 25: return (true); 26: } 27:  28: #endregion 29: } The DbContext is there because we may need to check something else in the database before deciding whether to allow an operation or not. And here’s how to apply this mechanism to any DbContext, without requiring the usage of a subclass, by means of an extension method: 1: public static class RulesExtensions 2: { 3: private static readonly MethodInfo getRulesMethod = typeof(IRuleset).GetMethod("GetRules"); 4: internal static readonly IDictionary<ObjectContext, Tuple<IRuleset, DbContext>> rulesets = new Dictionary<ObjectContext, Tuple<IRuleset, DbContext>>(); 5:  6: private static Type GetRealType(Object entity) 7: { 8: return (entity.GetType().Assembly.IsDynamic == true ? entity.GetType().BaseType : entity.GetType()); 9: } 10:  11: internal static void OnSaving(Object sender, EventArgs e) 12: { 13: ObjectContext octx = sender as ObjectContext; 14: IRuleset ruleset = rulesets[octx].Item1; 15: DbContext ctx = rulesets[octx].Item2; 16:  17: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Added)) 18: { 19: Object entity = entry.Entity; 20: Type realType = GetRealType(entity); 21:  22: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 23: { 24: if (rule.CanSave(entity, ctx) == false) 25: { 26: throw (new Exception(String.Format("Cannot save entity {0} due to rule {1}", entity, rule.Name))); 27: } 28: } 29: } 30:  31: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Deleted)) 32: { 33: Object entity = entry.Entity; 34: Type realType = GetRealType(entity); 35:  36: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 37: { 38: if (rule.CanDelete(entity, ctx) == false) 39: { 40: throw (new Exception(String.Format("Cannot delete entity {0} due to rule {1}", entity, rule.Name))); 41: } 42: } 43: } 44:  45: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Modified)) 46: { 47: Object entity = entry.Entity; 48: Type realType = GetRealType(entity); 49:  50: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 51: { 52: if (rule.CanUpdate(entity, ctx) == false) 53: { 54: throw (new Exception(String.Format("Cannot update entity {0} due to rule {1}", entity, rule.Name))); 55: } 56: } 57: } 58: } 59:  60: public static IRuleset CreateRuleset(this DbContext context) 61: { 62: Tuple<IRuleset, DbContext> ruleset = null; 63: ObjectContext octx = (context as IObjectContextAdapter).ObjectContext; 64:  65: if (rulesets.TryGetValue(octx, out ruleset) == false) 66: { 67: ruleset = rulesets[octx] = new Tuple<IRuleset, DbContext>(new Ruleset(octx), context); 68: 69: octx.SavingChanges += OnSaving; 70: } 71:  72: return (ruleset.Item1); 73: } 74: } It relies on the SavingChanges event of the ObjectContext to intercept the saving operations before they are actually issued. Yes, it uses a bit of dynamic magic! Very handy, by the way! So, let’s put it all together: 1: using (MyContext ctx = new MyContext()) 2: { 3: IRuleset rules = ctx.CreateRuleset(); 4: rules.AddRule(new ProductRule()); 5:  6: ctx.Products.Add(new Product() { Name = "xyz", Price = 50000 }); 7:  8: ctx.SaveChanges(); //an exception is fired here 9:  10: //when we no longer need to apply the rules 11: rules.Dispose(); 12: } Feel free to use it and extend it any way you like, and do give me your feedback! As a final note, this can be easily changed to support plain old Entity Framework (not Code First, that is), if that is what you are using.

    Read the article

  • DBCC CHECKDB on VVLDB and latches (Or: My Pain is Your Gain)

    - by Argenis
      Does your CHECKDB hurt, Argenis? There is a classic blog series by Paul Randal [blog|twitter] called “CHECKDB From Every Angle” which is pretty much mandatory reading for anybody who’s even remotely considering going for the MCM certification, or its replacement (the Microsoft Certified Solutions Master: Data Platform – makes my fingers hurt just from typing it). Of particular interest is the post “Consistency Options for a VLDB” – on it, Paul provides solid, timeless advice (I use the word “timeless” because it was written in 2007, and it all applies today!) on how to perform checks on very large databases. Well, here I was trying to figure out how to make CHECKDB run faster on a restored copy of one of our databases, which happens to exceed 7TB in size. The whole thing was taking several days on multiple systems, regardless of the storage used – SAS, SATA or even SSD…and I actually didn’t pay much attention to how long it was taking, or even bothered to look at the reasons why - as long as it was finishing okay and found no consistency errors. Yes – I know. That was a huge mistake, as corruption found in a database several days after taking place could only allow for further spread of the corruption – and potentially large data loss. In the last two weeks I increased my attention towards this problem, as we noticed that CHECKDB was taking EVEN LONGER on brand new all-flash storage in the SAN! I couldn’t really explain it, and were almost ready to blame the storage vendor. The vendor told us that they could initially see the server driving decent I/O – around 450Mb/sec, and then it would settle at a very slow rate of 10Mb/sec or so. “Hum”, I thought – “CHECKDB is just not pushing the I/O subsystem hard enough”. Perfmon confirmed the vendor’s observations. Dreaded @BlobEater What was CHECKDB doing all the time while doing so little I/O? Eating Blobs. It turns out that CHECKDB was taking an extremely long time on one of our frankentables, which happens to be have 35 billion rows (yup, with a b) and sucks up several terabytes of space in the database. We do have a project ongoing to purge/split/partition this table, so it’s just a matter of time before we deal with it. But the reality today is that CHECKDB is coming to a screeching halt in performance when dealing with this particular table. Checking sys.dm_os_waiting_tasks and sys.dm_os_latch_stats showed that LATCH_EX (DBCC_OBJECT_METADATA) was by far the top wait type. I remembered hearing recently about that wait from another post that Paul Randal made, but that was related to computed-column indexes, and in fact, Paul himself reminded me of his article via twitter. But alas, our pathologic table had no non-clustered indexes on computed columns. I knew that latches are used by the database engine to do internal synchronization – but how could I help speed this up? After all, this is stuff that doesn’t have a lot of knobs to tweak. (There’s a fantastic level 500 talk by Bob Ward from Microsoft CSS [blog|twitter] called “Inside SQL Server Latches” given at PASS 2010 – and you can check it out here. DISCLAIMER: I assume no responsibility for any brain melting that might ensue from watching Bob’s talk!) Failed Hypotheses Earlier on this week I flew down to Palo Alto, CA, to visit our Headquarters – and after having a great time with my Monkey peers, I was relaxing on the plane back to Seattle watching a great talk by SQL Server MVP and fellow MCM Maciej Pilecki [twitter] called “Masterclass: A Day in the Life of a Database Transaction” where he discusses many different topics related to transaction management inside SQL Server. Very good stuff, and when I got home it was a little late – that slow DBCC CHECKDB that I had been dealing with was way in the back of my head. As I was looking at the problem at hand earlier on this week, I thought “How about I set the database to read-only?” I remembered one of the things Maciej had (jokingly) said in his talk: “if you don’t want locking and blocking, set the database to read-only” (or something to that effect, pardon my loose memory). I immediately killed the CHECKDB which had been running painfully for days, and set the database to read-only mode. Then I ran DBCC CHECKDB against it. It started going really fast (even a bit faster than before), and then throttled down again to around 10Mb/sec. All sorts of expletives went through my head at the time. Sure enough, the same latching scenario was present. Oh well. I even spent some time trying to figure out if NUMA was hurting performance. Folks on Twitter made suggestions in this regard (thanks, Lonny! [twitter]) …Eureka? This past Friday I was still scratching my head about the whole thing; I was ready to start profiling with XPERF to see if I could figure out which part of the engine was to blame and then get Microsoft to look at the evidence. After getting a bunch of good news I’ll blog about separately, I sat down for a figurative smack down with CHECKDB before the weekend. And then the light bulb went on. A sparse column. I thought that I couldn’t possibly be experiencing the same scenario that Paul blogged about back in March showing extreme latching with non-clustered indexes on computed columns. Did I even have a non-clustered index on my sparse column? As it turns out, I did. I had one filtered non-clustered index – with the sparse column as the index key (and only column). To prove that this was the problem, I went and setup a test. Yup, that'll do it The repro is very simple for this issue: I tested it on the latest public builds of SQL Server 2008 R2 SP2 (CU6) and SQL Server 2012 SP1 (CU4). First, create a test database and a test table, which only needs to contain a sparse column: CREATE DATABASE SparseColTest; GO USE SparseColTest; GO CREATE TABLE testTable (testCol smalldatetime SPARSE NULL); GO INSERT INTO testTable (testCol) VALUES (NULL); GO 1000000 That’s 1 million rows, and even though you’re inserting NULLs, that’s going to take a while. In my laptop, it took 3 minutes and 31 seconds. Next, we run DBCC CHECKDB against the database: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; This runs extremely fast, as least on my test rig – 198 milliseconds. Now let’s create a filtered non-clustered index on the sparse column: CREATE NONCLUSTERED INDEX [badBadIndex] ON testTable (testCol) WHERE testCol IS NOT NULL; With the index in place now, let’s run DBCC CHECKDB one more time: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; In my test system this statement completed in 11433 milliseconds. 11.43 full seconds. Quite the jump from 198 milliseconds. I went ahead and dropped the filtered non-clustered indexes on the restored copy of our production database, and ran CHECKDB against that. We went down from 7+ days to 19 hours and 20 minutes. Cue the “Argenis is not impressed” meme, please, Mr. LaRock. My pain is your gain, folks. Go check to see if you have any of such indexes – they’re likely causing your consistency checks to run very, very slow. Happy CHECKDBing, -Argenis ps: I plan to file a Connect item for this issue – I consider it a pretty serious bug in the engine. After all, filtered indexes were invented BECAUSE of the sparse column feature – and it makes a lot of sense to use them together. Watch this space and my twitter timeline for a link.

    Read the article

  • Personal Technology – Laptop Screen Blank – No Post – No BIOS – No Boot

    - by Pinal Dave
    If your laptop Screen is Blank and there is no POST, BIOS or boot, you can follow the steps mentioned here and there are chances that it will work if there is no hardware failure inside. Step 1: Remove the power cord from the laptop Step 2: Remove the battery from the laptop Step 3: Hold power button (keep it pressed) for almost 60 seconds Step 4: Plug power back in laptop Step 5: Start computer and it should just start normally. Step 6: Now shut down Step 7: Insert the battery back in the laptop Step 8: Start laptop again and it should work Note 1: If your laptop does not work after inserting back the memory. Remove the memory and repeat above process. Do not insert the battery back as it is malfunctioning. Note 2: If your screen is faulty or have issues with your hardware (motherboard, screen or anything else) this method will not fix your computer. Those, who care about how I come up with this not SQL related blog post, here is the very funny true story. If you are a married man, you will know what I am going to describe next. May be you have faced the same situation or at least you feel and understand my situation. My wife’s computer suddenly stops working when she was searching for my daughter’s mathematics worksheets online. While the fatal accident happened with my wife’s computer (which was my loyal computer for over 4 years before she got it), I was working in my home office, fixing a high priority issue (live order’s database was corrupted) with one of the largest eCommerce websites.  While I was working on production server where I was fixing database corruption, my wife ran to my home office. Here is how the conversation went: Wife: This computer does not work. I: Restart it. Wife: It does not start. I: What did you do with it? Wife: Nothing, it just stopped working. I: Okey, I will look into it later, working on the very urgent issue. Wife: I was printing my daughter’s worksheet. I: Hm.. Okey. Wife: It was the mathematics worksheet, which you promised you will teach but you never get around to do it, so I am doing it myself. I: Thanks. I appreciate it. I am very busy with this issue as million dollar transaction are not happening as the database got corrupted and … Wife: So what … umm… You mean to say that you care about this customer more than your daughter. You know she got A+ in every other class but in mathematics she got only A. She missed that extra credit question. I: She is only 4, it is okay. Wife: She is 4.5 years old not 4. So you are not going to fix this computer which does not start at all. I think our daughter next time will even get lower grades as her dad is busy fixing something. I: Alright, I give up bring me that computer. Our daughter who was listening everything so far she finally decided to speak up. Daughter: Dad, it is a laptop not computer. I: Yes, sweety get that laptop here and your dad is going to fix the this small issue of million dollar issue later on. I decided to pay attention to my wife’s computer. She was right. No matter what I do, it will not boot up, it will not start, no BIOS, no POST screen. The computer starts for a second but nothing comes up on the screen. The light indicating hard drive comes up for a second and goes off. Nothing happens. I removed every single USB drive from the laptop but it still would not start. It was indeed no fun for me. Finally I remember my days when I was not married and used to study in University of Southern California, Los Angeles. I remembered that I used to have very old second (or maybe third or fourth) hand computer with me. In polite words, I had pre-owned computer and it used to face very similar issues again and again. I had small routine I used to follow to fix my old computer and I had decided to follow the same steps again with this computer. Step 1: Remove the power cord from the laptop Step 2: Remove the battery from the laptop Step 3: Hold power button (keep it pressed) for almost 60 seconds Step 4: Plug power back in laptop Step 5: Start computer and it should just start normally. Step 6: Now shut down Step 7: Insert the battery back in the laptop Step 8: Start laptop again and it should work Note 1: If your laptop does not work after inserting back the memory. Remove the memory and repeat above process. Do not insert the battery back as it is malfunctioning. Note 2: If your screen is faulty or have issues with your hardware (motherboard, screen or anything else) this method will not fix your computer. Once I followed above process, her computer worked. I was very delighted, that now I can go back to solving the problem where millions of transactions were waiting as I was fixing corrupted database and it the current state of the database was in emergency mode. Once I fixed the computer, I looked at my wife and asked. I: Well, now this laptop is back online, can I get guaranteed that she will get A+ in mathematics in this week’s quiz? Wife: Sure, I promise. I: Fantastic. After saying that I started to look at my database corruption and my wife interrupted me again. Wife: Btw, I forgot to tell you. Our daughter had got A in mathematics last week but she had another quiz today and she already have received A+ there. I kept my promise. I looked at her and she started to walk outside room, before I say anything my phone rang. DBA from eCommerce company had called me, as he was wondering why there is no activity from my side in last 10 minutes. DBA: Hey bud, are you still connected. I see um… no activity in last 10 minutes. I: Oh, well, I was just saving the world. I am back now. After two hours I had fixed the database corruption and everything was normal. I was outsmarted by my wife but honestly I still respect and love her the same as she is the one who spends countless hours with our daughter so she does not miss me and I can continue writing blogs and keep on doing technology evangelism. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Humor, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

< Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >