Search Results

Search found 67192 results on 2688 pages for 'excel external data'.

Page 198/2688 | < Previous Page | 194 195 196 197 198 199 200 201 202 203 204 205  | Next Page >

  • can't save or create files in external hard disk

    - by Rodniko
    i formatted my computer and installed new win7. i connected my external hard disk (usb connector) and i have some kind of permission problem. i can't save files after opening them and right clicking and choosing "new" shows that i can only create folders. what is wrong ? why doesn't the external hd doesn't have permission and how do i cahnge it? in microsoft they probably thought: "hmmm.... how would i make it difficult for the user to use our product..." , "we will have to make the difficulty as soon as the windows is installed...." " but how would we guarantee 100% for the user to have problems? "oh yhe! block creating files and saving them, yes!" i'm so tired of those guys... my HD is half a Terra, changing ownership of all the files inside will take a couple of hours , i need other ideas... if any...

    Read the article

  • What happens if a user jumps over 10 versions before updating, and every version had a new data mode

    - by dontWatchMyProfile
    Example: User installs app v.1.0, adds data. Then the dev submits 10 updates in 10 weeks. After 11 weeks, the user wants v.11.0 and grabs a copy from the app store. Assuming that the app has got 11 .xcdatamodel versions inside, where ***11.xcdatamodel is the current one, what would happen now since the persistent store of the user is ages old? would the migration happen 10 times, step-by-step through every migration iteration? Or does the actual migration of data (lets assume gigabytes of data) happen exactly once, after Core Data (or the persistent store coordinator) has figured out precisely what to do to go from v.1.0 to v.11.0?

    Read the article

  • Iterating over a large data set in long running Python process - memory issues?

    - by user1094786
    I am working on a long running Python program (a part of it is a Flask API, and the other realtime data fetcher). Both my long running processes iterate, quite often (the API one might even do so hundreds of times a second) over large data sets (second by second observations of certain economic series, for example 1-5MB worth of data or even more). They also interpolate, compare and do calculations between series etc. What techniques, for the sake of keeping my processes alive, can I practice when iterating / passing as parameters / processing these large data sets? For instance, should I use the gc module and collect manually? Any advice would be appreciated. Thanks!

    Read the article

  • Poor performance of single processor 32bit Windows XP xompared SMP in VBA+Excel

    - by Adam Ryczkowski
    Welcome! On many computers I experienced poor performance of 32 bit guests running on 64 bit Linux host (I used only the Debian family). At last I managed to collect benchmark data. I made the benchmark by running custom VBA macro, (which we use in our company) that generates 284 pages long Word document full of Excel Pie charts, tables and comments. The macro is run as a single task (excluding the standard services) on a set of identically configured Windows XP 32-bit systems. I measured the time (in sec.) needed to perform the test. The computer (i.e. my notebook Asus P53E) supports both VT-d extensions and native Windows XP. It has 2-core processor, each core is hyperthreaded, so in total we have 4 mostly independent execution units. I use the latest VirtualBox 4.2 and VMWare Workstation 9.0 for Linux, installed together on the same host (running Mint 13 Maya) but never run simultaneously. The results (in column Time) are no less accurate than ± 10% Here are the results (sorry for the format, but I couldn't find out a better solution for tables in SO): +---------------+-------------+------------------------------------------------------+---------+------------+----------------+------+ | Host software | # processor | Windows kernel | IO APIC | VT-x/AMD-V | 2D Video Accel | Time | +---------------+-------------+------------------------------------------------------+---------+------------+----------------+------+ | VirtualBox | 1 | Advanced Configuration and Power Interface (ACPI) PC | 0 | 1 | 0 | 1139 | | VirtualBox | 1 | Advanced Configuration and Power Interface (ACPI) PC | 0 | 1 | 1 | 1050 | | VirtualBox | 1 | Advanced Configuration and Power Interface (ACPI) PC | 0 | 0 | 1 | 1644 | | VirtualBox | 4 | ACPI Multiprocessor PC | 1 | 1 | 1 | 6809 | | VMWare | 1 | ACPI Uniprocessor PC | | 1 | 1 | 1175 | | VMWare | 4 | ACPI Multiprocessor PC | | 1 | 1 | 3412 | | Native | 4 | ACPI Multiprocessor PC | | | | 1693 | | Native | 1 | Advanced Configuration and Power Interface (ACPI) PC | | | | 1170 | +---------------+-------------+------------------------------------------------------+---------+------------+----------------+------+ Here are the striking conclusions: Although I've read in the VirtualBox fora about abysmal performance with 32-bit guest on 64-bit host, VMWare also has problems compared to native run, still being twice faster(!) than VBox. Although VBA is inherently single-threaded, the Excel calculations, which take much more than a half of total computation time, supposedly aren't. So one would expect some speed gain when running on 2+ cores ("+" for hyperthreading). What we see is a speed loss. And quite big one too. For the VirtualBox the VT-d extension isn't a big deal. Can anyone shed some light on why the singlethreaded Windows kernel is so much faster than the SMP one?

    Read the article

  • WCF – interchangeable data-contract types

    - by nmarun
    In a WSDL based environment, unlike a CLR-world, we pass around the ‘state’ of an object and not the reference of an object. Well firstly, what does ‘state’ mean and does this also mean that we can send a struct where a class is expected (or vice-versa) as long as their ‘state’ is one and the same? Let’s see. So I have an operation contract defined as below: 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract] 5: Employee SaveEmployee(Employee employee); 6: } 7:  8: [ServiceBehavior] 9: public class LearnWcfService : ILearnWcfServiceExtend 10: { 11: public Employee SaveEmployee(Employee employee) 12: { 13: employee.EmployeeId = 123; 14: return employee; 15: } 16: } Quite simplistic operation there (which translates to ‘absolutely no business value’). Now, the data contract Employee mentioned above is a struct. 1: public struct Employee 2: { 3: public int EmployeeId { get; set; } 4:  5: public string FName { get; set; } 6: } After compilation and consumption of this service, my proxy (in the Reference.cs file) looks like below (I’ve ignored the rest of the details just to avoid unwanted confusion): 1: public partial struct Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged I call the service with the code below: 1: private static void CallWcfService() 2: { 3: Employee employee = new Employee { FName = "A" }; 4: Console.WriteLine("IsValueType: {0}", employee.GetType().IsValueType); 5: Console.WriteLine("IsClass: {0}", employee.GetType().IsClass); 6: Console.WriteLine("Before calling the service: {0} - {1}", employee.EmployeeId, employee.FName); 7: employee = LearnWcfServiceClient.SaveEmployee(employee); 8: Console.WriteLine("Return from the service: {0} - {1}", employee.EmployeeId, employee.FName); 9: } The output is: I now change my Employee type from a struct to a class in the proxy class and run the application: 1: public partial class Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged { The output this time is: The state of an object implies towards its composition, the properties and the values of these properties and not based on whether it is a reference type (class) or a value type (struct). And as shown above, we’re actually passing an object by its state and not by reference. Continuing on the same topic of ‘type-interchangeability’, WCF treats two data contracts as equivalent if they have the same ‘wire-representation’. We can do so using the DataContract and DataMember attributes’ Name property. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: public int Id { get; set; } 6:  7: [DataMember] 8: public string FirstName { get; set; } 9: } 10:  11: [DataContract(Name="Person")] 12: public class Employee 13: { 14: [DataMember(Name = "Id")] 15: public int EmployeeId { get; set; } 16:  17: [DataMember(Name="FirstName")] 18: public string FName { get; set; } 19: } I’ve created two data contracts with the exact same wire-representation. Just remember that the names and the types of data members need to match to be considered equivalent. The question then arises as to what gets generated in the proxy class. Despite us declaring two data contracts (Person and Employee), only one gets emitted – Person. This is because we’re saying that the Employee type has the same wire-representation as the Person type. Also that the signature of the SaveEmployee operation gets changed on the proxy side: 1: [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")] 2: [System.ServiceModel.ServiceContractAttribute(ConfigurationName="ServiceProxy.ILearnWcfServiceExtend")] 3: public interface ILearnWcfServiceExtend 4: { 5: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployee", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployeeResponse")] 6: ClientApplication.ServiceProxy.Person SaveEmployee(ClientApplication.ServiceProxy.Person employee); 7: } But, on the service side, the SaveEmployee still accepts and returns an Employee data contract. 1: [ServiceBehavior] 2: public class LearnWcfService : ILearnWcfServiceExtend 3: { 4: public Employee SaveEmployee(Employee employee) 5: { 6: employee.EmployeeId = 123; 7: return employee; 8: } 9: } Despite all these changes, our output remains the same as the last one: This is type-interchangeability at work! Here’s one more thing to ponder about. Our Person type is a struct and Employee type is a class. Then how is it that the Person type got emitted as a ‘class’ in the proxy? It’s worth mentioning that WSDL describes a type called Employee and does not say whether it is a class or a struct (see the SOAP message below): 1: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2: xmlns:tem="http://tempuri.org/" 3: xmlns:ser="http://schemas.datacontract.org/2004/07/ServiceApplication"> 4: <soapenv:Header/> 5: <soapenv:Body> 6: <tem:SaveEmployee> 7: <!--Optional:--> 8: <tem:employee> 9: <!--Optional:--> 10: <ser:EmployeeId>?</ser:EmployeeId> 11: <!--Optional:--> 12: <ser:FName>?</ser:FName> 13: </tem:employee> 14: </tem:SaveEmployee> 15: </soapenv:Body> 16: </soapenv:Envelope> There are some differences between how ‘Add Service Reference’ and the svcutil.exe generate the proxy class, but turns out both do some kind of reflection and determine the type of the data contract and emit the code accordingly. So since the Employee type is a class, the proxy ‘Person’ type gets generated as a class. In fact, reflecting on svcutil.exe application, you’ll see that there are a couple of places wherein a flag actually determines a type as a class or a struct. One example is in the ExportISerializableDataContract method in the System.Runtime.Serialization.CodeExporter class. Seems like these flags have a say in deciding whether the type gets emitted as a struct or a class. This behavior is different if you use the WSDL tool though. WSDL tool does not do any kind of reflection of the data contract / serialized type, it emits the type as a class by default. You can check this using the two command lines below:   Note to self: Remember ‘state’ and type-interchangeability when traversing through the WSDL planet!

    Read the article

  • Data management in unexpected places

    - by Ashok_Ora
    Normal 0 false false false EN-US X-NONE X-NONE Data management in unexpected places When you think of network switches, routers, firewall appliances, etc., it may not be obvious that at the heart of these kinds of solutions is an engine that can manage huge amounts of data at very high throughput with low latencies and high availability. Consider a network router that is processing tens (or hundreds) of thousands of network packets per second. So what really happens inside a router? Packets are streaming in at the rate of tens of thousands per second. Each packet has multiple attributes, for example, a destination, associated SLAs etc. For each packet, the router has to determine the address of the next “hop” to the destination; it has to determine how to prioritize this packet. If it’s a high priority packet, then it has to be sent on its way before lower priority packets. As a consequence of prioritizing high priority packets, lower priority data packets may need to be temporarily stored (held back), but addressed fairly. If there are security or privacy requirements associated with the data packet, those have to be enforced. You probably need to keep track of statistics related to the packets processed (someone’s sure to ask). You have to do all this (and more) while preserving high availability i.e. if one of the processors in the router goes down, you have to have a way to continue processing without interruption (the customer won’t be happy with a “choppy” VoIP conversation, right?). And all this has to be achieved without ANY intervention from a human operator – the router is most likely to be in a remote location – it must JUST CONTINUE TO WORK CORRECTLY, even when bad things happen. How is this implemented? As soon as a packet arrives, it is interpreted by the receiving software. The software decodes the packet headers in order to determine the destination, kind of packet (e.g. voice vs. data), SLAs associated with the “owner” of the packet etc. It looks up the internal database of “rules” of how to process this packet and handles the packet accordingly. The software might choose to hold on to the packet safely for some period of time, if it’s a low priority packet. Ah – this sounds very much like a database problem. For each packet, you have to minimally · Look up the most efficient next “hop” towards the destination. The “most efficient” next hop can change, depending on latency, availability etc. · Look up the SLA and determine the priority of this packet (e.g. voice calls get priority over data ftp) · Look up security information associated with this data packet. It may be necessary to retrieve the context for this network packet since a network packet is a small “slice” of a session. The context for the “header” packet needs to be stored in the router, in order to make this work. · If the priority of the packet is low, then “store” the packet temporarily in the router until it is time to forward the packet to the next hop. · Update various statistics about the packet. In most cases, you have to do all this in the context of a single transaction. For example, you want to look up the forwarding address and perform the “send” in a single transaction so that the forwarding address doesn’t change while you’re sending the packet. So, how do you do all this? Berkeley DB is a proven, reliable, high performance, highly available embeddable database, designed for exactly these kinds of usage scenarios. Berkeley DB is a robust, reliable, proven solution that is currently being used in these scenarios. First and foremost, Berkeley DB (or BDB for short) is very very fast. It can process tens or hundreds of thousands of transactions per second. It can be used as a pure in-memory database, or as a disk-persistent database. BDB provides high availability – if one board in the router fails, the system can automatically failover to another board – no manual intervention required. BDB is self-administering – there’s no need for manual intervention in order to maintain a BDB application. No need to send a technician to a remote site in the middle of nowhere on a freezing winter day to perform maintenance operations. BDB is used in over 200 million deployments worldwide for the past two decades for mission-critical applications such as the one described here. You have a choice of spending valuable resources to implement similar functionality, or, you could simply embed BDB in your application and off you go! I know what I’d do – choose BDB, so I can focus on my business problem. What will you do? /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • Metrics - A little knowledge can be a dangerous thing (or 'Why you're not clever enough to interpret metrics data')

    - by Jason Crease
    At RedGate Software, I work on a .NET obfuscator  called SmartAssembly.  Various features of it use a database to store various things (exception reports, name-mappings, etc.) The user is given the option of using either a SQL-Server database (which requires them to have Microsoft SQL Server), or a Microsoft Access MDB file (which requires nothing). MDB is the default option, but power-users soon switch to using a SQL Server database because it offers better performance and data-sharing. In the fashionable spirit of optimization and metrics, an obvious product-management question is 'Which is the most popular? SQL Server or MDB?' We've collected data about this fact, using our 'Feature-Usage-Reporting' technology (available as part of SmartAssembly) and more recently our 'Application Metrics' technology: Parameter Number of users % of total users Number of sessions Number of usages SQL Server 28 19.0 8115 8115 MDB 114 77.6 1449 1449 (As a disclaimer, please note than SmartAssembly has far more than 132 users . This data is just a selection of one build) So, it would appear that SQL-Server is used by fewer users, but more often. Great. But here's why these numbers are useless to me: Only the original developers understand the data What does a single 'usage' of 'MDB' mean? Does this happen once per run? Once per option change? On clicking the 'Obfuscate Now' button? When running the command-line version or just from the UI version? Each question could skew the data 10-fold either way, and the answers only known by the developer that instrumented the application in the first place. In other words, only the original developer can interpret the data - product-managers cannot interpret the data unaided. Most of the data is from uninterested users About half of people who download and run a free-trial from the internet quit it almost immediately. Only a small fraction use it sufficiently to make informed choices. Since the MDB option is the default one, we don't know how many of those 114 were people CHOOSING to use the MDB, or how many were JUST HAPPENING to use this MDB default for their 20-second trial. This is a problem we see across all our metrics: Are people are using X because it's the default or are they using X because they want to use X? We need to segment the data further - asking what percentage of each percentage meet our criteria for an 'established user' or 'informed user'. You end up spending hours writing sophisticated and dubious SQL queries to segment the data further. Not fun. You can't find out why they used this feature Metrics can answer the when and what, but not the why. Why did people use feature X? If you're anything like me, you often click on random buttons in unfamiliar applications just to explore the feature-set. If we listened uncritically to metrics at RedGate, we would eliminate the most-important and more-complex features which people actually buy the software for, leaving just big buttons on the main page and the About-Box. "Ah, that's interesting!" rather than "Ah, that's actionable!" People do love data. Did you know you eat 1201 chickens in a lifetime? But just 4 cows? Interesting, but useless. Often metrics give you a nice number: '5.8% of users have 3 or more monitors' . But unless the statistic is both SUPRISING and ACTIONABLE, it's useless. Most metrics are collected, reviewed with lots of cooing. and then forgotten. Unless a piece-of-data could change things, it's useless collecting it. People get obsessed with significance levels The first things that lots of people do with this data is do a t-test to get a significance level ("Hey! We know with 99.64% confidence that people prefer SQL Server to MDBs!") Believe me: other causes of error/misinterpretation in your data are FAR more significant than your t-test could ever comprehend. Confirmation bias prevents objectivity If the data appears to match our instinct, we feel satisfied and move on. If it doesn't, we suspect the data and dig deeper, plummeting down a rabbit-hole of segmentation and filtering until we give-up and move-on. Data is only useful if it can change our preconceptions. Do you trust this dodgy data more than your own understanding, knowledge and intelligence?  I don't. There's always multiple plausible ways to interpret/action any data Let's say we segment the above data, and get this data: Post-trial users (i.e. those using a paid version after the 14-day free-trial is over): Parameter Number of users % of total users Number of sessions Number of usages SQL Server 13 9.0 1115 1115 MDB 5 4.2 449 449 Trial users: Parameter Number of users % of total users Number of sessions Number of usages SQL Server 15 10.0 7000 7000 MDB 114 77.6 1000 1000 How do you interpret this data? It's one of: Mostly SQL Server users buy our software. People who can't afford SQL Server tend to be unable to afford or unwilling to buy our software. Therefore, ditch MDB-support. Our MDB support is so poor and buggy that our massive MDB user-base doesn't buy it.  Therefore, spend loads of money improving it, and think about ditching SQL-Server support. People 'graduate' naturally from MDB to SQL Server as they use the software more. Things are fine the way they are. We're marketing the tool wrong. The large number of MDB users represent uninformed downloaders. Tell marketing to aggressively target SQL Server users. To choose an interpretation you need to segment again. And again. And again, and again. Opting-out is correlated with feature-usage Metrics tends to be opt-in. This skews the data even further. Between 5% and 30% of people choose to opt-in to metrics (often called 'customer improvement program' or something like that). Casual trial-users who are uninterested in your product or company are less likely to opt-in. This group is probably also likely to be MDB users. How much does this skew your data by? Who knows? It's not all doom and gloom. There are some things metrics can answer well. Environment facts. How many people have 3 monitors? Have Windows 7? Have .NET 4 installed? Have Japanese Windows? Minor optimizations.  Is the text-box big enough for average user-input? Performance data. How long does our app take to start? How many databases does the average user have on their server? As you can see, questions about who-the-user-is rather than what-the-user-does are easier to answer and action. Conclusion Use SmartAssembly. If not for the metrics (called 'Feature-Usage-Reporting'), then at least for the obfuscation/error-reporting. Data raises more questions than it answers. Questions about environment are the easiest to answer.

    Read the article

  • Data Source Connection Pool Sizing

    - by Steve Felts
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} One of the most time-consuming procedures of a database application is establishing a connection. The connection pooling of the data source can be used to minimize this overhead.  That argues for using the data source instead of accessing the database driver directly. Configuring the size of the pool in the data source is somewhere between an art and science – this article will try to move it closer to science.  From the beginning, WLS data source has had an initial capacity and a maximum capacity configuration values.  When the system starts up and when it shrinks, initial capacity is used.  The pool can grow to maximum capacity.  Customers found that they might want to set the initial capacity to 0 (more on that later) but didn’t want the pool to shrink to 0.  In WLS 10.3.6, we added minimum capacity to specify the lower limit to which a pool will shrink.  If minimum capacity is not set, it defaults to the initial capacity for upward compatibility.   We also did some work on the shrinking in release 10.3.4 to reduce thrashing; the algorithm that used to shrink to the maximum of the currently used connections or the initial capacity (basically the unused connections were all released) was changed to shrink by half of the unused connections. The simple approach to sizing the pool is to set the initial/minimum capacity to the maximum capacity.  Doing this creates all connections at startup, avoiding creating connections on demand and the pool is stable.  However, there are a number of reasons not to take this simple approach. When WLS is booted, the deployment of the data source includes synchronously creating the connections.  The more connections that are configured in initial capacity, the longer the boot time for WLS (there have been several projects for parallel boot in WLS but none that are available).  Related to creating a lot of connections at boot time is the problem of logon storms (the database gets too much work at one time).   WLS has a solution for that by setting the login delay seconds on the pool but that also increases the boot time. There are a number of cases where it is desirable to set the initial capacity to 0.  By doing that, the overhead of creating connections is deferred out of the boot and the database doesn’t need to be available.  An application may not want WLS to automatically connect to the database until it is actually needed, such as for some code/warm failover configurations. There are a number of cases where minimum capacity should be less than maximum capacity.  Connections are generally expensive to keep around.  They cause state to be kept on both the client and the server, and the state on the backend may be heavy (for example, a process).  Depending on the vendor, connection usage may cost money.  If work load is not constant, then database connections can be freed up by shrinking the pool when connections are not in use.  When using Active GridLink, connections can be created as needed according to runtime load balancing (RLB) percentages instead of by connection load balancing (CLB) during data source deployment. Shrinking is an effective technique for clearing the pool when connections are not in use.  In addition to the obvious reason that there times where the workload is lighter,  there are some configurations where the database and/or firewall conspire to make long-unused or too-old connections no longer viable.  There are also some data source features where the connection has state and cannot be used again unless the state matches the request.  Examples of this are identity based pooling where the connection has a particular owner and XA affinity where the connection is associated with a particular RAC node.  At this point, WLS does not re-purpose (discard/replace) connections and shrinking is a way to get rid of the unused existing connection and get a new one with the correct state when needed. So far, the discussion has focused on the relationship of initial, minimum, and maximum capacity.  Computing the maximum size requires some knowledge about the application and the current number of simultaneously active users, web sessions, batch programs, or whatever access patterns are common.  The applications should be written to only reserve and close connections as needed but multiple statements, if needed, should be done in one reservation (don’t get/close more often than necessary).  This means that the size of the pool is likely to be significantly smaller then the number of users.   If possible, you can pick a size and see how it performs under simulated or real load.  There is a high-water mark statistic (ActiveConnectionsHighCount) that tracks the maximum connections concurrently used.  In general, you want the size to be big enough so that you never run out of connections but no bigger.   It will need to deal with spikes in usage, which is where shrinking after the spike is important.  Of course, the database capacity also has a big influence on the decision since it’s important not to overload the database machine.  Planning also needs to happen if you are running in a Multi-Data Source or Active GridLink configuration and expect that the remaining nodes will take over the connections when one of the nodes in the cluster goes down.  For XA affinity, additional headroom is also recommended.  In summary, setting initial and maximum capacity to be the same may be simple but there are many other factors that may be important in making the decision about sizing.

    Read the article

  • Data Source Security Part 4

    - by Steve Felts
    So far, I have covered Client Identity and Oracle Proxy Session features, with WLS or database credentials.  This article will cover one more feature, Identify-based pooling.  Then, there is one more topic to cover - how these options play with transactions.Identity-based Connection Pooling An identity based pool creates a heterogeneous pool of connections.  This allows applications to use a JDBC connection with a specific DBMS credential by pooling physical connections with different DBMS credentials.  The DBMS credential is based on either the WebLogic user mapped to a database user or the database user directly, based on the “use database credentials” setting as described earlier. Using this feature enabled with “use database credentials” enabled seems to be what is proposed in the JDBC standard, basically a heterogeneous pool with users specified by getConnection(user, password). The allocation of connections is more complex if Enable Identity Based Connection Pooling attribute is enabled on the data source.  When an application requests a database connection, the WebLogic Server instance selects an existing physical connection or creates a new physical connection with requested DBMS identity. The following section provides information on how heterogeneous connections are created:1. At connection pool initialization, the physical JDBC connections based on the configured or default “initial capacity” are created with the configured default DBMS credential of the data source.2. An application tries to get a connection from a data source.3a. If “use database credentials” is not enabled, the user specified in getConnection is mapped to a DBMS credential, as described earlier.  If the credential map doesn’t have a matching user, the default DBMS credential is used from the datasource descriptor.3b. If “use database credentials” is enabled, the user and password specified in getConnection are used directly.4. The connection pool is searched for a connection with a matching DBMS credential.5. If a match is found, the connection is reserved and returned to the application.6. If no match is found, a connection is created or reused based on the maximum capacity of the pool: - If the maximum capacity has not been reached, a new connection is created with the DBMS credential, reserved, and returned to the application.- If the pool has reached maximum capacity, based on the least recently used (LRU) algorithm, a physical connection is selected from the pool and destroyed. A new connection is created with the DBMS credential, reserved, and returned to the application. It should be clear that finding a matching connection is more expensive than a homogeneous pool.  Destroying a connection and getting a new one is very expensive.  If you can use a normal homogeneous pool or one of the light-weight options (client identity or an Oracle proxy connection), those should be used instead of identity based pooling. Regardless of how physical connections are created, each physical connection in the pool has its own DBMS credential information maintained by the pool. Once a physical connection is reserved by the pool, it does not change its DBMS credential even if the current thread changes its WebLogic user credential and continues to use the same connection. To configure this feature, select Enable Identity Based Connection Pooling.  See http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24401/taskhelp/jdbc/jdbc_datasources/EnableIdentityBasedConnectionPooling.html  "Enable identity-based connection pooling for a JDBC data source" in Oracle WebLogic Server Administration Console Help. You must make the following changes to use Logging Last Resource (LLR) transaction optimization with Identity-based Pooling to get around the problem that multiple users will be accessing the associated transaction table.- You must configure a custom schema for LLR using a fully qualified LLR table name. All LLR connections will then use the named schema rather than the default schema when accessing the LLR transaction table.  - Use database specific administration tools to grant permission to access the named LLR table to all users that could access this table via a global transaction. By default, the LLR table is created during boot by the user configured for the connection in the data source. In most cases, the database will only allow access to this user and not allow access to mapped users. Connections within Transactions Now that we have covered the behavior of all of these various options, it’s time to discuss the exception to all of the rules.  When you get a connection within a transaction, it is associated with the transaction context on a particular WLS instance. When getting a connection with a data source configured with non-XA LLR or 1PC (using the JTS driver) with global transactions, the first connection obtained within the transaction is returned on subsequent connection requests regardless of the values of username/password specified and independent of the associated proxy user session, if any. The connection must be shared among all users of the connection when using LLR or 1PC. For XA data sources, the first connection obtained within the global transaction is returned on subsequent connection requests within the application server, regardless of the values of username/password specified and independent of the associated proxy user session, if any.  The connection must be shared among all users of the connection within a global transaction within the application server/JVM.

    Read the article

  • What is the quickest reliable way to backup a NAS drive to a USB drive?

    - by Tim Murphy
    How would you backup 600+ GB of data on a NAS (Network-Attached Storage) drive to a USB external drive? The NAS drive does not contain mission critical data nonetheless I wish to make weekly copies of it just in case. The NAS drive is almost exclusively used as an archive dump and is rarely updated. However the backup strategy used must have a simple restore procedure so I can confidently say the data now on the NAS drive is exactly how it was at the time of backup. I did try xcopy but seemed like it would take many-many hours and eventually crashed with insufficient memory. http://www.ctunion.com/node/114 suggests I would need to use xxcopy instead due to folder/file name lengths. My concern with xcopy/xxcopy is the length of time it takes. Hoping something else is faster. NAS drive is DLink DNS-313. 1TB drive installed. Connected to router via Ethernet cable. USB drive is Seagate 1TB. Can be connected to Windows Vista (preferred) or Windows 7 PCs. Both PCs are usually connected Wirelessly however ethernet cable can be used during backup to speed up the process.

    Read the article

  • EXT4 external hard drive for use with multiple systems

    - by EXTdumb
    I recently bought a external hard drive to store some data on. I use Linux but I am not a power user. If I format the drive to EXT4, is it possible for the permissions to ever screw up and I lost access to my data? I will be plugging the drive into several different linux based computers at work and I frequently hop distros on my main home machine. I need to make sure I don't lose any data because I overlooked something. I am not familiar with EXT 3 or 4. So far I have done this : Formatted drive to EXT4 ran gksudo thunar and changed the permissions to my user account and all settings to read/write Wrote all the files I need to the drive I really appreciate any help.

    Read the article

  • SQL SERVER – Disable Clustered Index and Data Insert

    - by pinaldave
    Earlier today I received following email. “Dear Pinal, [Removed unrelated content] We looked at your script and found out that in your script of disabling indexes, you have only included non-clustered index during the bulk insert and missed to disabled all the clustered index. Our DBA[name removed] has changed your script a bit and included all the clustered indexes. Since our application is not working. When DBA [name removed] tried to enable clustered indexes again he is facing error incorrect syntax error. We are in deep problem [word replaced] [Removed Identity of organization and few unrelated stuff ]“ I have replied to my client and helped them fixed the problem. What really came to my attention is the concept of disabling clustered index. Let us try to learn a lesson from this experience. In this case, there was no need to disable clustered index at all. I had done necessary work when I was called in to work on tuning project. I had removed unused indexes, created few optimal indexes and wrote a script to disable few selected high cost indexes when bulk insert (and similar) operations are performed. There was another script which rebuild all the indexes as well. The solution worked till they included clustered index in disabling the script. Clustered indexes are in fact original table (or heap) physically ordered (any more things – not scope of this article) according to one or more keys(columns). When clustered index is disabled data rows of the disabled clustered index cannot be accessed. This means there will be no insert possible. When non clustered indexes are disabled all the data related to physically deleted but the definition of the index is kept in the system. Due to the same reason even reorganization of the index is not possible till the clustered index (which was disabled) is rebuild. Now let us come to the second part of the question, regarding receiving the error when clustered index is ‘enabled’. This is very common question I receive on the blog. (The following statement is written keeping the syntax of T-SQL in mind) Clustered indexes can be disabled but can not be enabled, they have to rebuild. It is intuitive to think that something which we have ‘disabled’ can be ‘enabled’ but the syntax for the same is ‘rebuild’. This issue has been explained here: SQL SERVER – How to Enable Index – How to Disable Index – Incorrect syntax near ‘ENABLE’. Let us go over this example where inserting the data is not possible when clustered index is disabled. USE AdventureWorks GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL, CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) ) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Populate Table INSERT INTO [dbo].[TableName] SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' GO -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Insert Data should work fine INSERT INTO [dbo].[TableName] SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Fifth' GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Insert Data will fail INSERT INTO [dbo].[TableName] SELECT 6, 'Sixth' UNION ALL SELECT 7, 'Seventh' GO /* Error: Msg 8655, Level 16, State 1, Line 1 The query processor is unable to produce a plan because the index 'PK_TableName' on table or view 'TableName' is disabled. */ -- Reorganizing Index will also throw an error ALTER INDEX [PK_TableName] ON [dbo].[TableName] REORGANIZE GO /* Error: Msg 1973, Level 16, State 1, Line 1 Cannot perform the specified operation on disabled index 'PK_TableName' on table 'dbo.TableName'. */ -- Rebuliding should work fine ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Insert Data should work fine INSERT INTO [dbo].[TableName] SELECT 6, 'Sixth' UNION ALL SELECT 7, 'Seventh' GO -- Clean Up DROP TABLE [dbo].[TableName] GO I hope this example is clear enough. There were few additional posts I had written years ago, I am listing them here. SQL SERVER – Enable and Disable Index Non Clustered Indexes Using T-SQL SQL SERVER – Enabling Clustered and Non-Clustered Indexes – Interesting Fact Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Constraint and Keys, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Recover Lost Form Data in Firefox

    - by Asian Angel
    Have you ever filled in a text area or form in a webpage and something happens before you can finish it? If you like the idea of recovering that lost data then you will want to have a look at the Lazarus: Form Recovery extension for Firefox. Lazarus: Form Recovery in Action For our first example we chose the comment text box area for one of the articles here at the website. As you can see we were not finished typing in the whole comment yet… Notice the “Lazarus Icon” in the lower right corner. Note: We simulated accidental tab closures for our two examples. After getting our webpage opened up again all of our text was gone. Right clicking within the text area showed two options available…”Recover Text & Recover Form”. Notice that our lost text was listed as a “sub menu”…this could be extremely useful in matching up the appropriate text to the correct webpage if you had multiple tabs open before something happened. Click on the correct text listing to insert it. So easy to finish writing our comment without having to start from zero again. In our second example we chose the sign-up form page for the website. As before we were not finished filling in the form… Getting the webpage opened back up showed the same problem as before…all the entered text was lost. This time we right clicked in the browser window area and there was that wonderful “Recover Form Command” waiting to be used. One click and… All of our lost form data was back and we were able to finish filling in the form. For those who may be interested you can disable Lazarus: Form Recovery on individual websites using the “Context Menu” for the “Status Bar Icon” Options There are three sections in the options and you should take a quick look through them to make any desired modifications in how Lazarus: Form Recovery functions. The first “Options Area” focuses on display/access for the extension. The second “Options Area” allows you to expand the type of data retained, enable removal of data within a given time frame, set up a password, disable search indexing, and enable form data retention while in “Private Browsing Mode”. The third “Options Area” focuses on the Lazarus database itself. Conclusion If you have ever lost text area or form data before then you know how much time could be lost in starting over. Lazarus: Form Recovery helps provide a nice backup solution to get you up and running once again with a minimum of effort. Links Download the Lazarus: Form Recovery extension (Mozilla Add-ons) Download the Lazarus: Form Recovery extension (Extension Homepage) Similar Articles Productive Geek Tips Quick Tip: Resize Any Textbox or Textarea in FirefoxWhy Doesn’t AutoComplete Always Work in Firefox?Pass Variables between Windows Forms Windows without ShowDialog()Using Secure Login in FirefoxAdd Search Forms to the Firefox Search Bar TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Looking for Good Windows Media Player 12 Plug-ins? Find Out the Celebrity You Resemble With FaceDouble Whoa ! Use Printflush to Solve Printing Problems Icelandic Volcano Webcams Open Multiple Links At One Go

    Read the article

  • SQL – Step by Step Guide to Download and Install NuoDB – Getting Started with NuoDB

    - by Pinal Dave
    Let us take a look at the application you own at your business. If you pay attention to the underlying database for that application you will be amazed. Every successful business these days processes way more data than they used to process before. The number of transactions and the amount of data is growing at an exponential rate. Every single day there is way more data to process than before. Big data is no longer a concept; it is now turning into reality. If you look around there are so many different big data solutions and it can be a quite difficult task to figure out where to begin. Personally, I have been experimenting with a lot of different solutions which allow my database to scale immediately without much hassle while maintaining optimal database performance.  There are for sure some solutions out there, but for many I even have to learn their specific language and there is a lot of new exploration to do. Honestly, what I prefer is a product, which works with the language I know (SQL) and follows all the RDBMS concepts which I am familiar with (ACID etc.). NuoDB is one such solution.  It is an operational NewSQL database built on a patented emergent architecture with full support for SQL and ACID guarantees. In this blog post, I will explore how one can download and install NuoDB database. Step 1: Follow me and go to the NuoDB download page. Simply fill out the form, accept the online license agreement, and you will be taken directly to a page where you can select any platform you prefer to install NuoDB. In my example below, I select the Windows 64-bit platform as it is one of the most popular NuoDB platforms. (You can also run NuoDB on Amazon Web Services but I prefer to install it on my local machine for the purposes of this blog). Step 2: Once you have downloaded the NuoDB installer, double click on it to install it on the Windows platform. Here is the enlarged the icon of the installer. Step 3: Follow the wizard installation, as it is pretty straight forward and easy to do so. I have selected all the options to install as the overall installation is very simple and it does not take up much space. I have installed it on my C drive but you can select your preferred drive. It is quite possible that if you do not have 64 bit Java, it will throw following error. If you face following error, I suggest you to download 64-bit Java from here. Make sure that you download 64-bit Java from following link: http://java.com/en/download/manual.jsp If already have Java 64-bit installed, you can continue with the installation as described in following image. Otherwise, install Java and start from with Step 1. As in my case, I already have 64-bit Java installed – and you won’t believe me when I say that the entire installation of NuoDB only took me around 90 seconds. Click on Finish to end to exit the installation. Step 4: Once the installation is successful, NuoDB will automatically open the following two tabs – Console and DevCenter — in your preferred browser. On the Console tab you can explore various components of the NuoDB solution, e.g. QuickStart, Admin, Explorer, Storefront and Samples. We will see various components and their usage in future blog posts. If you follow these steps in this post, which I have followed to install NuoDB, you will agree that the installation of NuoDB is extremely smooth and it was indeed a pleasure to install a database product with such ease. If you have installed other database products in the past, you will absolutely agree with me. So download NuoDB and install it today, and in tomorrow’s blog post I will take the installation to the next level. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: NuoDB

    Read the article

  • Using the Script Component as a Conditional Split

    This is a quick walk through on how you can use the Script Component to perform Conditional Split like behaviour, splitting your data across multiple outputs. We will use C# code to decide what does flows to which output, rather than the expression syntax of the Conditional Split transformation. Start by setting up the source. For my example the source is a list of SQL objects from sys.objects, just a quick way to get some data: SELECT type, name FROM sys.objects type name S syssoftobjrefs F FK_Message_Page U Conference IT queue_messages_23007163 Shown above is a small sample of the data you could expect to see. Once you have setup your source, add the Script Component, selecting Transformation when prompted for the type, and connect it up to the source. Now open the component, but don’t dive into the script just yet. First we need to select some columns. Select the Input Columns page and then select the columns we want to uses as part of our filter logic. You don’t need to choose columns that you may want later, this is just the columns used in the script itself. Next we need to add our outputs. Select the Inputs and Outputs page.You get one by default, but we need to add some more, it wouldn’t be much of a split otherwise. For this example we’ll add just one more. Click the Add Output button, and you’ll see a new output is added. Now we need to set some properties, so make sure our new Output 1 is selected. In the properties grid change the SynchronousInputID property to be our input Input 0, and  change the ExclusionGroup property to 1. Now select Ouput 0 and change the ExclusionGroup property to 2. This value itself isn’t important, provided each output has a different value other than zero. By setting this property on both outputs it allows us to split the data down one or the other, making each exclusive. If we left it to 0, that output would get all the rows. It can be a useful feature allowing you to copy selected rows to one output whilst retraining the full set of data in the other. Now we can go back to the Script page and start writing some code. For the example we will do a very simple test, if the value of the type column is U, for user table, then it goes down the first output, otherwise it ends up in the other. This mimics the exclusive behaviour of the conditional split transformation. public override void Input0_ProcessInputRow(Input0Buffer Row) { // Filter all user tables to the first output, // the remaining objects down the other if (Row.type.Trim() == "U") { Row.DirectRowToOutput0(); } else { Row.DirectRowToOutput1(); } } The code itself is very simple, a basic if clause that determines which of the DirectRowToOutput methods we call, there is one for each output. Of course you could write a lot more code to implement some very complex logic, but the final direction is still just a method call. If we now close the script component, we can hook up the outputs and test the package. Your numbers will vary depending on the sample database but as you can see we have clearly split out input data into two outputs. As a final tip, when adding the outputs I would normally rename them, changing the Name in the Properties grid. This means the generated methods follow the pattern as do the path label shown on the design surface, making everything that much easier to recognise.

    Read the article

  • Problems with 3D Array for Voxel Data

    - by Sean M.
    I'm trying to implement a voxel engine in C++ using OpenGL, and I've been working on the rendering of the world. In order to render, I have a 3D array of uint16's that hold that id of the block at the point. I also have a 3D array of uint8's that I am using to store the visibility data for that point, where each bit represents if a face is visible. I have it so the blocks render and all of the proper faces are hidden if needed, but all of the blocks are offset by a power of 2 from where they are stored in the array. So the block at [0][0][0] is rendered at (0, 0, 0), and the block at 11 is rendered at (1, 1, 1), but the block at [2][2][2] is rendered at (4, 4, 4) and the block at [3][3][3] is rendered at (8, 8, 8), and so on and so forth. This is the result of drawing the above situation: I'm still a little new to the more advanced concepts of C++, like triple pointers, which I'm using for the 3D array, so I think the error is somewhere in there. This is the code for creating the arrays: uint16*** _blockData; //Contains a 3D array of uint16s that are the ids of the blocks in the region uint8*** _visibilityData; //Contains a 3D array of bytes that hold the visibility data for the faces //Allocate memory for the world data _blockData = new uint16**[REGION_DIM]; for (int i = 0; i < REGION_DIM; i++) { _blockData[i] = new uint16*[REGION_DIM]; for (int j = 0; j < REGION_DIM; j++) _blockData[i][j] = new uint16[REGION_DIM]; } //Allocate memory for the visibility _visibilityData = new uint8**[REGION_DIM]; for (int i = 0; i < REGION_DIM; i++) { _visibilityData[i] = new uint8*[REGION_DIM]; for (int j = 0; j < REGION_DIM; j++) _visibilityData[i][j] = new uint8[REGION_DIM]; } Here is the code used to create the block mesh for the region: //Check if the positive x face is visible, this happens for every face //Block::VERT_X_POS is just an array of non-transformed cube verts for one face //These checks are in a triple loop, which goes over every place in the array if (_visibilityData[x][y][z] & 0x01 > 0) { _vertexData->AddData(&(translateVertices(Block::VERT_X_POS, x, y, z)[0]), sizeof(Block::VERT_X_POS)); } //This is a seperate method, not in the loop glm::vec3* translateVertices(const glm::vec3 data[], uint16 x, uint16 y, uint16 z) { glm::vec3* copy = new glm::vec3[6]; memcpy(&copy, &data, sizeof(data)); for(int i = 0; i < 6; i++) copy[i] += glm::vec3(x, -y, z); //Make +y go down instead return copy; } I cannot see where the blocks may be getting offset by more than they should be, and certainly not why the offsets are a power of 2. Any help is greatly appreciated. Thanks.

    Read the article

  • Atomic operations on several transactionless external systems

    - by simendsjo
    Say you have an application connecting 3 different external systems. You need to update something in all 3. In case of a failure, you need to roll back the operations. This is not a hard thing to implement, but say operation 3 fails, and when rolling back, the rollback for operation 1 fails! Now the first external system is in an invalid state... I'm thinking a possible solution is to shut down the application and forcing a manual fix of the external system, but then again... It might already have used this information (and perhaps that's why it failed), or we might not have sufficient access. Or it might not even be a good way to rollback the action! Are there some good ways of handling such cases? EDIT: Some application details.. It's a multi user web application. Most of the work is done with scheduled jobs (through Quartz.Net), so most operations is run in it's own thread. Some user actions should trigger jobs that update several systems though. The external systems are somewhat unstable. I Was thinking of changing the application to use the Command and Unit Of Work pattern

    Read the article

  • Using a CMS with an external database

    - by George Reith
    I am looking at building an external site with a CMS, probably Drupal or ExpressionEngine. The problem is that our company already has a membership database that is designed to work with our existing enterprise software. Migrating data from the database manually is not an option as modifications and new data must be accessible in real-time. Because the design of the external database will differ from the CMS's own I have decided the best way forward is to use two databases and force the CMS to use the external to read user information (cannot write to) and a local for everything else the CMS needs to do (read + write). Is this feasible with these Drupal or ExpressionEngine? Ideally I need to be able to use hooks as I do not wan't to modify core CMS files. Sifting through the docs I am not able to find what I would hook into for ether CMS. (Note: I know it is possible, but I want to know if it's feasible). Finally if there is a better way of handling this situation please also chime in. Perhaps there is something at the database level to reference a field or table in an external database? I'm clutching at straws someone can point me in the right direction I'm sure.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Hadoop growing pains

    - by Piotr Rodak
    This post is not going to be about SQL Server. I have been reading recently more and more about “Big Data” – very catchy term that describes untamed increase of the data that mankind is producing each day and the struggle to capture the meaning of these data. Ten years ago, and perhaps even three years ago this need was not so recognized. Increasing number of smartphones and discernable trend of mainstream Internet traffic moving to the smartphone generated one means that there is bigger and bigger stream of information that has to be stored, transformed, analysed and perhaps monetized. The nature of this traffic makes if very difficult to wrap it into boundaries of relational database engines. The amount of data makes it near to impossible to process them in relational databases within reasonable time. This is where ‘cloud’ technologies come to play. I just read a good article about the growing pains of Hadoop, which became one of the leading players on distributed processing arena within last year or two. Toby Baer concludes in it that lack of enterprise ready toolsets hinders Hadoop’s apprehension in the enterprise world. While this is true, something else drew my attention. According to the article there are already about half of a dozen of commercially supported distributions of Hadoop. For me, who has not been involved into intricacies of open-source world, this is quite interesting observation. On one hand, it is good that there is competition as it is beneficial in the end to the customer. On the other hand, the customer is faced with difficulty of choosing the right distribution. In future, when Hadoop distributions fork even more, this choice will be even harder. The distributions will have overlapping sets of features, yet will be quite incompatible with each other. I suppose it will take a few years until leaders emerge and the market will begin to resemble what we see in Linux world. There are myriads of distributions, but only few are acknowledged by the industry as enterprise standard. Others are honed by bearded individuals with too much time to spend. In any way, the third fact I can’t help but notice about the proliferation of distributions of Hadoop is that IT professionals will have jobs.   BuzzNet Tags: Hadoop,Big Data,Enterprise IT

    Read the article

  • Hadoop growing pains

    - by Piotr Rodak
    This post is not going to be about SQL Server. I have been reading recently more and more about “Big Data” – very catchy term that describes untamed increase of the data that mankind is producing each day and the struggle to capture the meaning of these data. Ten years ago, and perhaps even three years ago this need was not so recognized. Increasing number of smartphones and discernable trend of mainstream Internet traffic moving to the smartphone generated one means that there is bigger and bigger stream of information that has to be stored, transformed, analysed and perhaps monetized. The nature of this traffic makes if very difficult to wrap it into boundaries of relational database engines. The amount of data makes it near to impossible to process them in relational databases within reasonable time. This is where ‘cloud’ technologies come to play. I just read a good article about the growing pains of Hadoop, which became one of the leading players on distributed processing arena within last year or two. Toby Baer concludes in it that lack of enterprise ready toolsets hinders Hadoop’s apprehension in the enterprise world. While this is true, something else drew my attention. According to the article there are already about half of a dozen of commercially supported distributions of Hadoop. For me, who has not been involved into intricacies of open-source world, this is quite interesting observation. On one hand, it is good that there is competition as it is beneficial in the end to the customer. On the other hand, the customer is faced with difficulty of choosing the right distribution. In future, when Hadoop distributions fork even more, this choice will be even harder. The distributions will have overlapping sets of features, yet will be quite incompatible with each other. I suppose it will take a few years until leaders emerge and the market will begin to resemble what we see in Linux world. There are myriads of distributions, but only few are acknowledged by the industry as enterprise standard. Others are honed by bearded individuals with too much time to spend. In any way, the third fact I can’t help but notice about the proliferation of distributions of Hadoop is that IT professionals will have jobs.   BuzzNet Tags: Hadoop,Big Data,Enterprise IT

    Read the article

  • OAM11gR2: Enabling SSL in the Data Store

    - by Ekta Malik
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Enabling SSL in the Data Store of OAM11gR2 comprises of the below mentioned steps. Import the certificate/s required for establishing the trust with the Store(backend) in the keystore(cacerts) on the machine hosting OAM's Weblogic Admin server Restart the Weblogic Admin server Specify the <Hostname>:<SSL port> in the "Location" field of the Data Store and select the "Enable SSL" checkbox Pre-requisite:- Certificate/s to be imported are available for import Data Store has already been created using OAM admin console and the connection to the store is successful on non-SSL port( though one can always create a Data Store with SSL settings on the first go) Steps for importing the certificate/s:- One can use the keytool utility that comes bundled with JDK to import the certificate. The step for importing the certificate would be same for self-signed and third party certificates (like VeriSign) $JAVA_HOME/bin/keytool -import -v -noprompt -trustcacerts -alias <aliasname> -file <Path to the certificate file> -keystore $JAVA_HOME/jre/lib/security/cacerts Here $JAVA_HOME refers to the path of JDK install directory Note: In case multiple certificates are required for establishing the trust, import all those certificates using the same keytool command mentioned above  One can verify the import of the certificate/s by using the below mentioned command $JAVA_HOME/bin/keytool -list -alias <aliasname>-v -keystore $JAVA_HOME/jre/lib/security/cacerts When the trust gets established for the SSL communication, specifying the SSL specific settings in the Data Store (via OAM admin console) wouldn't result into the previously seen error (when Certificates are yet to be imported) and the "Test Connection" would be successful.

    Read the article

< Previous Page | 194 195 196 197 198 199 200 201 202 203 204 205  | Next Page >