Search Results

Search found 28685 results on 1148 pages for 'query performance'.

Page 199/1148 | < Previous Page | 195 196 197 198 199 200 201 202 203 204 205 206  | Next Page >

  • Linq query with Array in where clause?

    - by Matt Dell
    I have searched for this, but still can't seem to get this to work for me. I have an array of Id's associated with a user (their Organization Id). These are placed in an int[] as follows: int[] OrgIds = (from oh in this.Database.OrganizationsHierarchies join o in this.Database.Organizations on oh.OrganizationsId equals o.Id where (oh.Hierarchy.Contains(@OrgId)) || (oh.OrganizationsId == Id) select o.Id).ToArray(); The code there isn't very important, but it shows that I am getting an integer array from a Linq query. From this, though, I want to run another Linq query that gets a list of Personnel, that code is as follows: List<Personnel> query = (from p in this.Database.Personnels where (search the array) select p).ToList(); I want to add in the where clause a way to select only the users with the OrganizationId's in the array. So, in SQL where I would do something like "where OrganizationId = '12' or OrganizationId = '13' or OrganizatonId = '17'." Can I do this fairly easily in Linq / .NET?

    Read the article

  • multi-valued property query in GAE

    - by Tim
    class Person{ @Persistent private List tags = ArrayList() } I want to let the user query a person based on his/her tag, so I had my query filter like this: tags.contains(tagValue1) and if the user want to search for multiple tags, I would just add to the filter so if the user is searching for 3 tags, then the query would be tags.contains(tagValue1) && tags.contains(tagValue2) && tags.contains(tagValue3) I think this approach is wrong, because the datastore then needs to have an index that have the tags property three times... and if the user search for more than 3 tags at a time then it will be broken. What's the proper way to do this? Do you guys have any suggestions?

    Read the article

  • Getting age in years in a SQL query

    - by Earlz
    Hello I've been tasked with doing a few queries on a large SQL Server 2000 database. The query I'm having trouble with is "find the number of people between ages 20 and 40" How would I do this? My previous query to get a count of everyone looks like this: select count(rid) from people where ... (with the ... being irrelevant conditions). I've googled some but the only thing I've found for calculating age is so large that I don't see how to embed it into a query, or it is a stored procedure which I do not have the permissions to create. Can someone help me with this?

    Read the article

  • What is wrong with this simple update query?

    - by Kyle Noland
    I get no error message, but the row is not updated. The rows integer is set 1 following the query, indicating that 1 row was affected. String query = "UPDATE contacts SET contact_name = '" + ContactName.Text.Trim() + "', " + "contact_phone = '" + Phone.Text.Trim() + "', " + "contact_fax = '" + Fax.Text.Trim() + "', " + "contact_direct = '" + Direct.Text.Trim() + "', " + "company_id = '" + Company.SelectedValue + "', " + "contact_address1 = '" + Address1.Text.Trim() + "', " + "contact_address2 = '" + Address2.Text.Trim() + "', " + "contact_city = '" + City.Text.Trim() + "', " + "contact_state = '" + State.SelectedValue + "', " + "contact_zip = '" + Zip.Text.Trim() + "' " + "WHERE contact_id = '" + contact_id + "'"; String cs = Lib.GetConnectionString(null); SqlConnection conn = new SqlConnection(cs); SqlCommand cmd = conn.CreateCommand(); cmd.CommandText = query; cmd.Connection.Open(); int rows = cmd.ExecuteNonQuery();

    Read the article

  • [SQL] Query returning more than one row with the same name

    - by Neutralise
    I am having trouble with an SQL query returning more than one row with the same name, using this query: SELECT * FROM People P JOIN SpecialityCombo C ON P.PERSONID = C.PERSONID JOIN Speciality S ON C.GROUPID = S.ID; People contains information on each person, Specialty contains the names and ID of each specialty and SpecialityCombo contains information about the associations between People and their Speciality, namely each row has a PERSONID and a Speciality ID (trying to keep it normalised to some extent). My query works in that it returns each Person and the name of their specialty, but it returns n rows for the number of specialitys they want, because each specialty returns the same row 'name'. What I want is it to return just one row containing each speciality. How can I do this?

    Read the article

  • JPA Native Query (SQL View)

    - by Uchenna
    I have two Entities Customer and Account. @Entity @Table(name="customer") public class Customer { private Long id; private String name; private String accountType; private String accountName; ... } @Entity @Table(name="account") public class Account { private Long id; private String accountName; private String accountType; ... } i have a an sql query select a.id as account_id, a.account_name, a.account_type, d.id, d.name from account a, customer d Assumption account and customer tables are created during application startup. accountType and accountName fields of Customer entity should not be created. That is, only id and name columns will be created. Question How do i run the above sql query and return a Customer Entity Object with the accountType and accountName properties populated with sql query's account_name and account_type values. Thanks

    Read the article

  • Query returning an ascending group number

    - by Dougman
    I have a query like below that has groups (COL1) and that group's values (COL2). select col1, col2 from (select 'A' col1, 1 col2 from dual union all select 'A' col1, 2 col2 from dual union all select 'B' col1, 1 col2 from dual union all select 'B' col1, 2 col2 from dual union all select 'C' col1, 1 col2 from dual union all select 'C' col1, 2 col2 from dual ) order by col1, col2; The output of this query looks like: COL1 COL2 ---- ---- A 1 A 2 B 1 B 2 C 1 C 2 What I need is a query that will return an ordered number increasing for each different group (COL1). It seems like there would be a simple way to accomplish this (maybe with analytics) but for some reason it is escaping me. GRPNUM COL1 COL2 ------ ---- ---- 1 A 1 1 A 2 2 B 1 2 B 2 3 C 1 3 C 2 I am running Oracle 10gR2.

    Read the article

  • Dynamically set the result of a TSQL query using CASE WHEN

    - by Name.IsNullOrEmpty
    SELECT MyTable.Name,(SELECT CASE WHEN ISNULL(SUM(TotalDays), 0) <= 0 THEN 0 ELSE SUM(TotalDays) END AS Total FROM Application AS Applications WHERE (ID = MyTable.id)) - MIN(Assignments) AS Excesses FROM MyTable The above TSQL statement is a subquery in a main query. When i run it, if TotalDays is NULL or <=0, then Total is set to 0 (zero). What i would like to do here is to set the result of the whole query(Excesses) to 0. I want (Excesses) which is the result of Total - Min(Assignments) to be set to 0 if its NULL or <=0. I want the CASE WHEN to apply to the whole query but am struggling to get it right.

    Read the article

  • return only one document for each filter defined in the query

    - by Garytxo
    Hi all, In one of my latest projects I use Solr 1.4 for searching products.However I have ran into a slight problem, which I aint sure if its possible to do using Solr. All products are indexed by "country" and "category" and the "id", "class" and "description" are stored values. I now have been requested to extract a sample list of products that we have for a give "category" and "ONLY RETURNING ONE" product for each country where the product is available. In my current implementation, I have a dismax query to get a list of all the countries that correspond to the catergory, then I call again solr to extract all products for each country, limiting the no. rows by the size of the countries found in the previous query. The problem I have with this current implementation is I can not be certain that I have one product for each country in the list. Therefore would anyone know if it possible to tell solr that you want only one product per country provided in the query? Any guidance would be useful.

    Read the article

  • MySQL query with JOINS and GROUP BY

    - by user1854049
    I'm building a MySQL query but I can't seem to get it right. I have four tables: - customers - orders - sales_rates - purchase_rates There is a 1:n relation 'customernr' between customers and orders. There is a 1:n relation 'ordernr' between orders and sales_rates. There is a 1:n relation 'ordernr' between orders and purchase_rates. What I would like to do is produce an output of all customers with their total purchase and sales amounts. So far I have the following query. SELECT c.customernr, c.customer_name, SUM(sr.sales_price) AS sales_price, SUM(pr.purchase_price) AS purchase_price FROM orders o, customers c, sales_rates sr, purchase_rates pr WHERE o.customernr = c.customernr AND o.ordernr = sr.ordernr AND o.ordernr = pr.ordernr GROUP BY k.bedrijfsnaam The result of the sales_price and purchase_price is far too high. I seem to be getting double counts. What am I doing wrong? Is it possible to perform this in a single query? Thank for your response!

    Read the article

  • Multiple &(AND) fails in query

    - by N e w B e e
    here is my query $sql = 'SELECT * FROM Orders INNER JOIN [Order Details] ON Orders.OrderNumber = [Order Details].OrderNumber WHERE Orders.CartID =2 AND [Order Details].Option10 Is Null AND [Order Details].Status="Shipped"'; this queries when entered in MS_Access sql view, returns the correct results, but when I copy and paste the same query in my php script, it fails and gives the error Too few parameters, expected 1... although data is there, query is working in access... Please note if I omitted on AND condition, it works eg if I removed shipped conidtion or is null condition, it works then too.. any hint? whats wrong with it?? any help?thanks

    Read the article

  • Query to select from two different tables

    - by ryan
    I would like to select from two tables and display my result using this query: CREATE TABLE Buy_Table ( buy_id int identity primary key, user_id int, amount decimal (18,2) ); go INSERT INTO Buy_Table (user_id, amount) VALUES ('1', 10), ('1', 8), ('1', 20), ('3', 1), ('2', 2); go CREATE TABLE Sell_Table ( sell_id int identity primary key, user_id int, amount decimal (18,2) ); go INSERT INTO Sell_Table (user_id, amount) VALUES ('1', 10), ('1', 8), ('1', 20), ('3', 3), ('2', 3); go select [user_id], 'Buy' as [Type], buy_id as [ID], amount from Buy_Table union all select [user_id], 'Sell', sell_id, amount from Sell_Table order by [user_id], [ID], [Type] However the above query will return each row of the user_id like this I want to display my result to something like this in a grid: Can this be done in query itself rather manipulating the grid? Thx

    Read the article

  • C++ custom exceptions: run time performance and passing exceptions from C++ to C

    - by skyeagle
    I am writing a custom C++ exception class (so I can pass exceptions occuring in C++ to another language via a C API). My initial plan of attack was to proceed as follows: //C++ myClass { public: myClass(); ~myClass(); void foo() // throws myException int foo(const int i, const bool b) // throws myException } * myClassPtr; // C API #ifdef __cplusplus extern "C" { #endif myClassPtr MyClass_New(); void MyClass_Destroy(myClassPtr p); void MyClass_Foo(myClassPtr p); int MyClass_FooBar(myClassPtr p, int i, bool b); #ifdef __cplusplus }; #endif I need a way to be able to pass exceptions thrown in the C++ code to the C side. The information I want to pass to the C side is the following: (a). What (b). Where (c). Simple Stack Trace (just the sequence of error messages in order they occured, no debugging info etc) I want to modify my C API, so that the API functions take a pointer to a struct ExceptionInfo, which will contain any exception info (if an exception occured) before consuming the results of the invocation. This raises two questions: Question 1 1. Implementation of each of the C++ methods exposed in the C API needs to be enclosed in a try/catch statement. The performance implications for this seem quite serious (according to this article): "It is a mistake (with high runtime cost) to use C++ exception handling for events that occur frequently, or for events that are handled near the point of detection." At the same time, I remember reading somewhere in my C++ days, that all though exception handling is expensive, it only becmes expensive when an exception actually occurs. So, which is correct?. what to do?. Is there an alternative way that I can trap errors safely and pass the resulting error info to the C API?. Or is this a minor consideration (the article after all, is quite old, and hardware have improved a bit since then). Question 2 I wuld like to modify the exception class given in that article, so that it contains a simple stack trace, and I need some help doing that. Again, in order to make the exception class 'lightweight', I think its a good idea not to include any STL classes, like string or vector (good idea/bad idea?). Which potentially leaves me with a fixed length C string (char*) which will be stack allocated. So I can maybe just keep appending messages (delimted by a unique separator [up to maximum length of buffer])... Its been a while since I did any serious C++ coding, and I will be grateful for the help. BTW, this is what I have come up with so far (I am intentionally, not deriving from std::exception because of the performance reasons mentioned in the article, and I am instead, throwing an integral exception (based on an exception enumeration): class fast_exception { public: fast_exception(int what, char const* file=0, int line=0) : what_(what), line_(line), file_(file) {/*empty*/} int what() const { return what_; } int line() const { return line_; } char const* file() const { return file_; } private: int what_; int line_; char const[MAX_BUFFER_SIZE] file_; }

    Read the article

  • push_back of STL list got bad performance?

    - by Leon Zhang
    I wrote a simple program to test STL list performance against a simple C list-like data structure. It shows bad performance at "push_back()" line. Any comments on it? $ ./test2 Build the type list : time consumed -> 0.311465 Iterate over all items: time consumed -> 0.00898 Build the simple C List: time consumed -> 0.020275 Iterate over all items: time consumed -> 0.008755 The source code is: #include <stdexcept> #include "high_resolution_timer.hpp" #include <list> #include <algorithm> #include <iostream> #define TESTNUM 1000000 /* The test struct */ struct MyType { int num; }; /* * C++ STL::list Test */ typedef struct MyType* mytype_t; void myfunction(mytype_t t) { } int test_stl_list() { std::list<mytype_t> mylist; util::high_resolution_timer t; /* * Build the type list */ t.restart(); for(int i = 0; i < TESTNUM; i++) { mytype_t aItem = (mytype_t) malloc(sizeof(struct MyType)); if(aItem == NULL) { printf("Error: while malloc\n"); return -1; } aItem->num = i; mylist.push_back(aItem); } std::cout << " Build the type list : time consumed -> " << t.elapsed() << std::endl; /* * Iterate over all item */ t.restart(); std::for_each(mylist.begin(), mylist.end(), myfunction); std::cout << " Iterate over all items: time consumed -> " << t.elapsed() << std::endl; return 0; } /* * a simple C list */ struct MyCList; struct MyCList{ struct MyType m; struct MyCList* p_next; }; int test_simple_c_list() { struct MyCList* p_list_head = NULL; util::high_resolution_timer t; /* * Build it */ t.restart(); struct MyCList* p_new_item = NULL; for(int i = 0; i < TESTNUM; i++) { p_new_item = (struct MyCList*) malloc(sizeof(struct MyCList)); if(p_new_item == NULL) { printf("ERROR : while malloc\n"); return -1; } p_new_item->m.num = i; p_new_item->p_next = p_list_head; p_list_head = p_new_item; } std::cout << " Build the simple C List: time consumed -> " << t.elapsed() << std::endl; /* * Iterate all items */ t.restart(); p_new_item = p_list_head; while(p_new_item->p_next != NULL) { p_new_item = p_new_item->p_next; } std::cout << " Iterate over all items: time consumed -> " << t.elapsed() << std::endl; return 0; } int main(int argc, char** argv) { if(test_stl_list() != 0) { printf("ERROR: error at testcase1\n"); return -1; } if(test_simple_c_list() != 0) { printf("ERROR: error at testcase2\n"); return -1; } return 0; }

    Read the article

  • Linq2SQL vs NHibernate performance (have I gone mad?)

    - by HeavyWave
    I have written the following tests to compare performance of Linq2SQL and NHibernate and I find results to be somewhat strange. Mappings are straight forward and identical for both. Both are running against a live DB. Although I'm not deleting Campaigns in case of Linq, but that shouldn't affect performance by more than 10 ms. Linq: [Test] public void Test1000ReadsWritesToAgentStateLinqPrecompiled() { Stopwatch sw = new Stopwatch(); Stopwatch swIn = new Stopwatch(); sw.Start(); for (int i = 0; i < 1000; i++) { swIn.Reset(); swIn.Start(); ReadWriteAndDeleteAgentStateWithLinqPrecompiled(); swIn.Stop(); Console.WriteLine("Run ReadWriteAndDeleteAgentState: " + swIn.ElapsedMilliseconds + " ms"); } sw.Stop(); Console.WriteLine("Total Time: " + sw.ElapsedMilliseconds + " ms"); Console.WriteLine("Average time to execute queries: " + sw.ElapsedMilliseconds / 1000 + " ms"); } private static readonly Func<AgentDesktop3DataContext, int, EntityModel.CampaignDetail> GetCampaignById = CompiledQuery.Compile<AgentDesktop3DataContext, int, EntityModel.CampaignDetail>( (ctx, sessionId) => (from cd in ctx.CampaignDetails join a in ctx.AgentCampaigns on cd.CampaignDetailId equals a.CampaignDetailId where a.AgentStateId == sessionId select cd).FirstOrDefault()); private void ReadWriteAndDeleteAgentStateWithLinqPrecompiled() { int id = 0; using (var ctx = new AgentDesktop3DataContext()) { EntityModel.AgentState agentState = new EntityModel.AgentState(); var campaign = new EntityModel.CampaignDetail { CampaignName = "Test" }; var campaignDisposition = new EntityModel.CampaignDisposition { Code = "123" }; campaignDisposition.Description = "abc"; campaign.CampaignDispositions.Add(campaignDisposition); agentState.CallState = 3; campaign.AgentCampaigns.Add(new AgentCampaign { AgentState = agentState }); ctx.CampaignDetails.InsertOnSubmit(campaign); ctx.AgentStates.InsertOnSubmit(agentState); ctx.SubmitChanges(); id = agentState.AgentStateId; } using (var ctx = new AgentDesktop3DataContext()) { var dbAgentState = ctx.GetAgentStateById(id); Assert.IsNotNull(dbAgentState); Assert.AreEqual(dbAgentState.CallState, 3); var campaignDetails = GetCampaignById(ctx, id); Assert.AreEqual(campaignDetails.CampaignDispositions[0].Description, "abc"); } using (var ctx = new AgentDesktop3DataContext()) { ctx.DeleteSessionById(id); } } NHibernate (the loop is the same): private void ReadWriteAndDeleteAgentState() { var id = WriteAgentState().Id; StartNewTransaction(); var dbAgentState = agentStateRepository.Get(id); Assert.IsNotNull(dbAgentState); Assert.AreEqual(dbAgentState.CallState, 3); Assert.AreEqual(dbAgentState.Campaigns[0].Dispositions[0].Description, "abc"); var campaignId = dbAgentState.Campaigns[0].Id; agentStateRepository.Delete(dbAgentState); NHibernateSession.Current.Transaction.Commit(); Cleanup(campaignId); NHibernateSession.Current.BeginTransaction(); } Results: NHibernate: Total Time: 9469 ms Average time to execute 13 queries: 9 ms Linq: Total Time: 127200 ms Average time to execute 13 queries: 127 ms Linq lost by 13.5 times! Event with precompiled queries (both read queries are precompiled). This can't be right, although I expected NHibernate to be faster, this is just too big of a difference, considering mappings are identical and NHibernate actually executes more queries against the DB.

    Read the article

  • UIButton performance in UITableViewCell vs UIView

    - by marcel salathe
    I'd like to add a UIButton to a custom UITableViewCell (programmatically). This is easy to do, but I'm finding that the "performance" of the button in the cell is slow - that is, when I touch the button, there is quite a bit of delay until the button visually goes into the highlighted state. The same type of button on a regular UIView is very responsive in comparison. In order to isolate the problem, I've created two views - one is a simple UIView, the other is a UITableView with only one UITableViewCell. I've added buttons to both views (the UIView and the UITableViewCell), and the performance difference is quite striking. I've searched the web and read the Apple docs but haven't really found the cause of the problem. My guess is that it somehow has to do with the responder chain, but I can't quite put my finger on it. I must be doing something wrong, and I'd appreciate any help. Thanks. Demo code: ViewController.h #import <UIKit/UIKit.h> @interface ViewController : UIViewController <UITableViewDelegate, UITableViewDataSource> @property UITableView* myTableView; @property UIView* myView; ViewController.m #import "ViewController.h" #import "CustomCell.h" @implementation ViewController @synthesize myTableView, myView; - (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil { self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil]; if (self) { [self initMyView]; [self initMyTableView]; } return self; } - (void) initMyView { UIView* newView = [[UIView alloc] initWithFrame:CGRectMake(0,0,[[UIScreen mainScreen] bounds].size.width,100)]; self.myView = newView; // button on regularView UIButton* myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect]; [myButton addTarget:self action:@selector(pressedMyButton) forControlEvents:UIControlEventTouchUpInside]; [myButton setTitle:@"I'm fast" forState:UIControlStateNormal]; [myButton setFrame:CGRectMake(20.0, 10.0, 160.0, 30.0)]; [[self myView] addSubview:myButton]; } - (void) initMyTableView { UITableView *newTableView = [[UITableView alloc] initWithFrame:CGRectMake(0,100,[[UIScreen mainScreen] bounds].size.width,[[UIScreen mainScreen] bounds].size.height-100) style:UITableViewStyleGrouped]; self.myTableView = newTableView; self.myTableView.delegate = self; self.myTableView.dataSource = self; } -(void) pressedMyButton { NSLog(@"pressedMyButton"); } - (void)viewDidLoad { [super viewDidLoad]; [[self view] addSubview:self.myView]; [[self view] addSubview:self.myTableView]; } - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { return 1; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { return 1; } - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { CustomCell *customCell = [tableView dequeueReusableCellWithIdentifier:@"CustomCell"]; if (customCell == nil) { customCell = [[CustomCell alloc] initWithStyle:UITableViewCellStyleSubtitle reuseIdentifier:@"CustomCell"]; } return customCell; } @end CustomCell.h #import <UIKit/UIKit.h> @interface CustomCell : UITableViewCell @property (retain, nonatomic) UIButton* cellButton; @end CustomCell.m #import "CustomCell.h" @implementation CustomCell @synthesize cellButton; - (id)initWithStyle:(UITableViewCellStyle)style reuseIdentifier:(NSString *)reuseIdentifier { self = [super initWithStyle:style reuseIdentifier:reuseIdentifier]; if (self) { // button within cell cellButton = [UIButton buttonWithType:UIButtonTypeRoundedRect]; [cellButton addTarget:self action:@selector(pressedCellButton) forControlEvents:UIControlEventTouchUpInside]; [cellButton setTitle:@"I'm sluggish" forState:UIControlStateNormal]; [cellButton setFrame:CGRectMake(20.0, 10.0, 160.0, 30.0)]; [self addSubview:cellButton]; } return self; } - (void) pressedCellButton { NSLog(@"pressedCellButton"); } @end

    Read the article

  • What is the fastest cyclic synchronization in Java (ExecutorService vs. CyclicBarrier vs. X)?

    - by Alex Dunlop
    Which Java synchronization construct is likely to provide the best performance for a concurrent, iterative processing scenario with a fixed number of threads like the one outlined below? After experimenting on my own for a while (using ExecutorService and CyclicBarrier) and being somewhat surprised by the results, I would be grateful for some expert advice and maybe some new ideas. Existing questions here do not seem to focus primarily on performance, hence this new one. Thanks in advance! The core of the app is a simple iterative data processing algorithm, parallelized to the spread the computational load across 8 cores on a Mac Pro, running OS X 10.6 and Java 1.6.0_07. The data to be processed is split into 8 blocks and each block is fed to a Runnable to be executed by one of a fixed number of threads. Parallelizing the algorithm was fairly straightforward, and it functionally works as desired, but its performance is not yet what I think it could be. The app seems to spend a lot of time in system calls synchronizing, so after some profiling I wonder whether I selected the most appropriate synchronization mechanism(s). A key requirement of the algorithm is that it needs to proceed in stages, so the threads need to sync up at the end of each stage. The main thread prepares the work (very low overhead), passes it to the threads, lets them work on it, then proceeds when all threads are done, rearranges the work (again very low overhead) and repeats the cycle. The machine is dedicated to this task, Garbage Collection is minimized by using per-thread pools of pre-allocated items, and the number of threads can be fixed (no incoming requests or the like, just one thread per CPU core). V1 - ExecutorService My first implementation used an ExecutorService with 8 worker threads. The program creates 8 tasks holding the work and then lets them work on it, roughly like this: // create one thread per CPU executorService = Executors.newFixedThreadPool( 8 ); ... // now process data in cycles while( ...) { // package data into 8 work items ... // create one Callable task per work item ... // submit the Callables to the worker threads executorService.invokeAll( taskList ); } This works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as much as the processing algorithm would be expected to allow (some work items will finish faster than others, then idle). However, as the work items become smaller (and this is not really under the program's control), the user CPU load shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.8% 85% 1.30 64k 2.5% 77% 5.6 16k 4% 64% 22.5 4096 8% 56% 86 1024 13% 38% 227 256 17% 19% 420 64 19% 17% 948 16 19% 13% 1626 Legend: - block size = size of the work item (= computational steps) - system = system load, as shown in OS X Activity Monitor (red bar) - user = user load, as shown in OS X Activity Monitor (green bar) - cycles/sec = iterations through the main while loop, more is better The primary area of concern here is the high percentage of time spent in the system, which appears to be driven by thread synchronization calls. As expected, for smaller work items, ExecutorService.invokeAll() will require relatively more effort to sync up the threads versus the amount of work being performed in each thread. But since ExecutorService is more generic than it would need to be for this use case (it can queue tasks for threads if there are more tasks than cores), I though maybe there would be a leaner synchronization construct. V2 - CyclicBarrier The next implementation used a CyclicBarrier to sync up the threads before receiving work and after completing it, roughly as follows: main() { // create the barrier barrier = new CyclicBarrier( 8 + 1 ); // create Runable for thread, tell it about the barrier Runnable task = new WorkerThreadRunnable( barrier ); // start the threads for( int i = 0; i < 8; i++ ) { // create one thread per core new Thread( task ).start(); } while( ... ) { // tell threads about the work ... // N threads + this will call await(), then system proceeds barrier.await(); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; } public void run() { while( true ) { // wait for work barrier.await(); // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as before. However, as the work items become smaller, the load still shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.7% 78% 6.1 16k 5.5% 52% 25 4096 9% 29% 64 1024 11% 15% 117 256 12% 8% 169 64 12% 6.5% 285 16 12% 6% 377 For large work items, synchronization is negligible and the performance is identical to V1. But unexpectedly, the results of the (highly specialized) CyclicBarrier seem MUCH WORSE than those for the (generic) ExecutorService: throughput (cycles/sec) is only about 1/4th of V1. A preliminary conclusion would be that even though this seems to be the advertised ideal use case for CyclicBarrier, it performs much worse than the generic ExecutorService. V3 - Wait/Notify + CyclicBarrier It seemed worth a try to replace the first cyclic barrier await() with a simple wait/notify mechanism: main() { // create the barrier // create Runable for thread, tell it about the barrier // start the threads while( ... ) { // tell threads about the work // for each: workerThreadRunnable.setWorkItem( ... ); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; @NotNull volatile private Callable<Integer> workItem; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; this.workItem = NO_WORK; } final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { synchronized( this ) { workItem = callable; notify(); } } public void run() { while( true ) { // wait for work while( true ) { synchronized( this ) { if( workItem != NO_WORK ) break; try { wait(); } catch( InterruptedException e ) { e.printStackTrace(); } } } // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.4% 80% 6.3 16k 4.6% 60% 30.1 4096 8.6% 41% 98.5 1024 12% 23% 202 256 14% 11.6% 299 64 14% 10.0% 518 16 14.8% 8.7% 679 The throughput for small work items is still much worse than that of the ExecutorService, but about 2x that of the CyclicBarrier. Eliminating one CyclicBarrier eliminates half of the gap. V4 - Busy wait instead of wait/notify Since this app is the primary one running on the system and the cores idle anyway if they're not busy with a work item, why not try a busy wait for work items in each thread, even if that spins the CPU needlessly. The worker thread code changes as follows: class WorkerThreadRunnable implements Runnable { // as before final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { workItem = callable; } public void run() { while( true ) { // busy-wait for work while( true ) { if( workItem != NO_WORK ) break; } // do the work ... // wait for everyone else to finish barrier.await(); } } } Also works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.2% 81% 6.3 16k 4.2% 62% 33 4096 7.5% 40% 107 1024 10.4% 23% 210 256 12.0% 12.0% 310 64 11.9% 10.2% 550 16 12.2% 8.6% 741 For small work items, this increases throughput by a further 10% over the CyclicBarrier + wait/notify variant, which is not insignificant. But it is still much lower-throughput than V1 with the ExecutorService. V5 - ? So what is the best synchronization mechanism for such a (presumably not uncommon) problem? I am weary of writing my own sync mechanism to completely replace ExecutorService (assuming that it is too generic and there has to be something that can still be taken out to make it more efficient). It is not my area of expertise and I'm concerned that I'd spend a lot of time debugging it (since I'm not even sure my wait/notify and busy wait variants are correct) for uncertain gain. Any advice would be greatly appreciated.

    Read the article

  • Mssql dilemma, performance

    - by Woland
    Hello I am creating app where user can save options witch one is better? 1) to save into user table varchar feeld smthing like ('1,23,4354,34,3') query for this is select * from data where CHARINDEX ( 'L', Providers , 0 ) 0 2) create other table where user options are and just add rows select * from data where Providers in (select Providers from userdata where userid=100) thanks for help

    Read the article

  • Null-free "maps": Is a callback solution slower than tryGet()?

    - by David Moles
    In comments to "How to implement List, Set, and Map in null free design?", Steven Sudit and I got into a discussion about using a callback, with handlers for "found" and "not found" situations, vs. a tryGet() method, taking an out parameter and returning a boolean indicating whether the out parameter had been populated. Steven maintained that the callback approach was more complex and almost certain to be slower; I maintained that the complexity was no greater and the performance at worst the same. But code speaks louder than words, so I thought I'd implement both and see what I got. The original question was fairly theoretical with regard to language ("And for argument sake, let's say this language don't even have null") -- I've used Java here because that's what I've got handy. Java doesn't have out parameters, but it doesn't have first-class functions either, so style-wise, it should suck equally for both approaches. (Digression: As far as complexity goes: I like the callback design because it inherently forces the user of the API to handle both cases, whereas the tryGet() design requires callers to perform their own boilerplate conditional check, which they could forget or get wrong. But having now implemented both, I can see why the tryGet() design looks simpler, at least in the short term.) First, the callback example: class CallbackMap<K, V> { private final Map<K, V> backingMap; public CallbackMap(Map<K, V> backingMap) { this.backingMap = backingMap; } void lookup(K key, Callback<K, V> handler) { V val = backingMap.get(key); if (val == null) { handler.handleMissing(key); } else { handler.handleFound(key, val); } } } interface Callback<K, V> { void handleFound(K key, V value); void handleMissing(K key); } class CallbackExample { private final Map<String, String> map; private final List<String> found; private final List<String> missing; private Callback<String, String> handler; public CallbackExample(Map<String, String> map) { this.map = map; found = new ArrayList<String>(map.size()); missing = new ArrayList<String>(map.size()); handler = new Callback<String, String>() { public void handleFound(String key, String value) { found.add(key + ": " + value); } public void handleMissing(String key) { missing.add(key); } }; } void test() { CallbackMap<String, String> cbMap = new CallbackMap<String, String>(map); for (int i = 0, count = map.size(); i < count; i++) { String key = "key" + i; cbMap.lookup(key, handler); } System.out.println(found.size() + " found"); System.out.println(missing.size() + " missing"); } } Now, the tryGet() example -- as best I understand the pattern (and I might well be wrong): class TryGetMap<K, V> { private final Map<K, V> backingMap; public TryGetMap(Map<K, V> backingMap) { this.backingMap = backingMap; } boolean tryGet(K key, OutParameter<V> valueParam) { V val = backingMap.get(key); if (val == null) { return false; } valueParam.value = val; return true; } } class OutParameter<V> { V value; } class TryGetExample { private final Map<String, String> map; private final List<String> found; private final List<String> missing; public TryGetExample(Map<String, String> map) { this.map = map; found = new ArrayList<String>(map.size()); missing = new ArrayList<String>(map.size()); } void test() { TryGetMap<String, String> tgMap = new TryGetMap<String, String>(map); for (int i = 0, count = map.size(); i < count; i++) { String key = "key" + i; OutParameter<String> out = new OutParameter<String>(); if (tgMap.tryGet(key, out)) { found.add(key + ": " + out.value); } else { missing.add(key); } } System.out.println(found.size() + " found"); System.out.println(missing.size() + " missing"); } } And finally, the performance test code: public static void main(String[] args) { int size = 200000; Map<String, String> map = new HashMap<String, String>(); for (int i = 0; i < size; i++) { String val = (i % 5 == 0) ? null : "value" + i; map.put("key" + i, val); } long totalCallback = 0; long totalTryGet = 0; int iterations = 20; for (int i = 0; i < iterations; i++) { { TryGetExample tryGet = new TryGetExample(map); long tryGetStart = System.currentTimeMillis(); tryGet.test(); totalTryGet += (System.currentTimeMillis() - tryGetStart); } System.gc(); { CallbackExample callback = new CallbackExample(map); long callbackStart = System.currentTimeMillis(); callback.test(); totalCallback += (System.currentTimeMillis() - callbackStart); } System.gc(); } System.out.println("Avg. callback: " + (totalCallback / iterations)); System.out.println("Avg. tryGet(): " + (totalTryGet / iterations)); } On my first attempt, I got 50% worse performance for callback than for tryGet(), which really surprised me. But, on a hunch, I added some garbage collection, and the performance penalty vanished. This fits with my instinct, which is that we're basically talking about taking the same number of method calls, conditional checks, etc. and rearranging them. But then, I wrote the code, so I might well have written a suboptimal or subconsicously penalized tryGet() implementation. Thoughts?

    Read the article

  • SQL Server dilemma, performance

    - by Woland
    Hello I am creating app where user can save options witch one is better? to save into user table varchar feeld smthing like ('1,23,4354,34,3') query for this is select * from data where CHARINDEX ( 'L', Providers , 0 ) 0 create other table where user options are and just add rows select * from data where Providers in (select Providers from userdata where userid=100) thanks for help

    Read the article

  • Preloading Winforms using a Stack and Hidden Form

    - by msarchet
    I am currently working on a project where we have a couple very control heavy user controls that are being used inside a MDI Controller. This is a Line of Business app and it is very data driven. The problem that we were facing was the aforementioned controls would load very very slowly, we dipped our toes into the waters of multi-threading for the control loading but that was not a solution for a plethora of reasons. Our solution to increasing the performance of the controls ended up being to 'pre-load' the forms onto a hidden window, create a stack of the existing forms, and pop off of the stack as the user requested a form. Now the current issue that I'm seeing that will arise as we push this 'fix' out to our testers, and the ultimately our users is this: Currently the 'hidden' window that contains the preloaded forms is visible in task manager, and can be shut down thus causing all of the controls to be lost. Then you have to create them on the fly losing the performance increase. Secondly, when the user uses up the stack we lose the performance increase (current solution to this is discussed below). For the first problem, is there a way to hide this window from task manager, perhaps by creating a parent form that encapsulates both the main form for the program and the hidden form? Our current solution to the second problem is to have an inactivity timer that when it fires checks the stacks for the forms, and loads a new form onto the stack if it isn't full. However this still has the potential of causing a hang in the UI while it creates the forms. A possible solutions for this would be to put 'used' forms back onto the stack, but I feel like there may be a better way. EDIT: For control design clarification From the comments I have realized there is a lack of clarity on what exactly the control is doing. Here is a detailed explanation of one of the controls. I have defined for this control loading time as the time it takes from when a user performs an action that would open a control, until the time a control is accessible to be edited. The control is for entering Prescriptions for a patient in the system, it has about 5 tabbed groups with a total of about 180 controls. The user selects to open a new Prescription control from inside the main program, this control is loaded into the MDI Child area of the Main Form (which is a DevExpress Ribbon Control). From the time the user clicks New (or loads an existing record) until the control is visible. The list of actions that happens in the program is this: The stack is checked for the existence of a control. If the control exists it is popped off of the stack. The control is rendered on screen. This is what takes 2 seconds The control then is populated with a blank object, or with existing data. The control is ready to use. The average percentage of loading time, across about 10 different machines, with different hardware the control rendering takes about 85 - 95 percent of the control loading time. Without using the stack the control takes about 2 seconds to load, with the stack it takes about .8 seconds, this second time is acceptable. I have looked at Henry's link and I had previously already implemented the applicable suggestions. Again I re-iterate my question as What is the best method to move controls to and from the stack with as little UI interruption as possible?

    Read the article

  • Random Complete System Unresponsiveness Running Mathematical Functions

    - by Computer Guru
    I have a program that loads a file (anywhere from 10MB to 5GB) a chunk at a time (ReadFile), and for each chunk performs a set of mathematical operations (basically calculates the hash). After calculating the hash, it stores info about the chunk in an STL map (basically <chunkID, hash>) and then writes the chunk itself to another file (WriteFile). That's all it does. This program will cause certain PCs to choke and die. The mouse begins to stutter, the task manager takes 2 min to show, ctrl+alt+del is unresponsive, running programs are slow.... the works. I've done literally everything I can think of to optimize the program, and have triple-checked all objects. What I've done: Tried different (less intensive) hashing algorithms. Switched all allocations to nedmalloc instead of the default new operator Switched from stl::map to unordered_set, found the performance to still be abysmal, so I switched again to Google's dense_hash_map. Converted all objects to store pointers to objects instead of the objects themselves. Caching all Read and Write operations. Instead of reading a 16k chunk of the file and performing the math on it, I read 4MB into a buffer and read 16k chunks from there instead. Same for all write operations - they are coalesced into 4MB blocks before being written to disk. Run extensive profiling with Visual Studio 2010, AMD Code Analyst, and perfmon. Set the thread priority to THREAD_MODE_BACKGROUND_BEGIN Set the thread priority to THREAD_PRIORITY_IDLE Added a Sleep(100) call after every loop. Even after all this, the application still results in a system-wide hang on certain machines under certain circumstances. Perfmon and Process Explorer show minimal CPU usage (with the sleep), no constant reads/writes from disk, few hard pagefaults (and only ~30k pagefaults in the lifetime of the application on a 5GB input file), little virtual memory (never more than 150MB), no leaked handles, no memory leaks. The machines I've tested it on run Windows XP - Windows 7, x86 and x64 versions included. None have less than 2GB RAM, though the problem is always exacerbated under lower memory conditions. I'm at a loss as to what to do next. I don't know what's causing it - I'm torn between CPU or Memory as the culprit. CPU because without the sleep and under different thread priorities the system performances changes noticeably. Memory because there's a huge difference in how often the issue occurs when using unordered_set vs Google's dense_hash_map. What's really weird? Obviously, the NT kernel design is supposed to prevent this sort of behavior from ever occurring (a user-mode application driving the system to this sort of extreme poor performance!?)..... but when I compile the code and run it on OS X or Linux (it's fairly standard C++ throughout) it performs excellently even on poor machines with little RAM and weaker CPUs. What am I supposed to do next? How do I know what the hell it is that Windows is doing behind the scenes that's killing system performance, when all the indicators are that the application itself isn't doing anything extreme? Any advice would be most welcome.

    Read the article

  • Why don't I just build the whole web app in Javascript and Javascript HTML Templates?

    - by viatropos
    I'm getting to the point on an app where I need to start caching things, and it got me thinking... In some parts of the app, I render table rows (jqGrid, slickgrid, etc.) or fancy div rows (like in the New Twitter) by grabbing pure JSON and running it through something like Mustache, jquery.tmpl, etc. In other parts of the app, I just render the info in pure HTML (server-side HAML templates), and if there's searching/paginating, I just go to a new URL and load a new HTML page. Now the problem is in caching and maintainability. On one hand I'm thinking, if everything was built using Javascript HTML Templates, then my app would serve just an HTML layout/shell, and a bunch of JSON. If you look at the Facebook and Twitter HTML source, that's basically what they're doing (95% json/javascript, 5% html). This would make it so my app only needed to cache JSON (pages, actions, and/or records). Which means you'd hit the cache no matter if you were some remote api developer accessing a JSON api, or the strait web app. That is, I don't need 2 caches, one for the JSON, one for the HTML. That seems like it'd cut my cache store down in half, and streamline things a little bit. On the other hand, I'm thinking, from what I've seen/experienced, generating static HTML server-side, and caching that, seems to be much better performance wise cross-browser; you get the graphics instantly and don't have to wait that split-second for javascript to render it. StackOverflow seems to do everything in plain HTML, and you can tell... everything appears at once. Notice how though on twitter.com, the page is blank for .5-1 seconds, and the page chunks in: the javascript has to render the json. The downside with this is that, for anything dynamic (like endless scrolling, or grids), I'd have to create javascript templates anyway... so now I have server-side HAML templates, client-side javascript templates, and a lot more to cache. My question is, is there any consensus on how to approach this? What are the benefits and drawbacks from your experience of mixing the two versus going 100% with one over the other? Update: Some reasons that factor into why I haven't yet made the decision to go with 100% javascript templating are: Performance. Haven't formally tested, but from what I've seen, raw html renders faster and more fluidly than javascript-generated html cross-browser. Plus, I'm not sure how mobile devices handle dynamic html performance-wise. Testing. I have a lot of integration tests that work well with static HTML, so switching to javascript-only would require 1) more focused pure-javascript testing (jasmine), and 2) integrating javascript into capybara integration tests. This is just a matter of time and work, but it's probably significant. Maintenance. Getting rid of HAML. I love HAML, it's so easy to write, it prints pretty HTML... It makes code clean, it makes maintenance easy. Going with javascript, there's nothing as concise. SEO. I know google handles the ajax /#!/path, but haven't grasped how this will affect other search engines and how older browsers handle it. Seems like it'd require a significant setup.

    Read the article

  • Improve WPF Rendering Performance (WrapPanel in ItemsControl)

    - by Wonko the Sane
    Hello All, I have an ItemsSource that appears to have poor performance when adding even a fairly small ObservableCollection to it. The ItemsPanel is a WrapPanel, and the ItemTemplate is essentially a Border containing another Border painted with an ImageBrush. The ItemsControl is wrapped inside a ScrollViewer. After some investigation using WpfPerf, it would appear that most of the "what the heck is it doing?" time is spent on WrapPanel.Measure after creating the collection that is being bound. As I've mentioned, it's a fairly small collection - generally less than 100 items. If nothing else, I'd like to be able to put a "Please Wait" on the screen (during the collection creation portion as well), but I am not sure how to know when the rendering is complete. Any thoughts would be greatly appreciated! Thanks, wTs

    Read the article

  • Django ORM: Ordering w/ aggregate functions — None special treatment

    - by deno
    Hi, I'm doing query like that: SomeObject.objects.annotate(something=Avg('something')).order_by(something).all() Now, I normally have an aggregate field in my model that I use with Django signals to keep in sync, however in this case perfomance isn't an issue so I thought I'd keep it simple and just use subqueries. This approach, however, presented an unexpected issue: It all works grate if aggregate function results are like this: [5.0, 4.0, 6.0 … (etc, just numbers)] However if you mix in some Nones than it's being ordered like this: [None, 5.0, 4.0 …] The issue is that None has higher value than any number, while it should have value at most of 0. I'm using PostgreSQL and haven't tested w/ other DBs. I haven't actually checked what query is generated etc. I worked it around by just sorting in memory: sorted(…, key=lambda _:_.avg_rating if _.avg_rating is not None else 0) So I'm just curious if you know a way to do it w/ just Django ORM. Perhaps .where? or something… Kind regards

    Read the article

< Previous Page | 195 196 197 198 199 200 201 202 203 204 205 206  | Next Page >