Search Results

Search found 542 results on 22 pages for 'alan williamson'.

Page 2/22 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • links for 2010-04-01

    - by Bob Rhubart
    Jason Williamson: Oracle Releases New Mainframe Re-Hosting in Oracle Tuxedo 11g Jason Williamson's update on new features in the latest release of Oracle Tuxedo 11g. (tags: otn oracle entarch) Jeanne Waldman: Using Oracle ADF Data Visualization Tools (DVT) Line Graphs to Display Weather Information Jeanne Waldman illustrates the nuts and bolts of modifications she made to a a simple JDeveloper Fusion application that retrieves weather data. I have a simple JDeveloper Fusion application that retrieves weather data. (tags: oracle otn virtualization jdeveloper ADF) Brian Harrison: Oracle WebCenter Interaction - New Release Overivew, Part 2 Brian Harrison continue his discussion of the next release of Oracle WebCenter Interaction with a look at at a few other new features. (tags: oracle otn enterprise2.0 webcenter)

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • Replacing “if”s with your own number system

    - by Michael Williamson
    During our second code retreat at Red Gate, the restriction for one of the sessions was disallowing the use of if statements. That includes other constructs that have the same effect, such as switch statements or loops that will only be executed zero or one times. The idea is to encourage use of polymorphism instead, and see just how far it can be used to get rid of “if”s. The main place where people struggled to get rid of numbers from their implementation of Conway’s Game of Life was the piece of code that decides whether a cell is live or dead in the next generation. For instance, for a cell that’s currently live, the code might look something like this: if (numberOfNeighbours == 2 || numberOfNeighbours == 3) { return CellState.LIVE; } else { return CellState.DEAD; } The problem is that we need to change behaviour depending on the number of neighbours each cell has, but polymorphism only allows us to switch behaviour based on the type of a value. It follows that the solution is to make different numbers have different types: public interface IConwayNumber { IConwayNumber Increment(); CellState LiveCellNextGeneration(); } public class Zero : IConwayNumber { public IConwayNumber Increment() { return new One(); } public CellState LiveCellNextGeneration() { return CellState.DEAD; } } public class One : IConwayNumber { public IConwayNumber Increment() { return new Two(); } public CellState LiveCellNextGeneration() { return CellState.LIVE; } } public class Two : IConwayNumber { public IConwayNumber Increment() { return new ThreeOrMore(); } public CellState LiveCellNextGeneration() { return CellState.LIVE; } } public class ThreeOrMore : IConwayNumber { public IConwayNumber Increment() { return this; } public CellState LiveCellNextGeneration() { return CellState.DEAD; } } In the code that counts the number of neighbours, we use our new number system by starting with Zero and incrementing when we find a neighbour. To choose the next state of the cell, rather than inspecting the number of neighbours, we ask the number of neighbours for the next state directly: return numberOfNeighbours.LiveCellNextGeneration(); And now we have no “if”s! If C# had double-dispatch, or if we used the visitor pattern, we could move the logic for choosing the next cell out of the number classes, which might feel a bit more natural. I suspect that reimplementing the natural numbers is still going to feel about the same amount of crazy though.

    Read the article

  • Red Gate Coder interviews: Robin Hellen

    - by Michael Williamson
    Robin Hellen is a test engineer here at Red Gate, and is also the latest coder I’ve interviewed. We chatted about debugging code, the roles of software engineers and testers, and why Vala is currently his favourite programming language. How did you get started with programming?It started when I was about six. My dad’s a professional programmer, and he gave me and my sister one of his old computers and taught us a bit about programming. It was an old Amiga 500 with a variant of BASIC. I don’t think I ever successfully completed anything! It was just faffing around. I didn’t really get anywhere with it.But then presumably you did get somewhere with it at some point.At some point. The PC emerged as the dominant platform, and I learnt a bit of Visual Basic. I didn’t really do much, just a couple of quick hacky things. A bit of demo animation. Took me a long time to get anywhere with programming, really.When did you feel like you did start to get somewhere?I think it was when I started doing things for someone else, which was my sister’s final year of university project. She called up my dad two days before she was due to submit, saying “We need something to display a graph!”. Dad says, “I’m too busy, go talk to your brother”. So I hacked up this ugly piece of code, sent it off and they won a prize for that project. Apparently, the graph, the bit that I wrote, was the reason they won a prize! That was when I first felt that I’d actually done something that was worthwhile. That was my first real bit of code, and the ugliest code I’ve ever written. It’s basically an array of pre-drawn line elements that I shifted round the screen to draw a very spikey graph.When did you decide that programming might actually be something that you wanted to do as a career?It’s not really a decision I took, I always wanted to do something with computers. And I had to take a gap year for uni, so I was looking for twelve month internships. I applied to Red Gate, and they gave me a job as a tester. And that’s where I really started having to write code well. To a better standard that I had been up to that point.How did you find coming to Red Gate and working with other coders?I thought it was really nice. I learnt so much just from other people around. I think one of the things that’s really great is that people are just willing to help you learn. Instead of “Don’t you know that, you’re so stupid”, it’s “You can just do it this way”.If you could go back to the very start of that internship, is there something that you would tell yourself?Write shorter code. I have a tendency to write massive, many-thousand line files that I break out of right at the end. And then half-way through a project I’m doing something, I think “Where did I write that bit that does that thing?”, and it’s almost impossible to find. I wrote some horrendous code when I started. Just that principle, just keep things short. Even if looks a bit crazy to be jumping around all over the place all of the time, it’s actually a lot more understandable.And how do you hold yourself to that?Generally, if a function’s going off my screen, it’s probably too long. That’s what I tell myself, and within the team here we have code reviews, so the guys I’m with at the moment are pretty good at pulling me up on, “Doesn’t that look like it’s getting a bit long?”. It’s more just the subjective standard of readability than anything.So you’re an advocate of code review?Yes, definitely. Both to spot errors that you might have made, and to improve your knowledge. The person you’re reviewing will say “Oh, you could have done it that way”. That’s how we learn, by talking to others, and also just sharing knowledge of how your project works around the team, or even outside the team. Definitely a very firm advocate of code reviews.Do you think there’s more we could do with them?I don’t know. We’re struggling with how to add them as part of the process without it becoming too cumbersome. We’ve experimented with a few different ways, and we’ve not found anything that just works.To get more into the nitty gritty: how do you like to debug code?The first thing is to do it in my head. I’ll actually think what piece of code is likely to have caused that error, and take a quick look at it, just to see if there’s anything glaringly obvious there. The next thing I’ll probably do is throw in print statements, or throw some exceptions from various points, just to check: is it going through the code path I expect it to? A last resort is to actually debug code using a debugger.Why is the debugger the last resort?Probably because of the environments I learnt programming in. VB and early BASIC didn’t have much of a debugger, the only way to find out what your program was doing was to add print statements. Also, because a lot of the stuff I tend to work with is non-interactive, if it’s something that takes a long time to run, I can throw in the print statements, set a run off, go and do something else, and look at it again later, rather than trying to remember what happened at that point when I was debugging through it. So it also gives me the record of what happens. I hate just sitting there pressing F5, F5, continually. If you’re having to find out what your code is doing at each line, you’ve probably got a very wrong mental model of what your code’s doing, and you can find that out just as easily by inspecting a couple of values through the print statements.If I were on some codebase that you were also working on, what should I do to make it as easy as possible to understand?I’d say short and well-named methods. The one thing I like to do when I’m looking at code is to find out where a value comes from, and the more layers of indirection there are, particularly DI [dependency injection] frameworks, the harder it is to find out where something’s come from. I really hate that. I want to know if the value come from the user here or is a constant here, and if I can’t find that out, that makes code very hard to understand for me.As a tester, where do you think the split should lie between software engineers and testers?I think the split is less on areas of the code you write and more what you’re designing and creating. The developers put a structure on the code, while my major role is to say which tests we should have, whether we should test that, or it’s not worth testing that because it’s a tiny function in code that nobody’s ever actually going to see. So it’s not a split in the code, it’s a split in what you’re thinking about. Saying what code we should write, but alternatively what code we should take out.In your experience, do the software engineers tend to do much testing themselves?They tend to control the lowest layer of tests. And, depending on how the balance of people is in the team, they might write some of the higher levels of test. Or that might go to the testers. I’m the only tester on my team with three other developers, so they’ll be writing quite a lot of the actual test code, with input from me as to whether we should test that functionality, whereas on other teams, where it’s been more equal numbers, the testers have written pretty much all of the high level tests, just because that’s the best use of resource.If you could shuffle resources around however you liked, do you think that the developers should be writing those high-level tests?I think they should be writing them occasionally. It helps when they have an understanding of how testing code works and possibly what assumptions we’ve made in tests, and they can say “actually, it doesn’t work like that under the hood so you’ve missed this whole area”. It’s one of those agile things that everyone on the team should be at least comfortable doing the various jobs. So if the developers can write test code then I think that’s a very good thing.So you think testers should be able to write production code?Yes, although given most testers skills at coding, I wouldn’t advise it too much! I have written a few things, and I did make a few changes that have actually gone into our production code base. They’re not necessarily running every time but they are there. I think having that mix of skill sets is really useful. In some ways we’re using our own product to test itself, so being able to make those changes where it’s not working saves me a round-trip through the developers. It can be really annoying if the developers have no time to make a change, and I can’t touch the code.If the software engineers are consistently writing tests at all levels, what role do you think the role of a tester is?I think on a team like that, those distinctions aren’t quite so useful. There’ll be two cases. There’s either the case where the developers think they’ve written good tests, but you still need someone with a test engineer mind-set to go through the tests and validate that it’s a useful set, or the correct set for that code. Or they won’t actually be pure developers, they’ll have that mix of test ability in there.I think having slightly more distinct roles is useful. When it starts to blur, then you lose that view of the tests as a whole. The tester job is not to create tests, it’s to validate the quality of the product, and you don’t do that just by writing tests. There’s more things you’ve got to keep in your mind. And I think when you blur the roles, you start to lose that end of the tester.So because you’re working on those features, you lose that holistic view of the whole system?Yeah, and anyone who’s worked on the feature shouldn’t be testing it. You always need to have it tested it by someone who didn’t write it. Otherwise you’re a bit too close and you assume “yes, people will only use it that way”, but the tester will come along and go “how do people use this? How would our most idiotic user use this?”. I might not test that because it might be completely irrelevant. But it’s coming in and trying to have a different set of assumptions.Are you a believer that it should all be automated if possible?Not entirely. So an automated test is always better than a manual test for the long-term, but there’s still nothing that beats a human sitting in front of the application and thinking “What could I do at this point?”. The automated test is very good but they follow that strict path, and they never check anything off the path. The human tester will look at things that they weren’t expecting, whereas the automated test can only ever go “Is that value correct?” in many respects, and it won’t notice that on the other side of the screen you’re showing something completely wrong. And that value might have been checked independently, but you always find a few odd interactions when you’re going through something manually, and you always need to go through something manually to start with anyway, otherwise you won’t know where the important bits to write your automation are.When you’re doing that manual testing, do you think it’s important to do that across the entire product, or just the bits that you’ve touched recently?I think it’s important to do it mostly on the bits you’ve touched, but you can’t ignore the rest of the product. Unless you’re dealing with a very, very self-contained bit, you’re almost always encounter other bits of the product along the way. Most testers I know, even if they are looking at just one path, they’ll keep open and move around a bit anyway, just because they want to find something that’s broken. If we find that your path is right, we’ll go out and hunt something else.How do you think this fits into the idea of continuously deploying, so long as the tests pass?With deploying a website it’s a bit different because you can always pull it back. If you’re deploying an application to customers, when you’ve released it, it’s out there, you can’t pull it back. Someone’s going to keep it, no matter how hard you try there will be a few installations that stay around. So I’d always have at least a human element on that path. With websites, you could probably automate straight out, or at least straight out to an internal environment or a single server in a cloud of fifty that will serve some people. But I don’t think you should release to everyone just on automated tests passing.You’ve already mentioned using BASIC and C# — are there any other languages that you’ve used?I’ve used a few. That’s something that has changed more recently, I’ve become familiar with more languages. Before I started at Red Gate I learnt a bit of C. Then last year, I taught myself Python which I actually really enjoyed using. I’ve also come across another language called Vala, which is sort of a C#-like language. It’s basically a pre-processor for C, but it has very nice syntax. I think that’s currently my favourite language.Any particular reason for trying Vala?I have a completely Linux environment at home, and I’ve been looking for a nice language, and C# just doesn’t cut it because I won’t touch Mono. So, I was looking for something like C# but that was useable in an open source environment, and Vala’s what I found. C#’s got a few features that Vala doesn’t, and Vala’s got a few features where I think “It would be awesome if C# had that”.What are some of the features that it’s missing?Extension methods. And I think that’s the only one that really bugs me. I like to use them when I’m writing C# because it makes some things really easy, especially with libraries that you can’t touch the internals of. It doesn’t have method overloading, which is sometimes annoying.Where it does win over C#?Everything is non-nullable by default, you never have to check that something’s unexpectedly null.Also, Vala has code contracts. This is starting to come in C# 4, but the way it works in Vala is that you specify requirements in short phrases as part of your function signature and they stick to the signature, so that when you inherit it, it has exactly the same code contract as the base one, or when you inherit from an interface, you have to match the signature exactly. Just using those makes you think a bit more about how you’re writing your method, it’s not an afterthought when you’ve got contracts from base classes given to you, you can’t change it. Which I think is a lot nicer than the way C# handles it. When are those actually checked?They’re checked both at compile and run-time. The compile-time checking isn’t very strong yet, it’s quite a new feature in the compiler, and because it compiles down to C, you can write C code and interface with your methods, so you can bypass that compile-time check anyway. So there’s an extra runtime check, and if you violate one of the contracts at runtime, it’s game over for your program, there’s no exception to catch, it’s just goodbye!One thing I dislike about C# is the exceptions. You write a bit of code and fifty exceptions could come from any point in your ten lines, and you can’t mentally model how those exceptions are going to come out, and you can’t even predict them based on the functions you’re calling, because if you’ve accidentally got a derived class there instead of a base class, that can throw a completely different set of exceptions. So I’ve got no way of mentally modelling those, whereas in Vala they’re checked like Java, so you know only these exceptions can come out. You know in advance the error conditions.I think Raymond Chen on Old New Thing says “the only thing you know when you throw an exception is that you’re in an invalid state somewhere in your program, so just kill it and be done with it!”You said you’ve also learnt bits of Python. How did you find that compared to Vala and C#?Very different because of the dynamic typing. I’ve been writing a website for my own use. I’m quite into photography, so I take photos off my camera, post-process them, dump them in a file, and I get a webpage with all my thumbnails. So sort of like Picassa, but written by myself because I wanted something to learn Python with. There are some things that are really nice, I just found it really difficult to cope with the fact that I’m not quite sure what this object type that I’m passed is, I might not ever be sure, so it can randomly blow up on me. But once I train myself to ignore that and just say “well, I’m fairly sure it’s going to be something that looks like this, so I’ll use it like this”, then it’s quite nice.Any particular features that you’ve appreciated?I don’t like any particular feature, it’s just very straightforward to work with. It’s very quick to write something in, particularly as you don’t have to worry that you’ve changed something that affects a different part of the program. If you have, then that part blows up, but I can get this part working right now.If you were doing a big project, would you be willing to do it in Python rather than C# or Vala?I think I might be willing to try something bigger or long term with Python. We’re currently doing an ASP.NET MVC project on C#, and I don’t like the amount of reflection. There’s a lot of magic that pulls values out, and it’s all done under the scenes. It’s almost managed to put a dynamic type system on top of C#, which in many ways destroys the language to me, whereas if you’re already in a dynamic language, having things done dynamically is much more natural. In many ways, you get the worst of both worlds. I think for web projects, I would go with Python again, whereas for anything desktop, command-line or GUI-based, I’d probably go for C# or Vala, depending on what environment I’m in.It’s the fact that you can gain from the strong typing in ways that you can’t so much on the web app. Or, in a web app, you have to use dynamic typing at some point, or you have to write a hell of a lot of boilerplate, and I’d rather use the dynamic typing than write the boilerplate.What do you think separates great programmers from everyone else?Probably design choices. Choosing to write it a piece of code one way or another. For any given program you ask me to write, I could probably do it five thousand ways. A programmer who is capable will see four or five of them, and choose one of the better ones. The excellent programmer will see the largest proportion and manage to pick the best one very quickly without having to think too much about it. I think that’s probably what separates, is the speed at which they can see what’s the best path to write the program in. More Red Gater Coder interviews

    Read the article

  • Lightning talk: Coderetreat

    - by Michael Williamson
    In the spirit of trying to encourage more deliberate practice amongst coders in Red Gate, Lauri Pesonen had the idea of running a coderetreat in Red Gate. Lauri and I ran the first one a few weeks ago: given that neither of us hadn’t even been to a coderetreat before, let alone run one, I think it turned out quite well. The participants gave positive feedback, saying that they enjoyed the day, wrote some thought-provoking code and would do it again. Sam Blackburn was one of the attendees, and gave a lightning talk to the other developers in one of our regular lightning talk sessions: In case you can’t watch the video, I’ve transcribed the talk below, although I’d recommend watching the video if you can — I didn’t have much time to do the transcribing! So, what is a coderetreat? So it’s not just something in Red Gate, there’s a website and everything, although it’s not a very big website. It calls itself a community network. The basic ideas behind coderetreat are: you’ve got one day, and you split it into one hour sections. You spend three quarters of that coding, and do a little retrospective at the end. You’re supposed to start fresh each, we were told to delete our code after every session. We were in pairs, swapping after each session, and we did the same task every time. In fact, Conway’s Game of Life is the only task mentioned anywhere that I find for coderetreat. So I don’t know what we’ll do next time, or if we’re meant to do the same thing again. There are some guiding principles which felt to us like restrictions, that you have to code in crazy ways to encourage better code. Final thing is that it’s supposed to be free for outsiders to join. It’s meant to be a kind of networking thing, where you link up with people from other companies. We had a pilot day with Michael and Lauri. Since it was basically the first time any of us had done anything like this, everybody was from Red Gate. We didn’t chat to anybody else for the initial one. The task was Conway’s Game of Life, which most of you have probably heard of it, all but one of us knew about it when did the coderetreat. I won’t got into the details of what it is, but it felt like the right size of task, basically one or two groups actually produced something working by the end of the day, and of course that doesn’t mean it’s necessarily a day’s work to produce that because we were starting again every hour. The task really drives you more than trying to create good code, I found. It was really tempting to try and get it working rather than stick to the rules. But it’s really good to stop and try again because there are so many what-ifs when you’ve finished writing something, “what if I’d done it this way?”. You can answer all those questions at a coderetreat because it’s not about getting a product out the door, it’s about learning and playing with ideas. So we had all these different practices we were trying. I’ll try and go through most of these. Single responsibility is this idea that everything should do just one thing. It was the very first session, we were still trying to figure out how do you go about the Game of Life? So by the end of forty-five minutes hadn’t produced very much for that first session. We were still thinking, “Do we start with a board, how do we represent all these squares? It can be infinitely big, help, this is getting really difficult!”. So, most of us didn’t really get anywhere on the first one. Although it was interesting that some people started with the board, one group started with the FateDecider class that decides whether things live or die. A sort of god class, but in a good way. They managed to implement all of the rules without even defining how the squares were arranged or anything like that. Another thing we tried was TDD (test-driven development). I’m sure most of you know what TDD is: Watch a test, watch it fail for the right reason Write code to pass the test, watch it pass Refactor, check the test still passes Repeat! It basically worked, we were able to produce code, but we often found the tests defined the direction that code went, which is obviously the idea of TDD. But you tend to find that by the time you’ve even written your first assertion, which is supposed to be the very first thing you write, because you write your tests backwards from the assertions back to the initial conditions, you’ve already constrained the logic of the code in some way by the time you’ve done that. You then get to this situation of, “Well, we actually want to go in a slightly different direction. Can we do this?”. Can we write tests that don’t constrain the architecture? Wrapping up all primitives: it’s kind of turtles all the way down. We had a Size, which has a Width and Height, which both derive from Dimension. You’ve got pages of code before you’ve even done anything. No getters and setters (use tell don’t ask instead): mocks and stubs for tests are required if you want to assert that your results are what you think they should be. You can’t just check the internal state of the code. And people found that really challenging and it made them think in a different way which I think is really good. Not having mutable state: that was kind of confusing because we weren’t quite sure what fitted within that rule and what didn’t, and I think we were trying too hard to follow the rule rather than the guideline. No if-statements: supposed to use polymorphism instead, but polymorphism still requires a factory with conditional behaviour. We did something really crazy to get around this: public T If(bool condition, Func<T> left, Func<T> right) { var dict = new Dictionary<bool, Func<T>> {{true, left}, {false, right}}; return dict[condition].Invoke(); } That is not really polymorphism, is it? For-loops: you can always replace a for-loop with recursion, but it doesn’t tend to make it any more readable unless it’s the kind of task that really lends itself to that. So it was interesting, it was good practice, but it wouldn’t make it easier it’s the kind of tree-structure algorithm where that would help. Having a limit on the number of levels of indentation: again, I think it does produce very nice, clean code, but it wasn’t actually a challenge because you just extract methods. That’s quite a useful thing because you can apply that to real code and say, “Okay, should this method really be going crazy like this?” No talking: we hated that. It’s like there’s two of you at a computer, and one of you is doing the typing, what does the other guy do if they’re not allowed to talk. The answer is TDD ping-pong – one person writes the tests, and then the other person writes the code to pass the test. And that creates communication without actually having to have discussion about things which is kind of cool. No code comments: just makes no difference to anything. It’s a forty-five minute exercise, so what are you going to put comments in code for? Finally, this is my fault. I discovered an entertaining way of doing the calculation that was kind of cool (using convolutions over the state of the board). Unfortunately, it turns out to be really hard to implement in C#, so didn’t even manage to work out how to do that convolution in C#. It’s trivial in some high-level languages, but you need something matrix-orientated for it to really work. That’s most of it, really. The thoughts that people went away with: we put down our answers to questions like “What have you learnt?” and “What surprised you?”, “How are you going to do things differently?”, and most people said redoing the problem is really, really good for understanding it properly. People hate having a massive legacy codebase that they can’t change, so being able to attack something three different ways in an environment where the end-product isn’t important: that’s something people really enjoyed. Pair-programming: also people said that they wanted to do more of that, especially with TDD ping-pong, where you write the test and somebody else writes the code. Various people thought different things about immutables, but most people thought they were good, they promote functional programming. And TDD people found really hard. “Tell, don’t ask” people found really, really hard and really, really, really hard to do well. And the recursion just made things trickier to debug. But most people agreed that coderetreats are really cool, and we should do more of them.

    Read the article

  • Simple-Talk development: a quick history lesson

    - by Michael Williamson
    Up until a few months ago, Simple-Talk ran on a pure .NET stack, with IIS as the web server and SQL Server as the database. Unfortunately, the platform for the site hadn’t quite gotten the love and attention it deserved. On the one hand, in the words of our esteemed editor Tony “I’d consider the current platform to be a “success”; it cost $10K, has lasted for 6 years, was finished, end to end in 6 months, and although we moan about it has got us quite a long way.” On the other hand, it was becoming increasingly clear that it needed some serious work. Among other issues, we had authors that wouldn’t blog because our current blogging platform, Community Server, was too painful for them to use. Forgetting about Simple-Talk for a moment, if you ask somebody what blogging platform they’d choose, the odds are they’d say WordPress. Regardless of its technical merits, it’s probably the most popular blogging platform, and it certainly seemed easier to use than Community Server. The issue was that WordPress is normally hosted on a Linux stack running PHP, Apache and MySQL — quite a difference from our Microsoft technology stack. We certainly didn’t want to rewrite the entire site — we just wanted a better blogging platform, with the rest of the existing, legacy site left as is. At a very high level, Simple-Talk’s technical design was originally very straightforward: when your browser sends an HTTP request to Simple-Talk, IIS (the web server) takes the request, does some work, and sends back a response. In order to keep the legacy site running, except with WordPress running the blogs, a different design is called for. We now use nginx as a reverse-proxy, which can then delegate requests to the appropriate application: So, when your browser sends a request to Simple-Talk, nginx takes that request and checks which part of the site you’re trying to access. Most of the time, it just passes the request along to IIS, which can then respond in much the same way it always has. However, if your request is for the blogs, then nginx delegates the request to WordPress. Unfortunately, as simple as that diagram looks, it hides an awful lot of complexity. In particular, the legacy site running on IIS was made up of four .NET applications. I’ve already mentioned one of these applications, Community Server, which handled the old blogs as well as managing membership and the forums. We have a couple of other applications to manage both our newsletters and our articles, and our own custom application to do some of the rendering on the site, such as the front page and the articles. When I say that it was made up of four .NET applications, this might conjure up an image in your mind of how they fit together: You might imagine four .NET applications, each with their own database, communicating over well-defined APIs. Sadly, reality was a little disappointing: We had four .NET applications that all ran on the same database. Worse still, there were many queries that happily joined across tables from multiple applications, meaning that each application was heavily dependent on the exact data schema that each other application used. Add to this that many of the queries were at least dozens of lines long, and practically identical to other queries except in a few key spots, and we can see that attempting to replace one component of the system would be more than a little tricky. However, the problems with the old system do give us a good place to start thinking about desirable qualities from any changes to the platform. Specifically: Maintainability — the tight coupling between each .NET application made it difficult to update any one application without also having to make changes elsewhere Replaceability — the tight coupling also meant that replacing one component wouldn’t be straightforward, especially if it wasn’t on a similar Microsoft stack. We’d like to be able to replace different parts without having to modify the existing codebase extensively Reusability — we’d like to be able to combine the different pieces of the system in different ways for different sites Repeatable deployments — rather than having to deploy the site manually with a long list of instructions, we should be able to deploy the entire site with a single command, allowing you to create a new instance of the site easily whether on production, staging servers, test servers or your own local machine Testability — if we can deploy the site with a single command, and each part of the site is no longer dependent on the specifics of how every other part of the site works, we can begin to run automated tests against the site, and against individual parts, both to prevent regressions and to do a little test-driven development In the next part, I’ll describe the high-level architecture we now have that hopefully brings us a little closer to these five traits.

    Read the article

  • Oracle Releases New Mainframe Re-Hosting in Oracle Tuxedo 11g

    - by Jason Williamson
    I'm excited to say that we've released our next generation of Re-hosting in 11g. In fact I'm doing some hands-on labs now for our Systems Integrators in Italy in a couple of weeks and targeting Latin America next month. If you are an SI, or Rehosting firm and are looking to become an Oracle Partner or get a better understanding of Tuxedo and how to use the workbench for rehosting...drop me a line. Oracle Tuxedo Application Runtime for CICS and Batch 11g provides a CICS API emulation and Batch environment that exploits the full range of Oracle Tuxedo's capabilities. Re-hosted applications run in a multi-node, grid environment with centralized production control. Also, enterprise integration of CICS application services benefits from an open and SOA-enabled framework. Key features include: CICS Application Runtime: Can run IBM CICS applications unchanged in an application grid, which enables the distribution of large workloads across multiple processors and nodes. This simplifies CICS administration and can scale to over 100,000 users and over 50,000 transactions per second. 3270 Terminal Server: Protects business users from change through support for tn3270 terminal emulation. Distributed CICS Resource Management: Simplifies deployment and administration by allowing customers to run CICS regions in a distributed configuration. Batch Application Runtime: Provides robust IBM JES-like job management that enables local or remote job submissions. In addition, distributed batch initiators can enable parallelization of jobs and support fail-over, shortening the batch window and helping to meet stringent SLAs. Batch Execution Environment: Helps to run IBM batch unchanged and also supports JCL functionality and all common batch utilities. Oracle Tuxedo Application Rehosting Workbench 11g provides a set of automated migration tools integrated around a central repository. The tools provide high precision which results in very low error rates and the ability to handle large applications. This enables less expensive, low-risk migration projects. Key capabilities include: Workbench Repository and Cataloguer: Ensures integrity of the migrated application assets through full dependency checking. The Cataloguer generates and maintains all relevant meta-data on source and target components. File Migrator: Supports reliable migration of datasets and flat files to an ISAM or Oracle Database 11g. This is done through the automated migration utilities for data unloading, reloading and validation. It also generates logical access functions to shield developers from data repository changes. DB2 Migrator: Similarly, this tool automates the migration of DB2 schema and data to Oracle Database 11g. COBOL Migrator: Supports migration of IBM mainframe COBOL assets (OLTP and Batch) to open systems. Adapts programs for compiler dialects and data access variations. JCL Migrator: Supports migration of IBM JCL jobs to a Tuxedo ART environment, maintaining the flow and characteristics of batch jobs.

    Read the article

  • Tuxedo Runtime for CICS and Batch Webcast

    - by Jason Williamson
    There was a recent webcast about the new Tux ART solution that we released last month. Here is the link to hear Hassan talk about that Link to Listen to Webcast Below is the market speak about what the webcast is about and what you will hear. From my own experience, there is certainly an uptick in rehosting discussions and projects with customers all around the world. The notion that mainframes can be rehosted on open system is pretty well accepted. There are still some hold out CxO's who don't believe it, but those guys typically are not really looking to migrate anyway and don't take an honest look at the case studies, history and TPC reports. Maybe in my next blog I'll talk about "myth busters" -- to borrow some presentation details from Mark Rakhmilevich (Tuxedo PM for Rehosting). *********** Mainframe rehosting is a compelling approach for migrating and modernizing mainframe applications and data to lower data center cost and risk while increasing business agility. Oracle Tuxedo 11g with CICS application runtime (ART) capabilities is designed to facilitate the migration of IBM mainframe applications by allowing these to run on open systems in a distributed grid architecture. The brand new Oracle Tuxedo Application Runtime for CICS and Batch 11g can significantly reduce your costs and risks while preserving your investments in applications and data. In this on-demand Webcast, hear from Oracle Senior Vice President, Hasan Rizvi, on how Oracle Tuxedo 11g with CICS application runtime capabilities is changing the way customers think about mainframe migration. You'll learn: * What market forces drive mainframe migration and modernization * What technologies and capabilities are available for migrating mainframe transaction processing and batch applications * How Oracle brings rehosting technologies to a new level of scalability, robustness, and automation

    Read the article

  • Error mounting: mount exited with exit code 13

    - by Mike Williamson
    I keep a windows partition on my laptop for the occaisional bit of Photoshop work. A while ago I noticed that Windows had disappeared from my grub boot menu and when I try to mount the windows partion, my system hangs for a bit and then I get this: Unable to mount 105 GB Filesystem Error mounting: mount exited with exit code 13: ntfs_attr_pread_i: ntfs_pread failed: Input/output error Failed to calculate free MFT records: Input/output error NTFS is either inconsistent, or there is a hardware fault, or it's a SoftRAID/FakeRAID hardware. In the first case run chkdsk /f on Windows then reboot into Windows twice. The usage of the /f parameter is very important! If the device is a SoftRAID/FakeRAID then first activate it and mount a different device under the /dev/mapper/ directory, (e.g. /dev/mapper/nvidia_eahaabcc1). Please see the 'dmraid' documentation for more details. It seems that chkdsk is a windows command but since I can't boot into windows (since its the windows partition that is the problem) I'm not sure what to do. Here is the output of fdisk to give you the lay of the land: Disk /dev/sda: 250.1 GB, 250059350016 bytes 255 heads, 63 sectors/track, 30401 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x98000000 Device Boot Start End Blocks Id System /dev/sda1 1 10199 81923436 83 Linux /dev/sda2 * 10200 22947 102398310 7 HPFS/NTFS /dev/sda3 22948 29164 49938052+ 83 Linux /dev/sda4 29165 30401 9936202+ 5 Extended /dev/sda5 29165 30401 9936171 82 Linux swap / Solaris Any guidance would be appreciated!

    Read the article

  • USB-creator: Error erasing device: Unknown or unsupported erase type

    - by Mike Williamson
    I created a live usb using usb-creator-gtk. I installed Ubuntu with it and all was good with the world. Now I am trying to use the same memory stick and create a live USB for 14.04 and I get the following error when trying to erase the disk. org.freedesktop.DBus.Python.gi._glib.GError: Traceback (most recent call last): File "/usr/lib/python3/dist-packages/dbus/service.py", line 707, in _message_cb retval = candidate_method(self, *args, **keywords) File "/usr/share/usb-creator/usb-creator-helper", line 239, in Format block.call_format_sync('dos', GLib.Variant('a{sv}', {'erase': GLib.Variant('s', '')}), None) gi._glib.GError: GDBus.Error:org.freedesktop.UDisks2.Error.Failed: Error erasing device: Unknown or unsupported erase type `' How can I fix this so I can create a new live USB?

    Read the article

  • Effective versus efficient code

    - by Todd Williamson
    TL;DR: Quick and dirty code, or "correct" (insert your definition of this term) code? There is often a tension between "efficient" and "effective" in software development. "Efficient" often means code that is "correct" from the point of view of adhering to standards, using widely-accepted patterns/approaches for structures, regardless of project size, budget, etc. "Effective" is not about being "right", but about getting things done. This often results in code that falls outside the bounds of commonly accepted "correct" standards, usage, etc. Usually the people paying for the development effort have dictated ahead of time what it is that they value more. An organization that lives in a technical space will tend towards the efficient end, others will tend towards the effective. Developers often refuse to compromise their favored approach for the other. In my own experience I have found that people with formal education in software development tend towards the Efficient camp. Those that picked up software development more or less as a tool to get things done tend towards the Effective camp. These camps don't get along very well. When managing a team of developers who are not all in one camp it is challenging. In your own experience, which camp do you land in, and do you find yourself having to justify your approach to others? To management? To other developers?

    Read the article

  • Modularity through HTTP

    - by Michael Williamson
    As programmers, we strive for modularity in the code we write. We hope that splitting the problem up makes it easier to solve, and allows us to reuse parts of our code in other applications. Object-orientation is the most obvious of many attempts to get us closer to this ideal, and yet one of the most successful approaches is almost accidental: the web. Programming languages provide us with functions and classes, and plenty of other ways to modularize our code. This allows us to take our large problem, split it into small parts, and solve those small parts without having to worry about the whole. It also makes it easier to reason about our code. So far, so good, but now that we’ve written our small, independent module, for example to send out e-mails to my customers, we’d like to reuse it in another application. By creating DLLs, JARs or our platform’s package container of choice, we can do just that – provided our new application is on the same platform. Want to use a Java library from C#? Well, good luck – it might be possible, but it’s not going to be smooth sailing. Even if a library exists, it doesn’t mean that using it going to be a pleasant experience. Say I want to use Java to write out an XML document to an output stream. You’d imagine this would be a simple one-liner. You’d be wrong: import org.w3c.dom.*; import java.io.*; import javax.xml.transform.*; import javax.xml.transform.dom.*; import javax.xml.transform.stream.*; private static final void writeDoc(Document doc, OutputStream out) throws IOException { try { Transformer t = TransformerFactory.newInstance().newTransformer(); t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId()); t.transform(new DOMSource(doc), new StreamResult(out)); } catch (TransformerException e) { throw new AssertionError(e); // Can't happen! } } Most of the time, there is a good chance somebody else has written the code before, but if nobody can understand the interface to that code, nobody’s going to use it. The result is that most of the code we write is just a variation on a theme. Despite our best efforts, we’ve fallen a little short of our ideal, but the web brings us closer. If we want to send e-mails to our customers, we could write an e-mail-sending library. More likely, we’d use an existing one for our language. Even then, we probably wouldn’t have niceties like A/B testing or DKIM signing. Alternatively, we could just fire some HTTP requests at MailChimp, and get a whole slew of features without getting anywhere near the code that implements them. The web is inherently language agnostic. So long as your language can send and receive text over HTTP, and probably parse some JSON, you’re about as well equipped as anybody. Instead of building libraries for a specific language, we can build a service that almost every language can reuse. The text-based nature of HTTP also helps to limit the complexity of the API. As SOAP will attest, you can still make a horrible mess using HTTP, but at least it is an obvious horrible mess. Complex data structures are tedious to marshal to and from text, providing a strong incentive to keep things simple. By contrast, spotting the complexities in a class hierarchy is often not as easy. HTTP doesn’t solve every problem. It probably isn’t such a good idea to use it inside an inner loop that’s executed thousands of times per second. What’s more, the HTTP approach might introduce some new problems. We often need to add a thin shim to each application that we wish to communicate over HTTP. For instance, we might need to write a small plugin in PHP if we want to integrate WordPress into our system. Suddenly, instead of a system written in one language, we’re maintaining a system with several distinct languages and platforms. Even then, we should strive to avoid re-implementing the same old thing. As programmers, we consistently underestimate both the cost of building a system and the ongoing maintenance. If we allow ourselves to integrate existing applications, even if they’re in unfamiliar languages, we save ourselves those development and maintenance costs, as well as being able to pick the best solution for our problem. Thanks to the web, HTTP is often the easiest way to get there.

    Read the article

  • Two Weeks As A Software Estimation Rule of Thumb?

    - by Todd Williamson
    I saw a blog posting that spoke to me: http://james-iry.blogspot.com/2010/10/how-to-estimate-software.html Oddly, this is the kind of estimate that I tend to do on smaller projects. Just about everything is "two weeks" as that is comfortably far enough out. I once had an instructor walk us through how to create a more detailed estimate, wherein we already had the requirements up front, etc. and even after all the careful tabulation and such the final instruction was "Now that you have all this documentation go ahead and double it." Agile practitioners seem to like two weeks also as a sprint length. Is there something magical about two weeks? Is it a hrair number for our psyches or some other kind of crutch? Do you have an immediate default fall-back schedule strategy when you are pressed for an initial delivery date?

    Read the article

  • High resolution CLI?

    - by Mike Williamson
    I want the resolution of my console to match my screen resolution(1440x900). 1024x768 works fine but for some reason when I put 1440x900 when I switch to ttyX the command prompt is almost right off the bottom of the screen! The Ubuntu splash screen goes off the edge of the screen during boot as well. Here is my /etc/default/grub 4 GRUB_DEFAULT=0 5 GRUB_HIDDEN_TIMEOUT=0 6 GRUB_HIDDEN_TIMEOUT_QUIET=true 7 GRUB_TIMEOUT=10 8 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` 9 GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" 10 GRUB_CMDLINE_LINUX="" 11 GRUB_GFXMODE=1440x900 12 GRUB_GFXPAYLOAD_LINUX=keep How do I get my CLI resolution to be 1440x900?

    Read the article

  • USB device not accepting address

    - by Mike Williamson
    I have a series of machines that I am building for work that have usb card readers. When I boot them I get a long series of messages: ... [ 2347.768419] hub 1-6:1.0: unable to enumerate USB device on port 6 [ 2347.968178] usb 1-6.6: new full-speed USB device number 10 using ehci_hcd [ 2352.552020] usb 1-6.6: device not accepting address 10, error -32 [ 2352.568421] hub 1-6:1.0: unable to enumerate USB device on port 6 [ 2352.768179] usb 1-6.6: new full-speed USB device number 12 using ehci_hcd [ 2357.352033] usb 1-6.6: device not accepting address 12, error -32 ... On some older machines this only takes a few attempts before the card reader finally accepts an address, while on newer machines it can take many minutes. Changing hardware is not an option and plugging the usb card reader into a different port is only an option for the older manchines. This was a problem under 11.04 and I am now running the 12.04 beta and its still happening. Is there something I can do in the software (a udev rule perhaps?) that would fix this? Any advice appreciated. I'm happy to provide more details if you need them.

    Read the article

  • Oracle as a Service in the Cloud

    - by Jason Williamson
    This should really be a Tweet, but I guess I'm writing a bit more. In theme of data migration and legacy modernization, I am seeing more and more of a push to consolidate data sources, especially from non-oracle to oracle in an effort to save dollars. From a modernization perspective, this fits in quite well. We are able to migrate things like Terradata, Sybase and DB2 and put that all into an Oracle database and then provide that as a OaaS (Oracle as a Service) Cloud offering. This seems to be a growing trend, and not unlike the cool RDS Amazon Database cloud being built on Oracle as well. We again find ourselves back in the similar theme of migration, however. The target technology sounds like a winner (COBOL to Java/SOA...DB2/Datacom/Adabas to Oracle) but the age-old problem of how to get there still persists. It it not trivial to migrate large amounts of pre-relational or "devolved" relational data. To do this, we again must revert back to a tight roadmap to migration and leverage the growing tools and services that we have. I'm working on a couple of new sections and chapters for a book that Tom and Prakash and I are writing around Database Migration and Consolidation. I'll share some snipits shortly.

    Read the article

  • Matte or non-widescreen laptop? Do they exist?

    - by Alan Harris-Reid
    Does anyone know of any matte-screen laptops being sold now (15.6 or 17") in the UK? All I can find is the Dell Vostro 3500/3700 range, but there is a premium of around £200 over the price of their Inspiron range (for the 17" model), and I find it hard justifying the extra cost just to have a matte screen. I do not like glossy screens, but it seems the laptop industry has gone the way of "glossy is better - let's get rid of matte". I have read and heard from other developers that as long as there are no strong light sources to reflect off the screen, one can soon get used to a glossy screen, but I am yet to be convinced. I would also be interested if anyone knows of any non 16:9 screen laptops. I find this ratio too wide and not high-enough for the work I do. 16:10 or lower would be better. Any opinions would be appreciated. Alan

    Read the article

  • Does laser printer use toner when switched on/off?

    - by Alan Harris-Reid
    I have recently purchased a HP LaserJet M175nw laser printer which goes into sleep-mode after 10 minutes of non-use. I know sleep-mode uses a very small amount of power, but the flashing light on the control panel is driving me nuts! I know I can turn-off the printer via. the on/off button, but when it is turned-on manually, there is some whirring sound which I guess might be the machine warming-up. My question is... Is any toner used during this warm-up (or cleaning) cycle? Am I better-off keeping the printer in sleep mode, or is it ok to turn off manually? TIA Alan

    Read the article

  • Excluding certain file types in wget

    - by Alan Spark
    I have been using wget for a while now to mirror files from an ftp server to a local folder. My wget command is as follows: wget -mirror -w 1 -p -nH -P /var/www/ ftp://my-ftp-server However, I just noticed that it is copying over a .listing file for every folder that it visits. So, even if nothing has been changed on the ftp server, a .listing file will always be copied. My understanding is that the .listing file is created when wget opens the ftp session. Is there a way to avoid this? I've tried the -R option (e.g. -R .listing) but this didn't help. See: http://www.gnu.org/software/wget/manual/wget.html#Recursive-Accept_002fReject-Options Thanks, Alan

    Read the article

  • How can I persist certificates in Java's cacerts?

    - by Alan Spark
    We need to have a certificate in Java's cacerts keystore for one of our servers that is authenticated by LDAP. We are using Ubuntu server. We have successfully done this by updating the cacerts file in /usr/lib/jvm/java-6-openjdk-amd64/jre/lib/security but occasionally a Java update is installed and the cacerts file seems to be getting replaced by a default one that doesn't contain our changes. This doesn't happen very often but it is becoming a bit of a pain when it does happen. Is there a better way of adding things to cacerts so that they don't get lost when a Java update happens? Thanks, Alan

    Read the article

  • Syncing Large Directories/Filesystems using USB Drive [closed]

    - by Alan Lue
    Does anyone have a solution for syncing large directories/filesystems using just a USB flash drive (and specifically without using a network connection)? The objective is simply to sync a user directory between two computers. The contents of the user directory could amount to a large quantity of data—say, a quantity larger than could be stored on any single USB drive—but the aggregate size of changes that must be propagated by a single sync could easily fit on a USB drive. As an example, suppose a user directory is already synchronized between a desktop and a laptop computer. Here's a use case: Some changes are made in the user directory on the desktop. We mount a USB drive onto the desktop and copy whatever changes need to be applied to the laptop user directory in order to synchronize the desktop and laptop user directories. We now mount the USB drive onto the laptop and apply the changes. The desktop and laptop user directories are now synchronized. Any ideas? Alan

    Read the article

  • Windows XP SP3 dissapearing mapped drives

    - by Alan Spark
    I am running Windows XP Pro SP3 and I've got a few shares on my NAS that are mapped to reconnect automatically. I can access the drives soon after starting windows but after a period of inactivity I get the error "The local device name is already in use". This cannot be remedied until I restart the computer - I've tried disconnecting and re-mapping without success. This was working fine until I recently reinstalled Windows and I'm not sure what is going on. Any help would be greatly appreciated. Thanks, Alan

    Read the article

  • Syncing Large Directories/Filesystems using USB Drive

    - by Alan Lue
    Does anyone have a solution for syncing large directories/filesystems using just a USB flash drive (and specifically without using a network connection)? The objective is simply to sync a user directory between two computers. The contents of the user directory could amount to a large quantity of data—say, a quantity larger than could be stored on any single USB drive—but the aggregate size of changes that must be propagated by a single sync could easily fit on a USB drive. As an example, suppose a user directory is already synchronized between a desktop and a laptop computer. Here's a use case: Some changes are made in the user directory on the desktop. We mount a USB drive onto the desktop and copy whatever changes need to be applied to the laptop user directory in order to synchronize the desktop and laptop user directories. We now mount the USB drive onto the laptop and apply the changes. The desktop and laptop user directories are now synchronized. Any ideas? Alan

    Read the article

  • Silverlight Cream for April 21, 2010 -- #843

    - by Dave Campbell
    In this Issue: Alan Beasley, Roboblob, SilverLaw, Mike Snow, and Chris Koenig. Shoutouts: Ozymandias has a discussion up: The Three Pillars of Xbox Live on Windows Phone John Papa announced that Silverlight 4 is now on WebPI: Get Silverlight 4 – Simplified! Dan Wahlin posted the code and material from DevConnections: Code from my DevConnections Talks and Workshop Tim Heuer has a good deal posted from GoDaddy: Get a Silverlight XAP signing certificate for cheap thanks to GoDaddy From SilverlightCream.com: ListBox Styling (Part2-ControlTemplate) in Expression Blend & Silverlight Alan Beasley is back with part 2 of his ListBox styling tutorial adventure in Expression Blend... this looks like some of the stuff I was getting close to in Win32 a bunch of years back... great stuff... thanks Alan! Unit Testing Modal Dialogs in MVVM and Silverlight 4 Roboblob responds to some feedback with an expansion on his previous post with the addition of some Unit Testing. ChildWindowResizeBehavior - Silverlight 4 Blend 4 RC design time support SilverLaw has a short post about a behavior he has available at the Expression Gallery that resizes a child window with the Mouse Wheel, and also has Design-time support in Blend. Tip of the Day #111 – How to Configure your Silverlight App to run in Elevated Trust Mode Mike Snow has his latest tip up, and this one is on both ends of of the Elevated Trust Mode of OOB ... how to set it, and what your user experience is like. WP7 Part 2 – Working with Data Chris Koenig has part 2 of his WP7 exploration up ... he's tackling Nerd Dinner and pulling down Odata. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • format dojo DataGrid header row

    - by Alan Seiden
    I want to assign a background color to my programmatically created Dojo DataGrid's header row. I've tried to override the defaults by adding .dojoxGridHeader or .dojoxGrid-Header to my style sheet, but these have no effect. Is there another way, such as with a Dojo event or property? If my style sheet is the only way to go, am I using the wrong class? Thanks! Alan

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >