Search Results

Search found 48564 results on 1943 pages for 'azure web sites'.

Page 2/1943 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Windows Azure Database (SQL Azure) Development Tip

    - by BuckWoody
    When you create something in the cloud, it's real, and you're charged for it. There are free offerings, and you even get free resources with your Microsoft Developer Network (MSDN) subscription, but there are limits within those. Creating a 1 GB database - even with nothing in it - is a 1 GB Database. If you create it, drop it, and create it again 2 minutes later, that's 2 GB of space you've used for the month. Wait - how do I develop in this kind of situation? With Windows Azure, you can simply install the free Software Development Kit (SDK) and develop your entire application for free - you need never even log in to Windows Azure to code. Once you're done, you simply deploy the app and you start making money from the application as you're paying for it. Windows Azure Databases (The Artist Formerly Known As SQL Azure) is a bit different. It's not emulated in the SDK - because it doesn't have to be. It's just SQL Server, with some differences in feature set. To develop in this environment, you can use SQL Server, any edition. Be aware of the feature differences, of course, but just develop away - even in the free "Express" or LocalDB flavors - and then right-click in SQL Server Management Studio to script objects. Script the database, but change the "Advanced" selection to the Engine Type of "SQL Azure". Bing. Although most all T-SQL ports directly, one thing to keep in mind is that you need a Clustered Index on every table. Often the Primary Key (PK) is a good choice for that.

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Windows Azure Use Case: Fast Acquisitions

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many organizations absorb, take over or merge with other organizations. In these cases, one of the most difficult parts of the process is the merging or changing of the IT systems that the employees use to do their work, process payments, and even get paid. Normally this means that the two companies have disparate systems, and several approaches can be used to have the two organizations use technology between them. An organization may choose to retain both systems, and manage them separately. The advantage here is speed, and keeping the profit/loss sheets separate. Another choice is to slowly “sunset” or stop using one organization’s system, and cutting to the other system immediately or at a later date. Although a popular choice, one of the most difficult methods is to extract data and processes from one system and import it into the other. Employees at the transitioning system have to be trained on the new one, the data must be examined and cleansed, and there is inevitable disruption when this happens. Still another option is to integrate the systems. This may prove to be as much work as a transitional strategy, but may have less impact on the users or the balance sheet. Implementation: A distributed computing paradigm can be a good strategic solution to most of these strategies. Retaining both systems is made more simple by allowing the users at the second organization immediate access to the new system, because security accounts can be created quickly inside an application. There is no need to set up a VPN or any other connections than just to the Internet. Having the users stop using one system and start with the other is also simple in Windows Azure for the same reason. Extracting data to Azure holds the same limitations as an on-premise system, and may even be more problematic because of the large data transfers that might be required. In a distributed environment, you pay for the data transfer, so a mixed migration strategy is not recommended. However, if the data is slowly migrated over time with a defined cutover, this can be an effective strategy. If done properly, an integration strategy works very well for a distributed computing environment like Windows Azure. If the Azure code is architected as a series of services, then endpoints can expose the service into and out of not only the Azure platform, but internally as well. This is a form of the Hybrid Application use-case documented here. References: Designing for Cloud Optimized Architecture: http://blogs.msdn.com/b/dachou/archive/2011/01/23/designing-for-cloud-optimized-architecture.aspx 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0

    Read the article

  • Windows Azure Learning Plan - Application Fabric

    - by BuckWoody
    This is one in a series of posts on a Windows Azure Learning Plan. You can find the main post here. This one deals with the Application Fabric for Windows Azure. It serves three main purposes - Access Control, Caching, and as a Service Bus.   Overview and Training Overview and general  information about the Azure Application Fabric, - what it is, how it works, and where you can learn more. General Introduction and Overview http://msdn.microsoft.com/en-us/library/ee922714.aspx Access Control Service Overview http://msdn.microsoft.com/en-us/magazine/gg490345.aspx Microsoft Documentation http://msdn.microsoft.com/en-gb/windowsazure/netservices.aspx Learning and Examples Sources for online and other Azure Appllications Fabric training Application Fabric SDK http://www.microsoft.com/downloads/en/details.aspx?FamilyID=39856a03-1490-4283-908f-c8bf0bfad8a5&displaylang=en Application Fabric Caching Service Primer http://blogs.msdn.com/b/appfabriccat/archive/2010/11/29/azure-appfabric-caching-service-soup-to-nuts-primer.aspx?wa=wsignin1.0 Hands-On Lab: Building Windows Azure Applications with the Caching Service http://www.wadewegner.com/2010/11/hands-on-lab-building-windows-azure-applications-with-the-caching-service/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+WadeWegner+%28Wade+Wegner+-+Technical%29 Architecture  Azure Application Fabric Internals and Architectures for Scale Out and other use-cases. Azure Application Fabric Architecture Guide http://blogs.msdn.com/b/yasserabdelkader/archive/2010/09/12/release-of-windows-server-appfabric-architecture-guide.aspx Windows Azure AppFabric Service Bus - A Deep Dive (Video) http://www.msteched.com/2010/Europe/ASI410 Access Control Service (ACS) High Level Architecture http://blogs.msdn.com/b/alikl/archive/2010/09/28/azure-appfabric-access-control-service-acs-v-2-0-high-level-architecture-web-application-scenario.aspx Applications  and Programming Programming Patterns and Architectures for SQL Azure systems. Various Examples from PDC 2010 on using Azure Application as a Service Bus http://tinyurl.com/2dcnt8o Creating a Distributed Cache using the Application Fabric http://blog.structuretoobig.com/post/2010/08/31/Creating-a-Poor-Mane28099s-Distributed-Cache-in-Azure.aspx  Azure Application Fabric Java SDK http://jdotnetservices.com/

    Read the article

  • Building and Deploying Windows Azure Web Sites using Git and GitHub for Windows

    - by shiju
    Microsoft Windows Azure team has released a new version of Windows Azure which is providing many excellent features. The new Windows Azure provides Web Sites which allows you to deploy up to 10 web sites  for free in a multitenant shared environment and you can easily upgrade this web site to a private, dedicated virtual server when the traffic is grows. The Meet Windows Azure Fact Sheet provides the following information about a Windows Azure Web Site: Windows Azure Web Sites enable developers to easily build and deploy websites with support for multiple frameworks and popular open source applications, including ASP.NET, PHP and Node.js. With just a few clicks, developers can take advantage of Windows Azure’s global scale without having to worry about operations, servers or infrastructure. It is easy to deploy existing sites, if they run on Internet Information Services (IIS) 7, or to build new sites, with a free offer of 10 websites upon signup, with the ability to scale up as needed with reserved instances. Windows Azure Web Sites includes support for the following: Multiple frameworks including ASP.NET, PHP and Node.js Popular open source software apps including WordPress, Joomla!, Drupal, Umbraco and DotNetNuke Windows Azure SQL Database and MySQL databases Multiple types of developer tools and protocols including Visual Studio, Git, FTP, Visual Studio Team Foundation Services and Microsoft WebMatrix Signup to Windows and Enable Azure Web Sites You can signup for a 90 days free trial account in Windows Azure from here. After creating an account in Windows Azure, go to https://account.windowsazure.com/ , and select to preview features to view the available previews. In the Web Sites section of the preview features, click “try it now” which will enables the web sites feature Create Web Site in Windows Azure To create a web sites, login to the Windows Azure portal, and select Web Sites from and click New icon from the left corner  Click WEB SITE, QUICK CREATE and put values for URL and REGION dropdown. You can see the all web sites from the dashboard of the Windows Azure portal Set up Git Publishing Select your web site from the dashboard, and select Set up Git publishing To enable Git publishing , you must give user name and password which will initialize a Git repository Clone Git Repository We can use GitHub for Windows to publish apps to non-GitHub repositories which is well explained by Phil Haack on his blog post. Here we are going to deploy the web site using GitHub for Windows. Let’s clone a Git repository using the Git Url which will be getting from the Windows Azure portal. Let’s copy the Git url and execute the “git clone” with the git url. You can use the Git Shell provided by GitHub for Windows. To get it, right on the GitHub for Windows, and select open shell here as shown in the below picture. When executing the Git Clone command, it will ask for a password where you have to give password which specified in the Windows Azure portal. After cloning the GIT repository, you can drag and drop the local Git repository folder to GitHub for Windows GUI. This will automatically add the Windows Azure Web Site repository onto GitHub for Windows where you can commit your changes and publish your web sites to Windows Azure. Publish the Web Site using GitHub for Windows We can add multiple framework level files including ASP.NET, PHP and Node.js, to the local repository folder can easily publish to Windows Azure from GitHub for Windows GUI. For this demo, let me just add a simple Node.js file named Server.js which handles few request handlers. 1: var http = require('http'); 2: var port=process.env.PORT; 3: var querystring = require('querystring'); 4: var utils = require('util'); 5: var url = require("url"); 6:   7: var server = http.createServer(function(req, res) { 8: switch (req.url) { //checking the request url 9: case '/': 10: homePageHandler (req, res); //handler for home page 11: break; 12: case '/register': 13: registerFormHandler (req, res);//hamdler for register 14: break; 15: default: 16: nofoundHandler (req, res);// handler for 404 not found 17: break; 18: } 19: }); 20: server.listen(port); 21: //function to display the html form 22: function homePageHandler (req, res) { 23: console.log('Request handler home was called.'); 24: res.writeHead(200, {'Content-Type': 'text/html'}); 25: var body = '<html>'+ 26: '<head>'+ 27: '<meta http-equiv="Content-Type" content="text/html; '+ 28: 'charset=UTF-8" />'+ 29: '</head>'+ 30: '<body>'+ 31: '<form action="/register" method="post">'+ 32: 'Name:<input type=text value="" name="name" size=15></br>'+ 33: 'Email:<input type=text value="" name="email" size=15></br>'+ 34: '<input type="submit" value="Submit" />'+ 35: '</form>'+ 36: '</body>'+ 37: '</html>'; 38: //response content 39: res.end(body); 40: } 41: //handler for Post request 42: function registerFormHandler (req, res) { 43: console.log('Request handler register was called.'); 44: var pathname = url.parse(req.url).pathname; 45: console.log("Request for " + pathname + " received."); 46: var postData = ""; 47: req.on('data', function(chunk) { 48: // append the current chunk of data to the postData variable 49: postData += chunk.toString(); 50: }); 51: req.on('end', function() { 52: // doing something with the posted data 53: res.writeHead(200, "OK", {'Content-Type': 'text/html'}); 54: // parse the posted data 55: var decodedBody = querystring.parse(postData); 56: // output the decoded data to the HTTP response 57: res.write('<html><head><title>Post data</title></head><body><pre>'); 58: res.write(utils.inspect(decodedBody)); 59: res.write('</pre></body></html>'); 60: res.end(); 61: }); 62: } 63: //Error handler for 404 no found 64: function nofoundHandler(req, res) { 65: console.log('Request handler nofound was called.'); 66: res.writeHead(404, {'Content-Type': 'text/plain'}); 67: res.end('404 Error - Request handler not found'); 68: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If there is any change in the local repository folder, GitHub for Windows will automatically detect the changes. In the above step, we have just added a Server.js file so that GitHub for Windows will detect the changes. Let’s commit the changes to the local repository before publishing the web site to Windows Azure. After committed the all changes, you can click publish button which will publish the all changes to Windows Azure repository. The following screen shot shows deployment history from the Windows Azure portal.   GitHub for Windows is providing a sync button which can use for synchronizing between local repository and Windows Azure repository after making any commit on the local repository after any changes. Our web site is running after the deployment using Git Summary Windows Azure Web Sites lets the developers to easily build and deploy websites with support for multiple framework including ASP.NET, PHP and Node.js and can easily deploy the Web Sites using Visual Studio, Git, FTP, Visual Studio Team Foundation Services and Microsoft WebMatrix. In this demo, we have deployed a Node.js Web Site to Windows Azure using Git. We can use GitHub for Windows to publish apps to non-GitHub repositories and can use to publish Web SItes to Windows Azure.

    Read the article

  • Announcing the release of the Windows Azure SDK 2.1 for .NET

    - by ScottGu
    Today we released the v2.1 update of the Windows Azure SDK for .NET.  This is a major refresh of the Windows Azure SDK and it includes some great new features and enhancements. These new capabilities include: Visual Studio 2013 Preview Support: The Windows Azure SDK now supports using the new VS 2013 Preview Visual Studio 2013 VM Image: Windows Azure now has a built-in VM image that you can use to host and develop with VS 2013 in the cloud Visual Studio Server Explorer Enhancements: Redesigned with improved filtering and auto-loading of subscription resources Virtual Machines: Start and Stop VM’s w/suspend billing directly from within Visual Studio Cloud Services: New Emulator Express option with reduced footprint and Run as Normal User support Service Bus: New high availability options, Notification Hub support, Improved VS tooling PowerShell Automation: Lots of new PowerShell commands for automating Web Sites, Cloud Services, VMs and more All of these SDK enhancements are now available to start using immediately and you can download the SDK from the Windows Azure .NET Developer Center.  Visual Studio’s Team Foundation Service (http://tfs.visualstudio.com/) has also been updated to support today’s SDK 2.1 release, and the SDK 2.1 features can now be used with it (including with automated builds + tests). Below are more details on the new features and capabilities released today: Visual Studio 2013 Preview Support Today’s Window Azure SDK 2.1 release adds support for the recent Visual Studio 2013 Preview. The 2.1 SDK also works with Visual Studio 2010 and Visual Studio 2012, and works side by side with the previous Windows Azure SDK 1.8 and 2.0 releases. To install the Windows Azure SDK 2.1 on your local computer, choose the “install the sdk” link from the Windows Azure .NET Developer Center. Then, chose which version of Visual Studio you want to use it with.  Clicking the third link will install the SDK with the latest VS 2013 Preview: If you don’t already have the Visual Studio 2013 Preview installed on your machine, this will also install Visual Studio Express 2013 Preview for Web. Visual Studio 2013 VM Image Hosted in the Cloud One of the requests we’ve heard from several customers has been to have the ability to host Visual Studio within the cloud (avoiding the need to install anything locally on your computer). With today’s SDK update we’ve added a new VM image to the Windows Azure VM Gallery that has Visual Studio Ultimate 2013 Preview, SharePoint 2013, SQL Server 2012 Express and the Windows Azure 2.1 SDK already installed on it.  This provides a really easy way to create a development environment in the cloud with the latest tools. With the recent shutdown and suspend billing feature we shipped on Windows Azure last month, you can spin up the image only when you want to do active development, and then shut down the virtual machine and not have to worry about usage charges while the virtual machine is not in use. You can create your own VS image in the cloud by using the New->Compute->Virtual Machine->From Gallery menu within the Windows Azure Management Portal, and then by selecting the “Visual Studio Ultimate 2013 Preview” template: Visual Studio Server Explorer: Improved Filtering/Management of Subscription Resources With the Windows Azure SDK 2.1 release you’ll notice significant improvements in the Visual Studio Server Explorer. The explorer has been redesigned so that all Windows Azure services are now contained under a single Windows Azure node.  From the top level node you can now manage your Windows Azure credentials, import a subscription file or filter Server Explorer to only show services from particular subscriptions or regions. Note: The Web Sites and Mobile Services nodes will appear outside the Windows Azure Node until the final release of VS 2013. If you have installed the ASP.NET and Web Tools Preview Refresh, though, the Web Sites node will appear inside the Windows Azure node even with the VS 2013 Preview. Once your subscription information is added, Windows Azure services from all your subscriptions are automatically enumerated in the Server Explorer. You no longer need to manually add services to Server Explorer individually. This provides a convenient way of viewing all of your cloud services, storage accounts, service bus namespaces, virtual machines, and web sites from one location: Subscription and Region Filtering Support Using the Windows Azure node in Server Explorer, you can also now filter your Windows Azure services in the Server Explorer by the subscription or region they are in.  If you have multiple subscriptions but need to focus your attention to just a few subscription for some period of time, this a handy way to hide the services from other subscriptions view until they become relevant. You can do the same sort of filtering by region. To enable this, just select “Filter Services” from the context menu on the Windows Azure node: Then choose the subscriptions and/or regions you want to filter by. In the below example, I’ve decided to show services from my pay-as-you-go subscription within the East US region: Visual Studio will then automatically filter the items that show up in the Server Explorer appropriately: With storage accounts and service bus namespaces, you sometimes need to work with services outside your subscription. To accommodate that scenario, those services allow you to attach an external account (from the context menu). You’ll notice that external accounts have a slightly different icon in server explorer to indicate they are from outside your subscription. Other Improvements We’ve also improved the Server Explorer by adding additional properties and actions to the service exposed. You now have access to most of the properties on a cloud service, deployment slot, role or role instance as well as the properties on storage accounts, virtual machines and web sites. Just select the object of interest in Server Explorer and view the properties in the property pane. We also now have full support for creating/deleting/update storage tables, blobs and queues from directly within Server Explorer.  Simply right-click on the appropriate storage account node and you can create them directly within Visual Studio: Virtual Machines: Start/Stop within Visual Studio Virtual Machines now have context menu actions that allow you start, shutdown, restart and delete a Virtual Machine directly within the Visual Studio Server Explorer. The shutdown action enables you to shut down the virtual machine and suspend billing when the VM is not is use, and easily restart it when you need it: This is especially useful in Dev/Test scenarios where you can start a VM – such as a SQL Server – during your development session and then shut it down / suspend billing when you are not developing (and no longer be billed for it). You can also now directly remote desktop into VMs using the “Connect using Remote Desktop” context menu command in VS Server Explorer.  Cloud Services: Emulator Express with Run as Normal User Support You can now launch Visual Studio and run your cloud services locally as a Normal User (without having to elevate to an administrator account) using a new Emulator Express option included as a preview feature with this SDK release.  Emulator Express is a version of the Windows Azure Compute Emulator that runs a restricted mode – one instance per role – and it doesn’t require administrative permissions and uses 40% less resources than the full Windows Azure Emulator. Emulator Express supports both web and worker roles. To run your application locally using the Emulator Express option, simply change the following settings in the Windows Azure project. On the shortcut menu for the Windows Azure project, choose Properties, and then choose the Web tab. Check the setting for IIS (Internet Information Services). Make sure that the option is set to IIS Express, not the full version of IIS. Emulator Express is not compatible with full IIS. On the Web tab, choose the option for Emulator Express. Service Bus: Notification Hubs With the Windows Azure SDK 2.1 release we are adding support for Windows Azure Notification Hubs as part of our official Windows Azure SDK, inside of Microsoft.ServiceBus.dll (previously the Notification Hub functionality was in a preview assembly). You are now able to create, update and delete Notification Hubs programmatically, manage your device registrations, and send push notifications to all your mobile clients across all platforms (Windows Store, Windows Phone 8, iOS, and Android). Learn more about Notification Hubs on MSDN here, or watch the Notification Hubs //BUILD/ presentation here. Service Bus: Paired Namespaces One of the new features included with today’s Windows Azure SDK 2.1 release is support for Service Bus “Paired Namespaces”.  Paired Namespaces enable you to better handle situations where a Service Bus service namespace becomes unavailable (for example: due to connectivity issues or an outage) and you are unable to send or receive messages to the namespace hosting the queue, topic, or subscription. Previously,to handle this scenario you had to manually setup separate namespaces that can act as a backup, then implement manual failover and retry logic which was sometimes tricky to get right. Service Bus now supports Paired Namespaces, which enables you to connect two namespaces together. When you activate the secondary namespace, messages are stored in the secondary queue for delivery to the primary queue at a later time. If the primary container (namespace) becomes unavailable for some reason, automatic failover enables the messages in the secondary queue. For detailed information about paired namespaces and high availability, see the new topic Asynchronous Messaging Patterns and High Availability. Service Bus: Tooling Improvements In this release, the Windows Azure Tools for Visual Studio contain several enhancements and changes to the management of Service Bus messaging entities using Visual Studio’s Server Explorer. The most noticeable change is that the Service Bus node is now integrated into the Windows Azure node, and supports integrated subscription management. Additionally, there has been a change to the code generated by the Windows Azure Worker Role with Service Bus Queue project template. This code now uses an event-driven “message pump” programming model using the QueueClient.OnMessage method. PowerShell: Tons of New Automation Commands Since my last blog post on the previous Windows Azure SDK 2.0 release, we’ve updated Windows Azure PowerShell (which is a separate download) five times. You can find the full change log here. We’ve added new cmdlets in the following areas: China instance and Windows Azure Pack support Environment Configuration VMs Cloud Services Web Sites Storage SQL Azure Service Bus China Instance and Windows Azure Pack We now support the following cmdlets for the China instance and Windows Azure Pack, respectively: China Instance: Web Sites, Service Bus, Storage, Cloud Service, VMs, Network Windows Azure Pack: Web Sites, Service Bus We will have full cmdlet support for these two Windows Azure environments in PowerShell in the near future. Virtual Machines: Stop/Start Virtual Machines Similar to the Start/Stop VM capability in VS Server Explorer, you can now stop your VM and suspend billing: If you want to keep the original behavior of keeping your stopped VM provisioned, you can pass in the -StayProvisioned switch parameter. Virtual Machines: VM endpoint ACLs We’ve added and updated a bunch of cmdlets for you to configure fine-grained network ACL on your VM endpoints. You can use the following cmdlets to create ACL config and apply them to a VM endpoint: New-AzureAclConfig Get-AzureAclConfig Set-AzureAclConfig Remove-AzureAclConfig Add-AzureEndpoint -ACL Set-AzureEndpoint –ACL The following example shows how to add an ACL rule to an existing endpoint of a VM. Other improvements for Virtual Machine management includes Added -NoWinRMEndpoint parameter to New-AzureQuickVM and Add-AzureProvisioningConfig to disable Windows Remote Management Added -DirectServerReturn parameter to Add-AzureEndpoint and Set-AzureEndpoint to enable/disable direct server return Added Set-AzureLoadBalancedEndpoint cmdlet to modify load balanced endpoints Cloud Services: Remote Desktop and Diagnostics Remote Desktop and Diagnostics are popular debugging options for Cloud Services. We’ve introduced cmdlets to help you configure these two Cloud Service extensions from Windows Azure PowerShell. Windows Azure Cloud Services Remote Desktop extension: New-AzureServiceRemoteDesktopExtensionConfig Get-AzureServiceRemoteDesktopExtension Set-AzureServiceRemoteDesktopExtension Remove-AzureServiceRemoteDesktopExtension Windows Azure Cloud Services Diagnostics extension New-AzureServiceDiagnosticsExtensionConfig Get-AzureServiceDiagnosticsExtension Set-AzureServiceDiagnosticsExtension Remove-AzureServiceDiagnosticsExtension The following example shows how to enable Remote Desktop for a Cloud Service. Web Sites: Diagnostics With our last SDK update, we introduced the Get-AzureWebsiteLog –Tail cmdlet to get the log streaming of your Web Sites. Recently, we’ve also added cmdlets to configure Web Site application diagnostics: Enable-AzureWebsiteApplicationDiagnostic Disable-AzureWebsiteApplicationDiagnostic The following 2 examples show how to enable application diagnostics to the file system and a Windows Azure Storage Table: SQL Database Previously, you had to know the SQL Database server admin username and password if you want to manage the database in that SQL Database server. Recently, we’ve made the experience much easier by not requiring the admin credential if the database server is in your subscription. So you can simply specify the -ServerName parameter to tell Windows Azure PowerShell which server you want to use for the following cmdlets. Get-AzureSqlDatabase New-AzureSqlDatabase Remove-AzureSqlDatabase Set-AzureSqlDatabase We’ve also added a -AllowAllAzureServices parameter to New-AzureSqlDatabaseServerFirewallRule so that you can easily add a firewall rule to whitelist all Windows Azure IP addresses. Besides the above experience improvements, we’ve also added cmdlets get the database server quota and set the database service objective. Check out the following cmdlets for details. Get-AzureSqlDatabaseServerQuota Get-AzureSqlDatabaseServiceObjective Set-AzureSqlDatabase –ServiceObjective Storage and Service Bus Other new cmdlets include Storage: CRUD cmdlets for Azure Tables and Queues Service Bus: Cmdlets for managing authorization rules on your Service Bus Namespace, Queue, Topic, Relay and NotificationHub Summary Today’s release includes a bunch of great features that enable you to build even better cloud solutions.  All the above features/enhancements are shipped and available to use immediately as part of the 2.1 release of the Windows Azure SDK for .NET. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Tellago && Tellago Studios 2010

    - by gsusx
    With 2011 around the corner we, at Tellago and Tellago Studios , we have been spending a lot of times evaluating our successes and failures (yes those too ;)) of 2010 and delineating some of our goals and strategies for 2011. When I look at 2010 here are some of the things that quickly jump off the page: Growing Tellago by 300% Launching a brand new company: Tellago Studios Expanding our customer base Establishing our business intelligence practice http://tellago.com/what-we-say/events/business-intelligence...(read more)

    Read the article

  • Where is the SQL Azure Development Environment

    - by BuckWoody
    Recently I posted an entry explaining that you can develop in Windows Azure without having to connect to the main service on the Internet, using the Software Development Kit (SDK) which installs two emulators - one for compute and the other for storage. That brought up the question of the same kind of thing for SQL Azure. The short answer is that there isn’t one. While we’ll make the development experience for all versions of SQL Server, including SQL Azure more easy to write against, you can simply treat it as another edition of SQL Server. For instance, many of us use the SQL Server Developer Edition - which in versions up to 2008 is actually the Enterprise Edition - to develop our code. We might write that code against all kinds of environments, from SQL Express through Enterprise Edition. We know which features work on a certain edition, what T-SQL it supports and so on, and develop accordingly. We then test on the actual platform to ensure the code runs as expected. You can simply fold SQL Azure into that same development process. When you’re ready to deploy, if you’re using SQL Server Management Studio 2008 R2 or higher, you can script out the database when you’re done as a SQL Azure script (with change notifications where needed) by selecting the right “Engine Type” on the scripting panel: (Thanks to David Robinson for pointing this out and my co-worker Rick Shahid for the screen-shot - saved me firing up a VM this morning!) Will all this change? Will SSMS, “Data Dude” and other tools change to include SQL Azure? Well, I don’t have a specific roadmap for those tools, but we’re making big investments on Windows Azure and SQL Azure, so I can say that as time goes on, it will get easier. For now, make sure you know what features are and are not included in SQL Azure, and what T-SQL is supported. Here are a couple of references to help: General Guidelines and Limitations: http://msdn.microsoft.com/en-us/library/ee336245.aspx Transact-SQL Supported by SQL Azure: http://msdn.microsoft.com/en-us/library/ee336250.aspx SQL Azure Learning Plan: http://blogs.msdn.com/b/buckwoody/archive/2010/12/13/windows-azure-learning-plan-sql-azure.aspx

    Read the article

  • Where is the SQL Azure Development Environment

    - by BuckWoody
    Recently I posted an entry explaining that you can develop in Windows Azure without having to connect to the main service on the Internet, using the Software Development Kit (SDK) which installs two emulators - one for compute and the other for storage. That brought up the question of the same kind of thing for SQL Azure. The short answer is that there isn’t one. While we’ll make the development experience for all versions of SQL Server, including SQL Azure more easy to write against, you can simply treat it as another edition of SQL Server. For instance, many of us use the SQL Server Developer Edition - which in versions up to 2008 is actually the Enterprise Edition - to develop our code. We might write that code against all kinds of environments, from SQL Express through Enterprise Edition. We know which features work on a certain edition, what T-SQL it supports and so on, and develop accordingly. We then test on the actual platform to ensure the code runs as expected. You can simply fold SQL Azure into that same development process. When you’re ready to deploy, if you’re using SQL Server Management Studio 2008 R2 or higher, you can script out the database when you’re done as a SQL Azure script (with change notifications where needed) by selecting the right “Engine Type” on the scripting panel: (Thanks to David Robinson for pointing this out and my co-worker Rick Shahid for the screen-shot - saved me firing up a VM this morning!) Will all this change? Will SSMS, “Data Dude” and other tools change to include SQL Azure? Well, I don’t have a specific roadmap for those tools, but we’re making big investments on Windows Azure and SQL Azure, so I can say that as time goes on, it will get easier. For now, make sure you know what features are and are not included in SQL Azure, and what T-SQL is supported. Here are a couple of references to help: General Guidelines and Limitations: http://msdn.microsoft.com/en-us/library/ee336245.aspx Transact-SQL Supported by SQL Azure: http://msdn.microsoft.com/en-us/library/ee336250.aspx SQL Azure Learning Plan: http://blogs.msdn.com/b/buckwoody/archive/2010/12/13/windows-azure-learning-plan-sql-azure.aspx

    Read the article

  • CI Deployment Of Azure Web Roles Using TeamCity

    - by srkirkland
    After recently migrating an important new website to use Windows Azure “Web Roles” I wanted an easier way to deploy new versions to the Azure Staging environment as well as a reliable process to rollback deployments to a certain “known good” source control commit checkpoint.  By configuring our JetBrains’ TeamCity CI server to utilize Windows Azure PowerShell cmdlets to create new automated deployments, I’ll show you how to take control of your Azure publish process. Step 0: Configuring your Azure Project in Visual Studio Before we can start looking at automating the deployment, we should make sure manual deployments from Visual Studio are working properly.  Detailed information for setting up deployments can be found at http://msdn.microsoft.com/en-us/library/windowsazure/ff683672.aspx#PublishAzure or by doing some quick Googling, but the basics are as follows: Install the prerequisite Windows Azure SDK Create an Azure project by right-clicking on your web project and choosing “Add Windows Azure Cloud Service Project” (or by manually adding that project type) Configure your Role and Service Configuration/Definition as desired Right-click on your azure project and choose “Publish,” create a publish profile, and push to your web role You don’t actually have to do step #4 and create a publish profile, but it’s a good exercise to make sure everything is working properly.  Once your Windows Azure project is setup correctly, we are ready to move on to understanding the Azure Publish process. Understanding the Azure Publish Process The actual Windows Azure project is fairly simple at its core—it builds your dependent roles (in our case, a web role) against a specific service and build configuration, and outputs two files: ServiceConfiguration.Cloud.cscfg: This is just the file containing your package configuration info, for example Instance Count, OsFamily, ConnectionString and other Setting information. ProjectName.Azure.cspkg: This is the package file that contains the guts of your deployment, including all deployable files. When you package your Azure project, these two files will be created within the directory ./[ProjectName].Azure/bin/[ConfigName]/app.publish/.  If you want to build your Azure Project from the command line, it’s as simple as calling MSBuild on the “Publish” target: msbuild.exe /target:Publish Windows Azure PowerShell Cmdlets The last pieces of the puzzle that make CI automation possible are the Azure PowerShell Cmdlets (http://msdn.microsoft.com/en-us/library/windowsazure/jj156055.aspx).  These cmdlets are what will let us create deployments without Visual Studio or other user intervention. Preparing TeamCity for Azure Deployments Now we are ready to get our TeamCity server setup so it can build and deploy Windows Azure projects, which we now know requires the Azure SDK and the Windows Azure PowerShell Cmdlets. Installing the Azure SDK is easy enough, just go to https://www.windowsazure.com/en-us/develop/net/ and click “Install” Once this SDK is installed, I recommend running a test build to make sure your project is building correctly.  You’ll want to setup your build step using MSBuild with the “Publish” target against your solution file.  Mine looks like this: Assuming the build was successful, you will now have the two *.cspkg and *cscfg files within your build directory.  If the build was red (failed), take a look at the build logs and keep an eye out for “unsupported project type” or other build errors, which will need to be addressed before the CI deployment can be completed. With a successful build we are now ready to install and configure the Windows Azure PowerShell Cmdlets: Follow the instructions at http://msdn.microsoft.com/en-us/library/windowsazure/jj554332 to install the Cmdlets and configure PowerShell After installing the Cmdlets, you’ll need to get your Azure Subscription Info using the Get-AzurePublishSettingsFile command. Store the resulting *.publishsettings file somewhere you can get to easily, like C:\TeamCity, because you will need to reference it later from your deploy script. Scripting the CI Deploy Process Now that the cmdlets are installed on our TeamCity server, we are ready to script the actual deployment using a TeamCity “PowerShell” build runner.  Before we look at any code, here’s a breakdown of our deployment algorithm: Setup your variables, including the location of the *.cspkg and *cscfg files produced in the earlier MSBuild step (remember, the folder is something like [ProjectName].Azure/bin/[ConfigName]/app.publish/ Import the Windows Azure PowerShell Cmdlets Import and set your Azure Subscription information (this is basically your authentication/authorization step, so protect your settings file Now look for a current deployment, and if you find one Upgrade it, else Create a new deployment Pretty simple and straightforward.  Now let’s look at the code (also available as a gist here: https://gist.github.com/3694398): $subscription = "[Your Subscription Name]" $service = "[Your Azure Service Name]" $slot = "staging" #staging or production $package = "[ProjectName]\bin\[BuildConfigName]\app.publish\[ProjectName].cspkg" $configuration = "[ProjectName]\bin\[BuildConfigName]\app.publish\ServiceConfiguration.Cloud.cscfg" $timeStampFormat = "g" $deploymentLabel = "ContinuousDeploy to $service v%build.number%"   Write-Output "Running Azure Imports" Import-Module "C:\Program Files (x86)\Microsoft SDKs\Windows Azure\PowerShell\Azure\*.psd1" Import-AzurePublishSettingsFile "C:\TeamCity\[PSFileName].publishsettings" Set-AzureSubscription -CurrentStorageAccount $service -SubscriptionName $subscription   function Publish(){ $deployment = Get-AzureDeployment -ServiceName $service -Slot $slot -ErrorVariable a -ErrorAction silentlycontinue   if ($a[0] -ne $null) { Write-Output "$(Get-Date -f $timeStampFormat) - No deployment is detected. Creating a new deployment. " } if ($deployment.Name -ne $null) { #Update deployment inplace (usually faster, cheaper, won't destroy VIP) Write-Output "$(Get-Date -f $timeStampFormat) - Deployment exists in $servicename. Upgrading deployment." UpgradeDeployment } else { CreateNewDeployment } }   function CreateNewDeployment() { write-progress -id 3 -activity "Creating New Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: In progress"   $opstat = New-AzureDeployment -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Creating New Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: Complete, Deployment ID: $completeDeploymentID" }   function UpgradeDeployment() { write-progress -id 3 -activity "Upgrading Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: In progress"   # perform Update-Deployment $setdeployment = Set-AzureDeployment -Upgrade -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service -Force   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Upgrading Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: Complete, Deployment ID: $completeDeploymentID" }   Write-Output "Create Azure Deployment" Publish   Creating the TeamCity Build Step The only thing left is to create a second build step, after your MSBuild “Publish” step, with the build runner type “PowerShell”.  Then set your script to “Source Code,” the script execution mode to “Put script into PowerShell stdin with “-Command” arguments” and then copy/paste in the above script (replacing the placeholder sections with your values).  This should look like the following:   Wrap Up After combining the MSBuild /target:Publish step (which creates the necessary Windows Azure *.cspkg and *.cscfg files) and a PowerShell script step which utilizes the Azure PowerShell Cmdlets, we have a fully deployable build configuration in TeamCity.  You can configure this step to run whenever you’d like using build triggers – for example, you could even deploy whenever a new master branch deploy comes in and passes all required tests. In the script I’ve hardcoded that every deployment goes to the Staging environment on Azure, but you could deploy straight to Production if you want to, or even setup a deployment configuration variable and set it as desired. After your TeamCity Build Configuration is complete, you’ll see something that looks like this: Whenever you click the “Run” button, all of your code will be compiled, published, and deployed to Windows Azure! One additional enormous benefit of automating the process this way is that you can easily deploy any specific source control changeset by clicking the little ellipsis button next to "Run.”  This will bring up a dialog like the one below, where you can select the last change to use for your deployment.  Since Azure Web Role deployments don’t have any rollback functionality, this is a critical feature.   Enjoy!

    Read the article

  • Azure Mobile Services: lessons learned

    - by svdoever
    When I first started using Azure Mobile Services I thought of it as a nice way to: authenticate my users - login using Twitter, Google, Facebook, Windows Live create tables, and use the client code to create the columns in the table because that is not possible in the Azure Mobile Services UI run some Javascript code on the table crud actions (Insert, Update, Delete, Read) schedule a Javascript to run any 15 or more minutes I had no idea of the magic that was happening inside… where is the data stored? Is it a kind of big table, are relationships between tables possible? those Javascripts on the table crud actions, is that interpreted, what is that exactly? After working for some time with Azure Mobile Services I became a lot wiser: Those tables are just normal tables in an Azure SQL Server 2012 Creating the table columns through client code sucks, at least from my Javascript code, because the columns are deducted from the sent JSON data, and a datetime field is sent as string in JSON, so a string type column is created instead of a datetime column You can connect with SQL Management Studio to the Azure SQL Server, and although you can’t manage your columns through the SQL Management Studio UI, it is possible to just run SQL scripts to drop and create tables and indices When you create a table through SQL script, add the table with the same name in the Azure Mobile Services UI to hook it up and be able to access the table through the provided abstraction layer You can also go to the SQL Database through the Azure Mobile Services UI, and from there get in a web based SQL management studio where you can create columns and manage your data The table crud scripts and the scheduler scripts are full blown node.js scripts, introducing a lot of power with great performance The web based script editor is really powerful, I do most of my editing currently in the editor which has syntax highlighting and code completing. While editing the code JsHint is used for script validation. The documentation on Azure Mobile Services is… suboptimal. It is such a pity that there is no way to comment on it so the community could fill in the missing holes, like which node modules are already loaded, and which modules are available on Azure Mobile Services. Soon I was hacking away on Azure Mobile Services, creating my own database tables through script, and abusing the read script of an empty table named query to implement my own set of “services”. The latest updates to Azure Mobile Services described in the following posts added some great new features like creating web API’s, use shared code from your scripts, command line tools for managing Azure Mobile Services (upload and download scripts for example), support for node modules and git support: http://weblogs.asp.net/scottgu/archive/2013/06/14/windows-azure-major-updates-for-mobile-backend-development.aspx http://blogs.msdn.com/b/carlosfigueira/archive/2013/06/14/custom-apis-in-azure-mobile-services.aspx http://blogs.msdn.com/b/carlosfigueira/archive/2013/06/19/custom-api-in-azure-mobile-services-client-sdks.aspx In the mean time I rewrote all my “service-like” table scripts to API scripts, which works like a breeze. Bad thing with the current state of Azure Mobile Services is that the git support is not working if you are a co-administrator of your Azure subscription, and not and administrator (as in my case). Another bad thing is that Cross Origin Request Sharing (CORS) is not supported for the API yet, so no go yet from the browser client for API’s, which is my case. See http://social.msdn.microsoft.com/Forums/windowsazure/en-US/2b79c5ea-d187-4c2b-823a-3f3e0559829d/known-limitations-for-source-control-and-custom-api-features for more on these and other limitations. In his talk at Build 2013 Josh Twist showed that there is a work-around for accessing shared script code from the table scripts as well (another limitation mentioned in the post above). I could not find that code in the Votabl2 code example from the presentation at https://github.com/joshtwist/votabl2, but we can grab it from the presentation when it comes online on Channel9. By the way: you can always express your needs and ideas at http://mobileservices.uservoice.com, that’s the place they are listening to (I hope!).

    Read the article

  • ASP.NET Podcast Show #144 - Windows Azure Part II - Worker Roles

    - by Wallym
    Original Url: http://aspnetpodcast.com/CS11/blogs/asp.net_podcast/archive/2010/10/28/asp-net-podcast-show-144-windows-azure-part-ii-worker-roles.aspx This show is on Web & Worker Roles in Azure, Blob Storage, and the Visual Studio 2010 Azure tools. Subscribe to everything. Subscribe to WMV. Subscribe to M4V for iPhone/iPad. Subscribe to MP3. Download WMV. Download MOV. Download M4V for iPhone/iPad. Download MP3.

    Read the article

  • ASP.NET Podcast Show #143 - Windows Azure Part I - Web Roles

    - by Wallym
    Original Url: http://aspnetpodcast.com/CS11/blogs/asp.net_podcast/archive/2010/10/25/asp-net-podcast-show-143-windows-azure-part-i-web-roles.aspx (forgot to post this here)This show is on Web Roles in Azure, Blob Storage, and the Visual Studio 2010 Azure tools. Subscribe to everything. Subscribe to WMV. Subscribe to M4V for iPhone/iPad. Subscribe to MP3. Download WMV. Download MOV. Download M4V for iPhone/iPad. Download MP3.

    Read the article

  • Reading the tea leaves from Windows Azure support

    - by jamiet
    A few idle thoughts… Three months ago I had an issue regarding Windows Azure where I was unable to login to the management portal. At the time I contacted Azure support, the issue was soon resolved and I thought no more about it. Until today that is when I received an email from Azure support providing a detailed analysis of the root cause, the fix and moreover precise details about when and where things occurred. The email itself is interesting and I have included the entirety of it below. A few things were interesting to me: The level of detail and the diligence in investigating and reporting the issue I found really rather impressive. They even outline the number of users that were affected (127 in case you can’t be bothered reading). Compare this to the quite pathetic support that another division within Microsoft, Skype, provided to Greg Low recently: Skype support and dead parrot sketches   This line: “Windows Azure performed a planned change from using the Microsoft account service (formerly Windows Live ID) to the Azure Active Directory (AAD) as its primary authentication mechanism on August 24th. This change was made to enable future innovation in the area of authentication – particularly for organizationally owned identities, identity federation, stronger authentication methods and compliance certification. ” I also found to be particularly interesting. I have long thought that one of the reasons Microsoft has proved to be such a money-making machine in the enterprise is because they provide the infrastructure and then upsell on top of that – and nothing is more infrastructural than Active Directory. It has struck me of late that they are trying to make the same play of late in the cloud by tying all their services into Azure Active Directory and here we see a clear indication of that by making AAD the authentication mechanism for anyone using Windows Azure. I get the feeling that we’re going to hear much much more about AAD in the future; isn’t it about time we could log on to SQL Azure Windows Azure SQL Database without resorting to SQL authentication, for example? And why do Microsoft have two identity providers – Microsoft Account (aka Windows Live ID) and AAD – isn’t it about time those things were combined? As I said, just some idle thoughts. Below is the transcript of the email if you are interested. @Jamiet  This is regarding the support request <redacted> where in you were not able to login into the windows azure management portal with live id. We are providing you with the summary, root cause analysis and information about permanent fix: Incident Title: You were unable to access Windows Azure Portal after Microsoft Account to Azure Active Directory account Migration. Service Impacted: Management Portal Incident Start Date and Time: 8/24/2012 4:30:00 PM Date and Time Service was Restored: 10/17/2012 12:00:00 AM Summary: Windows Azure performed a planned change from using the Microsoft account service (formerly Windows Live ID) to the Azure Active Directory (AAD) as its primary authentication mechanism on August 24th.   This change was made to enable future innovation in the area of authentication – particularly for organizationally owned identities, identity federation, stronger authentication methods and compliance certification.   While this migration was largely transparent to Windows Azure users, a small number of users whose sign-in names were part of a Windows Live Custom Domain were unable to login.   This incompatibility was not discovered during the Quality Assurance testing phase prior to the migration. Customer Impact: Customers whose sign-in names were part of a Windows Live Custom Domain were unable to sign-in the Management Portal after ~4:00 p.m. PST on August 24th, 2012.   We determined that the issue did impact at least 127 users in 98 of these Windows Live Custom Domains and had a maximum potential impact of 1,110 users in total. Root Cause: The root cause of the issue was an incompatibility in the AAD authentication service to handle logins from Microsoft accounts whose sign-in names were part of a Windows Live Custom Domains.  This issue was not discovered during the Quality Assurance testing phase prior to the migration from Microsoft Account (MSA) to AAD. Mitigations: The issue was mitigated for the majority of affected users by 8:20 a.m. PST on August 25th, 2012 by running some internal scripts to correct many known Windows Live Custom Domains.   The remaining affected domains fell into two categories: Windows Live Custom Domains that were not corrected by 8/25/2012. An additional 48 Windows Live Custom Domains were fixed in the weeks following the incident within 2 business days after the AAD team received an escalation from product support regarding those accounts. Windows Live Custom domains that were also provisioned in Office365. Some of the affected Windows Live Custom Domains had already been provisioned in AAD because their owners signed up for Office365 which is a service that also uses AAD.   In these cases the Azure customers had to work around the issue by renaming their Microsoft Account or using a different Microsoft Account to administer their Azure subscription. Permanent Fix: The Azure Active Directory team permanently fixed the issue for all customers on 10/17/2012 in an upgraded release of the AAD service.

    Read the article

  • Windows Azure Training Kit (November 2010 Release Update)&ndash;Fantastic Azure training resource

    - by Jim Duffy
    At PDC 2010 in October Microsoft announced a number of new enhancements/features for Windows Azure. In case you missed it, these new enhancements/features have been released in the new Windows Azure Tools for Visual Studio November release (v1.3). The Windows Azure team blog is an excellent resource for information about the new release. Along with the new release the Azure team has also updated the Windows Azure Platform Training Kit. What is the Windows Azure Platform Training Kit you ask? It is a comprehensive set of hands-on training labs and videos designed to help you quickly get up to speed with Windows Azure, SQL Azure, and the Windows Azure AppFabric. The training kit contains updated labs including a couple I would suggest you hit first. Introduction to Windows Azure - updated to use the new Windows Azure platform Portal Introduction to SQL Azure - updated to use the new Windows Azure platform Portal The training kit contains a number of new labs as well including: Advanced Web and Worker Role – shows how to use admin mode and startup tasks Connecting Apps With Windows Azure Connect – shows how to use Project Sydney Virtual Machine Role – shows how to get started with VM Role by creating and deploying a VHD Windows Azure CDN – simple introduction to the CDN Introduction to the Windows Azure AppFabric Service Bus Futures – shows how to use the new Service Bus features in the AppFabric labs environment Building Windows Azure Apps with Caching Service – shows how to use the new Windows Azure AppFabric Caching service Introduction to the AppFabric Access Control Service V2 – shows how to build a simple web application that supports multiple identity providers Ok, that’s enough reading, go start learning! Have a day.

    Read the article

  • Faster, Simpler access to Azure Tables with Enzo Azure API

    - by Herve Roggero
    After developing the latest version of Enzo Cloud Backup I took the time to create an API that would simplify access to Azure Tables (the Enzo Azure API). At first, my goal was to make the code simpler compared to the Microsoft Azure SDK. But as it turns out it is also a little faster; and when using the specialized methods (the fetch strategies) it is much faster out of the box than the Microsoft SDK, unless you start creating complex parallel and resilient routines yourself. Last but not least, I decided to add a few extension methods that I think you will find attractive, such as the ability to transform a list of entities into a DataTable. So let’s review each area in more details. Simpler Code My first objective was to make the API much easier to use than the Azure SDK. I wanted to reduce the amount of code necessary to fetch entities, remove the code needed to add automatic retries and handle transient conditions, and give additional control, such as a way to cancel operations, obtain basic statistics on the calls, and control the maximum number of REST calls the API generates in an attempt to avoid throttling conditions in the first place (something you cannot do with the Azure SDK at this time). Strongly Typed Before diving into the code, the following examples rely on a strongly typed class called MyData. The way MyData is defined for the Azure SDK is similar to the Enzo Azure API, with the exception that they inherit from different classes. With the Azure SDK, classes that represent entities must inherit from TableServiceEntity, while classes with the Enzo Azure API must inherit from BaseAzureTable or implement a specific interface. // With the SDK public class MyData1 : TableServiceEntity {     public string Message { get; set; }     public string Level { get; set; }     public string Severity { get; set; } } //  With the Enzo Azure API public class MyData2 : BaseAzureTable {     public string Message { get; set; }     public string Level { get; set; }     public string Severity { get; set; } } Simpler Code Now that the classes representing an Azure Table entity are defined, let’s review the methods that the Azure SDK would look like when fetching all the entities from an Azure Table (note the use of a few variables: the _tableName variable stores the name of the Azure Table, and the ConnectionString property returns the connection string for the Storage Account containing the table): // With the Azure SDK public List<MyData1> FetchAllEntities() {      CloudStorageAccount storageAccount = CloudStorageAccount.Parse(ConnectionString);      CloudTableClient tableClient = storageAccount.CreateCloudTableClient();      TableServiceContext serviceContext = tableClient.GetDataServiceContext();      CloudTableQuery<MyData1> partitionQuery =         (from e in serviceContext.CreateQuery<MyData1>(_tableName)         select new MyData1()         {            PartitionKey = e.PartitionKey,            RowKey = e.RowKey,            Timestamp = e.Timestamp,            Message = e.Message,            Level = e.Level,            Severity = e.Severity            }).AsTableServiceQuery<MyData1>();        return partitionQuery.ToList();  } This code gives you automatic retries because the AsTableServiceQuery does that for you. Also, note that this method is strongly-typed because it is using LINQ. Although this doesn’t look like too much code at first glance, you are actually mapping the strongly-typed object manually. So for larger entities, with dozens of properties, your code will grow. And from a maintenance standpoint, when a new property is added, you may need to change the mapping code. You will also note that the mapping being performed is optional; it is desired when you want to retrieve specific properties of the entities (not all) to reduce the network traffic. If you do not specify the properties you want, all the properties will be returned; in this example we are returning the Message, Level and Severity properties (in addition to the required PartitionKey, RowKey and Timestamp). The Enzo Azure API does the mapping automatically and also handles automatic reties when fetching entities. The equivalent code to fetch all the entities (with the same three properties) from the same Azure Table looks like this: // With the Enzo Azure API public List<MyData2> FetchAllEntities() {        AzureTable at = new AzureTable(_accountName, _accountKey, _ssl, _tableName);        List<MyData2> res = at.Fetch<MyData2>("", "Message,Level,Severity");        return res; } As you can see, the Enzo Azure API returns the entities already strongly typed, so there is no need to map the output. Also, the Enzo Azure API makes it easy to specify the list of properties to return, and to specify a filter as well (no filter was provided in this example; the filter is passed as the first parameter).  Fetch Strategies Both approaches discussed above fetch the data sequentially. In addition to the linear/sequential fetch methods, the Enzo Azure API provides specific fetch strategies. Fetch strategies are designed to prepare a set of REST calls, executed in parallel, in a way that performs faster that if you were to fetch the data sequentially. For example, if the PartitionKey is a GUID string, you could prepare multiple calls, providing appropriate filters ([‘a’, ‘b’[, [‘b’, ‘c’[, [‘c’, ‘d[, …), and send those calls in parallel. As you can imagine, the code necessary to create these requests would be fairly large. With the Enzo Azure API, two strategies are provided out of the box: the GUID and List strategies. If you are interested in how these strategies work, see the Enzo Azure API Online Help. Here is an example code that performs parallel requests using the GUID strategy (which executes more than 2 t o3 times faster than the sequential methods discussed previously): public List<MyData2> FetchAllEntitiesGUID() {     AzureTable at = new AzureTable(_accountName, _accountKey, _ssl, _tableName);     List<MyData2> res = at.FetchWithGuid<MyData2>("", "Message,Level,Severity");     return res; } Faster Results With Sequential Fetch Methods Developing a faster API wasn’t a primary objective; but it appears that the performance tests performed with the Enzo Azure API deliver the data a little faster out of the box (5%-10% on average, and sometimes to up 50% faster) with the sequential fetch methods. Although the amount of data is the same regardless of the approach (and the REST calls are almost exactly identical), the object mapping approach is different. So it is likely that the slight performance increase is due to a lighter API. Using LINQ offers many advantages and tremendous flexibility; nevertheless when fetching data it seems that the Enzo Azure API delivers faster.  For example, the same code previously discussed delivered the following results when fetching 3,000 entities (about 1KB each). The average elapsed time shows that the Azure SDK returned the 3000 entities in about 5.9 seconds on average, while the Enzo Azure API took 4.2 seconds on average (39% improvement). With Fetch Strategies When using the fetch strategies we are no longer comparing apples to apples; the Azure SDK is not designed to implement fetch strategies out of the box, so you would need to code the strategies yourself. Nevertheless I wanted to provide out of the box capabilities, and as a result you see a test that returned about 10,000 entities (1KB each entity), and an average execution time over 5 runs. The Azure SDK implemented a sequential fetch while the Enzo Azure API implemented the List fetch strategy. The fetch strategy was 2.3 times faster. Note that the following test hit a limit on my network bandwidth quickly (3.56Mbps), so the results of the fetch strategy is significantly below what it could be with a higher bandwidth. Additional Methods The API wouldn’t be complete without support for a few important methods other than the fetch methods discussed previously. The Enzo Azure API offers these additional capabilities: - Support for batch updates, deletes and inserts - Conversion of entities to DataRow, and List<> to a DataTable - Extension methods for Delete, Merge, Update, Insert - Support for asynchronous calls and cancellation - Support for fetch statistics (total bytes, total REST calls, retries…) For more information, visit http://www.bluesyntax.net or go directly to the Enzo Azure API page (http://www.bluesyntax.net/EnzoAzureAPI.aspx). About Herve Roggero Herve Roggero, Windows Azure MVP, is the founder of Blue Syntax Consulting, a company specialized in cloud computing products and services. Herve's experience includes software development, architecture, database administration and senior management with both global corporations and startup companies. Herve holds multiple certifications, including an MCDBA, MCSE, MCSD. He also holds a Master's degree in Business Administration from Indiana University. Herve is the co-author of "PRO SQL Azure" from Apress and runs the Azure Florida Association (on LinkedIn: http://www.linkedin.com/groups?gid=4177626). For more information on Blue Syntax Consulting, visit www.bluesyntax.net.

    Read the article

  • Coding With Windows Azure IaaS

    - by Hisham El-bereky
    This post will focus on some advanced programming topics concerned with IaaS (Infrastructure as a Service) which provided as windows azure virtual machine (with its related resources like virtual disk and virtual network), you know that windows azure started as PaaS cloud platform but regarding to some business cases which need to have full control over their virtual machine, so windows azure directed toward providing IaaS. Sometimes you will need to manage your cloud IaaS through code may be for these reasons: Working on hyper-cloud system by providing bursting connector to windows azure virtual machines Providing multi-tenant system which consume windows azure virtual machine Automated process on your on-premises or cloud service which need to utilize some virtual resources We are going to implement the following basic operation using C# code: List images Create virtual machine List virtual machines Restart virtual machine Delete virtual machine Before going to implement the above operations we need to prepare client side and windows azure subscription to communicate correctly by providing management certificate (x.509 v3 certificates) which permit client access to resources in your Windows Azure subscription, whilst requests made using the Windows Azure Service Management REST API require authentication against a certificate that you provide to Windows Azure More info about setting management certificate located here. And to install .cer on other client machine you will need the .pfx file, or if not exist by exporting .cer as .pfx Note: You will need to install .net 4.5 on your machine to try the code So let start This post built on the post sent by Michael Washam "Advanced Windows Azure IaaS – Demo Code", so I'm here to declare some points and to add new operation which is not exist in Michael's demo The basic C# class object used here as client to azure REST API for IaaS service is HttpClient (Provides a base class for sending HTTP requests and receiving HTTP responses from a resource identified by a URI) this object must be initialized with the required data like certificate, headers and content if required. Also I'd like to refer here that the code is based on using Asynchronous programming with calls to azure which enhance the performance and gives us the ability to work with complex calls which depends on more than one sub-call to achieve some operation The following code explain how to get certificate and initializing HttpClient object with required data like headers and content HttpClient GetHttpClient() { X509Store certificateStore = null; X509Certificate2 certificate = null; try { certificateStore = new X509Store(StoreName.My, StoreLocation.CurrentUser); certificateStore.Open(OpenFlags.ReadOnly); string thumbprint = ConfigurationManager.AppSettings["CertThumbprint"]; var certificates = certificateStore.Certificates.Find(X509FindType.FindByThumbprint, thumbprint, false); if (certificates.Count > 0) { certificate = certificates[0]; } } finally { if (certificateStore != null) certificateStore.Close(); }   WebRequestHandler handler = new WebRequestHandler(); if (certificate!= null) { handler.ClientCertificates.Add(certificate); HttpClient httpClient = new HttpClient(handler); //And to set required headers lik x-ms-version httpClient.DefaultRequestHeaders.Add("x-ms-version", "2012-03-01"); httpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/xml")); return httpClient; } return null; }  Let us keep the object httpClient as reference object used to call windows azure REST API IaaS service. For each request operation we need to define: Request URI HTTP Method Headers Content body (1) List images The List OS Images operation retrieves a list of the OS images from the image repository Request URI https://management.core.windows.net/<subscription-id>/services/images] Replace <subscription-id> with your windows Id HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None.  C# Code List<String> imageList = new List<String>(); //replace _subscriptionid with your WA subscription String uri = String.Format("https://management.core.windows.net/{0}/services/images", _subscriptionid);  HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);  if (responseStream != null) {      XDocument xml = XDocument.Load(responseStream);      var images = xml.Root.Descendants(ns + "OSImage").Where(i => i.Element(ns + "OS").Value == "Windows");      foreach (var image in images)      {      string img = image.Element(ns + "Name").Value;      imageList.Add(img);      } } More information about the REST call (Request/Response) located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/jj157191.aspx (2) Create Virtual Machine Creating virtual machine required service and deployment to be created first, so creating VM should be done through three steps incase hosted service and deployment is not created yet Create hosted service, a container for service deployments in Windows Azure. A subscription may have zero or more hosted services Create deployment, a service that is running on Windows Azure. A deployment may be running in either the staging or production deployment environment. It may be managed either by referencing its deployment ID, or by referencing the deployment environment in which it's running. Create virtual machine, the previous two steps info required here in this step I suggest here to use the same name for service, deployment and service to make it easy to manage virtual machines Note: A name for the hosted service that is unique within Windows Azure. This name is the DNS prefix name and can be used to access the hosted service. For example: http://ServiceName.cloudapp.net// 2.1 Create service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/gg441304.aspx C# code The following method show how to create hosted service async public Task<String> NewAzureCloudService(String ServiceName, String Location, String AffinityGroup, String subscriptionid) { String requestID = String.Empty;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices", subscriptionid); HttpClient http = GetHttpClient();   System.Text.ASCIIEncoding ae = new System.Text.ASCIIEncoding(); byte[] svcNameBytes = ae.GetBytes(ServiceName);   String locationEl = String.Empty; String locationVal = String.Empty;   if (String.IsNullOrEmpty(Location) == false) { locationEl = "Location"; locationVal = Location; } else { locationEl = "AffinityGroup"; locationVal = AffinityGroup; }   XElement srcTree = new XElement("CreateHostedService", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("ServiceName", ServiceName), new XElement("Label", Convert.ToBase64String(svcNameBytes)), new XElement(locationEl, locationVal) ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } 2.2 Create Deployment Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deploymentslots/<deployment-slot-name> <deployment-slot-name> with staging or production, depending on where you wish to deploy your service package <service-name> provided as input from the previous step HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/ee460813.aspx C# code The following method show how to create hosted service deployment async public Task<String> NewAzureVMDeployment(String ServiceName, String VMName, String VNETName, XDocument VMXML, XDocument DNSXML) { String requestID = String.Empty;     String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments", _subscriptionid, ServiceName); HttpClient http = GetHttpClient(); XElement srcTree = new XElement("Deployment", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("Name", ServiceName), new XElement("DeploymentSlot", "Production"), new XElement("Label", ServiceName), new XElement("RoleList", null) );   if (String.IsNullOrEmpty(VNETName) == false) { srcTree.Add(new XElement("VirtualNetworkName", VNETName)); }   if(DNSXML != null) { srcTree.Add(new XElement("DNS", new XElement("DNSServers", DNSXML))); }   XDocument deploymentXML = new XDocument(srcTree); ApplyNamespace(srcTree, ns);   deploymentXML.Descendants(ns + "RoleList").FirstOrDefault().Add(VMXML.Root);     String fixedXML = deploymentXML.ToString().Replace(" xmlns=\"\"", ""); HttpContent content = new StringContent(fixedXML); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); }   return requestID; } 2.3 Create Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<cloudservice-name>/deployments/<deployment-name>/roles <cloudservice-name> and <deployment-name> are provided as input from the previous steps Http Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) located here http://msdn.microsoft.com/en-us/library/windowsazure/jj157186.aspx C# code async public Task<String> NewAzureVM(String ServiceName, String VMName, XDocument VMXML) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName);   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles", _subscriptionid, ServiceName, deployment);   HttpClient http = GetHttpClient(); HttpContent content = new StringContent(VMXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml"); HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } (3) List Virtual Machines To list virtual machine hosted on windows azure subscription we have to loop over all hosted services to get its hosted virtual machines To do that we need to execute the following operations: listing hosted services listing hosted service Virtual machine 3.1 Listing Hosted Services Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/ee460781.aspx C# Code async private Task<List<XDocument>> GetAzureServices(String subscriptionid) { String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices ", subscriptionid); List<XDocument> services = new List<XDocument>();   HttpClient http = GetHttpClient();   Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var svcs = xml.Root.Descendants(ns + "HostedService"); foreach (XElement r in svcs) { XDocument vm = new XDocument(r); services.Add(vm); } }   return services; }  3.2 Listing Hosted Service Virtual Machines Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name> HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157193.aspx C# Code async public Task<XDocument> GetAzureVM(String ServiceName, String VMName, String subscriptionid) { String deployment = await GetAzureDeploymentName(ServiceName); XDocument vmXML = new XDocument();   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles/{3}", subscriptionid, ServiceName, deployment, VMName);   HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri); if (responseStream != null) { vmXML = XDocument.Load(responseStream); }   return vmXML; }  So the final method which can be used to list all virtual machines is: async public Task<XDocument> GetAzureVMs() { List<XDocument> services = await GetAzureServices(); XDocument vms = new XDocument(); vms.Add(new XElement("VirtualMachines")); ApplyNamespace(vms.Root, ns); foreach (var svc in services) { string ServiceName = svc.Root.Element(ns + "ServiceName").Value;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deploymentslots/{2}", _subscriptionid, ServiceName, "Production");   try { HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var roles = xml.Root.Descendants(ns + "RoleInstance"); foreach (XElement r in roles) { XElement svcnameel = new XElement("ServiceName", ServiceName); ApplyNamespace(svcnameel, ns); r.Add(svcnameel); // not part of the roleinstance vms.Root.Add(r); } } } catch (HttpRequestException http) { // no vms with cloud service } } return vms; }  (4) Restart Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name>/Operations HTTP Method POST (HTTP 1.1) Headers x-ms-version: 2012-03-01 Content-Type: application/xml Body <RestartRoleOperation xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <OperationType>RestartRoleOperation</OperationType> </RestartRoleOperation>  More details about this http request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157197.aspx  C# Code async public Task<String> RebootVM(String ServiceName, String RoleName) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName); String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roleInstances/{3}/Operations", _subscriptionid, ServiceName, deployment, RoleName);   HttpClient http = GetHttpClient();   XElement srcTree = new XElement("RestartRoleOperation", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("OperationType", "RestartRoleOperation") ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; }  (5) Delete Virtual Machine You can delete your hosted virtual machine by deleting its deployment, but I prefer to delete its hosted service also, so you can easily manage your virtual machines from code 5.1 Delete Deployment Request URI https://management.core.windows.net/< subscription-id >/services/hostedservices/< service-name >/deployments/<Deployment-Name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteDeployment( string deploymentName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}", _subscriptionid, deploymentName, deploymentName); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  5.2 Delete Hosted Service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteService(string serviceName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}", _subscriptionid, serviceName); Log.Info("Windows Azure URI (http DELETE verb): " + uri, typeof(VMManager)); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  And the following is the method which can used to delete both of deployment and service async public Task<string> DeleteVM(string vmName) { string responseString = string.Empty;   // as a convention here in this post, a unified name used for service, deployment and VM instance to make it easy to manage VMs HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await DeleteDeployment(vmName);   if (responseMessage != null) {   string requestID = responseMessage.Headers.GetValues("x-ms-request-id").FirstOrDefault(); OperationResult result = await PollGetOperationStatus(requestID, 5, 120); if (result.Status == OperationStatus.Succeeded) { responseString = result.Message; HttpResponseMessage sResponseMessage = await DeleteService(vmName); if (sResponseMessage != null) { OperationResult sResult = await PollGetOperationStatus(requestID, 5, 120); responseString += sResult.Message; } } else { responseString = result.Message; } } return responseString; }  Note: This article is subject to be updated Hisham  References Advanced Windows Azure IaaS – Demo Code Windows Azure Service Management REST API Reference Introduction to the Azure Platform Representational state transfer Asynchronous Programming with Async and Await (C# and Visual Basic) HttpClient Class

    Read the article

  • Announcing Windows Azure Mobile Services

    - by ScottGu
    I’m excited to announce a new capability we are adding to Windows Azure today: Windows Azure Mobile Services Windows Azure Mobile Services makes it incredibly easy to connect a scalable cloud backend to your client and mobile applications.  It allows you to easily store structured data in the cloud that can span both devices and users, integrate it with user authentication, as well as send out updates to clients via push notifications. Today’s release enables you to add these capabilities to any Windows 8 app in literally minutes, and provides a super productive way for you to quickly build out your app ideas.  We’ll also be adding support to enable these same scenarios for Windows Phone, iOS, and Android devices soon. Read this getting started tutorial to walkthrough how you can build (in less than 5 minutes) a simple Windows 8 “Todo List” app that is cloud enabled using Windows Azure Mobile Services.  Or watch this video of me showing how to do it step by step. Getting Started If you don’t already have a Windows Azure account, you can sign up for a no-obligation Free Trial.  Once you are signed-up, click the “preview features” section under the “account” tab of the www.windowsazure.com website and enable your account to support the “Mobile Services” preview.   Instructions on how to enable this can be found here. Once you have the mobile services preview enabled, log into the Windows Azure Portal, click the “New” button and choose the new “Mobile Services” icon to create your first mobile backend.  Once created, you’ll see a quick-start page like below with instructions on how to connect your mobile service to an existing Windows 8 client app you have already started working on, or how to create and connect a brand-new Windows 8 client app with it: Read this getting started tutorial to walkthrough how you can build (in less than 5 minutes) a simple Windows 8 “Todo List” app  that stores data in Windows Azure. Storing Data in the Cloud Storing data in the cloud with Windows Azure Mobile Services is incredibly easy.  When you create a Windows Azure Mobile Service, we automatically associate it with a SQL Database inside Windows Azure.  The Windows Azure Mobile Service backend then provides built-in support for enabling remote apps to securely store and retrieve data from it (using secure REST end-points utilizing a JSON-based ODATA format) – without you having to write or deploy any custom server code.  Built-in management support is provided within the Windows Azure portal for creating new tables, browsing data, setting indexes, and controlling access permissions. This makes it incredibly easy to connect client applications to the cloud, and enables client developers who don’t have a server-code background to be productive from the very beginning.  They can instead focus on building the client app experience, and leverage Windows Azure Mobile Services to provide the cloud backend services they require.  Below is an example of client-side Windows 8 C#/XAML code that could be used to query data from a Windows Azure Mobile Service.  Client-side C# developers can write queries like this using LINQ and strongly typed POCO objects, which are then translated into HTTP REST queries that run against a Windows Azure Mobile Service.   Developers don’t have to write or deploy any custom server-side code in order to enable client-side code below to execute and asynchronously populate their client UI: Because Mobile Services is part of Windows Azure, developers can later choose to augment or extend their initial solution and add custom server functionality and more advanced logic if they want.  This provides maximum flexibility, and enables developers to grow and extend their solutions to meet any needs. User Authentication and Push Notifications Windows Azure Mobile Services also make it incredibly easy to integrate user authentication/authorization and push notifications within your applications.  You can use these capabilities to enable authentication and fine grain access control permissions to the data you store in the cloud, as well as to trigger push notifications to users/devices when the data changes.  Windows Azure Mobile Services supports the concept of “server scripts” (small chunks of server-side script that executes in response to actions) that make it really easy to enable these scenarios. Below are some tutorials that walkthrough common authentication/authorization/push scenarios you can do with Windows Azure Mobile Services and Windows 8 apps: Enabling User Authentication Authorizing Users  Get Started with Push Notifications Push Notifications to multiple Users Manage and Monitor your Mobile Service Just like with every other service in Windows Azure, you can monitor usage and metrics of your mobile service backend using the “Dashboard” tab within the Windows Azure Portal. The dashboard tab provides a built-in monitoring view of the API calls, Bandwidth, and server CPU cycles of your Windows Azure Mobile Service.   You can also use the “Logs” tab within the portal to review error messages.  This makes it easy to monitor and track how your application is doing. Scale Up as Your Business Grows Windows Azure Mobile Services now allows every Windows Azure customer to create and run up to 10 Mobile Services in a free, shared/multi-tenant hosting environment (where your mobile backend will be one of multiple apps running on a shared set of server resources).  This provides an easy way to get started on projects at no cost beyond the database you connect your Windows Azure Mobile Service to (note: each Windows Azure free trial account also includes a 1GB SQL Database that you can use with any number of apps or Windows Azure Mobile Services). If your client application becomes popular, you can click the “Scale” tab of your Mobile Service and switch from “Shared” to “Reserved” mode.  Doing so allows you to isolate your apps so that you are the only customer within a virtual machine.  This allows you to elastically scale the amount of resources your apps use – allowing you to scale-up (or scale-down) your capacity as your traffic grows: With Windows Azure you pay for compute capacity on a per-hour basis – which allows you to scale up and down your resources to match only what you need.  This enables a super flexible model that is ideal for new mobile app scenarios, as well as startups who are just getting going.  Summary I’ve only scratched the surface of what you can do with Windows Azure Mobile Services – there are a lot more features to explore.  With Windows Azure Mobile Services you’ll be able to build mobile app experiences faster than ever, and enable even better user experiences – by connecting your client apps to the cloud. Visit the Windows Azure Mobile Services development center to learn more, and build your first Windows 8 app connected with Windows Azure today.  And read this getting started tutorial to walkthrough how you can build (in less than 5 minutes) a simple Windows 8 “Todo List” app that is cloud enabled using Windows Azure Mobile Services. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Windows Azure Learning Plan - Architecture

    - by BuckWoody
    This is one in a series of posts on a Windows Azure Learning Plan. You can find the main post here. This one deals with what an Architect needs to know about Windows Azure.   General Architectural Guidance Overview and general  information about Azure - what it is, how it works, and where you can learn more. Cloud Computing, A Crash Course for Architects (Video) http://www.msteched.com/2010/Europe/ARC202 Patterns and Practices for Cloud Development http://msdn.microsoft.com/en-us/library/ff898430.aspx Design Patterns, Anti-Patterns and Windows Azure http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/27/design-patterns-anti-patterns-and-windows-azure.aspx Application Patterns for the Cloud http://blogs.msdn.com/b/kashif/archive/2010/08/07/application-patterns-for-the-cloud.aspx Architecting Applications for High Scalability (Video) http://www.msteched.com/2010/Europe/ARC309 David Aiken on Azure Architecture Patterns (Video) http://blogs.msdn.com/b/architectsrule/archive/2010/09/09/arcast-tv-david-aiken-on-azure-architecture-patterns.aspx Cloud Application Architecture Patterns (Video) http://blogs.msdn.com/b/bobfamiliar/archive/2010/10/19/cloud-application-architecture-patterns-by-david-platt.aspx 10 Things Every Architect Needs to Know about Windows Azure http://geekswithblogs.net/iupdateable/archive/2010/10/20/slides-and-links-for-windows-azure-platform-session-at-software.aspx Key Differences Between Public and Private Clouds http://blogs.msdn.com/b/kadriu/archive/2010/10/24/key-differences-between-public-and-private-clouds.aspx Microsoft Application Platform at a Glance http://blogs.msdn.com/b/jmeier/archive/2010/10/30/microsoft-application-platform-at-a-glance.aspx Windows Azure is not just about Roles http://vikassahni.wordpress.com/2010/11/17/windows-azure-is-not-just-about-roles/ Example Application for Windows Azure http://msdn.microsoft.com/en-us/library/ff966482.aspx Implementation Guidance Practical applications for the architect to consider 5 Enterprise steps for adopting a Platform as a Service http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0 Performance-Based Scaling in Windows Azure http://msdn.microsoft.com/en-us/magazine/gg232759.aspx Windows Azure Guidance for the Development Process http://blogs.msdn.com/b/eugeniop/archive/2010/04/01/windows-azure-guidance-development-process.aspx Microsoft Developer Guidance Maps http://blogs.msdn.com/b/jmeier/archive/2010/10/04/developer-guidance-ia-at-a-glance.aspx How to Build a Hybrid On-Premise/In Cloud Application http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/09/how-to-build-a-hybrid-on-premise-in-cloud-application.aspx A Common Scenario of Multi-instances in Windows Azure http://blogs.msdn.com/b/windows-azure-support/archive/2010/11/03/a-common-scenario-of-multi_2d00_instances-in-windows-azure-.aspx Slides and Links for Windows Azure Platform Best Practices http://geekswithblogs.net/iupdateable/archive/2010/09/29/slides-and-links-for-windows-azure-platform-best-practices-for.aspx AppFabric Architecture and Deployment Topologies guide http://blogs.msdn.com/b/appfabriccat/archive/2010/09/10/appfabric-architecture-and-deployment-topologies-guide-now-available-via-microsoft-download-center.aspx Windows Azure Platform Appliance http://www.microsoft.com/windowsazure/appliance/ Integrating Cloud Technologies into Your Organization Interoperability with Open Source and other applications; business and cost decisions Interoperability Labs at Microsoft http://www.interoperabilitybridges.com/ Windows Azure Service Level Agreements http://www.microsoft.com/windowsazure/sla/

    Read the article

  • Azure Tables or SQL Azure?

    - by Phil Wright
    I am at the planning stage of a web application that will be hosted in Azure with ASP.NET for the web site and Silverlight within the site for a rich user experience. Should I use Azure Tables or SQL Azure for storing my application data?

    Read the article

  • Windows Azure Emulators On Your Desktop

    - by BuckWoody
    Many people feel they have to set up a full Azure subscription online to try out and develop on Windows Azure. But you don’t have to do that right away. In fact, you can download the Windows Azure Compute Emulator – a “cloud development environment” – right on your desktop. No, it’s not for production use, and no, you won’t have other people using your system as a cloud provider, and yes, there are some differences with Production Windows Azure, but you’ll be able code, run, test, diagnose, watch, change and configure code without having any connection to the Internet at all. The best thing about this approach is that when you are ready to deploy the code you’ve been testing, a few clicks deploys it to your subscription when you make one.   So what deep-magic does it take to run such a thing right on your laptop or even a Virtual PC? Well, it’s actually not all that difficult. You simply download and install the Windows Azure SDK (you can even get a free version of Visual Studio for it to run on – you’re welcome) from here: http://msdn.microsoft.com/en-us/windowsazure/cc974146.aspx   This SDK will also install the Windows Azure Compute Emulator and the Windows Azure Storage Emulator – and then you’re all set. Right-click the icon for Visual Studio and select “Run as Administrator”:    Now open a new “Cloud” type of project:   Add your Web and Worker Roles that you want to code:   And when you’re done with your design, press F5 to start the desktop version of Azure:   Want to learn more about what’s happening underneath? Right-click the tray icon with the Azure logo, and select the two emulators to see what they are doing:          In the configuration files, you’ll see a “Use Development Storage” setting. You can call the BLOB, Table or Queue storage and it will all run on your desktop. When you’re ready to deploy everything to Windows Azure, you simply change the configuration settings and add the storage keys and so on that you need.   Want to learn more about all this?   Overview of the Windows Azure Compute Emulator: http://msdn.microsoft.com/en-us/library/gg432968.aspx Overview of the Windows Azure Storage Emulator: http://msdn.microsoft.com/en-us/library/gg432983.aspx January 2011 Training Kit: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=413E88F8-5966-4A83-B309-53B7B77EDF78&displaylang=en      

    Read the article

  • Windows Azure Emulators On Your Desktop

    - by BuckWoody
    Many people feel they have to set up a full Azure subscription online to try out and develop on Windows Azure. But you don’t have to do that right away. In fact, you can download the Windows Azure Compute Emulator – a “cloud development environment” – right on your desktop. No, it’s not for production use, and no, you won’t have other people using your system as a cloud provider, and yes, there are some differences with Production Windows Azure, but you’ll be able code, run, test, diagnose, watch, change and configure code without having any connection to the Internet at all. The best thing about this approach is that when you are ready to deploy the code you’ve been testing, a few clicks deploys it to your subscription when you make one.   So what deep-magic does it take to run such a thing right on your laptop or even a Virtual PC? Well, it’s actually not all that difficult. You simply download and install the Windows Azure SDK (you can even get a free version of Visual Studio for it to run on – you’re welcome) from here: http://msdn.microsoft.com/en-us/windowsazure/cc974146.aspx   This SDK will also install the Windows Azure Compute Emulator and the Windows Azure Storage Emulator – and then you’re all set. Right-click the icon for Visual Studio and select “Run as Administrator”:    Now open a new “Cloud” type of project:   Add your Web and Worker Roles that you want to code:   And when you’re done with your design, press F5 to start the desktop version of Azure:   Want to learn more about what’s happening underneath? Right-click the tray icon with the Azure logo, and select the two emulators to see what they are doing:          In the configuration files, you’ll see a “Use Development Storage” setting. You can call the BLOB, Table or Queue storage and it will all run on your desktop. When you’re ready to deploy everything to Windows Azure, you simply change the configuration settings and add the storage keys and so on that you need.   Want to learn more about all this?   Overview of the Windows Azure Compute Emulator: http://msdn.microsoft.com/en-us/library/gg432968.aspx Overview of the Windows Azure Storage Emulator: http://msdn.microsoft.com/en-us/library/gg432983.aspx January 2011 Training Kit: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=413E88F8-5966-4A83-B309-53B7B77EDF78&displaylang=en      

    Read the article

  • wordpress sites are slow on shared hosting but plain html/css sites are fast

    - by sam
    ive got a shared hosting account, unlimited sites, unlimited gb, unlimited bandwidth ect ect. Of course because its shared and a cheap one at that theres too many sites on each server and it all runs slow due to lack of ram. What ive found is that my plain html/css/js sites run an awful lot faster than my wordpress sites on this hosting and i was trying to work out why. Im not exactly sure how a browser sends a request for a page and the full process of request and delivery, but are my html sites running faster as they are just serving code to the browser, where as the wordpress sites are having to make calculations from the database to make each page before its delivered .. is that correct, or am i completly off course ?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >