Search Results

Search found 88657 results on 3547 pages for 'code improvement'.

Page 2/3547 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Good fix vs Quick fix [duplicate]

    - by Andrea Girardi
    This question already has an answer here: Does craftsmanship pay off? [duplicate] 16 answers Good design: How much hackyness is acceptable? [duplicate] 9 answers How do you balance between “do it right” and “do it ASAP” in your daily work? 14 answers Let's start from this principle: quality is a feature that you can't add to a project in the middle of the development process. This is the scenario: two weeks to go live with my project and, one of the developers added a specific method used only for one web application to our framework (Our framework is a bounce of java classes used to extract content from MongoDB, Alfresco, mySql and it's used by web applications). I'm the team leader and I told him to generalize the method to keep the framework to keep reusable but he said "no, I prefer don't do that because there are a lot of bugs that need to be fixed". The manager is agree with him and of course I'm not. Is it better to made extra effort to keep a framework free from any specific implementation (probably used only by one web application) or just add the methods because it works? So, my question is: is it correct to write code that only works or is better to write code that works but it doesn't sucks (i.e. adding embedded value, specific methods, extra classes, add column to database, etc)? How is it possible to justify the extra time (to be honest, this kind of fix requires 10 minutes extra to write a good generic code) to the management? How is possible to argue it's the right way to write code to young developers and PM? in general, good fix or quick fix? Ah, 10 minutes after I get the email from PM, he asked me why on a url of application 2 there was the name of application 1 during the login? I like to quote Jeff Atwood: "Don't leave "broken windows" (bad designs, wrong decisions, or poor code) unrepaired. Fix each one as soon as it is discovered. " Excerpt From: Hyperink. "How-To-Stop-Sucking-And-Be-Awesome-Instead." iBooks.

    Read the article

  • How to evaluate the quality of Rails code?

    - by Fortuity
    In a code review, what do you look for to assess a developer's expertise? Given an opportunity to look at a developer's work on a real-world project, what tell-tale signs are a tip-off to carelessness or lack of experience? Conversely, where do you look in the code to find evidence of a developer's skill or knowledge of best practices? For example, if I'm looking at a typical Rails app, I would be happy to see the developer is using RSpec (showing a commitment to using test-driven development and knowledge that RSpec is currently more popular than the default TestUnit). But in examining the specs for a Rails model, I see that the developer is testing associations, which might indicate a lack of real understanding of Rails testing requirements (since such tests are redundant given that they only test what's already implemented and tested in ActiveRecord). More generally, I might look to see if developers are writing their own implementations versus using widely available gems or if they are cleaning up code versus leaving lots of commented-out "leftovers." What helps you determine the skill of a Rails developer? What's your code quality checklist?

    Read the article

  • What tools do you use to let you know that methods in your codebase are getting too long?

    - by blueberryfields
    Most people seem to agree that long methods are a code smell - a sign something may not be quite right with the code contained in them. Which tools do you use to detect this smell? clarified title based on responses. also, remember: Your code will live over time, and be edited by multiple programmers Emergency fixes and changes will come in, late at night, when the writer is too tired to pay attention to smells Different programmers use different tools. A contractor with 4 screens set at maximum resolution will have a different idea of acceptable method size In this context, I'm looking for tools and methods which go beyond looking at the size of a method when it's written, or when it's being edited.

    Read the article

  • Code Review tools - to use or not?

    - by liortal
    On my dev team, we're doing code reviews, however not in a proper way i believe. The issues our process suffers from: Not enough time is allocated for proper code review. Doing reviews is not mandatory - many times it is simply not done. Devs sit together for reviews, due to lack of another easy mechanism for doing it "offline" without spending both developers' time. My question is: can integration of a tool for code reviews improve the points mentioned above? Is it not needed? I would love to hear from positive/negative experiences.

    Read the article

  • c++ ide & tools with clang integration

    - by lurscher
    recently i read this blog about google integrating clang parser into their code analysis tools This is something in which c++ is at least a decade behind other languages like java, but now that llvm-clang is almost c++ iso-ready, i think its possible for c++ code analysis tools to begin using the c++ parser effectively, since it has been designed from the ground up precisely for this so i'm wondering if there are existing open source or known commercial projects taking this path, integrating with clang to provide higher-level analysis tools?

    Read the article

  • Where should I start reading AngularJS's source code?

    - by Abaco
    After reading this article I realized that I really didn't read any "serious" source code during my 3-years as a professional developer. Recently I started a new web-project which makes heavy use of AngularJS, so I decided to start my reading - or, better, decoding [as the blogger wrote] - activity from something that is both challenging and professionally useful. Now I just need to be pointed in the right direction. Should I just start from the start of the source code or is there a better starting point?

    Read the article

  • Distinguishing repetitive code with the same implementation

    - by KyelJmD
    Given this sample code import java.util.ArrayList; import blackjack.model.items.Card; public class BlackJackPlayer extends Player { private double bet; private Hand hand01 = new Hand(); private Hand hand02 = new Hand(); public void addCardToHand01(Card c) { hand01.addCard(c); } public void addCardToHand02(Card c) { hand02.addCard(c); } public void bustHand01() { hand01.setBust(true); } public void bustHand02() { hand02.setBust(true); } public void standHand01() { hand01.setStand(true); } public void standHand02() { hand02.setStand(true); } public boolean isHand01Bust() { return hand01.isBust(); } public boolean isHand02Bust() { return hand02.isBust(); } public boolean isHand01Standing() { return hand01.isStanding(); } public boolean isHand02Standing() { return hand02.isStanding(); } public int getHand01Score(){ return hand01.getCardScore(); } public int getHand02Score(){ return hand02.getCardScore(); } } Is this considered as a repetitive code? providing that each method is operating a seperate field but doing the same implementation ? Note that hand01 and hand02 should be distinct. if this is considered as repetitive code, how would I address this? providing that each hand is a seperate entity

    Read the article

  • Is it normal needing time to understand code i wrote recently

    - by user1478167
    By recently i mean some weeks ago. I am trying to continue a project i left 2 weeks ago and i need time to understand some functions i wrote(not copied from somewhere) and it takes me time. Normally i don't need to because my functions,methods etc are black boxes but when i need to change something it's really hard. Does this mean i write bad code? I am still in school and i am the only who writes/uses the code so i don't have feedback, but i am afraid that if it is difficult for me to understand it, it would be 10 times more difficult for someone else. What should i do? I write a lot of comments but most of the time are useless when reviewing. Do you have any suggestions?

    Read the article

  • Adding complexity to remove duplicate code

    - by Phil
    I have several classes that all inherit from a generic base class. The base class contains a collection of several objects of type T. Each child class needs to be able to calculate interpolated values from the collection of objects, but since the child classes use different types, the calculation varies a tiny bit from class to class. So far I have copy/pasted my code from class to class and made minor modifications to each. But now I am trying to remove the duplicated code and replace it with one generic interpolation method in my base class. However that is proving to be very difficult, and all the solutions I have thought of seem way too complex. I am starting to think the DRY principle does not apply as much in this kind of situation, but that sounds like blasphemy. How much complexity is too much when trying to remove code duplication? EDIT: The best solution I can come up with goes something like this: Base Class: protected T GetInterpolated(int frame) { var index = SortedFrames.BinarySearch(frame); if (index >= 0) return Data[index]; index = ~index; if (index == 0) return Data[index]; if (index >= Data.Count) return Data[Data.Count - 1]; return GetInterpolatedItem(frame, Data[index - 1], Data[index]); } protected abstract T GetInterpolatedItem(int frame, T lower, T upper); Child class A: public IGpsCoordinate GetInterpolatedCoord(int frame) { ReadData(); return GetInterpolated(frame); } protected override IGpsCoordinate GetInterpolatedItem(int frame, IGpsCoordinate lower, IGpsCoordinate upper) { double ratio = GetInterpolationRatio(frame, lower.Frame, upper.Frame); var x = GetInterpolatedValue(lower.X, upper.X, ratio); var y = GetInterpolatedValue(lower.Y, upper.Y, ratio); var z = GetInterpolatedValue(lower.Z, upper.Z, ratio); return new GpsCoordinate(frame, x, y, z); } Child class B: public double GetMph(int frame) { ReadData(); return GetInterpolated(frame).MilesPerHour; } protected override ISpeed GetInterpolatedItem(int frame, ISpeed lower, ISpeed upper) { var ratio = GetInterpolationRatio(frame, lower.Frame, upper.Frame); var mph = GetInterpolatedValue(lower.MilesPerHour, upper.MilesPerHour, ratio); return new Speed(frame, mph); }

    Read the article

  • Visual Studio code metrics misreporting lines of code

    - by Ian Newson
    The code metrics analyser in Visual Studio, as well as the code metrics power tool, report the number of lines of code in the TestMethod method of the following code as 8. At the most, I would expect it to report lines of code as 3. [TestClass] public class UnitTest1 { private void Test(out string str) { str = null; } [TestMethod] public void TestMethod() { var mock = new Mock<UnitTest1>(); string str; mock.Verify(m => m.Test(out str)); } } Can anyone explain why this is the case? Further info After a little more digging I've found that removing the out parameter from the Test method and updating the test code causes LOC to be reported as 2, which I believe is correct. The addition of out causes the jump, so it's not because of braces or attributes. Decompiling the DLL with dotPeek reveals a fair amount of additional code generated because of the out parameter which could be considered 8 LOC, but removing the parameter and decompiling also reveals generated code, which could be considered 5 LOC, so it's not simply a matter of VS counting compiler generated code (which I don't believe it should do anyway).

    Read the article

  • Remove unwanted lines,dead code from source code?

    - by Passionate programmer
    How to make source code free of the following Remove dead codes that are more than few lines between /* c++ codes */ Change more than one line breaks to one Remove modified user name and date /*-------- MODIFICATION DONE by xyz on ------------*/ I have used a code formatter tool to get a nice formatted code but stuck with code with above items.Is there any way to make sure codes like above doesn't get in to svn and automatically formatted code gets into the source.

    Read the article

  • Why is Clean Code suggesting avoiding protected variables?

    - by Matsemann
    Clean Code suggests avoiding protected variables in the "Vertical Distance" section of the "Formatting" chapter: Concepts that are closely related should be kept vertically close to each other. Clearly this rule doesn't work for concepts that belong in separate files. But then closely related concepts should not be separated into different files unless you have a very good reason. Indeed, this is one of the reasons that protected variables should be avoided. What is the reasoning?

    Read the article

  • How to know whether to create a general system or to hack a solution

    - by Andy K
    I'm new to coding , learning it since last year actually. One of my worst habits is the following: Often I'm trying to create a solution that is too big , too complex and doesn't achieve what needs to be achieved, when a hacky kludge can make the fit. One last example was the following (see paste bin link below) http://pastebin.com/WzR3zsLn After explaining my issue, one nice person at stackoverflow came with this solution instead http://stackoverflow.com/questions/25304170/update-a-field-by-removing-quarter-or-removing-month When should I keep my code simple and when should I create a 'big', general solution? I feel stupid sometimes for building something so big, so awkward, just to solve a simple problem. It did not occur to me that there would be an easier solution. Any tips are welcomed. Best

    Read the article

  • Are too many assertions code smell?

    - by Florents
    I've really fallen in love with unit testing and TDD - I am test infected. However, unit testing is used for public methods. Sometimes though I do have to test some assumptions-assertions in private methods too, because some of them are "dangerous" and refactoring can't help further. (I know, testing frameworks allo testing private methods). So, It became a habit of mine that (almost always) the first and the last line of a private method are both assertions. I guess this couldn't be bad (right ??). However, I've noticed that I also tend to use assertions in public methods too (as in the private) just "to be sure". Could this be "testing duplication" since the public method assumpotions are tested from the unit testng framework? Could someone think of too many assertions as a code smell?

    Read the article

  • SQL code editor with syntax highlighing, auto-formatting and code folding

    - by Victor Stanciu
    Hello, Is there any SQL editor that supports syntax highlighting, automatic code formatting and code folding? I found this, but it's an Eclipse plugin (I'm a NetBeans user), and cannot automatically format code, which is the most important feature I'm after. Autocompletion is not important, nor is the possibility of running the code (like the SQL editor in NetBeans). Edit: I'm sorry for not specifying, I'm looking for Linux or even web-based software.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Code coverage (c++ code execution path)

    - by Poni
    Let's say I have this code: int function(bool b) { // execution path 1 int ret = 0; if(b) { // execution path 2 ret = 55; } else { // execution path 3 ret = 120; } return ret; } I need some sort of a mechanism to make sure that the code has gone in any possible path, i.e execution paths 1, 2 & 3 in the code above. I thought about having a global function, vector and a macro. This macro would simply call that function, passing as parameters the source file name and the line of code, and that function would mark that as "checked", by inserting to the vector the info that the macro passed. The problem is that I will not see anything about paths that did not "check". Any idea how do I do this? How to "register" a line of code at compile-time, so in run-time I can see that it didn't "check" yet? I hope I'm clear.

    Read the article

  • Announcing RSS feeds of Microsoft All-In-One Code Framework code samples

    - by Jialiang
    Today, we are not only announcing Sample Browser v2 CTP, but we are also excited to announce the availability of RSS feeds of All-In-One Code Framework code samples. By using these feeds, you can easily track and download the new code samples. English RSS feeds All code samples: http://support.microsoft.com/rss/en/rss.xml ASP.NET code samples: http://support.microsoft.com/rss/en/ASPNET.xml Silverlight code samples: http://support.microsoft.com/rss/en/Silverlight.xml Azure code samples: http://support.microsoft.com/rss/en/Azure.xml COM code samples: http://support.microsoft.com/rss/en/COM.xml Data Platform code samples: http://support.microsoft.com/rss/en/Data%20Platform.xml Library code samples: http://support.microsoft.com/rss/en/Library.xml Office dev code samples: http://support.microsoft.com/rss/en/Office.xml VSX code samples: http://support.microsoft.com/rss/en/VSX.xml Windows 7 code samples: http://support.microsoft.com/rss/en/Windows%207.xml Windows Forms code samples: http://support.microsoft.com/rss/en/Windows%20Forms.xml Windows General code samples: http://support.microsoft.com/rss/en/Windows%20General.xml Windows Service code samples: http://support.microsoft.com/rss/en/Windows%20Service.xml Windows Shell code samples: http://support.microsoft.com/rss/en/Windows%20Shell.xml Windows UI code samples: http://support.microsoft.com/rss/en/Windows%20UI.xml WPF code samples: http://support.microsoft.com/rss/en/WPF.xml ??RSS?? ??????:http://support.microsoft.com/rss/zh-cn/codeplex/rss.xml ASP.NET????:http://support.microsoft.com/rss/zh-cn/codeplex/ASPNET.xml Silverlight????:http://support.microsoft.com/rss/zh-cn/codeplex/Silverlight.xml Azure ????: http://support.microsoft.com/rss/zh-cn/codeplex/Azure.xml COM ????: http://support.microsoft.com/rss/zh-cn/codeplex/COM.xml Data Platform ????: http://support.microsoft.com/rss/zh-cn/codeplex/Data%20Platform.xml Library ????: http://support.microsoft.com/rss/zh-cn/codeplex/Library.xml Office dev ????: http://support.microsoft.com/rss/zh-cn/codeplex/Office.xml VSX ????: http://support.microsoft.com/rss/zh-cn/codeplex/VSX.xml Windows 7 ????: http://support.microsoft.com/rss/zh-cn/codeplex/Windows%207.xml Windows Forms ????: http://support.microsoft.com/rss/zh-cn/codeplex/Windows%20Forms.xml Windows General ????: http://support.microsoft.com/rss/zh-cn/codeplex/Windows%20General.xml Windows Service ????: http://support.microsoft.com/rss/zh-cn/codeplex/Windows%20Service.xml Windows Shell ????: http://support.microsoft.com/rss/zh-cn/codeplex/Windows%20Shell.xml Windows UI ????: http://support.microsoft.com/rss/zh-cn/codeplex/Windows%20UI.xml WPF ????: http://support.microsoft.com/rss/zh-cn/codeplex/WPF.xml

    Read the article

  • Soapi.CS : A fully relational fluent .NET Stack Exchange API client library

    - by Sky Sanders
    Soapi.CS for .Net / Silverlight / Windows Phone 7 / Mono as easy as breathing...: var context = new ApiContext(apiKey).Initialize(false); Question thisPost = context.Official .StackApps .Questions.ById(386) .WithComments(true) .First(); Console.WriteLine(thisPost.Title); thisPost .Owner .Questions .PageSize(5) .Sort(PostSort.Votes) .ToList() .ForEach(q=> { Console.WriteLine("\t" + q.Score + "\t" + q.Title); q.Timeline.ToList().ForEach(t=> Console.WriteLine("\t\t" + t.TimelineType + "\t" + t.Owner.DisplayName)); Console.WriteLine(); }); // if you can think it, you can get it. Output Soapi.CS : A fully relational fluent .NET Stack Exchange API client library 21 Soapi.CS : A fully relational fluent .NET Stack Exchange API client library Revision code poet Revision code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Answer code poet Revision code poet Revision code poet 14 SOAPI-WATCH: A realtime service that notifies subscribers via twitter when the API changes in any way. Votes code poet Revision code poet Votes code poet Comment code poet Comment code poet Comment code poet Votes lfoust Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Revision code poet Comment lfoust Votes code poet Revision code poet Votes code poet Votes lfoust Votes code poet Revision code poet Comment Dave DeLong Revision code poet Revision code poet Votes code poet Comment lfoust Comment Dave DeLong Comment lfoust Comment lfoust Comment Dave DeLong Revision code poet 11 SOAPI-EXPLORE: Self-updating single page JavaSript API test harness Votes code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Comment code poet Revision code poet Votes code poet Comment code poet Question code poet Votes code poet 11 Soapi.JS V1.0: fluent JavaScript wrapper for the StackOverflow API Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Answer George Edison Votes code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Answer code poet Comment code poet Revision code poet Comment code poet Comment code poet Comment code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Comment code poet 9 SOAPI-DIFF: Your app broke? Check SOAPI-DIFF to find out what changed in the API Votes code poet Revision code poet Comment Dennis Williamson Answer Dennis Williamson Votes code poet Votes Dennis Williamson Comment code poet Question code poet Votes code poet About A robust, fully relational, easy to use, strongly typed, end-to-end StackOverflow API Client Library. Out of the box, Soapi provides you with a robust client library that abstracts away most all of the messy details of consuming the API and lets you concentrate on implementing your ideas. A few features include: A fully relational model of the API data set exposed via a fully 'dot navigable' IEnumerable (LINQ) implementation. Simply tell Soapi what you want and it will get it for you. e.g. "On my first question, from the author of the first comment, get the first page of comments by that person on any post" my.Questions.First().Comments.First().Owner.Comments.ToList(); (yes this is a real expression that returns the data as expressed!) Full coverage of the API, all routes and all parameters with an intuitive syntax. Strongly typed Domain Data Objects for all API data structures. Eager and Lazy Loading of 'stub' objects. Eager\Lazy loading may be disabled. When finer grained control of requests is desired, the core RouteMap objects may be leveraged to request data from any of the API paths using all available parameters as documented on the help pages. A rich Asynchronous implementation. A configurable request cache to reduce unnecessary network traffic and to simplify your usage logic. There is no need to go out of your way to be frugal. You may set a distinct cache duration for any particular route. A configurable request throttle to ensure compliance with the api terms of usage and to simplify your code in that you do not have to worry about and respond to 50X errors. The RequestCache and Throttled Queue are thread-safe, so can make as many requests as you like from as many threads as you like as fast as you like and not worry about abusing the api or having to write reams of management/compensation code. Configurable retry threshold that will, by default, make up to 3 attempts to retrieve a request before failing. Every request made by Soapi is properly formed and directed so most any http error will be the result of a timeout or other network infrastructure. A retry buffer provides a level of fault tolerance that you can rely on. An almost identical javascript library, Soapi.JS, and it's full figured big brother, Soapi.JS2, that will enable you to leverage your server cycles and bandwidth for only those tasks that require it and offload things like status updates to the client's browser. License Licensed GPL Version 2 license. Why is Soapi.CS GPL? Can I get an LGPL license for Soapi.CS? (hint: probably) Platforms .NET 3.5 .NET 4.0 Silverlight 3 Silverlight 4 Windows Phone 7 Mono Download Source code lives @ http://soapics.codeplex.com. Binary releases are forthcoming. codeplex is acting up again. get the source and binaries @ http://bitbucket.org/bitpusher/soapi.cs/downloads The source is C# 3.5. and includes projects and solutions for the following IDEs Visual Studio 2008 Visual Studio 2010 ModoDevelop 2.4 Documentation Full documentation is available at http://soapi.info/help/cs/index.aspx Sample Code / Usage Examples Sample code and usage examples will be added as answers to this question. Full API Coverage all API routes are covered Full Parameter Parity If the API exposes it, Soapi giftwraps it for you. Building a simple app with Soapi.CS - a simple app that gathers all traces of a user in the whole stackiverse. Fluent Configuration - Setting up a Soapi.ApiContext could not be easier Bulk Data Import - A tiny app that quickly loads a SQLite data file with all users in the stackiverse. Paged Results - Soapi.CS transparently handles multi-page operations. Asynchronous Requests - Soapi.CS provides a rich asynchronous model that is especially useful when writing api apps in Silverlight or Windows Phone 7. Caching and Throttling - how and why Apps that use Soapi.CS Soapi.FindUser - .net utility for locating a user anywhere in the stackiverse Soapi.Explore - The entire API at your command Soapi.LastSeen - List users by last access time Add your app/site here - I know you are out there ;-) if you are not comfortable editing this post, simply add a comment and I will add it. The CS/SL/WP7/MONO libraries all compile the same code and with the exception of environmental considerations of Silverlight, the code samples are valid for all libraries. You may also find guidance in the test suites. More information on the SOAPI eco-system. Contact This library is currently the effort of me, Sky Sanders (code poet) and can be reached at gmail - sky.sanders Any who are interested in improving this library are welcome. Support Soapi You can help support this project by voting for Soapi's Open Source Ad post For more information about the origins of Soapi.CS and the rest of the Soapi eco-system see What is Soapi and why should I care?

    Read the article

  • Feedback on TOC Generation Code

    - by vikramjb
    Hi All I wrote a small code to generate ToC or Hierachical Bullets like one sees in a word document. Like the following set 1. 2 3 3.1 3.1.1 4 5 and so on so forth, the code is working but I am not happy with the code I have written, I would appreciate if you guys could shed some light on how I can improve my C# code. You can download the project from Rapidshare Please do let me know if you need more info. I am making this a community wiki. private void frmMain_Load(object sender, EventArgs e) { this.EnableSubTaskButton(); } private void btnNewTask_Click(object sender, EventArgs e) { this.AddNodes(true); } private void AddNodes(bool IsParent) { TreeNode parentNode = tvToC.SelectedNode; string curNumber = "0"; if (parentNode != null) { curNumber = parentNode.Text.ToString(); } curNumber = this.getTOCReference(curNumber, IsParent); TreeNode childNode = new TreeNode(); childNode.Text = curNumber; this.tvToC.ExpandAll(); this.EnableSubTaskButton(); this.tvToC.SelectedNode = childNode; if (IsParent) { if (parentNode == null) { tvToC.Nodes.Add(childNode); } else { if (parentNode.Parent != null) { parentNode.Parent.Nodes.Add(childNode); } else { tvToC.Nodes.Add(childNode); } } } else { parentNode.Nodes.Add(childNode); } } private string getTOCReference(string curNumber, bool IsParent) { int lastnum = 0; int startnum = 0; string firsthalf = null; int dotpos = curNumber.IndexOf('.'); if (dotpos > 0) { if (IsParent) { lastnum = Convert.ToInt32(curNumber.Substring(curNumber.LastIndexOf('.') + 1)); lastnum++; firsthalf = curNumber.Substring(0, curNumber.LastIndexOf('.')); curNumber = firsthalf + "." + Convert.ToInt32(lastnum.ToString()); } else { lastnum++; curNumber = curNumber + "." + Convert.ToInt32(lastnum.ToString()); } } else { if (IsParent) { startnum = Convert.ToInt32(curNumber); startnum++; curNumber = Convert.ToString(startnum); } else { curNumber = curNumber + ".1"; } } return curNumber; } private void btnSubTask_Click(object sender, EventArgs e) { this.AddNodes(false); } private void EnableSubTaskButton() { if (tvToC.Nodes.Count == 0) { btnSubTask.Enabled = false; } else { btnSubTask.Enabled = true; } } private void btnTest1_Click(object sender, EventArgs e) { for (int i = 0; i < 100; i++) { this.AddNodes(true); } for (int i = 0; i < 5; i++) { this.AddNodes(false); } for (int i = 0; i < 5; i++) { this.AddNodes(true); } }

    Read the article

  • Clean Code: A Handbook of Agile Software Craftsmanship – book review

    - by DigiMortal
       Writing code that is easy read and test is not something that is easy to achieve. Unfortunately there are still way too much programming students who write awful spaghetti after graduating. But there is one really good book that helps you raise your code to new level – your code will be also communication tool for you and your fellow programmers. “Clean Code: A Handbook of Agile Software Craftsmanship” by Robert C. Martin is excellent book that helps you start writing the easily readable code. Of course, you are the one who has to learn and practice but using this book you have very good guide that keeps you going to right direction. You can start writing better code while you read this book and you can do it right in your current projects – you don’t have to create new guestbook or some other simple application to start practicing. Take the project you are working on and start making it better! My special thanks to Robert C. Martin I want to say my special thanks to Robert C. Martin for this book. There are many books that teach you different stuff and usually you have markable learning curve to go before you start getting results. There are many books that show you the direction to go and then leave you alone figuring out how to achieve all that stuff you just read about. Clean Code gives you a lot more – the mental tools to use so you can go your way to clean code being sure you will be soon there. I am reading books as much as I have time for it. Clean Code is top-level book for developers who have to write working code. Before anything else take Clean Code and read it. You will never regret your decision. I promise. Fragment of editorial review “Even bad code can function. But if code isn’t clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn’t have to be that way. What kind of work will you be doing? You’ll be reading code—lots of code. And you will be challenged to think about what’s right about that code, and what’s wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Readers will come away from this book understanding How to tell the difference between good and bad code How to write good code and how to transform bad code into good code How to create good names, good functions, good objects, and good classes How to format code for maximum readability How to implement complete error handling without obscuring code logic How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.” Table of contents Clean code Meaningful names Functions Comments Formatting Objects and data structures Error handling Boundaries Unit tests Classes Systems Emergence Concurrency Successive refinement JUnit internals Refactoring SerialDate Smells and heuristics A Concurrency II org.jfree.date.SerialDate Cross references of heuristics Epilogue Index

    Read the article

  • code first CTP5 error message

    - by user482833
    I get the following error message with a new project I have set using code first CTP5. Can't find anything on the web about it. Has anyone encountered this error message? The context cannot be used while the model is being created. This occurs the first time my database context is called (code below): using (StaffData context = new StaffData()) { return context.Employees.Count(e = e.EmployeeReference) == 1; } At this point the database has not been created. I have a database initialiser DropCreateDatabaseIfModelChanges which I set in app_start.

    Read the article

  • Code Formatter: cleaning up horribly formatted jsp code

    - by ahiru
    So I am working on a jsp/servlet that came to me and I'm looking at the jsp file and it is just a jungle of jstl tags, java code and html thrown together. At first it looked like someone ran the standard eclipse formatter on it and had the page width set to 40 so alot of stuff is broken up, I tried to format it with a larger page width but that seemed to make it worse to the point of not being able to tell what is going on without formatting parts of it first. Anyone have any luck with any jsp/code formatter?

    Read the article

  • Best way to relate code smells to a non technical audience?

    - by Ed Guiness
    I have been asked to present examples of code issues that were found during a code review. My audience is mostly non-technical and I want to try to express the issues in such a way that I convey the importance of "good code" versus "bad code". But as I review my presentation it seems to me I've glossed over the reasons why it is important to write good code. I've mentioned a number of reasons including ease of maintenance, increased likelihood of bugs, but with my "non tech" hat on they seem unconvincing. What is your advice for helping a non-technical audience relate to the importance of good code?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >