Search Results

Search found 43 results on 2 pages for 'downloadstring'.

Page 2/2 | < Previous Page | 1 2 

  • Removing exception

    - by Nikhil K
    I have used this code for extracting urls from web page.But in the line of 'foreach' it is showing Object reference not set to an instance of an object exception. What is the problem? how can i correct that? WebClient client = new WebClient(); string url = "http://www.google.co.in/search?hl=en&q=java&start=10&sa=N"; string source = client.DownloadString(url); HtmlDocument doc = new HtmlDocument(); doc.LoadHtml(source); foreach (HtmlNode link in doc.DocumentNode.SelectNodes("//a[@href and @rel='nofollow']")) { Console.WriteLine(link.Attributes["href"].Value); }

    Read the article

  • How to create simpliest PHP Get API with UTF-8 support?

    - by Ole Jak
    How to create simpliest *(less lines of code, less strange words) PHP Get API *(so any programm made in .Net C# could call url like http://localhost/api.php?astring=your_utf-8_string&bstring=your_utf-8_string ) with UTF-8 support? What I need Is PHP API with one function - concatinate 2 strings so that a simple .net client like this would be able to use it: public string setStream(string astring, string bstring) { string newAstring =Uri.EscapeDataString(astring); string newBstring = Uri.EscapeDataString(bstring); WebClient client = new WebClient(); var result = client.DownloadString(("http://localhost/api.php?" + string.Format("astring={0}&bstring={1}", newAstring, newBstring)).ToString()); return result; }

    Read the article

  • WebClient on WP7 - Throw "A request with this method cannot have a request body"

    - by Peter Hansen
    If I execute this code in a Consoleapp it works fine: string uriString = "http://url.com/api/v1.0/d/" + Username + "/some?amount=3&offset=0"; WebClient wc = new WebClient(); wc.Headers["Content-Type"] = "application/json"; wc.Headers["Authorization"] = AuthString.Replace("\\", ""); string responseArrayKvitteringer = wc.DownloadString(uriString); Console.WriteLine(responseArrayKvitteringer); But if I move the code to my WP7 project like this: string uriString = "http://url.com/api/v1.0/d/" + Username + "/some?amount=3&offset=0"; WebClient wc = new WebClient(); wc.Headers["Content-Type"] = "application/json"; wc.Headers["Authorization"] = AuthString.Replace("\\", ""); wc.DownloadStringCompleted += new DownloadStringCompletedEventHandler(wc_DownloadStringCompleted); wc.DownloadStringAsync(new Uri(uriString)); void wc_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e) { MessageBox.Show(e.Result); } I got the exception: A request with this method cannot have a request body. Why? The solution is to remove the Content-type: string uriString = "http://url.com/api/v1.0/d/" + Username + "/some?amount=3&offset=0"; WebClient wc = new WebClient(); //wc.Headers["Content-Type"] = "application/json"; wc.Headers["Authorization"] = AuthString.Replace("\\", ""); wc.DownloadStringCompleted += new DownloadStringCompletedEventHandler(wc_DownloadStringCompleted); wc.DownloadStringAsync(new Uri(uriString)); void wc_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e) { MessageBox.Show(e.Result); }

    Read the article

  • [C#] A problem of downloading webpage's HTML source.

    - by Nam Gi VU
    I use System.Net.WebClient.DownloadString(url) to get the HTML source of http://kqxs.vn but what I recieved is a caution text from the web server which says in Vietnamese as: "Xin loi. Chung toi khong the dap ung yeu cau truy cap cua ban... Vui long lien he : [email protected]. Chao ban" which is translated in English as "Sorry. We cannot response to your request... Please contact... Good bye." This is strange because when I use a WebControl to get the HTML ( by calling .Navigate(url) and then .DocumentText), I receive the different HTML codes - which in turn is exactly what I see when open the website by Firefox & view the source code from Firefox. I read DownloadData() is downloading source that is completely wrong. Source view in Firefox different than that downloaded. - Stack Overflow and found the answer to my symptom. But I don't know how to set the User-Agent. Please help.

    Read the article

  • Link checker ; how to avoid false positives

    - by Burnzy
    I'm working a on a link checker/broken link finder and I am getting many false positives, after double checking I noticed that many error codes were returning webexceptions but they were actually downloadable, but in some other cases the statuscode is 404 and i can access the page from the browse. So here is the code, its pretty ugly, and id like to have something more, id say practical. All the status codes are in that big if are used to filter the ones i dont want to add to brokenlink because they are valid links ( i tested them all ). What i need to fix is the structure (if possible) and how to not get false 404. Thank you! try { HttpWebRequest request = ( HttpWebRequest ) WebRequest.Create ( uri ); request.Method = "Head"; request.MaximumResponseHeadersLength = 32; // FOR IE SLOW SPEED request.AllowAutoRedirect = true; using ( HttpWebResponse response = ( HttpWebResponse ) request.GetResponse() ) { request.Abort(); } /* WebClient wc = new WebClient(); wc.DownloadString( uri ); */ _validlinks.Add ( strUri ); } catch ( WebException wex ) { if ( !wex.Message.Contains ( "The remote name could not be resolved:" ) && wex.Status != WebExceptionStatus.ServerProtocolViolation ) { if ( wex.Status != WebExceptionStatus.Timeout ) { HttpStatusCode code = ( ( HttpWebResponse ) wex.Response ).StatusCode; if ( code != HttpStatusCode.OK && code != HttpStatusCode.BadRequest && code != HttpStatusCode.Accepted && code != HttpStatusCode.InternalServerError && code != HttpStatusCode.Forbidden && code != HttpStatusCode.Redirect && code != HttpStatusCode.Found ) { _brokenlinks.Add ( new Href ( new Uri ( strUri , UriKind.RelativeOrAbsolute ) , UrlType.External ) ); } else _validlinks.Add ( strUri ); } else _brokenlinks.Add ( new Href ( new Uri ( strUri , UriKind.RelativeOrAbsolute ) , UrlType.External ) ); } else _validlinks.Add ( strUri ); }

    Read the article

  • JSON Twitter List in C#.net

    - by James
    Hi, My code is below. I am not able to extract the 'name' and 'query' lists from the JSON via a DataContracted Class (below) I have spent a long time trying to work this one out, and could really do with some help... My Json string: {"as_of":1266853488,"trends":{"2010-02-22 15:44:48":[{"name":"#nowplaying","query":"#nowplaying"},{"name":"#musicmonday","query":"#musicmonday"},{"name":"#WeGoTogetherLike","query":"#WeGoTogetherLike"},{"name":"#imcurious","query":"#imcurious"},{"name":"#mm","query":"#mm"},{"name":"#HumanoidCityTour","query":"#HumanoidCityTour"},{"name":"#awesomeindianthings","query":"#awesomeindianthings"},{"name":"#officeformac","query":"#officeformac"},{"name":"Justin Bieber","query":"\"Justin Bieber\""},{"name":"National Margarita","query":"\"National Margarita\""}]}} My code: WebClient wc = new WebClient(); wc.Credentials = new NetworkCredential(this.Auth.UserName, this.Auth.Password); string res = wc.DownloadString(new Uri(link)); //the download string gives me the above JSON string - no problems Trends trends = new Trends(); Trends obj = Deserialise<Trends>(res); private T Deserialise<T>(string json) { T obj = Activator.CreateInstance<T>(); using (MemoryStream ms = new MemoryStream(Encoding.Unicode.GetBytes(json))) { DataContractJsonSerializer serialiser = new DataContractJsonSerializer(obj.GetType()); obj = (T)serialiser.ReadObject(ms); ms.Close(); return obj; } } [DataContract] public class Trends { [DataMember(Name = "as_of")] public string AsOf { get; set; } //The As_OF value is returned - But how do I get the //multidimensional array of Names and Queries from the JSON here? }

    Read the article

  • How do I search for a string with quotes?

    - by every_answer_gets_a_point
    I am searching for the string <!--m--><li class="g w0"><h3 class=r><a href=" within the HTML source of this link: http://www.google.com/search?sourceid=chrome&ie=UTF-8&q=Santarus+Inc? this is how I am searching for it: string html_string = "http://www.google.com/search?sourceid=chrome&ie=UTF-8&q=" + biocompany; html = new WebClient().DownloadString(html_string); d=html.IndexOf(@"<!--m--><li class=""g w0""><h3 class=r><a href=""",1); For some reason it is finding an occurrence of it at position 45 (in other words d=45) but this incorrect. Here are the first couple hundred characters of the string HTML: <!doctype html><head><title>Santarus Inc&#8206; - Google Search</title><script>window.google={kEI:\"b6jES5nPD4rysQOokrGDDQ\",kEXPI:\"23729,24229,24249,24260,24414,24457\",kCSI:{e:\"23729,24229,24249,24260,24414,24457\",ei:\"b6jES5nPD4rysQOokrGDDQ\",expi:\"23729,24229,24249,24260,24414,24457\"},ml:function(){},kHL:\"en\",time:function(){return(new Date).getTime()},log:function(b,d,c){var a=new Image,e=google,g=e.lc,f=e.li;a.onerror=(a.onload=(a.onabort=function(){delete g[f]}));g[f]=a;c=c||\"/gen_204?atyp=i&ct=\"+b+\"&cad=\"+d+\"&zx=\"+google.time();a.src=c;e.li=f+1},lc:[],li:0,Toolbelt:{}};\nwindow.google.sn=\"web\";window.google.timers={load:{t:{start:(new Date).getTime()}}};try{}catch(u){}window.google.jsrt_kill=1;\n</script><style>body{background:#fff;color:#000;margin:3px 8px}#gbar,#guser{font-size:13px;padding-top:1px !important}#gbar{float:left;height:22px}#guser{padding-bottom:7px !important;text-align:right}.gbh,.gbd{border-top:1px solid #c9d7f1;font-size:1px}.gbh

    Read the article

  • SSRS 2008 - Sending report as email

    - by Mozy
    Hi all, What I want to do is render a SSRS 2008 report as HTML (actually MHTML) and send that as the body in an email. Has anyone done this? I've almost got it (I think) but I seem to have a encoding problem. The email shows up as what looks like some sort of base64 encoding. Like this: MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01C35DB7.4B204430" X-MSSQLRS-ProducerVersion: V10.0.2531.0 This is a multi-part message in MIME format. ------=_NextPart_01C35DB7.4B204430 Content-ID: Content-Disposition: inline; filename="FollowUpNotification" Content-Type: text/html; name="FollowUpNotification"; charset="utf-8" Content-Transfer-Encoding: base64 PCFET0NUWVBFIEhUTUwgUFVCTElDICItLy9XM0MvL0RURCBIVE1MIDQuMDEgVHJhbnNp... Any ideas on what I'm missing? Here is a code snippet: myMail.BodyEncoding = System.Text.Encoding.UTF8; myMail.IsBodyHtml = true; WebClient client = new WebClient(); System.Net.NetworkCredential repAuthenticationInfo = new System.Net.NetworkCredential(@"username", @"password"); client.Credentials = repAuthenticationInfo; client.Encoding = System.Text.Encoding.UTF8; string messageBody = client.DownloadString( "http://<<reportserver>>&rs%3aFormat=MHTML&Parameter=" + Parameter); myMail.Body = messageBody;

    Read the article

  • Displaying cookies as key=value for all domains?

    - by OverTheRainbow
    Hello, This question pertains to the use of the cookie-capable WebClient derived class presented in the How can I get the WebClient to use Cookies? question. I'd like to use a ListBox to... 1) display each cookie individually as "key=value" (the For Each loop displays all of them as one string), and 2) be able to display all cookies, regardless of the domain from which they came ("www.google.com", here): Imports System.IO Imports System.Net Public Class Form1 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click Dim webClient As New CookieAwareWebClient Const URL = "http://www.google.com" Dim response As String response = webClient.DownloadString(URL) RichTextBox1.Text = response 'How to display cookies as key/value in ListBox? 'PREF=ID=5e770c1a9f279d5f:TM=1274032511:LM=1274032511:S=1RDPaKJKpoMT9T54 For Each mycc In webClient.cc.GetCookies(New Uri(URL)) ListBox1.Items.Add(mycc.ToString) Next End Sub End Class Public Class CookieAwareWebClient Inherits WebClient Public cc As New CookieContainer() Private lastPage As String Protected Overrides Function GetWebRequest(ByVal address As System.Uri) As System.Net.WebRequest Dim R = MyBase.GetWebRequest(address) If TypeOf R Is HttpWebRequest Then With DirectCast(R, HttpWebRequest) .CookieContainer = cc If Not lastPage Is Nothing Then .Referer = lastPage End If End With End If lastPage = address.ToString() Return R End Function End Class Thank you.

    Read the article

  • Building a plug-in for Windows Live Writer

    - by mbcrump
    This tutorial will show you how to build a plug-in for Windows Live Writer. Windows Live Writer is a blogging tool that Microsoft provides for free. It includes an open API for .NET developers to create custom plug-ins. In this tutorial, I will show you how easy it is to build one. Open VS2008 or VS2010 and create a new project. Set the target framework to 2.0, Application Type to Class Library and give it a name. In this tutorial, we are going to create a plug-in that generates a twitter message with your blog post name and a TinyUrl link to the blog post.  It will do all of this automatically after you publish your post. Once, we have a new projected created. We need to setup the references. Add a reference to the WindowsLive.Writer.Api.dll located in the C:\Program Files (x86)\Windows Live\Writer\ folder, if you are using X64 version of Windows. You will also need to add a reference to System.Windows.Forms System.Web from the .NET tab as well. Once that is complete, add your “using” statements so that it looks like whats shown below: Live Writer Plug-In "Using" using System; using System.Collections.Generic; using System.Text; using WindowsLive.Writer.Api; using System.Web; Now, we are going to setup some build events to make it easier to test our custom class. Go into the Properties of your project and select Build Events, click edit the Post-build and copy/paste the following line: XCOPY /D /Y /R "$(TargetPath)" "C:\Program Files (x86)\Windows Live\Writer\Plugins\" Your screen should look like the one pictured below: Next, we are going to launch an external program on debug. Click the debug tab and enter C:\Program Files (x86)\Windows Live\Writer\WindowsLiveWriter.exe Your screen should look like the one pictured below:   Now we have a blank project and we need to add some code. We start with adding the attributes for the Live Writer Plugin. Before we get started creating the Attributes, we need to create a GUID. This GUID will uniquely identity our plug-in. So, to create a GUID follow the steps in VS2008/2010. Click Tools from the VS Menu ->Create GUID It will generate a GUID like the one listed below: GUID <Guid("56ED8A2C-F216-420D-91A1-F7541495DBDA")> We only want what’s inside the quotes, so your final product should be: "56ED8A2C-F216-420D-91A1-F7541495DBDA". Go ahead and paste this snipped into your class just above the public class. Live Writer Plug-In Attributes [WriterPlugin("56ED8A2C-F216-420D-91A1-F7541495DBDA",    "Generate Twitter Message",    Description = "After your new post has been published, this plug-in will attempt to generate a Twitter status messsage with the Title and TinyUrl link.",    HasEditableOptions = false,    Name = "Generate Twitter Message",    PublisherUrl = "http://michaelcrump.net")] [InsertableContentSource("Generate Twitter Message")] So far, it should look like the following: Next, we need to implement the PublishNotifcationHook class and override the OnPostPublish. I’m not going to dive into what the code is doing as you should be able to follow pretty easily. The code below is the entire code used in the project. PublishNotificationHook public class Class1 :  PublishNotificationHook  {      public override void OnPostPublish(System.Windows.Forms.IWin32Window dialogOwner, IProperties properties, IPublishingContext publishingContext, bool publish)      {          if (!publish) return;          if (string.IsNullOrEmpty(publishingContext.PostInfo.Permalink))          {              PluginDiagnostics.LogError("Live Tweet didn't execute, due to blank permalink");          }          else          {                var strBlogName = HttpUtility.UrlEncode("#blogged : " + publishingContext.PostInfo.Title);  //Blog Post Title              var strUrlFinal = getTinyUrl(publishingContext.PostInfo.Permalink); //Blog Permalink URL Converted to TinyURL              System.Diagnostics.Process.Start("http://twitter.com/home?status=" + strBlogName + strUrlFinal);            }      } We are going to go ahead and create a method to create the short url (tinyurl). TinyURL Helper Method private static string getTinyUrl(string url) {     var cmpUrl = System.Globalization.CultureInfo.InvariantCulture.CompareInfo;     if (!cmpUrl.IsPrefix(url, "http://tinyurl.com"))     {         var address = "http://tinyurl.com/api-create.php?url=" + url;         var client = new System.Net.WebClient();         return (client.DownloadString(address));     }     return (url); } Go ahead and build your project, it should have copied the .DLL into the Windows Live Writer Plugin Directory. If it did not, then you will want to check your configuration. Once that is complete, open Windows Live Writer and select Tools-> Options-> Plug-ins and enable your plug-in that you just created. Your screen should look like the one pictured below: Go ahead and click OK and publish your blog post. You should get a pop-up with the following: Hit OK and It should open a Twitter and either ask for a login or fill in your status as shown below:   That should do it, you can do so many other things with the API. I suggest that if you want to build something really useful consult the MSDN pages. This plug-in that I created was perfect for what I needed and I hope someone finds it useful.

    Read the article

  • How to download file into string with progress callback?

    - by Kaminari
    I would like to use the WebClient (or there is another better option?) but there is a problem. I understand that opening up the stream takes some time and this can not be avoided. However, reading it takes a strangely much more amount of time compared to read it entirely immediately. Is there a best way to do this? I mean two ways, to string and to file. Progress is my own delegate and it's working good. FIFTH UPDATE: Finally, I managed to do it. In the meantime I checked out some solutions what made me realize that the problem lies elsewhere. I've tested custom WebResponse and WebRequest objects, library libCURL.NET and even Sockets. The difference in time was gzip compression. Compressed stream lenght was simply half the normal stream lenght and thus download time was less than 3 seconds with the browser. I put some code if someone will want to know how i solved this: (some headers are not needed) public static string DownloadString(string URL) { WebClient client = new WebClient(); client.Headers["User-Agent"] = "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.1.249.1045 Safari/532.5"; client.Headers["Accept"] = "application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5"; client.Headers["Accept-Encoding"] = "gzip,deflate,sdch"; client.Headers["Accept-Charset"] = "ISO-8859-2,utf-8;q=0.7,*;q=0.3"; Stream inputStream = client.OpenRead(new Uri(URL)); MemoryStream memoryStream = new MemoryStream(); const int size = 32 * 4096; byte[] buffer = new byte[size]; if (client.ResponseHeaders["Content-Encoding"] == "gzip") { inputStream = new GZipStream(inputStream, CompressionMode.Decompress); } int count = 0; do { count = inputStream.Read(buffer, 0, size); if (count > 0) { memoryStream.Write(buffer, 0, count); } } while (count > 0); string result = Encoding.Default.GetString(memoryStream.ToArray()); memoryStream.Close(); inputStream.Close(); return result; } I think that asyncro functions will be almost the same. But i will simply use another thread to fire this function. I dont need percise progress indication.

    Read the article

  • Data extract from website URL

    - by user2522395
    From this below script I am able to extract all links of particular website, But i need to know how I can generate data from extracted links especially like eMail, Phone number if its there Please help how i will modify the existing script and get the result or if you have full sample script please provide me. Private Sub btnGo_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnGo.Click 'url must be in this format: http://www.example.com/ Dim aList As ArrayList = Spider("http://www.qatarliving.com", 1) For Each url As String In aList lstUrls.Items.Add(url) Next End Sub Private Function Spider(ByVal url As String, ByVal depth As Integer) As ArrayList 'aReturn is used to hold the list of urls Dim aReturn As New ArrayList 'aStart is used to hold the new urls to be checked Dim aStart As ArrayList = GrabUrls(url) 'temp array to hold data being passed to new arrays Dim aTemp As ArrayList 'aNew is used to hold new urls before being passed to aStart Dim aNew As New ArrayList 'add the first batch of urls aReturn.AddRange(aStart) 'if depth is 0 then only return 1 page If depth < 1 Then Return aReturn 'loops through the levels of urls For i = 1 To depth 'grabs the urls from each url in aStart For Each tUrl As String In aStart 'grabs the urls and returns non-duplicates aTemp = GrabUrls(tUrl, aReturn, aNew) 'add the urls to be check to aNew aNew.AddRange(aTemp) Next 'swap urls to aStart to be checked aStart = aNew 'add the urls to the main list aReturn.AddRange(aNew) 'clear the temp array aNew = New ArrayList Next Return aReturn End Function Private Overloads Function GrabUrls(ByVal url As String) As ArrayList 'will hold the urls to be returned Dim aReturn As New ArrayList Try 'regex string used: thanks google Dim strRegex As String = "<a.*?href=""(.*?)"".*?>(.*?)</a>" 'i used a webclient to get the source 'web requests might be faster Dim wc As New WebClient 'put the source into a string Dim strSource As String = wc.DownloadString(url) Dim HrefRegex As New Regex(strRegex, RegexOptions.IgnoreCase Or RegexOptions.Compiled) 'parse the urls from the source Dim HrefMatch As Match = HrefRegex.Match(strSource) 'used later to get the base domain without subdirectories or pages Dim BaseUrl As New Uri(url) 'while there are urls While HrefMatch.Success = True 'loop through the matches Dim sUrl As String = HrefMatch.Groups(1).Value 'if it's a page or sub directory with no base url (domain) If Not sUrl.Contains("http://") AndAlso Not sUrl.Contains("www") Then 'add the domain plus the page Dim tURi As New Uri(BaseUrl, sUrl) sUrl = tURi.ToString End If 'if it's not already in the list then add it If Not aReturn.Contains(sUrl) Then aReturn.Add(sUrl) 'go to the next url HrefMatch = HrefMatch.NextMatch End While Catch ex As Exception 'catch ex here. I left it blank while debugging End Try Return aReturn End Function Private Overloads Function GrabUrls(ByVal url As String, ByRef aReturn As ArrayList, ByRef aNew As ArrayList) As ArrayList 'overloads function to check duplicates in aNew and aReturn 'temp url arraylist Dim tUrls As ArrayList = GrabUrls(url) 'used to return the list Dim tReturn As New ArrayList 'check each item to see if it exists, so not to grab the urls again For Each item As String In tUrls If Not aReturn.Contains(item) AndAlso Not aNew.Contains(item) Then tReturn.Add(item) End If Next Return tReturn End Function

    Read the article

  • Parsing JSON into XML using Windows Phone

    - by Henry Edwards
    I have this code, but can't get it all working. I am trying to get a json string into xml. So that I can get a list of items when i parse the data. Is there a better way to parse json into xml. If so what's the best way to do it, and if possible could you give me a working example? The URL that is in the code is not the URL that i am using using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Windows; using System.Windows.Controls; using System.Windows.Documents; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Animation; using System.Windows.Shapes; using Microsoft.Phone.Controls; using Newtonsoft.Json; using Newtonsoft.Json.Serialization; using Newtonsoft.Json.Converters; using Newtonsoft.Json.Utilities; using Newtonsoft.Json.Linq; using Newtonsoft.Json.Schema; using Newtonsoft.Json.Bson; using System.Xml; using System.Xml.Serialization; using System.Xml.Linq; using System.Xml.Linq.XDocument; using System.IO; namespace WindowsPhonePanoramaApplication3 { public partial class Page2 : PhoneApplicationPage { public Page2() { InitializeComponent(); } private void Form1_Load(object sender, EventArgs e1) { /* because the origional JSON string has multiple root's this needs to be added */ string json = "{BFBC2_GlobalStats:"; json += DownlodUrl("http://api.bfbcs.com/api/xbox360?globalstats"); json += "}"; XmlDocument doc = (XmlDocument)JsonConvert.DeserializeObject(json); textBox1.Text = GetXmlString(doc); } private string GetXmlString() { throw new NotImplementedException(); } private string DownlodUrl(string url) { string result = null; try { WebClient client = new WebClient(); result = client.DownloadString(url); } catch (Exception ex) { // handle error result = ex.Message; } return result; } private string GetXmlString(XmlDocument xmlDoc) { sw = new StringWriter(); XmlTextWriter xw = new XmlTextWriter(sw); xw.Formatting = System.Xml.Formatting.Indented; xmlDoc.WriteTo(xw); return sw.ToString(); } } } The URL outputs the following code: {"StopName":"Race Hill", "stopId":7553, "NaptanCode":"bridwja", "LongName":"Race Hill", "OperatorsCode1":" 5", "OperatorsCode2":" ", "OperatorsCode3":" ", "OperatorsCode4":"bridwja", "Departures":[ { "ServiceName":"", "Destination":"", "DepartureTimeAsString":"", "DepartureTime":"30/01/2012 00:00:00", "Notes":""}` Thanks for your responses. So Should i just leave the data a json and then view the data via that??? Is this a way to show the data from a json string. public void Load() { // form the URI UriBuilder uri = new UriBuilder("http://mysite.com/events.json"); WebClient proxy = new WebClient(); proxy.OpenReadCompleted += new OpenReadCompletedEventHandler(OnReadCompleted); proxy.OpenReadAsync(uri.Uri); } void OnReadCompleted(object sender, OpenReadCompletedEventArgs e) { if (e.Error == null) { var serializer = new DataContractJsonSerializer(typeof(EventList)); var events = (EventList)serializer.ReadObject(e.Result); foreach (var ev in events) { Items.Add(ev); } } } public ObservableCollection<EventDetails> Items { get; private set; } Edit: Have now kept the url as json and have now got it working by using the json way.

    Read the article

  • Translating with Google Translate without API and C# Code

    - by Rick Strahl
    Some time back I created a data base driven ASP.NET Resource Provider along with some tools that make it easy to edit ASP.NET resources interactively in a Web application. One of the small helper features of the interactive resource admin tool is the ability to do simple translations using both Google Translate and Babelfish. Here's what this looks like in the resource administration form: When a resource is displayed, the user can click a Translate button and it will show the current resource text and then lets you set the source and target languages to translate. The Go button fires the translation for both Google and Babelfish and displays them - pressing use then changes the language of the resource to the target language and sets the resource value to the newly translated value. It's a nice and quick way to get a quick translation going. Ch… Ch… Changes Originally, both implementations basically did some screen scraping of the interactive Web sites and retrieved translated text out of result HTML. Screen scraping is always kind of an iffy proposition as content can be changed easily, but surprisingly that code worked for many years without fail. Recently however, Google at least changed their input pages to use AJAX callbacks and the page updates no longer worked the same way. End result: The Google translate code was broken. Now, Google does have an official API that you can access, but the API is being deprecated and you actually need to have an API key. Since I have public samples that people can download the API key is an issue if I want people to have the samples work out of the box - the only way I could even do this is by sharing my API key (not allowed).   However, after a bit of spelunking and playing around with the public site however I found that Google's interactive translate page actually makes callbacks using plain public access without an API key. By intercepting some of those AJAX calls and calling them directly from code I was able to get translation back up and working with minimal fuss, by parsing out the JSON these AJAX calls return. I don't think this particular Warning: This is hacky code, but after a fair bit of testing I found this to work very well with all sorts of languages and accented and escaped text etc. as long as you stick to small blocks of translated text. I thought I'd share it in case anybody else had been relying on a screen scraping mechanism like I did and needed a non-API based replacement. Here's the code: /// <summary> /// Translates a string into another language using Google's translate API JSON calls. /// <seealso>Class TranslationServices</seealso> /// </summary> /// <param name="Text">Text to translate. Should be a single word or sentence.</param> /// <param name="FromCulture"> /// Two letter culture (en of en-us, fr of fr-ca, de of de-ch) /// </param> /// <param name="ToCulture"> /// Two letter culture (as for FromCulture) /// </param> public string TranslateGoogle(string text, string fromCulture, string toCulture) { fromCulture = fromCulture.ToLower(); toCulture = toCulture.ToLower(); // normalize the culture in case something like en-us was passed // retrieve only en since Google doesn't support sub-locales string[] tokens = fromCulture.Split('-'); if (tokens.Length > 1) fromCulture = tokens[0]; // normalize ToCulture tokens = toCulture.Split('-'); if (tokens.Length > 1) toCulture = tokens[0]; string url = string.Format(@"http://translate.google.com/translate_a/t?client=j&text={0}&hl=en&sl={1}&tl={2}", HttpUtility.UrlEncode(text),fromCulture,toCulture); // Retrieve Translation with HTTP GET call string html = null; try { WebClient web = new WebClient(); // MUST add a known browser user agent or else response encoding doen't return UTF-8 (WTF Google?) web.Headers.Add(HttpRequestHeader.UserAgent, "Mozilla/5.0"); web.Headers.Add(HttpRequestHeader.AcceptCharset, "UTF-8"); // Make sure we have response encoding to UTF-8 web.Encoding = Encoding.UTF8; html = web.DownloadString(url); } catch (Exception ex) { this.ErrorMessage = Westwind.Globalization.Resources.Resources.ConnectionFailed + ": " + ex.GetBaseException().Message; return null; } // Extract out trans":"...[Extracted]...","from the JSON string string result = Regex.Match(html, "trans\":(\".*?\"),\"", RegexOptions.IgnoreCase).Groups[1].Value; if (string.IsNullOrEmpty(result)) { this.ErrorMessage = Westwind.Globalization.Resources.Resources.InvalidSearchResult; return null; } //return WebUtils.DecodeJsString(result); // Result is a JavaScript string so we need to deserialize it properly JavaScriptSerializer ser = new JavaScriptSerializer(); return ser.Deserialize(result, typeof(string)) as string; } To use the code is straightforward enough - simply provide a string to translate and a pair of two letter source and target languages: string result = service.TranslateGoogle("Life is great and one is spoiled when it goes on and on and on", "en", "de"); TestContext.WriteLine(result); How it works The code to translate is fairly straightforward. It basically uses the URL I snagged from the Google Translate Web Page slightly changed to return a JSON result (&client=j) instead of the funky nested PHP style JSON array that the default returns. The JSON result returned looks like this: {"sentences":[{"trans":"Das Leben ist großartig und man wird verwöhnt, wenn es weiter und weiter und weiter geht","orig":"Life is great and one is spoiled when it goes on and on and on","translit":"","src_translit":""}],"src":"en","server_time":24} I use WebClient to make an HTTP GET call to retrieve the JSON data and strip out part of the full JSON response that contains the actual translated text. Since this is a JSON response I need to deserialize the JSON string in case it's encoded (for upper/lower ASCII chars or quotes etc.). Couple of odd things to note in this code: First note that a valid user agent string must be passed (or at least one starting with a common browser identification - I use Mozilla/5.0). Without this Google doesn't encode the result with UTF-8, but instead uses a ISO encoding that .NET can't easily decode. Google seems to ignore the character set header and use the user agent instead which is - odd to say the least. The other is that the code returns a full JSON response. Rather than use the full response and decode it into a custom type that matches Google's result object, I just strip out the translated text. Yeah I know that's hacky but avoids an extra type and firing up the JavaScript deserializer. My internal version uses a small DecodeJsString() method to decode Javascript without the overhead of a full JSON parser. It's obviously not rocket science but as mentioned above what's nice about it is that it works without an Google API key. I can't vouch on how many translates you can do before there are cut offs but in my limited testing running a few stress tests on a Web server under load I didn't run into any problems. Limitations There are some restrictions with this: It only works on single words or single sentences - multiple sentences (delimited by .) are cut off at the ".". There is also a length limitation which appears to happen at around 220 characters or so. While that may not sound  like much for typical word or phrase translations this this is plenty of length. Use with a grain of salt - Google seems to be trying to limit their exposure to usage of the Translate APIs so this code might break in the future, but for now at least it works. FWIW, I also found that Google's translation is not as good as Babelfish, especially for contextual content like sentences. Google is faster, but Babelfish tends to give better translations. This is why in my translation tool I show both Google and Babelfish values retrieved. You can check out the code for this in the West Wind West Wind Web Toolkit's TranslationService.cs file which contains both the Google and Babelfish translation code pieces. Ironically the Babelfish code has been working forever using screen scraping and continues to work just fine today. I think it's a good idea to have multiple translation providers in case one is down or changes its format, hence the dual display in my translation form above. I hope this has been helpful to some of you - I've actually had many small uses for this code in a number of applications and it's sweet to have a simple routine that performs these operations for me easily. Resources Live Localization Sample Localization Resource Provider Administration form that includes options to translate text using Google and Babelfish interactively. TranslationService.cs The full source code in the West Wind West Wind Web Toolkit's Globalization library that contains the translation code. © Rick Strahl, West Wind Technologies, 2005-2011Posted in CSharp  HTTP   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Use IIS Application Initialization for keeping ASP.NET Apps alive

    - by Rick Strahl
    I've been working quite a bit with Windows Services in the recent months, and well, it turns out that Windows Services are quite a bear to debug, deploy, update and maintain. The process of getting services set up,  debugged and updated is a major chore that has to be extensively documented and or automated specifically. On most projects when a service is built, people end up scrambling for the right 'process' to use for administration. Web app deployment and maintenance on the other hand are common and well understood today, as we are constantly dealing with Web apps. There's plenty of infrastructure and tooling built into Web Tools like Visual Studio to facilitate the process. By comparison Windows Services or anything self-hosted for that matter seems convoluted.In fact, in a recent blog post I mentioned that on a recent project I'd been using self-hosting for SignalR inside of a Windows service, because the application is in fact a 'service' that also needs to send out lots of messages via SignalR. But the reality is that it could just as well be an IIS application with a service component that runs in the background. Either way you look at it, it's either a Windows Service with a built in Web Server, or an IIS application running a Service application, neither of which follows the standard Service or Web App template.Personally I much prefer Web applications. Running inside of IIS I get all the benefits of the IIS platform including service lifetime management (crash and restart), controlled shutdowns, the whole security infrastructure including easy certificate support, hot-swapping of code and the the ability to publish directly to IIS from within Visual Studio with ease.Because of these benefits we set out to move from the self hosted service into an ASP.NET Web app instead.The Missing Link for ASP.NET as a Service: Auto-LoadingI've had moments in the past where I wanted to run a 'service like' application in ASP.NET because when you think about it, it's so much easier to control a Web application remotely. Services are locked into start/stop operations, but if you host inside of a Web app you can write your own ticket and control it from anywhere. In fact nearly 10 years ago I built a background scheduling application that ran inside of ASP.NET and it worked great and it's still running doing its job today.The tricky part for running an app as a service inside of IIS then and now, is how to get IIS and ASP.NET launched so your 'service' stays alive even after an Application Pool reset. 7 years ago I faked it by using a web monitor (my own West Wind Web Monitor app) I was running anyway to monitor my various web sites for uptime, and having the monitor ping my 'service' every 20 seconds to effectively keep ASP.NET alive or fire it back up after a reload. I used a simple scheduler class that also includes some logic for 'self-reloading'. Hacky for sure, but it worked reliably.Luckily today it's much easier and more integrated to get IIS to launch ASP.NET as soon as an Application Pool is started by using the Application Initialization Module. The Application Initialization Module basically allows you to turn on Preloading on the Application Pool and the Site/IIS App, which essentially fires a request through the IIS pipeline as soon as the Application Pool has been launched. This means that effectively your ASP.NET app becomes active immediately, Application_Start is fired making sure your app stays up and running at all times. All the other features like Application Pool recycling and auto-shutdown after idle time still work, but IIS will then always immediately re-launch the application.Getting started with Application InitializationAs of IIS 8 Application Initialization is part of the IIS feature set. For IIS 7 and 7.5 there's a separate download available via Web Platform Installer. Using IIS 8 Application Initialization is an optional install component in Windows or the Windows Server Role Manager: This is an optional component so make sure you explicitly select it.IIS Configuration for Application InitializationInitialization needs to be applied on the Application Pool as well as the IIS Application level. As of IIS 8 these settings can be made through the IIS Administration console.Start with the Application Pool:Here you need to set both the Start Automatically which is always set, and the StartMode which should be set to AlwaysRunning. Both have to be set - the Start Automatically flag is set true by default and controls the starting of the application pool itself while Always Running flag is required in order to launch the application. Without the latter flag set the site settings have no effect.Now on the Site/Application level you can specify whether the site should pre load: Set the Preload Enabled flag to true.At this point ASP.NET apps should auto-load. This is all that's needed to pre-load the site if all you want is to get your site launched automatically.If you want a little more control over the load process you can add a few more settings to your web.config file that allow you to show a static page while the App is starting up. This can be useful if startup is really slow, so rather than displaying blank screen while the user is fiddling their thumbs you can display a static HTML page instead: <system.webServer> <applicationInitialization remapManagedRequestsTo="Startup.htm" skipManagedModules="true"> <add initializationPage="ping.ashx" /> </applicationInitialization> </system.webServer>This allows you to specify a page to execute in a dry run. IIS basically fakes request and pushes it directly into the IIS pipeline without hitting the network. You specify a page and IIS will fake a request to that page in this case ping.ashx which just returns a simple OK string - ie. a fast pipeline request. This request is run immediately after Application Pool restart, and while this request is running and your app is warming up, IIS can display an alternate static page - Startup.htm above. So instead of showing users an empty loading page when clicking a link on your site you can optionally show some sort of static status page that says, "we'll be right back".  I'm not sure if that's such a brilliant idea since this can be pretty disruptive in some cases. Personally I think I prefer letting people wait, but at least get the response they were supposed to get back rather than a random page. But it's there if you need it.Note that the web.config stuff is optional. If you don't provide it IIS hits the default site link (/) and even if there's no matching request at the end of that request it'll still fire the request through the IIS pipeline. Ideally though you want to make sure that an ASP.NET endpoint is hit either with your default page, or by specify the initializationPage to ensure ASP.NET actually gets hit since it's possible for IIS fire unmanaged requests only for static pages (depending how your pipeline is configured).What about AppDomain Restarts?In addition to full Worker Process recycles at the IIS level, ASP.NET also has to deal with AppDomain shutdowns which can occur for a variety of reasons:Files are updated in the BIN folderWeb Deploy to your siteweb.config is changedHard application crashThese operations don't cause the worker process to restart, but they do cause ASP.NET to unload the current AppDomain and start up a new one. Because the features above only apply to Application Pool restarts, AppDomain restarts could also cause your 'ASP.NET service' to stop processing in the background.In order to keep the app running on AppDomain recycles, you can resort to a simple ping in the Application_End event:protected void Application_End() { var client = new WebClient(); var url = App.AdminConfiguration.MonitorHostUrl + "ping.aspx"; client.DownloadString(url); Trace.WriteLine("Application Shut Down Ping: " + url); }which fires any ASP.NET url to the current site at the very end of the pipeline shutdown which in turn ensures that the site immediately starts back up.Manual Configuration in ApplicationHost.configThe above UI corresponds to the following ApplicationHost.config settings. If you're using IIS 7, there's no UI for these flags so you'll have to manually edit them.When you install the Application Initialization component into IIS it should auto-configure the module into ApplicationHost.config. Unfortunately for me, with Mr. Murphy in his best form for me, the module registration did not occur and I had to manually add it.<globalModules> <add name="ApplicationInitializationModule" image="%windir%\System32\inetsrv\warmup.dll" /> </globalModules>Most likely you won't need ever need to add this, but if things are not working it's worth to check if the module is actually registered.Next you need to configure the ApplicationPool and the Web site. The following are the two relevant entries in ApplicationHost.config.<system.applicationHost> <applicationPools> <add name="West Wind West Wind Web Connection" autoStart="true" startMode="AlwaysRunning" managedRuntimeVersion="v4.0" managedPipelineMode="Integrated"> <processModel identityType="LocalSystem" setProfileEnvironment="true" /> </add> </applicationPools> <sites> <site name="Default Web Site" id="1"> <application path="/MPress.Workflow.WebQueueMessageManager" applicationPool="West Wind West Wind Web Connection" preloadEnabled="true"> <virtualDirectory path="/" physicalPath="C:\Clients\…" /> </application> </site> </sites> </system.applicationHost>On the Application Pool make sure to set the autoStart and startMode flags to true and AlwaysRunning respectively. On the site make sure to set the preloadEnabled flag to true.And that's all you should need. You can still set the web.config settings described above as well.ASP.NET as a Service?In the particular application I'm working on currently, we have a queue manager that runs as standalone service that polls a database queue and picks out jobs and processes them on several threads. The service can spin up any number of threads and keep these threads alive in the background while IIS is running doing its own thing. These threads are newly created threads, so they sit completely outside of the IIS thread pool. In order for this service to work all it needs is a long running reference that keeps it alive for the life time of the application.In this particular app there are two components that run in the background on their own threads: A scheduler that runs various scheduled tasks and handles things like picking up emails to send out outside of IIS's scope and the QueueManager. Here's what this looks like in global.asax:public class Global : System.Web.HttpApplication { private static ApplicationScheduler scheduler; private static ServiceLauncher launcher; protected void Application_Start(object sender, EventArgs e) { // Pings the service and ensures it stays alive scheduler = new ApplicationScheduler() { CheckFrequency = 600000 }; scheduler.Start(); launcher = new ServiceLauncher(); launcher.Start(); // register so shutdown is controlled HostingEnvironment.RegisterObject(launcher); }}By keeping these objects around as static instances that are set only once on startup, they survive the lifetime of the application. The code in these classes is essentially unchanged from the Windows Service code except that I could remove the various overrides required for the Windows Service interface (OnStart,OnStop,OnResume etc.). Otherwise the behavior and operation is very similar.In this application ASP.NET serves two purposes: It acts as the host for SignalR and provides the administration interface which allows remote management of the 'service'. I can start and stop the service remotely by shutting down the ApplicationScheduler very easily. I can also very easily feed stats from the queue out directly via a couple of Web requests or (as we do now) through the SignalR service.Registering a Background Object with ASP.NETNotice also the use of the HostingEnvironment.RegisterObject(). This function registers an object with ASP.NET to let it know that it's a background task that should be notified if the AppDomain shuts down. RegisterObject() requires an interface with a Stop() method that's fired and allows your code to respond to a shutdown request. Here's what the IRegisteredObject::Stop() method looks like on the launcher:public void Stop(bool immediate = false) { LogManager.Current.LogInfo("QueueManager Controller Stopped."); Controller.StopProcessing(); Controller.Dispose(); Thread.Sleep(1500); // give background threads some time HostingEnvironment.UnregisterObject(this); }Implementing IRegisterObject should help with reliability on AppDomain shutdowns. Thanks to Justin Van Patten for pointing this out to me on Twitter.RegisterObject() is not required but I would highly recommend implementing it on whatever object controls your background processing to all clean shutdowns when the AppDomain shuts down.Testing it outI'm still in the testing phase with this particular service to see if there are any side effects. But so far it doesn't look like it. With about 50 lines of code I was able to replace the Windows service startup to Web start up - everything else just worked as is. An honorable mention goes to SignalR 2.0's oWin hosting, because with the new oWin based hosting no code changes at all were required, merely a couple of configuration file settings and an assembly directive needed, to point at the SignalR startup class. Sweet!It also seems like SignalR is noticeably faster running inside of IIS compared to self-host. Startup feels faster because of the preload.Starting and Stopping the 'Service'Because the application is running as a Web Server, it's easy to have a Web interface for starting and stopping the services running inside of the service. For our queue manager the SignalR service and front monitoring app has a play and stop button for toggling the queue.If you want more administrative control and have it work more like a Windows Service you can also stop the application pool explicitly from the command line which would be equivalent to stopping and restarting a service.To start and stop from the command line you can use the IIS appCmd tool. To stop:> %windir%\system32\inetsrv\appcmd stop apppool /apppool.name:"Weblog"and to start> %windir%\system32\inetsrv\appcmd start apppool /apppool.name:"Weblog"Note that when you explicitly force the AppPool to stop running either in the UI (on the ApplicationPools page use Start/Stop) or via command line tools, the application pool will not auto-restart immediately. You have to manually start it back up.What's not to like?There are certainly a lot of benefits to running a background service in IIS, but… ASP.NET applications do have more overhead in terms of memory footprint and startup time is a little slower, but generally for server applications this is not a big deal. If the application is stable the service should fire up and stay running indefinitely. A lot of times this kind of service interface can simply be attached to an existing Web application, or if scalability requires be offloaded to its own Web server.Easier to work withBut the ultimate benefit here is that it's much easier to work with a Web app as opposed to a service. While developing I can simply turn off the auto-launch features and launch the service on demand through IIS simply by hitting a page on the site. If I want to shut down an IISRESET -stop will shut down the service easily enough. I can then attach a debugger anywhere I want and this works like any other ASP.NET application. Yes you end up on a background thread for debugging but Visual Studio handles that just fine and if you stay on a single thread this is no different than debugging any other code.SummaryUsing ASP.NET to run background service operations is probably not a super common scenario, but it probably should be something that is considered carefully when building services. Many applications have service like features and with the auto-start functionality of the Application Initialization module, it's easy to build this functionality into ASP.NET. Especially when combined with the notification features of SignalR it becomes very, very easy to create rich services that can also communicate their status easily to the outside world.Whether it's existing applications that need some background processing for scheduling related tasks, or whether you just create a separate site altogether just to host your service it's easy to do and you can leverage the same tool chain you're already using for other Web projects. If you have lots of service projects it's worth considering… give it some thought…© Rick Strahl, West Wind Technologies, 2005-2013Posted in ASP.NET  SignalR  IIS   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Setting up and using Bing Translate API Service for Machine Translation

    - by Rick Strahl
    Last week I spent quite a bit of time trying to set up the Bing Translate API service. I can honestly say this was one of the most screwed up developer experiences I've had in a long while - specifically related to the byzantine sign up process that Microsoft has in place. Not only is it nearly impossible to find decent documentation on the required signup process, some of the links in the docs are just plain wrong, and some of the account pages you need to access the actual account information once signed up are not linked anywhere from the administration UI. To make things even harder is the fact that the APIs changed a while back, with a completely new authentication scheme that's described and not directly linked documentation topic also made for a very frustrating search experience. It's a bummer that this is the case too, because the actual API itself is easy to use and works very well - fast and reasonably accurate (as accurate as you can expect machine translation to be). But the sign up process is a pain in the ass doubtlessly leaving many people giving up in frustration. In this post I'll try to hit all the points needed to set up to use the Bing Translate API in one place since such a document seems to be missing from Microsoft. Hopefully the API folks at Microsoft will get their shit together and actually provide this sort of info on their site… Signing Up The first step required is to create a Windows Azure MarketPlace account. Go to: https://datamarket.azure.com/ Sign in with your Windows Live Id If you don't have an account you will be taken to a registration page which you have to fill out. Follow the links and complete the registration. Once you're signed in you can start adding services. Click on the Data Link on the main page Select Microsoft Translator from the list This adds the Microsoft Bing Translator to your services. Pricing The page shows the pricing matrix and the free service which provides 2 megabytes for translations a month for free. Prices go up steeply from there. Pricing is determined by actual bytes of the result translations used. Max translations are 1000 characters so at minimum this means you get around 2000 translations a month for free. However most translations are probable much less so you can expect larger number of translations to go through. For testing or low volume translations this should be just fine. Once signed up there are no further instructions and you're left in limbo on the MS site. Register your Application Once you've created the Data association with Translator the next step is registering your application. To do this you need to access your developer account. Go to https://datamarket.azure.com/developer/applications/register Provide a ClientId, which is effectively the unique string identifier for your application (not your customer id!) Provide your name The client secret was auto-created and this becomes your 'password' For the redirect url provide any https url: https://microsoft.com works Give this application a description of your choice so you can identify it in the list of apps Now, once you've registered your application, keep track of the ClientId and ClientSecret - those are the two keys you need to authenticate before you can call the Translate API. Oddly the applications page is hidden from the Azure Portal UI. I couldn't find a direct link from anywhere on the site back to this page where I can examine my developer application keys. To find them you can go to: https://datamarket.azure.com/developer/applications You can come back here to look at your registered applications and pick up the ClientID and ClientSecret. Fun eh? But we're now ready to actually call the API and do some translating. Using the Bing Translate API The good news is that after this signup hell, using the API is pretty straightforward. To use the translation API you'll need to actually use two services: You need to call an authentication API service first, before you can call the actual translator API. These two APIs live on different domains, and the authentication API returns JSON data while the translator service returns XML. So much for consistency. Authentication The first step is authentication. The service uses oAuth authentication with a  bearer token that has to be passed to the translator API. The authentication call retrieves the oAuth token that you can then use with the translate API call. The bearer token has a short 10 minute life time, so while you can cache it for successive calls, the token can't be cached for long periods. This means for Web backend requests you typically will have to authenticate each time unless you build a more elaborate caching scheme that takes the timeout into account (perhaps using the ASP.NET Cache object). For low volume operations you can probably get away with simply calling the auth API for every translation you do. To call the Authentication API use code like this:/// /// Retrieves an oAuth authentication token to be used on the translate /// API request. The result string needs to be passed as a bearer token /// to the translate API. /// /// You can find client ID and Secret (or register a new one) at: /// https://datamarket.azure.com/developer/applications/ /// /// The client ID of your application /// The client secret or password /// public string GetBingAuthToken(string clientId = null, string clientSecret = null) { string authBaseUrl = https://datamarket.accesscontrol.windows.net/v2/OAuth2-13; if (string.IsNullOrEmpty(clientId) || string.IsNullOrEmpty(clientSecret)) { ErrorMessage = Resources.Resources.Client_Id_and_Client_Secret_must_be_provided; return null; } var postData = string.Format("grant_type=client_credentials&client_id={0}" + "&client_secret={1}" + "&scope=http://api.microsofttranslator.com", HttpUtility.UrlEncode(clientId), HttpUtility.UrlEncode(clientSecret)); // POST Auth data to the oauth API string res, token; try { var web = new WebClient(); web.Encoding = Encoding.UTF8; res = web.UploadString(authBaseUrl, postData); } catch (Exception ex) { ErrorMessage = ex.GetBaseException().Message; return null; } var ser = new JavaScriptSerializer(); var auth = ser.Deserialize<BingAuth>(res); if (auth == null) return null; token = auth.access_token; return token; } private class BingAuth { public string token_type { get; set; } public string access_token { get; set; } } This code basically takes the client id and secret and posts it at the oAuth endpoint which returns a JSON string. Here I use the JavaScript serializer to deserialize the JSON into a custom object I created just for deserialization. You can also use JSON.NET and dynamic deserialization if you are already using JSON.NET in your app in which case you don't need the extra type. In my library that houses this component I don't, so I just rely on the built in serializer. The auth method returns a long base64 encoded string which can be used as a bearer token in the translate API call. Translation Once you have the authentication token you can use it to pass to the translate API. The auth token is passed as an Authorization header and the value is prefixed with a 'Bearer ' prefix for the string. Here's what the simple Translate API call looks like:/// /// Uses the Bing API service to perform translation /// Bing can translate up to 1000 characters. /// /// Requires that you provide a CLientId and ClientSecret /// or set the configuration values for these two. /// /// More info on setup: /// http://www.west-wind.com/weblog/ /// /// Text to translate /// Two letter culture name /// Two letter culture name /// Pass an access token retrieved with GetBingAuthToken. /// If not passed the default keys from .config file are used if any /// public string TranslateBing(string text, string fromCulture, string toCulture, string accessToken = null) { string serviceUrl = "http://api.microsofttranslator.com/V2/Http.svc/Translate"; if (accessToken == null) { accessToken = GetBingAuthToken(); if (accessToken == null) return null; } string res; try { var web = new WebClient(); web.Headers.Add("Authorization", "Bearer " + accessToken); string ct = "text/plain"; string postData = string.Format("?text={0}&from={1}&to={2}&contentType={3}", HttpUtility.UrlEncode(text), fromCulture, toCulture, HttpUtility.UrlEncode(ct)); web.Encoding = Encoding.UTF8; res = web.DownloadString(serviceUrl + postData); } catch (Exception e) { ErrorMessage = e.GetBaseException().Message; return null; } // result is a single XML Element fragment var doc = new XmlDocument(); doc.LoadXml(res); return doc.DocumentElement.InnerText; } The first of this code deals with ensuring the auth token exists. You can either pass the token into the method manually or let the method automatically retrieve the auth code on its own. In my case I'm using this inside of a Web application and in that situation I simply need to re-authenticate every time as there's no convenient way to manage the lifetime of the auth cookie. The auth token is added as an Authorization HTTP header prefixed with 'Bearer ' and attached to the request. The text to translate, the from and to language codes and a result format are passed on the query string of this HTTP GET request against the Translate API. The translate API returns an XML string which contains a single element with the translated string. Using the Wrapper Methods It should be pretty obvious how to use these two methods but here are a couple of test methods that demonstrate the two usage scenarios:[TestMethod] public void TranslateBingWithAuthTest() { var translate = new TranslationServices(); string clientId = DbResourceConfiguration.Current.BingClientId; string clientSecret = DbResourceConfiguration.Current.BingClientSecret; string auth = translate.GetBingAuthToken(clientId, clientSecret); Assert.IsNotNull(auth); string text = translate.TranslateBing("Hello World we're back home!", "en", "de",auth); Assert.IsNotNull(text, translate.ErrorMessage); Console.WriteLine(text); } [TestMethod] public void TranslateBingIntegratedTest() { var translate = new TranslationServices(); string text = translate.TranslateBing("Hello World we're back home!","en","de"); Assert.IsNotNull(text, translate.ErrorMessage); Console.WriteLine(text); } Other API Methods The Translate API has a number of methods available and this one is the simplest one but probably also the most common one that translates a single string. You can find additional methods for this API here: http://msdn.microsoft.com/en-us/library/ff512419.aspx Soap and AJAX APIs are also available and documented on MSDN: http://msdn.microsoft.com/en-us/library/dd576287.aspx These links will be your starting points for calling other methods in this API. Dual Interface I've talked about my database driven localization provider here in the past, and it's for this tool that I added the Bing localization support. Basically I have a localization administration form that allows me to translate individual strings right out of the UI, using both Google and Bing APIs: As you can see in this example, the results from Google and Bing can vary quite a bit - in this case Google is stumped while Bing actually generated a valid translation. At other times it's the other way around - it's pretty useful to see multiple translations at the same time. Here I can choose from one of the values and driectly embed them into the translated text field. Lost in Translation There you have it. As I mentioned using the API once you have all the bureaucratic crap out of the way calling the APIs is fairly straight forward and reasonably fast, even if you have to call the Auth API for every call. Hopefully this post will help out a few of you trying to navigate the Microsoft bureaucracy, at least until next time Microsoft upends everything and introduces new ways to sign up again. Until then - happy translating… Related Posts Translation method Source on Github Translating with Google Translate without Google API Keys Creating a data-driven ASP.NET Resource Provider© Rick Strahl, West Wind Technologies, 2005-2013Posted in Localization  ASP.NET  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

< Previous Page | 1 2