Search Results

Search found 4421 results on 177 pages for 'dynamically'.

Page 2/177 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Is any simple way to create method and set its body dynamically in C#?

    - by greatromul
    I hold body of method in string. I want to create method dynamically. But I don't know, how to set its body. I saw very tedious way using CodeDom. And I saw using Emit with OpCodes. Is any way to use ready code from string variable? string method_body = "return \"Hello, world!\";"; //there is method body DynamicMethod dm = new System.Reflection.Emit.DynamicMethod("My_method", typeof(string), new Type[] { }); //any way to create method dynamically //any way to set body string result = (string)dm.Invoke(...); //I need write result in variable

    Read the article

  • How to change the divider height of listview dynamically?

    - by sunil
    Hi, I have a listview in which there should be different divider height between different rows. So, how can we set the divider height dynamically? Suppose, I have 10 rows and there should be a divider height of 5 between first 2 rows and then there should be a divider height of 1 between next 5 rows and so on. Can someone let me know the way of doing this? Regards Sunil

    Read the article

  • How to add dynamically a component in JSF2 during an Ajax request.

    - by Guillaume
    Hello, I am currently trying to dynamically add a new component to the JSF component tree during an ajax request. In fact I add a child to the UIViewRoot component in my AjaxBehaviorListener which is fired on server side during the ajax request process. The issue is that the new component is not rendered. It seems that this component is not taken into account in the render response phase. Could you help me on this issue ? Regards, Guillaume

    Read the article

  • How do I dynamically load a js file using Prototype?

    - by domagoj412
    Hello, I am using prototype to load external js file (actually it is php file) dynamically. Like this: function UpdateJS(file) { var url = 'main_js.php?file='+file; var myAjax = new Ajax.Request( url, {method: 'get', onComplete: showResponseHeader} ); } function showResponseHeader (originalRequest) { $('jscode').innerHTML = originalRequest.responseText; } Container "jscode" is defined like this: <script type="text/javascript" id="jscode"></script> And it works! But if some different file is called, all the functions from previous one are preserved. And I don't want that. Anybody knows how to "unload" first js file when second one is called? (I also tried using Ajax.Updater function but the result is the same.) Update: It turns out that there is bigger problem: it only loads if function "UpdateJS" is in window.onload that is why it doesn't load anything else after that. So prototypes update it's maybe not such a good way for this...

    Read the article

  • Dynamically creating meta tags in asp.net mvc

    - by Jalpesh P. Vadgama
    As we all know that Meta tag has very important roles in Search engine optimization and if we want to have out site listed with good ranking on search engines then we have to put meta tags. Before some time I have blogged about dynamically creating meta tags in asp.net 2.0/3.5 sites, in this blog post I am going to explain how we can create a meta tag dynamically very easily. To have meta tag dynamically we have to create a meta tag on server-side. So I have created a method like following. public string HomeMetaTags() { System.Text.StringBuilder strMetaTag = new System.Text.StringBuilder(); strMetaTag.AppendFormat(@"<meta content='{0}' name='Keywords'/>","Home Action Keyword"); strMetaTag.AppendFormat(@"<meta content='{0}' name='Descption'/>", "Home Description Keyword"); return strMetaTag.ToString(); } Here you can see that I have written a method which will return a string with meta tags. Here you can write any logic you can fetch it from the database or you can even fetch it from xml based on key passed. For the demo purpose I have written that hardcoded. So it will create a meta tag string and will return it. Now I am going to store that meta tag in ViewBag just like we have a title tag. In this post I am going to use standard template so we have our title tag there in viewbag message. Same way I am going save meta tag like following in ViewBag. public ActionResult Index() { ViewBag.Message = "Welcome to ASP.NET MVC!"; ViewBag.MetaTag = HomeMetaTags(); return View(); } Here in the above code you can see that I have stored MetaTag ViewBag. Now as I am using standard ASP.NET MVC3 template so we have our we have out head element in Shared folder _layout.cshtml file. So to render meta tag I have modified the Head tag part of _layout.cshtml like following. <head> <title>@ViewBag.Title</title> <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" /> <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" type="text/javascript"></script> @Html.Raw(ViewBag.MetaTag) </head> Here in the above code you can see I have use @Html.Raw method to embed meta tag in _layout.cshtml page. This HTML.Raw method will embed output to head tag section without encoding html. As we have already taken care of html tag in string function we don’t need the html encoding. Now it’s time to run application in browser. Now once you run your application in browser and click on view source you will find meta tag for home page as following. That’s its It’s very easy to create dynamically meta tag. Hope you liked it.. Stay tuned for more.. Till then happy programming.

    Read the article

  • Creating a dynamically updateable website using Adobe Flash CS6 [closed]

    - by Sidd
    I need some help finding the appropriate tutorials for what I need. I have tried looking hard with no avail. I have Adobe Flash CS6, and I want to make a website using that software. I want the content to be uploaded onto a server so that the flash program can just fetch the information from the server and dynamically update the website itself, instead of editing the content on the flash website and reuploading the whole flash file (as I have done before). I also want the ability to have a guestbook and a contact form. Also, if possible, I wanted an ability to add tabs to the navigation bar dynamically instead of having to edit the flash file. Can anyone point be to a good tutorial which can help me with this? I have tried looking, and most of the results I get are completely useless to me.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating PDF documents dynamically using Umbraco and XSL-FO part 2

    - by Vizioz Limited
    Since my last post I have made a few modifications to the PDF generation, the main one being that the files are now dynamically renamed so that they reflect the name of the case study instead of all being called PDF.PDF which was not a very helpful filename, I just wanted to get something live last week, so decided that something was better than nothing :)The issue with the filenames comes down to the way that the PDF's are being generated by using an alternative template in Umbraco, this means that all you need to do is add " /pdf " to the end of a case study URL and it will create a PDF version of the case study. The down side is that your browser will merrily download the file and save it as PDF.PDF because that is the name of the last part of the URL.What you need to do is set the content-disposition header to be equal to the name you would like the file use, Darren Ferguson mentioned this on the Change the name of the PDF forum post.We have used the same technique for downloading dynamically generated excel files, so I thought it would be useful to create a small macro to set both this header and also to set the caching headers to prevent any caching issues, I think in the past we have experienced all possible issues, including various issues where IE behaves differently to other browsers when you are using SSL and so the below code should work in all situations!The template for the PDF alternative template is very simple:<%@ Master Language="C#" MasterPageFile="~/umbraco/masterpages/default.master" AutoEventWireup="true" %><asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolderDefault" runat="server"> <umbraco:Macro Alias="PDFHeaders" runat="server"></umbraco:Macro> <umbraco:Macro xsl="FO-CaseStudy.xslt" Alias="PDFXSLFO" runat="server"></umbraco:Macro></asp:Content>The following code snippet is the XSLT macro that simply creates our file name and then passes the file name into the helper function:<xsl:template match="/"> <xsl:variable name="fileName"> <xsl:text>Vizioz_</xsl:text> <xsl:value-of select="$currentPage/@nodeName" /> <xsl:text>_case_study.pdf</xsl:text> </xsl:variable> <xsl:value-of select="Vizioz.Helper:AddDocumentDownloadHeaders('application/pdf', $fileName)"/> </xsl:template>And the following code is the helper function that clears the current response and adds all the appropriate headers:public static void AddDocumentDownloadHeaders(string contentType, string fileName){ HttpResponse response = HttpContext.Current.Response; HttpRequest request = HttpContext.Current.Request; response.Clear(); response.ClearHeaders(); if (request.IsSecureConnection & request.Browser.Browser == "IE") { // Don't use the caching headers if the browser is IE and it's a secure connection // see: http://support.microsoft.com/kb/323308 } else { // force not using the cache response.AppendHeader("Cache-Control", "no-cache"); response.AppendHeader("Cache-Control", "private"); response.AppendHeader("Cache-Control", "no-store"); response.AppendHeader("Cache-Control", "must-revalidate"); response.AppendHeader("Cache-Control", "max-stale=0"); response.AppendHeader("Cache-Control", "post-check=0"); response.AppendHeader("Cache-Control", "pre-check=0"); response.AppendHeader("Pragma", "no-cache"); response.Cache.SetCacheability(HttpCacheability.NoCache); response.Cache.SetNoStore(); response.Cache.SetExpires(DateTime.UtcNow.AddMinutes(-1)); } response.AppendHeader("Expires", DateTime.Now.AddMinutes(-1).ToLongDateString()); response.AppendHeader("Keep-Alive", "timeout=3, max=993"); response.AddHeader("content-disposition", "attachment; filename=\"" + fileName + "\""); response.ContentType = contentType;}I will write another blog soon with some more details about XSL-FO and how to create the PDF's dynamically.Please do re-tweet if you find this interest :)

    Read the article

  • Is it possible to dynamically add webcontrols via jQuery???

    - by Chris Conway
    Currently I have a webform that has a series of links. What I'd like to be able to do is add a webcontrol's content when one of the links is clicked. Is this kind of thing even possible? If not, what's the best strategy for loading a set of controls (one textbox and one dropdown with values from one link, two textboxes and a checkbox from another link, etc.). I'd need to be able get the values of each of these controls on postback. Ideally, I'd like to be able to add that new content to an acordian control, most likely the jQuery UI acordian. So each clickable link would add new content to an acordian control. What's everybody's thoughts on this?

    Read the article

  • How to update a Widget dynamically (Not waiting 30 min for onUpdate to be called)?

    - by Donal Rafferty
    I am currently learning about widgets in Android. I want to create a WIFI widget that will display the SSID, the RSSI (Signal) level. But I also want to be able to send it data from a service I am running that calculates the Quality of Sound over wifi. Here is what I have after some reading and a quick tutorial: public class WlanWidget extends AppWidgetProvider{ RemoteViews remoteViews; AppWidgetManager appWidgetManager; ComponentName thisWidget; WifiManager wifiManager; public void onUpdate(Context context, AppWidgetManager appWidgetManager, int[] appWidgetIds) { Timer timer = new Timer(); timer.scheduleAtFixedRate(new WlanTimer(context, appWidgetManager), 1, 10000); } private class WlanTimer extends TimerTask{ RemoteViews remoteViews; AppWidgetManager appWidgetManager; ComponentName thisWidget; public WlanTimer(Context context, AppWidgetManager appWidgetManager) { this.appWidgetManager = appWidgetManager; remoteViews = new RemoteViews(context.getPackageName(), R.layout.widget); thisWidget = new ComponentName(context, WlanWidget.class); wifiManager = (WifiManager)context.getSystemService(Context.WIFI_SERVICE); } @Override public void run() { remoteViews.setTextViewText(R.id.widget_textview, wifiManager.getConnectionInfo().getSSID()); appWidgetManager.updateAppWidget(thisWidget, remoteViews); } } The above seems to work ok, it updates the SSID on the widget every 10 seconds. However what is the most efficent way to get the information from my service that will be already running to update periodically on my widget? Also is there a better approach to updating the the widget rather than using a timer and timertask? (Avoid polling) UPDATE As per Karan's suggestion I have added the following code in my Service: RemoteViews remoteViews = new RemoteViews(context.getPackageName(), R.layout.widget); ComponentName thisWidget = new ComponentName( context, WlanWidget.class ); remoteViews.setTextViewText(R.id.widget_QCLevel, " " + qcPercentage); AppWidgetManager.getInstance( context ).updateAppWidget( thisWidget, remoteViews ); This gets run everytime the RSSI level changes but it still never updates the TextView on my widget, any ideas why?

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to set the service endPoint URI dynamically in SOA Suite 11gR1 by Sylvain Grosjean’s

    - by JuergenKress
    Use Case : This example demonstrates how to get the URI of the backend service from a repository and how to set it dynamically to our partnerLink (dynamicPartnerLink). Implementation steps : Create a dvm file Create a BPEL component Add the endPointURI variable and assign the uri Set the endpointURI property in the invoke activity 1. Create a DVM file : In order to define our repository, we are going to use DVM (Data Value Maps) : For more explanation regarding DVM, you should read this documentation. 2. Create a BPEL Component : First you need to implement the simple bpel process like this : - The AssignPayload is used to set the inputvariable of our invoke activity. - The AssignEndpointURI is used to dynamically set the endPointURI variable from our DVM repository - The invoke activity to call the external service Read the complete article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Technorati Tags: human task,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress,Sylvain Grosjean

    Read the article

  • Ways to dynamically render a real world 3d environment in Unity3D

    - by Jake M
    Using Unity3D and C# I am attempting to display a 3d version of a real world location. Inside my Unity3D app, the user will specify the GPS coordinates of a location, then my app will have to generate a 3d plane(anything doesn't have to be a plane) of that location. The plane will show a 500 metre by 500 metre 3d snapshot of that location. How would you suggest I achieve this in Unity3D? What methodology would you use to achieve this? NOTE: I understand that this is a very difficult endevour(to render real world locations dynamically in Unity3d) so I expect to perform many actions to achieve this. I just don't know of all the technologies out there and which would be best for my needs For example: Suggested methodology 1: Prompt user to specify GPS coords Use Google earth API and HTTP to programmatically obtain a .khm file describing that location(Not sure if google earth provides that capability does it?) Unzip the .khm so I have the .dae file Convert that file to a .3ds file using ??? third party converter(is there a converter that exists?) Import .3ds into Unity3D at runtime as a plane(is this possible)? Suggested methodology 2: Prompt user to specify GPS coords Use Google earth API and HTTP to programmatically obtain a .khm file describing that location(Not sure if google earth provides that capability does it?) Unzip the .khm so I have the .dae file Parse .dae file using my own C# parser I will write(do you think its possible to write a .dae parser that can parse the .dae into an array of Vector3 that describe the height map of that location?) Dynamically create a plane in Unity3D and populate it with my array/list of Vector3 points(is it possible to create a plane this way?) Maybe I am meant to create a mesh instead of a plane? Can you think of any other ways I could render a real world 3d environment in Unity3D?

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to dynamically generate PDF documents

    - by Thomas
    I want to build a web application for generating stylish PDF documents. The layout should be based on a design templates and the data should come dynamically from the database. Ideally I want to design the template in a "publishing like" tool with placeholders and replace these placeholders by the web application with the data from the database. Think of something like an invoice generator, where a customer could choose from different invoice templates and the invoice data itself coming from the DB. Thanks for your ideas!

    Read the article

  • Prevent Truncation of Dynamically Generated Results in SQL Server Management Studio

    While working with the Results to Text option in SSMS, you may come across a situation where the output from dynamically generated data is truncated. In this article I will guide you on how to fix this issue and print all the text for the Results to Text option. "SQL Backup Pro 7 improves on an already wonderful product" - Don KolendaHave you tried version 7 yet? Get faster, smaller, fully verified backups. Download a free trial of SQL Backup Pro 7.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >